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RANK-METRIC CODES OVER ARBITRARY GALOIS EXTENSIONS AND RANK

ANALOGUES OF REED–MULLER CODES

DANIEL AUGOT, ALAIN COUVREUR, JULIEN LAVAUZELLE, AND ALESSANDRO NERI

Abstract. This paper extends the study of rank-metric codes in extension fields L equipped with an
arbitrary Galois group G = Gal(L/K). We propose a framework for studying these codes as subspaces of
the group algebra L[G], and we relate this point of view with usual notions of rank-metric codes in LN

or in KN×N , where N = [L : K]. We then adapt the notion of error-correcting pairs to this context, in
order to provide a non-trivial decoding algorithm for these codes.

We then focus on the case where G is abelian, which leads us to see codewords as elements of a
multivariate skew polynomial ring. We prove that we can bound the dimension of the vector space of
zeroes of these polynomials, depending of their degree. This result can be seen as an analogue of Alon–
Füredi theorem — and by means, of Schwartz–Zippel lemma — in the rank metric. Finally, we construct
the counterparts of Reed–Muller codes in the rank metric, and we give their parameters. We also show
the connection between these codes and classical Reed–Muller codes in the case where L is a Kummer
extension.

1. Introduction

1.1. Context. Rank-metric codes were introduced independently by Delsarte in [10] and Gabidulin in
[11] for combinatorial purposes. Roth rediscovered them in [28] and showed their application to crisscross
error-correction. In the same year, Gabidulin, Paramonov and Tretjakov proposed the use of rank-metric
codes for cryptographic purposes, designing the GPT cryptosystem [12]. More recently, Silva, Koetter
and Kschischang showed how these codes can be used in network coding [33]. This series of papers raised
the interest of many researchers from different areas, who investigated their mathematical properties and
further applications.

Rank-metric codes have been introduced as spaces of N ×M matrices over a finite field Fq by Delsarte,
while Gabidulin considered them as Fq-linear spaces of vectors of length N over an extension field FqM .
The two representations are equivalent: when choosing an Fq-basis of FqN , one can write each element of

FqN as a column of its coordinates in this basis. Thus, the rank distance on FN×M
q , defined as the rank of

the difference of two matrices, is equivalent to the distance on FM
qN defined as the rank of the difference of

the matrix representations of two vectors.
In the case M = N it is also possible to view matrices as endomorphisms. More precisely, one has

FN×N
q

∼= EndFq
(FqN ) ∼= L[x]/(xqN − x),

where L[x] is the ring of q-polynomials with coefficients in FqN endowed with addition and composition,

and (xqN − x) denotes the two–sided ideal spanned by xqN − x ∈ L[x]. Recall that a q-polynomial (or
linearized polynomial) is an element P (x) ∈ FqN [x] such that the exponents of monomials involved in P

are powers of q. Moreover, the matrix algebra FN×N
q is also isomorphic to the skew group algebra FqN [G],

where G = Gal(FqN /Fq), endowed with the usual addition and the multiplication defined by the rule

∀ gi, gj ∈ G, bi, bj ∈ FqN , (bigi) ◦ (bjgj) = (bigi(bj))(gi ◦ gj).
We refer to [34] for a complete presentation of these equivalent representations.
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The above isomorphisms make it easier to study the algebraic structure of rank-metric codes, and have
been used for designing rank-metric codes with good parameters. This is the case of the well-known family
of Gabidulin codes [10, 11]. They were first defined as the subspace of linearized polynomials of degree
at most qk−1, which corresponds to SpanF

qN

{

σi | i = 0, . . . , k − 1
}

⊆ FqN [G], where σ is the q-Frobenius

automorphism. This family has been then generalized by Kshevetskiy and Gabidulin in [17], by taking
the subspace SpanF

qN

{

θi | i = 0, . . . , k − 1
}

⊆ FqN [G], where θ is any generator of the Galois group G.

This point of view was crucial for generalizing Gabidulin codes over arbitrary cyclic Galois extensions.
In a series of papers, Augot, Loidreau and Robert [4, 3, 5] investigated on the case where G := 〈θ〉 is the
Galois group of a degree N cyclic extension L/K (see also [29, Section VI]). The same ring isomorphisms
hold between KN×N , EndK(L) and the skew group algebra L[G] = L[θ], and hence one can define a
Gabidulin code as the L-subspace in L[G] generated by θi for i = 0, . . . , k − 1.

Gabidulin codes are considered as analogues in the rank metric of Reed–Solomon codes. Indeed, Reed–
Solomon codes are obtained by considering the Fq-subspace Span

Fq

{

xi | i = 0, . . . , k − 1
}

⊆ Fq[x]. The
analogy can also be seen via their generator matrices. For Reed–Solomon codes, the evaluation of the
monomials xi’s on a subset of Fq yields a Vandermonde matrix, while for Gabidulin codes the Moore
matrix is obtained by the action of the θi’s on a K-linearly independent subset of L/K. Another analogy
can be found by studying the systematic generator matrices, which produces Cauchy matrices for Reed–
Solomon codes, and their q-analogue for Gabidulin codes [25].

Central to current research trends is the idea of finding constructions in the Hamming metric that have
a counterpart in the rank metric, in order to obtain analogous objects. For instance, a problem is whether
one can construct Reed–Muller type codes for the rank metric. Recall that q-ary Reed–Muller codes
in m variables are obtained by considering the Fq-subspace Span

Fq

{

xi1
1 · · ·xim

m | i1 + · · ·+ im 6 r
}

⊆
Fq[x1, . . . , xm] for a certain degree r, and then evaluating all the polynomials in this subspace in every
point of Fm

q . In order to obtain the same analogy as the one between Gabidulin and Reed–Solomon codes,
one should construct m distinct automorphisms θ1, . . . , θm ∈ G = Gal(L/K) which commute and span
disjoints subgroups of G of order n, and then define the space

RML/K(r, n,m) := Span
L

{

θi11 ◦ · · · ◦ θimm | i1 + · · ·+ im 6 r
}

.

This notably requires that G contains a subgroup isomorphic to (Z/nZ)m.
In the finite field setting, Galois groups are cyclic. This explains why up to now, no one succeeded in

constructing Reed–Muller codes for the rank metric that share the parameters of classical Reed–Muller
codes. Indeed, if one tries to get a subspace of FqN [G] of the form RML/K(r, n,m), then one has to choose
the θi’s as powers of the same generator θ, obtaining a generalized Gabidulin code or, more generally, a
rank-metric code satisfying a Roos-like bound [21, 1].

1.2. Overview. Motivated by this intuition, in this paper we study the general theory of rank-metric
codes over arbitrary Galois extensions. We first investigate the isomorphisms KN×N ∼= EndK(L) ∼= L[G],
showing equivalent definitions of the rank metric. This also allows us to define the counterparts of Moore
matrices and Dickson matrices for general Galois extensions, which are fundamental objects in order
to determine the rank of a linearized polynomial. We prove that the definitions of these matrices are
consistent with the finite field case, and they have exactly the same properties. We then adapt the notion
of error-correcting pairs to the context of codes in L[G]. Error-correcting pairs were originally introduced
by Pellikaan [26], and a rank-metric version was recently proposed by Mart́ınez-Peñas and Pellikaan [22].

Once developed the general theory of codes in L[G] for arbitrary finite groups G, we restrict to the case
of abelian groups, which was the main motivation of our project. In this context, elements of the group
algebra can be seen as skew polynomials in θ1, . . . , θm, where G = 〈θ1, . . . , θm〉. We prove an upper bound
on the dimension of their space of zeros, depending on their degree. This result can be seen as an analogue
of Alon–Füredi theorem and Schwartz–Zippel lemma in the rank metric setting.

We then naturally define θ-Reed–Muller codes as mentioned before, and study their parameters. It turns
out that this construction produces rank-metric codes with the same parameters as q-ary Reed–Muller
codes. Furthemore, when restricting to Kummer extensions with Galois group G ≃ Z/n1Z× · · ·×Z/nmZ,
the θ-Reed–Muller code shares the structure of an affine variety code or affine cartesian code (see [13, 19]).
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Notice that in [14], Geiselmann and Ulmer also proposed a generalisation of Reed–Muller codes by using
skew polynomial rings. However their work significantly differs from ours, since they use iterated rings
with non-trivial derivation in order to stand out from classical Reed–Muller codes.

1.3. Organisation. The paper is structured as follows. In Section 2 we recall basic notions in algebra
that are useful to define the rank metric on arbitrary Galois extension fields (Section 3). Dickson matrices
are introduced in Section 4 where we also determine their algebraic properties. We are then able to define
and describe the properties of rank-metric codes in L[G] in Section 5 and their error-correcting pairs
in Section 6. Next, Section 7 is dedicated to the case of abelian groups G, in which the analogues of
Alon–Füredi theorem and Schwartz–Zippel lemma for skew polynomials are proved. Finally, Section 8
is devoted to the construction and analysis of Reed–Muller codes in L[G] and their connection to the
Hamming setting.

2. Preliminaries

2.1. Notation. Given a field K, the elements of Kn are represented as row vectors and denoted using
bold face lower case letters: a, b, . . . . However, there might be an exception to this rule: given a finite
extension L of K, a vector in Ln whose entries form a K–basis of L will be denoted with calligraphic
letters such as B. Matrices are denoted with capital letters: A,B, etc. The space of matrices with m rows
and n columns with entries in K is denoted by Km×n. The transposition of a vector v ∈ Kn or a matrix
M ∈ Km×n is denoted by v⊤ and M⊤ respectively.

Given vector spaces V1, V2 over a field K with respective bases B1,B2 and a K–linear map f : V1 → V2,
we denote by A(f,B1,B2) the matrix representation of f in these bases. That is to say, A(f,B1,B2) is the
matrix whose columns are the decompositions in B2 the elements f(b) when b ranges over the basis B1.
Given a vector x ∈ V1, we denote x ∈ KdimV1 its representation in basis B1. Then, the vector y ∈ KdimV2

such that

y⊤ = A(f,B1,B2) · x⊤

is the representation of f(x) in the basis B2. Finally, when B = B1 = B2, the matrix is denoted by A(f,B).
According to this definition, the kernel of a matrix is referred to its right kernel, i.e. given M ∈ Km×n

kerM := {x ∈ Kn | M · x⊤ = 0}.

2.2. Skew group algebras. Let L/K be a Galois extension of finite degree N := [L : K], and G :=
Gal(L/K) = {g1, . . . , gN} be its Galois group. The group algebra L[G] is defined as

L[G] :=

{

N
∑

i=1

aigi | ai ∈ L

}

.

The set L[G] is naturally an L-vector space of dimension N . It also has a ring structure via the multi-
plication ∗ defined on monomials by (aigi) ∗ (ajgj) = (aiaj)(gigj) and then extended by associativity and
distributivity. However, in this paper we will not consider this ring structure, but the one defined by the
composition ◦, that is given on monomials by

(aigi) ◦ (ajgj) = (aigi(aj))(gigj),

and then extended by associativity and distributivity. With this operation L[G] is a non-commutative
ring. In addition, every element a =

∑

i aigi ∈ L[G] can be seen as a K-linear map

(1)

{

L −→ L

x 7−→ a(x) :=
∑

i aigi(x).

Theorem 1. The map sending every a ∈ L[G] onto the corresponding K–endomorphism of L is a K-linear
isomorphism between L[G] and EndK(L).

Proof. The map is clearly K-linear. Moreover, G = {g1, . . . , gN} is a set of distinct characters L× → L×,
defined as x 7→ gi(x). Hence, by Artin’s theorem of independence of characters the map is injective. The
claim follows then by observing that both L[G] and EndK(L) have dimension N2 over K. �



4 RANK-METRIC CODES OVER ARBITRARY GALOIS EXTENSION

2.3. Trace of extension fields and its duality theory. For a Galois extension L/K, the trace map is
a special element in L[G] which gives rise to a well-known duality theory.

Definition 2. Let G = Gal(L/K) be the Galois group of the extension L/K. Then, the trace map is
defined as

TrL/K :

{

L −→ K

x 7−→ ∑

g∈G g(x).

The corresponding element of L[G] is Tr :=
∑

g∈G g.

It is well-known that for separable extensions, and hence for Galois extensions, the trace map induces
a duality between L and HomK(L,K).

Theorem 3 (Duality of the trace). Let L/K be a Galois extension. The map

(2) 〈·, ·〉tr :
{

L× L −→ K

(x, y) 7−→ TrL/K(xy)

is a symmetric nondegenerate bilinear form, which induces a duality isomorphism
{

L −→ HomK(L,K)
x 7−→ Tx

where Tx(y) = TrL/K(xy) for every y ∈ L.

The duality result in Theorem 3 also implies that for any ordered basis B = (b1, . . . , bN) of L/K there
exists a dual (ordered) basis B∗ = (b∗1, . . . , b

∗
N ) with respect to the bilinear form 〈·, ·〉tr. Such a dual basis

satisfies

(3) TrL/K(bib
∗
j ) =

{

1 if i = j

0 if i 6= j.

2.4. Adjunction. The trace bilinear form 〈·, ·〉tr introduced in Theorem 3 Equation (2) yields a notion of
adjunction. Given f ∈ L[G], the adjoint of f with respect to the trace bilinear form 〈·, ·〉tr is denoted by
τ(f). It is the unique element τ(f) ∈ L[G] satisfying

(4) ∀x, y ∈ L, 〈f(x), y〉tr = TrL/K(f(x)y) = 〈x, τ(f)(y)〉tr.
Lemma 4. The adjunction map τ : L[G] → L[G] is a K–linear map satisfying

(i) ∀a ∈ L, τ(a) = a;
(ii) ∀g ∈ G, τ(g) = g−1;
(iii) ∀u, v ∈ L[G], τ(u ◦ v) = τ(v) ◦ τ(u);
(iv) τ is an involution, i.e. ∀u ∈ L[G], τ ◦ τ(u) = u.

Proof. For any a, x, y ∈ L, we have 〈ax, y〉tr = TrL/K(axy) = TrL/K(xay) = 〈x, ay〉tr, which proves (i).

Let g ∈ G and x, y ∈ L, we have TrL/K(g(x)y) = TrL/K(g(xg
−1(y))) = TrL/K(xg

−1(y)). This proves (ii).
Finally (iii) is a direct consequence of (4) and (iv) is a consequence of the symmetry of 〈·, ·〉tr. �

As a consequence, we get an explicit definition of τ :

(5) τ :

{

L[G] −→ L[G]
u =

∑

g∈G ugg 7−→ ∑

g∈G g(ug−1)g.

Actually, τ can be seen as a “transpose” map in L[G]. In particular, if there exists an orthogonal
K–basis B of L with respect to 〈·, ·〉tr, then for any c ∈ L[G] we have A(τ(c),B) = A(c,B)⊤.

Observe that this notion is well-known and studied in the context of finite fields (see [31, 20]), which
we illustrate in the following example.

Example 5. Suppose that K = Fq and L = FqN . We have that G = Gal(FqN /Fq) = 〈θ〉, where θ is the

q-Frobenius automorphism. Then all the elements of the Galois group are of the form θi(α) = αqi , for

α ∈ FqN . Now, fix an element a ∈ FqN [θ] that we write as a =
∑N−1

i=0 aiθ
i. Hence, the adjoint of a is

τ(a) =

N−1
∑

i=0

θi(aN−i)θ
i =

N−1
∑

i=0

aq
i

N−iθ
i,
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where by convention, aN := a0. It is clear that this coincides with the usual notion given for example in
[31].

3. Rank metric and Moore matrices over arbitrary Galois extensions

In this section we focus on the elements of L[G], where G is the Galois group of an arbitrary Galois
extension L/K. In particular, we show that we can determine the rank of any element in several equivalent
ways.

Definition 6. Let L/K be a field extension, and let M be a positive integer. For a given vector v =
(v1, . . . , vM ) ∈ LM , we define the K-rank of v, as the quantity

rkK(v) := dimK Span
K
{v1, . . . , vM} .

We now introduce the analogue of the Moore/Wronskian matrix, for any finite Galois group G.

Definition 7. Let G = Gal(L/K) = {g1, . . . , gN} and v ∈ LN . We define the G-Moore matrix of v as

MG(v) :=











g1(v1) g1(v2) · · · g1(vN )
g2(v1) g2(v2) · · · g2(vN )

...
...

...
gN (v1) gN(v2) · · · gN (vN )











∈ LN×N .

Given an ordered K–basis B of L, one can define in a very similar fashion the Moore matrix MG(B). In
addition, this matrix is related to the Moore matrix of the dual basis B∗ defined in Section 2.3.

Lemma 8. Let B = (β1, . . . , βN ) be an ordered basis of L/K. Then

MG(B)−1 = MG(B∗)⊤,

where B∗ is the dual basis of B with respect to the bilinear form 〈·, ·〉tr.
Proof. The (i, j)-th entry of MG(B∗)⊤MG(B) is equal to

∑

ℓ gℓ(β
∗
i )gℓ(βj) = TrL/K(β

∗
i βj). Therefore, by

(3), we get MG(B∗)⊤MG(B) = Id. �

A strong interest of the Moore matrix lies in the next statement.

Proposition 9. For every v ∈ LN , it holds

rkL(MG(v)) = rkK(v).

Proof. Set r := rkK(v) = dimK SpanK {v1, . . . , vN}. We want to prove that rkL(MG(v)) = r. By definition
of rkK(v), there exist an r–tuple of K–linearly independent elements u1, . . . , ur ∈ L and an invertible matrix
S ∈ KN×N , such that Span

K
{v1, . . . , vN} = Span

K
{u1, . . . , ur} and

v · S = (u1, . . . , ur, 0, . . . , 0) =: u.

Observe thatMG(v)·S = MG(v·S) = MG(u) since S is defined overK and hence fixed byG. Consequently,
the last N − r columns of MG(v) · S are zero. Therefore

rkL(MG(v)) = rkL(MG(v)) · S = rkL(MG(u)) 6 r.

Now, let us prove that the r first columns of MG(u) = MG(v) · S are L–linearly independent. Suppose
that there exist λ1, . . . , λr ∈ L satisfying

(6) ∀i ∈ {1, . . . , N},
r
∑

j=1

λjgi(uj) = 0.

Without loss of generality, one can suppose that λ1 6= 0. By Theorem 3, there exists a ∈ L such that
TrL/K(aλ1) 6= 0. Thus, after possibly replacing λ1, . . . , λr by aλ1, . . . , aλr, one can assume that there exist
λi’s ∈ L satisfying (6) and such that TrL/K(λ1) 6= 0. Next, (6) is equivalent to

∀i ∈ {1, . . . , N},
r
∑

j=1

g−1
i (λj)uj = 0.
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Summing up these N equations, we get a K–linear relation on the ui’s:

TrL/K(λ1)u1 + · · ·+TrL/K(λr)ur = 0

and this linear relation is nontrivial since TrL/K(λ1) 6= 0. This yields a contradiction since the ui’s are
K–linearly independent. Therefore:

r = rkK(v) = rkL(MG(u)) = rkL(MG(v)).

�

As a consequence, we get a generalization of the well-known result over finite fields that characterizes
bases of extension fields in terms of their associated Moore matrix.

Corollary 10. A vector v ∈ LN is an ordered basis of L/K if and only if det(MG(v)) 6= 0.

The previous results give properties of the rank metric on LN by relating the rank of an element with
the rank of its Moore matrix. Let us now investigate the rank metric in L[G].

Definition 11. Let L/K be a finite extension with Galois group G. The K-rank of an element a ∈ L[G]
is defined as the rank of the corresponding K–endomorphism of L (see (1)).

Given a vector b = (b1, . . . , bM ) ∈ LM , let us now define the evaluation map

(7) evb :

{

L[G] −→ LM

a 7−→ (a(b1), . . . , a(bM )).

For a ∈ L[G], the vector evb(a) ∈ LM is called the evaluation vector of a at b. One can easily see that
rkK(a) = rkK(evB(a)) for every basis B of L/K.

Definition 12. The left-annihilator of an element a ∈ L[G] is defined as

AnnL[G](a) := {f ∈ L[G] | f ◦ a = 0} .

Observe that AnnL[G](a) is an L-subspace and a left-ideal in L[G].

Proposition 13. For every a ∈ L[G] we have

rkK(a) = dimL

(

L[G]/AnnL[G](a)
)

.

Proof. Let us set v = evB(a) for some basis B = (β1, . . . , βN ) of L/K. We have

dimL

(

L[G]/AnnL[G](a)
)

= N − dimL(AnnL[G](a)),

and Proposition 9 yields rkK(a) = rkK(v) = rkL(MG(v)). To prove the result, we will prove that AnnL[G](a)

and kerL MG(v)
⊤ are isomorphic. Indeed, consider the natural L-isomorphism

ϕ :

{

L[G] −→ LN
∑

i λigi 7−→ (λ1, . . . , λN ).

One can see that ϕ(AnnL[G](a)) = kerL(MG(v)
⊤). Indeed, (λ1, . . . , λN ) ∈ kerL(MG(v)

⊤) if and only if

∀j ∈ {1, . . . , N}, 0 =

(

∑

i

λigi

)

(vj) =

(

∑

i

λigi

)

(a(βj)) =
((

∑

λigi

)

◦ a
)

(βj).

Since B is a basis, this holds if and only if (
∑

λigi)◦a = 0, which is equivalent to say that ϕ−1(λ1, . . . , λN ) =
(
∑

λigi) ∈ AnnL[G](a). This proves that ϕ(AnnL[G](a)) ⊇ kerL(MG(v)) and the converse inclusion can be
proved in a similar fashion. �

To sum up, let a ∈ L[G] and define wtI(a) := dimL(L[G]/AnnL[G](a)). If we set v = evB(a) for some
basis B of L/K, then we have proved:

rkK(a) = rkL(MG(v)) = wtI(a) .
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4. Dickson matrices for elements in L[G]

In this section, we study Dickson matrices in the context of arbitrary Galois groups. Before giving their
definition let us introduce a notation. Consider the left action of G = Gal(L/K) on itself and denote by
σi ∈ SN the permutation associated to gi ∈ G, i.e. gigj = gσi(j) for all i, j ∈ {1, . . . , N}.

Definition 14. Let us fix some ordering (g1, . . . , gN) of the group G Let a =
∑

i aigi ∈ L[G]. The
G–Dickson matrix associated to a is defined as DG(a) = (di,j) ∈ LN×N defined by

di,j = gj(aσ−1
j

(i)), ∀i, j ∈ {1, . . . , N},

Example 15. When K = Fq and L = FqN , we have that G = Gal(FqN /Fq) = 〈θ〉, where θ is the q-

Frobenius automorphism. Then choosing the ordered FqN –basis (Id, θ, . . . , θN−1) of FqN [G], we get that

the G–Dickson matrix DG(a) of an element a = a1Id + a2θ + · · ·+ aNθN−1 ∈ FqN [G] is given by:

DG(a) =













a1 aqN · · · aq
N−1

2

a2 aq1 · · · aqN−1
3

...
. . .

aN aqN−1 · · · aq
N−1

1













.

This matrix is usually known as the Dickson matrix associated to a(x) =
∑N

i=1 aix
qi−1 ∈ L[x], where we

recall that L[x] denotes the ring of linearized polynomials. Since L[x]/(xqN − x) ∼= FqN [G], this explains
the relation between the G–Dickson matrix and the usual Dickson matrix over finite fields.

In the sequel we give two distinct interpretations of these matrices.

4.1. The right multiplication map. If a =
∑

i aigi ∈ L[G], then for every j ∈ {1, . . . , N} we have

gj ◦
(

N
∑

i=1

aigi

)

=

N
∑

i=1

gj(ai)gjgi =

N
∑

i=1

gj(ai)gσj(i).

Now, let us consider the L-linear map

(8) µ :

{

L[G] −→ HomL(L[G],L[G])
a 7−→ (f 7→ f ◦ a).

Proposition 16. Let a ∈ L[G]. Then, the matrix representing µ(a) in the basis (g1, . . . , gN ) is the
G–Dickson matrix DG(a).

Remark 17. The G-Dickson matrix is the matrix associated to the L-linear map µ(a), given by the right
composition by a. One can also consider the map L[G] → L[G] given by the left composition f 7→ a ◦ f .
However this map is only semilinear.

4.2. The element of the group algebra after a base field extension. Given a ∈ L[G], the element a
induces a K–endomorphism a : L → L. We claim that the transposition of its G–Dickson matrix represents
this endomorphism after a base field extension. To understand this fact, we introduce the map

ν :

{

L[G] −→ HomL(L⊗K L,L⊗K L)
a 7−→ Id⊗ a

and will study in depth the maps of the form Id⊗ a : L ⊗K L → L⊗K L. Let α be a primitive element of
L/K, and consider the K–linear map given by the multiplication by α

mα :

{

L −→ L

x 7−→ αx.

In the K–basis (1, α, α2, . . . , αN−1) this map is represented by the companion matrix of the minimal
polynomial of α over K. Therefore, its eigenvalues are nothing but the g(α) for g ∈ G. For a suitable
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choice of eigenvectors basis in L⊗K L ≃ LN the map Id⊗mα has a diagonal matrix representation

(9)











α (0)
g2(α)

. . .

(0) gN(α)











,

where we ordered the elements of G so that g1 = Id. This matrix representation is associated to a basis of
eigenvectors of L⊗K L. Let us make a particular choice of normalisation for them. Choose v ∈ L⊗K L an
eigenvector of Id ⊗mα with respect to the eigenvalue α. That is to say (Id ⊗mα)(v) = α · v. For g ∈ G
we define vg := (Id⊗ g−1)(v).

Proposition 18. Let g ∈ G. Then vg is an eigenvector of Id⊗mα with respect to the eigenvalue g(α).

Proof. First, note that g ◦mα = mg(α) ◦ g. Therefore, we have

(Id⊗mα) ◦ (Id⊗ g−1)(v) = Id⊗ (mα ◦ g−1)(v)

= Id⊗ (g−1 ◦mg(α))(v)

= (Id⊗ g−1) ◦ (Id⊗mg(α))(v).

Since α is a primitive element of L/K, there exists a polynomial P ∈ K[X ] such that g(α) = P (α) and
hence P (mα) = mg(α). Moreover, since v is an eigenvector of Id ⊗mα with respect to the eigenvalue α,
then it is an eigenvector of P (Id⊗mα) = Id⊗ P (mα) with respect to the eigenvalue P (α). Therefore,

(Id⊗mα) ◦ (Id⊗ g−1)(v) = (Id⊗ g−1) ◦ (Id⊗mg(α))(v)

= (Id⊗ g−1)(P (α)(v))

= P (α) · (Id⊗ g−1)(v)

= g(α) · (Id⊗ g−1)(v).

In summary vg := (Id⊗ g−1)(v) is an eigenvector of Id⊗mα with respect to g(α). �

Therefore, in the basis (vg)g∈G the multiplication by an element α ∈ L is represented by a diagonal

matrix. Next, the action of elements of G will be represented by permutation matrices as suggests the
next statement.

Proposition 19. Let g, h ∈ G, then (Id⊗ g)(vh) = vhg−1 .

Proof. (Id⊗ g) ◦ (Id⊗ h−1)(v) = (Id⊗ (hg−1)
−1

)(v) = vhg−1 . �

As a conclusion, G acts by permutation on eigenvectors (vg)g∈G.

4.3. Relating these two approaches. Now, let us try to relate matrix representations of µ(a) and ν(a).

Theorem 20. Let

Λ :

{

L[G] −→ L⊗K L
∑

g agg 7−→ ∑

g agvg,

then for any a ∈ L[G], we have

µ(τ(a)) = Λ−1 ◦ ν(a) ◦ Λ,
where τ is the adjunction map introduced in Section 2.4. From the matrix point of view:

DG(a) = A(µ(a), (g1, . . . , gN)) = A(ν(a), (vg1 , . . . , vgN ))⊤.

Proof. Note first that the map ν is a ring homomorphism, while µ is a ring anti-homomorphism: for any
a, b ∈ L[G], we have µ(a ◦ b) = µ(b) ◦ µ(a). Thus, we introduce the map µ′ : a 7→ µ(τ(a)) which is a
ring homomorphism and we will show that µ′ and ν have conjugated images under Λ. Since we have ring
homomorphisms it is sufficient to prove that the property is satisfied by generators, i.e. elements of L and
elements of G.
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First consider the case of an element a ∈ L. We already proved that ν(a) has a diagonal representation
in the basis (vg)g∈G. On the other hand for any g ∈ G, we have

µ′(a)(g) = g ◦ τ(a) = g ◦ a = g(a) · g.
Hence, g is an eigenvector of µ′(a) with respect to the eigenvalue g(a) and hence has the very same matrix
representation. Formally, µ′(a) = Λ−1 ◦ ν(a) ◦ Λ.

Next, consider an element g ∈ G. By Proposition 19, for any h ∈ G we have ν(g)(vh) = vhg−1 . On the
other hand,

µ′(g)(h) = h ◦ τ(g) = hg−1

Hence, here again, we deduce that µ′(g) = Λ−1 ◦ ν(g) ◦ Λ. This concludes the proof. �

Corollary 21. Let B be a K–basis of L and BL := (1⊗ b)b∈B the corresponding L–basis of L⊗K L. Let v
be the representation of the eigenvector v ∈ L⊗K L in the basis BL. Then, for any a ∈ L[G]

DG(a)
⊤ = MG(v)

⊤A(a,B)(MG(v)
⊤)−1.

Proof. The matrix DG(a)
⊤ represents ν(a) in the basis (vg)g∈G. On the other hand MG(v)

⊤ can be
interpreted as the change of basis matrix from BL to (vg)g∈G. �

4.4. Properties of Dickson matrices. The previous observations permit first to assert the following
statement.

Lemma 22. For any a ∈ L[G], we have

DG(a)
⊤ = DG(τ(a)).

Next, if we define the following algebra, D(L/K) := {DG(a)
⊤ | a ∈ L[G]} ⊆ LN×N , then we get a new

ring isomorphism:

D(L/K) ∼= L[G] ∼= EndK(L) ∼= KN×N .

In addition, the rank of an element of L[G] can obviously be interpreted in terms of the rank of its
G–Dickson matrix, as it holds for the finite field case (see e.g. [23, 34, 9]).

Theorem 23. Let a ∈ L[G] and v := (a(β1), . . . , a(βN )) for some basis B = (β1, . . . , βN ) of L/K. Then,

rkK(a) = wtI(a) = rkL(MG(v)) = rkL(DG(a)).

5. Rank-metric codes

The theory of rank-metric codes has been essentially always studied in the context of extension fields
with cyclic Galois groups. For the special case of finite fields, the reader is referred to [32]. In this section,
we consider the case of general Galois extensions L/K of finite degree N = [L : K] = |Gal(L/K)|.

5.1. Equivalent representations of codes. According to Sections 3 and 4, we can define the rank
metric in several equivalent ways. In L[G], the rank distance is defined as

d(a, b) := rkK(a− b), for any a, b ∈ L[G].

Definition 24. An L-linear rank-metric code C is an L-subspace of L[G], equipped with the rank distance.
The dimension of C is its dimension as an L-vector space, and its minimum rank-distance is the integer

d(C) := min {d(a, b) | a, b ∈ C, a 6= b} .
An L-linear rank-metric code C ⊆ L[G] of L–dimension k and minimum rank distance d will be also called
an [N, k, d]L[G] code, where N := |G|, or simply [N, k]L[G] code, if the minimum rank distance is not
known/relevant.

Rank-metric codes have been previously studied in other ambient spaces. First, in spaces of matrices,
the rank distance is defined as

d :

{

KN×M ×KN×M −→ N

(A,B) 7−→ rkK(A−B).
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Codes in this setting are usually called matrix rank-metric codes. Linear codes are K–dimensional K-
subspaces of KN×M and they are denoted by [N ×M,K]K codes (or [N ×M,K, d]K codes if the minimum
distance is known).

As in classical literature, we can also define the rank distance on vectors over L as

d :

{

LM × LM −→ N

(u,v) 7−→ rkK(u − v).

Here, codes are called vector rank-metric codes. Linear codes in this framework are k-dimensional L-
subspaces of LM and they are denoted by [M,k]L/K codes (or [M,k, d]L/K codes if the minimum distance
is known).

5.1.1. From vector codes to matrix codes. In the theory of rank-metric codes there is a procedure for going
from an [M,k, d]L/K code to an [N × M,Nk, d]K code. Fix an ordered basis B of L/K, and write every

element of L in coordinates with respect to B, resulting in a column vector in KN . In the same way, we can
transform a vector v ∈ LM to a matrix in KN×M , which we denote by ExtB(v). Hence, for an [M,k, d]L/K
code C and a fixed ordered basis B of L/K we define

ExtB(C) := {ExtB(v) | v ∈ C} ⊆ KN×M ,

which is an [N ×M,Nk, d]K code.

5.1.2. From L[G]-codes to vector codes. Now, we briefly explain the relation between rank-metric codes in
L[G] and vector rank-metric codes in LN . Let C ⊆ L[G] be an [N, k, d]L[G] code and fix an ordered basis
B of L/K. Then, we define the code

C(B) := {evB(c) | c ∈ C} .

By Theorem 23 the map C 7→ C(B) is an isometry between spaces (L[G], d) and (LN , d), and hence the
code C(B) is an [N, k, d]L/K vector rank-metric code. Moreover, if we fix two ordered bases B1 and B2 of

L/K, and let X ∈ KN×N be the change-of-basis matrix such that B1 = B2X , then we have

(10) C(B1) = C(B2) ·X = {vX | v ∈ C(B2)} .

One may note that the two codes C(B1) and C(B2) are equivalent in the sense of vector rank-metric codes
(see [24] for the finite field case.). In particular, they are isometric with respect to the rank metric.

5.1.3. From L[G]-codes to matrix codes. Finally, if we fix two ordered bases B1 and B2 of L/K, we can
transform the [N, k, d]L[G] code C in the vector code C(B1) and then to the matrix code ExtB2(C(B1)).
This last matrix code satisfies,

ExtB2(C(B1)) = {A(c,B1,B2) | c ∈ C} .

In the special case in which B1 = B2 =: B, we get the code

ExtB(C(B)) := {A(c,B) | c ∈ C} .

Example 25. Let us fix K = Q, and L to be the splitting field of the polynomial x3−p, where p is a prime
number. This means that L = Q(ζ, 3

√
p), where ζ is a primitive 3rd root of unity satisfying ζ2 + ζ +1 = 0.

The Galois group G = Gal(L/K) is isomorphic to the symmetric group S3 and it is generated by the
automorphisms σ1 and σ2, defined as

σ1 :

{

ζ 7→ ζ2

3
√
p 7→ 3

√
p

and σ2 :

{

ζ 7→ ζ
3
√
p 7→ ζ 3

√
p.

Consider the [6, 3]L[G] rank-metric code given by

C := {a · Id + b · σ1 + c · σ2 | a, b, c ∈ L} .
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We fix the following ordered basis B =
(

1, ζ, 3
√
p, ζ 3

√
p, 3
√
p2, ζ 3

√
p2
)

of L/K. Then, the [6, 3]L/K code C(B)
is generated by the matrix





1 ζ 3
√
p ζ 3

√
p 3

√
p2 ζ 3

√
p2

1 −(ζ + 1) 3
√
p −(ζ + 1) 3

√
p 3

√
p2 −(ζ + 1) 3

√
p2

1 ζ ζ 3
√
p −(ζ + 1) 3

√
p −(ζ + 1) 3

√
p2 3

√
p2



 .

Moreover, we can also determine the [6× 6, 18]K matrix code ExtB(C(B)). The matrices that represent the
scalar multiplication by the six elements of the basis are of the form AiBj for i ∈ {0, 1} and j ∈ {0, 1, 2},
where

A =

















0 −1 0 0 0 0
1 −1 0 0 0 0
0 0 0 −1 0 0
0 0 1 −1 0 0
0 0 0 0 0 −1
0 0 0 0 1 −1

















and B =

















0 0 0 0 p 0
0 0 0 0 0 p
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

















.

This is due to the fact that A and B represent the multiplication by ζ and 3
√
p respectively. Hence, by

writing the three row vectors of the generator matrix of C(B) with respect to the basis B, we see that the
code ExtB(C(B)) is the Q-span of the set

{

AiBj , AiBjX,AiBjY | 0 6 i 6 1, 0 6 j 6 2
}

,

where

X =

















1 −1 0 0 0 0
0 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 −1 0 0
0 0 0 0 1 −1
0 0 0 0 0 −1

















and Y =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 −1 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 −1 0

















are the matrices representing σ1 and σ2 in the basis B. In other words, X and Y are the ExtB of the
vectors

(1,−(ζ + 1), 3
√
p,−(ζ + 1) 3

√
p, 3

√
p
2
,−(ζ + 1) 3

√
p
2
) and (1, ζ, ζ 3

√
p,−(ζ + 1) 3

√
p,−(ζ + 1) 3

√
p
2
, 3
√
p
2
)

respectively.

5.2. Duality for rank-metric codes. Here, we study the different notions of duality for rank-metric
codes, according to the three representations mentioned above and how they are related.

5.2.1. Matrix codes. First, on the space of matrices we consider the standard bilinear form for matrices,
given by

{

KN×M ×KN×M −→ K

(A,B) 7−→ Tr(AB⊤),

where Tr denotes the matrix trace. The dual code of an [N ×M,K]K code C is then

C⊥ :=
{

A ∈ KN×M | Tr(AB⊤) = 0 for all B ∈ C
}

.

Since the standard bilinear form is nondegenerate, then C⊥ is an [N ×M,NM −K] code.

5.2.2. Vector codes. For vector rank-metric codes, the duality is always taken with respect to the standard
inner product. Hence, for an [M,k]L/K code, its dual code is the [M,M − k]L/K code given by

C⊥ :=
{

u ∈ LM | u · v⊤ = 0 for all v ∈ C
}

.
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5.2.3. L[G]-codes. Finally, we introduce the following bilinear form on L[G] — which is also called standard
bilinear form over finite fields — defined as

〈·, ·〉L[G] :











L[G]× L[G] −→ L
(

a =
∑

g∈G

agg, b =
∑

g∈G

bgg

)

7−→ ∑

g∈G

agbg.

This bilinear form is also nondegenerate, and given an [N, k]L[G] rank-metric code, we define its dual code
as the [N,N − k]L[G] code

C⊥ :=
{

a ∈ L[G] | 〈a, b〉L[G] = 0 for all b ∈ C
}

.

In Section 5.1, we have seen how codes in these three points of view are related. This can be extended to
duality. For instance, the relation between the duality of matrix and vector rank-metric codes over finite
fields has been already studied in [16, 27]. With the same proof, it is easy to see that for any [M,k]L/K
code C ⊆ LM and any ordered basis B of L/K with dual basis B∗, it holds

ExtB(C)⊥ = ExtB∗(C⊥).

Now, let us show how rank-metric codes in L[G] are related to vector rank-metric codes in LN . Let
α ∈ L be a normal element of L/K, i.e. the set {g(α) | g ∈ G} is a basis of L/K. If we fix some ordering
for the elements of G, say g1, . . . , gN , then we get an ordered normal basis a = (g1(α), . . . , gN(α)) ∈ LN .
One can prove that the dual basis of an ordered normal basis is normal with respect to the same ordering
of elements of G.

Theorem 26. Let a = (g1(α), . . . , gN (α)) ∈ LN be an ordered normal basis, where α ∈ L. Then, there
exists β ∈ L such that b = (g1(β), . . . , gN (β)) ∈ LN is the dual basis of a.

Proof. Without loss of generality, assume that g1 is the identity element. Let b = (b1, . . . , bN ) ∈ LN be
the unique dual basis of a and define β := b1. Then, by G-invariance of the trace,

TrL/K(gi(β)gj(α)) = TrL/K(b1g
−1
i gj(α))

is 0 if i 6= j, and 1 otherwise. Hence, (g1(β), . . . , gN (β)) is dual to a, and by uniqueness, bj = gj(β) for
every j. �

From this result, we can relate the notions of duality of rank-metric codes, when G is abelian.

Theorem 27. Let C be an [N, k]L[G] code and let B be an ordered basis of L/K. Moreover, assume that
G is abelian. Then

ExtB(C⊥) = ExtB∗(C)⊥.
Proof. First, we fix a normal basis a = (g1(α), . . . , gN (α)), which always exists thanks to the normal basis
theorem. By Theorem 26 there exists β ∈ L, such that b := (g1(β), . . . , gN(β)) = a∗. Moreover, we have

eva(gi) evb(gj)
⊤ =

N
∑

ℓ=1

gi(aℓ)gj(bℓ) =

N
∑

ℓ=1

gi(gℓ(α))gj(gℓ(β))

=
N
∑

ℓ=1

gℓ(gi(α)gj(β)) = TrL/K(gi(α)gj(β))

= δi,j = 〈gi, gj〉L[G] .

This shows that in this case C⊥(a) = (C(b))⊥.
Now, suppose that B = (b1, . . . , bN ) is a generic ordered basis. There exists an invertible matrix

X ∈ KN×N such that B = aX . Moreover, we also have that B∗ = b(X−1)⊤. Hence, we get

evB(gi) evB∗(gj)
⊤ = evaX(gi) evb(X−1)⊤(gj)

⊤

= eva(gi)X
(

evb(gj)(X
−1)⊤

)⊤

= eva(gi)XX−1 evb(gj)
⊤

= δi,j = 〈gi, gj〉L[G] .



RANK-METRIC CODES OVER ARBITRARY GALOIS EXTENSION 13

�

6. Error-correcting pairs in L[G]

In this section, we make a first step towards decoding codes seen as L-subspaces of L[G]. We adapt the
notion of rank error-correcting pairs (rank-ECP) introduced by Mart́ınez-Peñas and Pellikaan [22], which
themselves were counterparts of Hamming metric error-correcting pairs [26].

Note. From now on and for convenience sake, we always suppose that the group G is equipped with some
total ordering and we allow ourselves to index rows and columns of matrices with elements of G. Given
A ∈ L|G|×|G| and g, h ∈ G, we denote by Ag,h the entry of A at row i and column j, where g (resp. h) is
the i–th (resp. j–th) element of G with respect to this ordering. As a consequence, from Definition 14,
G–Dickson matrices are defined as

DG(a) =
(

h(ah−1g)
)

g,h∈G
.

The following statement is useful in the sequel.

Proposition 28. For any a, b, c ∈ L[G], we have

〈a ◦ τ(b), c〉L[G] = 〈a, c ◦ b〉L[G].

Proof. According to the description of G–Dickson matrices in Section 4.1, the maps
{

L[G] −→ L[G]
x 7−→ x ◦ b and

{

L[G] −→ L[G]
x 7−→ x ◦ τ(b)

are represented in the canonical basis of L[G] by the G–Dickson matrices DG(b) and DG(τ(b)). From
Lemma 22, these matrices are transpose to each other. Thus, since the elements of G form an orthonormal
basis with respect to 〈·, ·〉L[G], the corresponding maps are adjoint to each other. �

6.1. Support. First recall a very classical fact in adjunction which is that, given a ∈ L[G], then we have
ker(a)⊥ = Im(τ(a)), where the dual is taken with respect to 〈·, ·〉tr. Now, let us introduce the notion of
support of an element of L[G].

Definition 29. The support of an element a ∈ L[G] is defined as the orthogonal of ker(a) with respect to
〈·, ·〉tr. Namely,

Supp(a) := ker(a)⊥ = Im(τ(a)) ⊆ L.

This definition can appear to be slightly different from the usual one as given for instance in [15, § 2]
for matrix codes, where the support of a matrix is its column space. However, our definition can be
understood as a row space. Indeed, the support Im(τ(a)) of a can be interpreted as the column space of
a matrix representing τ(a) and hence as the row space of a matrix representing a. In particular, we have
that dimK(Supp(a)) = rk(a).

Finally, let us recall the notion of shortening which is for instance introduced in [7, Definition 3.2] (see
also [32, Definition 14]).

Definition 30. Let C ⊆ L[G] be a code and I be a K–subspace of L. The shortening of C at I is defined
as

ShortI(C) := {c ∈ C | I ⊆ ker(c)} .
6.2. Error correcting pairs. The product of two codes A,B ⊆ L[G] is defined as:

B ◦ A := SpanL {b ◦ a | a ∈ A, b ∈ B} .

Notice that, generally, A ◦ B 6= B ◦ A. Next, given two codes A,B ⊆ L[G] and some e ∈ L[G], we define

K(e) := {a ∈ A | 〈b ◦ a, e〉L[G] = 0, ∀b ∈ B} ⊆ L[G] .

Then we have the following result.

Proposition 31. Let A,B, C ⊆ L[G] be codes such that B ◦ A ⊆ C⊥. Let r = c + e ∈ L[G], where c ∈ C
and e ∈ L[G]. Denote I = Supp(e). Then,

(1) K(r) = K(e),
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(2) ShortI(A) ⊆ K(e),
(3) if rk(e) < d(B⊥), then ShortI(A) = K(e).

Proof.

(1) This holds since 〈b ◦ a, r〉L[G] = 〈b ◦ a, c〉L[G] + 〈b ◦ a, e〉L[G] and, from b ◦ a ∈ B ◦ A ⊆ C⊥ we have
〈b ◦ a, c〉L[G] = 0.

(2) Let a ∈ ShortI(A). Then I ⊆ ker(a) and hence ker(a)⊥ = Im(τ(a)) ⊆ I⊥ = ker(e), and hence
e ◦ τ(a) = 0. Thus, from Corollary 28, we get 〈b ◦ a, e〉L[G] = 〈b, e ◦ τ(a)〉L[G] = 0 for any b ∈ B.

(3) Assume rk(e) 6 d(B⊥), and let us prove that K(e) ⊆ ShortI(A). If a ∈ K(e), then we have
e ◦ τ(a) ∈ B⊥ by definition of K(e). Since rk(e) < d(B⊥), necessarily e ◦ τ(a) = 0 which yields
ker(a)⊥ = Imτ(a) ⊆ ker(e) = I⊥, or equivalently, I ⊆ ker(a).

�

We are now able to introduce error-correcting pairs in the context of codes in L[G]. The definition is
identical to the one given by Mart́ınez-Peñas and Pellikaan [22] in the context of rank-metric codes over
finite fields.

Definition 32. Let A,B, C ⊆ L[G] be three codes. The pair (A,B) is a t-error-correcting pair for C if the
following holds:

(1) B ◦ A ⊆ C⊥,
(2) dimL(A) > t,
(3) d(B⊥) > t,
(4) d(A) + d(C) > |G|.

Before showing how a t-error-correcting pair for a code C ⊆ L[G] enables to decode errors of rank up to
t, we need a couple of technical lemmas.

Lemma 33. Let (ai)i, (bi)i ∈ L[G]M and (ci)i ∈ LM . The system of K-linear equations

〈ai ◦ x, bi〉L[G] = ci, i = 1, . . . ,M,

with unknown x ∈ L[G], can be solved in O(min(M,N)MN4) operations over K, where N = [L : K].

Proof. Let us fix a basis (β1, . . . , βN) of L/K. One writes x =
∑

g∈G

∑N
j=1 x

(j)
g βjg ∈ L[G], where x

(j)
g ∈ K.

Then, we have

〈ai ◦ x, bi〉L[G] =
∑

g,h∈G

ai,gg(xh)bi,gh =
∑

g,h∈G

N
∑

j=1

ai,gbi,gh g(βj)x
(j)
h .

If we set u
(j)
i,h =

∑

g∈G ai,gbi,ghg(βj), then we end up with the system of K-linear equations

N
∑

j=1

∑

h∈G

u
(j)
i,hx

(j)
h = ci, i = 1, . . . ,M,

where u
(j)
i,h ∈ L, ci ∈ L and x

(j)
h ∈ K. Using any basis of L/K, these M equations can be written as MN

equations over K, with N2 unknowns {x(j)
h }. Classical linear algebra algorithms solve this problem in

O(min(MN,N2)MN3) = O(min(M,N)MN4) operations over K. �

Lemma 34. Let c ∈ C and r = c+ e ∈ L[G], where Supp(e) ⊆ J for some K-vector space J ⊆ L such that
dimK(J) < d(C). Then, c is the unique element in C such that Supp(r− c) ⊆ J . Moreover, the codeword c
can be found by solving a system of linear equations over K, with O(N3) equations and O(N2) unknowns
in K, where N = [L : K].

Proof. Assume c, c′ ∈ C satisfy Supp(r − c) ⊆ J and Supp(r − c′) ⊆ J . Then,

Supp(c− c′) = Im(τ(c − c′)) ⊆ Im(τ(r − c′)) + Im(τ(r − c)) ⊆ J.

If c 6= c′, then dimK Supp(c− c′) = rk(c− c′) > d(C) and we obtain a contradiction. Thus, c = c′.
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In order to compute c, it suffices to solve the system of K-linear equations
{

〈c, ui〉L[G] = 0,
(r − c)(wk) = 0,

where {ui}i is an L-basis of C⊥ and {wk}k is a K-basis of J⊥. One gets a system of O(N2) equations of
the form given in Lemma 33 which yields the result. �

Theorem 35. Assume that (A,B) is a t-error-correcting pair for C ⊆ L[G], where 2t+ 1 6 d(C). Then,
there exists a deterministic algorithm Dec which runs in O(N7) operations over K given as input r = c+ e
where c ∈ C and e ∈ L[G] satisfies rkL(e) 6 t, outputs the codeword c.

Proof. Given r = c+ e, the algorithm first computes K(r); it consists of solving the system of equations

〈bi ◦ x, r〉L[G] = 〈x, aj〉L[G] = 0,

where the unknown is x ∈ L[G] and where {bi} is an L–basis of B and {aj} is an L–basis of A⊥. This can
be done in O(N6) operations over K by Lemma 33.

Denote I = Supp(e). Since K(r) = K(e) = ShortI(A) by Proposition 31, one can now take an arbitrary
nonzero element a ∈ K(r). Define J = ker(a) = Supp(a)⊥ and notice that J contains I. Using the last
condition in the definition of error-correcting pairs, we get

dimK(J) = |G| − rk(a) 6 |G| − d(A) < d(C) .
Thus, from Lemma 34 one can find c by solving another system of linear equations, requiring O(N7)
operations over K. �

7. The abelian case: θ-polynomials

In this section, we assume that

G = Gal(L/K) = 〈θ1, . . . , θm〉 ∼= Z/n1Z× Z/n2Z× · · · × Z/nmZ .

From now, we will also write elements of L[G] with uppercase characters, e.g. P ∈ L[G], since they will
be viewed as polynomials.

7.1. Definition. Multivariate linearized polynomials can be defined as follows. Let θ = (θ1, . . . , θm) be a

vector of generators of G. For a given i = (i1, . . . , im) ∈ Nm, we denote by θi the element θi11 ◦· · ·◦θimm ∈ G
and we write |i| := i1 + · · ·+ im. Since θni

i = θ0i = Id, we can actually consider only tuples i belonging to
∆(n) := ∆(n1)× · · · ×∆(nm), where ∆(t) := {0, 1, . . . , t− 1} and n := (n1, . . . , nm). In this way, we have
that G = {θi | i ∈ ∆(n)} and hence, every P ∈ L[G] has a unique representation as

P =
∑

i∈∆(n)

biθ
i.

We also define 1 := (1, . . . , 1) ∈ Nm. This will be used in Sections 7 and 8.

Definition 36. A θ-polynomial is an element P =
∑

i∈∆(n) biθ
i belonging to the skew group algebra

L[G] = L[θ1, . . . , θm]. If P is non-zero, then the θ-degree of P is the quantity

degθ(P ) := max{|i| | i ∈ ∆(n), bi 6= 0}.
Observe that θ-polynomials are just elements of L[G], endowed with a notion of degree. This notion

will be useful for defining θ-Reed–Muller codes and bounding their minimum distance.

7.2. Alon–Füredi Theorem and Schwartz–Zippel Lemma for θ-polynomials. In this section we
show that we have an analogue of the celebrated Alon–Füredi Theorem [2, Theorem 5] and Schwartz–Zippel
Lemma [30, Corollary 1].

Let m and N be positive integers with m 6 N and let a = (a1, . . . , am) ∈ Nm be a vector of positive
integers. Define the integer f(a, N) as

f(a, N) := min

{

m
∏

i=1

bi | b− 1 ∈ ∆(a) and |b| = N

}

.
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Lemma 37. [8, Lemma 2.2] Suppose a1 > a2 > . . . > am. Let N ∈ N be such that N−m =
∑s

i=1(ai−1)+ℓ
for some s ∈ {0, . . . ,m} and ℓ such that 0 6 ℓ < as+1. Then

(11) f(a, N) = (ℓ+ 1)

s
∏

i=1

as.

We recall now the classical versions of Alon-Füredi Theorem and Schwartz-Zippel Lemma. For this
purpose, we introduce the following notation. Let F be a field and let S ⊆ Fm be a fixed set. Moreover,
let p ∈ F[x1, . . . , xm] be a multivariate polynomial. We denote by US(p) and VS(p) the set of non-zeros
and of zeros, respectively, of p in S, that is

US(p) := {u ∈ S | p(u) 6= 0} , VS(p) := {v ∈ S | p(v) = 0} .
Theorem 38 (Alon–Füredi Theorem). [2, Theorem 5] Let S = S1 × · · · × Sm ⊆ Fm be a finite grid
with Si ⊆ F and |Si| = ni, where n1 > n2 > · · · > nm > 1. Let p ∈ F[x1, . . . , xm] be a polynomial
that is not identically 0 on S, and let p̄ be the polynomial p modulo the ideal (p1(x1), . . . , pm(xm)), where
pi(xi) =

∏

s∈Si
(xi − s). Then

|US(p)| > (ns − ℓ)

s−1
∏

i=1

ni.

where ℓ and s are the unique integers satisfying deg p̄ =
∑k

i=s+1(ni−1)+ℓ, with 1 6 s 6 k and 1 6 ℓ < ns.

Lemma 39 (Schwartz–Zippel Lemma). [30, Corollary 1]. Let S = S1 × · · · × Sm ⊆ Fm be a finite grid
with Si ⊆ F and |Si| > 1 for each i ∈ {1, . . . ,m}. Let p ∈ F[x1, . . . , xk] be a nonzero polynomial. Then,

|VS(p)| 6
deg(p)

min{|S1|, . . . , |Sm|} |S|.

At this point, we are ready to state the Alon–Füredi Theorem for θ-polynomials, which is the central
result of this section.

Theorem 40 (Alon–Füredi Theorem for θ-polynomials). Let n = (n1, . . . , nm) be an m-tuple of non-
negative integers such that n1 > n2 > · · · > nm > 2 and let G = 〈θ1, . . . , θm〉 ≃ Z/n1Z × · · · × Z/nmZ be
the Galois group of a field extension L/K. Moreover, let P ∈ L[G] be nonzero. Then

rk(P ) > (ns − ℓ)

s−1
∏

i=1

ni.

where ℓ and s are the unique integers satisfying degθ(P ) =
∑m

i=s+1(ni − 1) + ℓ, with 0 6 ℓ < ns.

Proof. Let P =
∑

i∈∆(n) biθ
i be a θ-polynomial with degθ(P ) =

∑m
i=s+1(ni − 1) + ℓ. Our goal is to find

an ordering of G for which rk(P ) = rkL(DG(P )) can be easily bounded. Let us fix a monomial order ≺
on Nm, which is a refinement of the total degree, that is, for each finite set S ⊂ Nm, the maximal element
in S with respect to ≺ has also maximal total degree among the elements of S. We write the group

G =
{

θi(1) , . . . , θi(N)
}

according to the order ≺ restricted to ∆(n) = {i(1), . . . , i(N)}. We also denote lt≺(P ) = θi(s) the leading
term of P , and lc≺(P ) = bi(s) its leading coefficient, for some i(s) = (u1, . . . , um) ∈ ∆(n).

Consider the G–Dickson matrix DG(P ) with respect to this order on G. In the first column of DG(P ),
the (s, 1)-entry is bi(s) 6= 0, and the (j, 1)-entry is 0 for every s < j 6 N . Let us define

T := {θv | vi < ni − ui} ⊆ G and t := |T | =
m
∏

i=1

(ni − ui).

We also order T = {θj(1)

, . . . , θj(t)} according to ≺, i.e. θj(1) ≺ · · · ≺ θj(t)

.

Let us now fix i ∈ {1, . . . , t}. By definition, the column of DG(P ) corresponding to θj(i) ∈ T is

given by the coordinates of the θ-polynomial θj(i) ◦ P in the basis {θi(1) , . . . , θi(N)}. We have that

lt≺(θ
j(i) ◦ P ) = θj(i)+i(s) = θi(si) , for a suitable positive integer si 6 N . Moreover, by definition of
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a monomial order, we have s = s1 < s2 < · · · < st 6 N , and in the column corresponding to θj(i)

,
all the elements with row index j for si < j 6 N are equal to 0. Furthermore, the element with row

index si equals θ
j(i)

(bi(s)) 6= 0. Therefore, the submatrix DT of DG(P ) obtained by taking the columns
corresponding to T and the rows s1, . . . , st, is an upper triangular t× t matrix of the form

DT =

















θj(1)

(bi(s))

θj(2)

(bi(s)) (∗)
. . .

(0) θj(t−1)

(bi(s))

θj(t)

(bi(s))

















,

with nonzero elements on the diagonal. Hence, by Theorem 23, we have

rk(P ) = rkL(DG(P )) > rkL(DT ) = |T | =
m
∏

i=1

(ni − ui).

We conclude the proof by observing that

f
(

n,
(

m
∑

i=1

ni

)

− degθ(P )
)

= min

{

m
∏

i=1

vi

∣

∣

∣

∣

v − 1 ∈ ∆(n), |v| =
(

∑

i

ni

)

− degθ(P )

}

= min

{

m
∏

i=1

(ni − ui)

∣

∣

∣

∣

u ∈ ∆(n), |u| = degθ(P )

}

.

and from Lemma 37 we get the desired result.
�

Remark 41. From the proof of Theorem 40 one can easily see that the result can be refined if we make
further assumptions on the element P ∈ L[G]. Indeed, if there exists a monomial order ≺′ on Nm such
that lc≺′(P ) = θu with |u| < degθ(P ), using the same proof with the monomial order ≺′, one gets that

rk(P ) > f
(

n,
(

m
∑

i=1

ni

)

− |u|
)

.

In the Hamming metric, the effects of the choice of monomial orders for designing codes with better
minimum distance have been intensively studied by Geil and Thomsen in [13].

Actually, the Alon–Füredi Theorem for θ-polynomials allows to prove an analogue in the rank metric
of the well-known Schwartz–Zippel lemma. This can be stated as follows.

Corollary 42 (Schwartz–Zippel Lemma for θ-polynomials). Let n = (n1, . . . , nm) be an m-tuple of non-
negative integers, let G = 〈θ1, . . . , θm〉 ≃ Z/n1Z × · · · × Z/nmZ be the Galois group of a field extension
L/K, and let P ∈ L[G]. Then, we have:

dimK ker(P ) 6
degθ(P )

min{n1, . . . , nm} ·
m
∏

i=1

ni .

Proof. Without loss of generality, we can assume m1 > n2 > · · · > nm > 2, so that min{n1, . . . , nm} = nm.
If degθ(P ) > nm there is nothing to prove. Hence, suppose degθ < nm. Using Theorem 40 we obtain

dimK ker(P ) =

m
∏

i=1

ni − rk(P ) >

m
∏

i=1

ni − (nm − degθ(P ))

m−1
∏

i=1

ni = degθ(P )

m−1
∏

i=1

ni.

�

8. θ-Reed–Muller codes

In this section, we introduce and develop the theory of θ-Reed–Muller codes. They can be seen either
as the counterparts of Reed–Muller codes in the rank metric, or as the multivariate version of Gabidulin
codes.
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8.1. Definition. We assume to work in the setting described in Section 7.

Definition 43. Let L/K be a Galois extension such that G := Gal(L/K) = 〈θ1, . . . , θm〉 ∼= Z/n1Z× · · · ×
Z/nmZ and let r ∈ N such that r 6

∑

i(ni − 1). The θ-Reed–Muller code of order r and type n is

RMθ(r,n) := {P ∈ L[G] | degθ(P ) 6 r} ⊆ L[G].

Remark 44. The definition of θ-Reed–Muller codes depends on the choice of generators θ of the Galois
group G. This is somehow similar to the case of (generalized) Gabidulin codes.

Remark 45. Given a basis B of L/K, the vectorial version of RMθ(r,n) is then

RMθ,B(r,n) := RMθ(r,n)(B) = {evB(P ) | P ∈ L[G], degθ(P ) 6 r} ⊆ LN ,

where evB(P ) is the evaluation vector as defined in (7).

Example 46. Let K = Q(ζ) where ζ2 + ζ +1 = 0. Consider L/K a Galois extension of degree 6 given by
L = K(

√
p, 3

√
q), where p and q are two distinct primes. Then

B =
(

1,
√
p, 3

√
q,

√
p 3
√
q, 3
√

q2,
√
p 3
√

q2
)

∈ L6

is an ordered K-basis of L. Moreover we have G = Gal(L/K) = 〈θ1, θ2〉 where

θ1 :

{ √
p 7→ (−1) · √p

3
√
q 7→ 1 · 3

√
q

and θ2 :

{ √
p 7→ 1 · √p

3
√
q 7→ ζ · 3

√
q

.

We observe that θ21 = θ32 = Id, hence n = (n1, n2) = (2, 3) and N = |Gal(L/K)| = n1n2 = 6.
Let now r = 1. The (θ1, θ2)-Reed–Muller code of order r is

RMθ(r,n) = {a · Id + b · θ1 + c · θ2 | a, b, c ∈ L} ⊆ L[G].

Its vectorial version with respect to the basis B = (b1, . . . , b6) defined above, has the following generator
matrix:





b1 b2 b3 b4 b5 b6
b1 −b2 b3 −b4 b5 −b6
b1 b2 ζb3 ζb4 ζ2b5 ζ2b6



 .

8.2. Parameters of θ-Reed–Muller codes. We now compute the dimension and the minimum rank
distance of θ-Reed–Muller codes.

Proposition 47. The dimension of RMθ(r,n) is equal to the cardinality of the set {i ∈ ∆(n) | |i| 6 r},
that in turn is equal to

k(r,n) =

r
∑

ℓ=0

c(ℓ,n) =

r
∑

ℓ=0

[zℓ]

m
∏

j=1

(

1− znj

1− z

)

,

where c(ℓ,n) of the integer ℓ in at most m parts in which the j-th part is at most nj − 1 and [zℓ]p(z)
denotes the coefficient of zℓ in the polynomial p(z).

Proof. By definition a set of generators for the θ-Reed–Muller code is given by the set {θi | i ∈ ∆(n), |i| 6
r}. Moreover these θ-monomials are linearly independent over L, by Artin’s theorem. Therefore the
dimension of the code is equal to the cardinality k(r,n) of the set {i ∈ ∆(n) | |i| 6 r}. Let c(ℓ,n) denote
the number of weak compositions of the integer ℓ in at most m parts in which the j-th part is at most
nj − 1. Then,

k(r,n) =

r
∑

ℓ=0

c(ℓ,n).

Since it is well-known that c(ℓ,n) = [zℓ]
∏m

j=1

(

1−znj

1−z

)

, we can conclude. �

For every i ∈ {1, . . . ,m} we also consider the subgroup Gi = 〈θj | j ∈ {1, . . . ,m} \ {i}〉, and the
corresponding fixed field

Li := LGi = {a ∈ L | σ(a) = a, for every σ ∈ Gi} .
Before determining the minimum distance of θ-Reed–Muller codes, we define an object of particular

interest in the case of cyclic extensions.
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Proposition 48. [4, Theorem 2] Let L/K be a cyclic Galois extension of degree n, with Galois group
G = 〈θ〉. Let V := Span

K
{v1, . . . , vr} ⊆ L be a K-subspace of dimension r > 0. Then, there exists a

unique monic θ-polynomial PV ∈ L[θ] of θ-degree r such that PV (V ) = {0}. Moreover, the polynomial PV

is defined by induction as:

PV =

{

Id if r = 0
(

θ − θ(PV1 (vr))

PV1 (vr)

)

◦ PV1 if r > 1,

where V1 := Span
K
{v1, . . . , vr−1}.

Proof. The existence and uniqueness follows from the fact that L[θ] is a left Euclidean domain. In par-
ticular, the left ideal I := {P ∈ L[θ] | P (v) = 0 for every v ∈ V } is principal. In addition, I contains
PV . Moreover, it is well-known that the dimension of the kernel of a θ–polynomial is bounded from above
by its θ–degree. This can be deduced, for instance, from Corollary 42. Therefore, PV is a monic element
of I of the least possible degree. Hence it is a generator of I. Moreover, the polynomial defined by the
recursive formula has θ-degree r, is monic and it annihilates the subspace V . �

The polynomial PV defined by Proposition 48 is called the annihilator polynomial of the subspace V .
In the finite field case, this coincides with the notion of annihilator or subspace polynomial, which is a
linearized polynomial of degree qr whose roots are exactly the elements of an r-dimensional Fq-subspace
of Fqn .

Theorem 49. Let r be a positive integer and n = (n1, . . . , nm) ∈ Nm be a vector such that n1 > n2 >

· · · > nm > 2. Then the minimum rank distance of the code RMθ(r,n) is equal to

d(r,n) = min

{

m
∏

i=1

(ni − ui) | u = (u1, . . . , um) ∈ ∆(n), |u| 6 r

}

.

In particular, d(r,n) = 1 if r >
∑m

i=1(ni − 1), and otherwise

d(r,n) = (ns − ℓ)

s−1
∏

i=1

ni

where ℓ and s are the unique integers satisfying r =
∑m

i=s+1(ni − 1) + ℓ, with 0 6 ℓ < ns.

Proof. Lower bound. First, it is easy to observe that the minimum is met for an element u such that
|u| = r. At this point, the lower bound directly follows from Theorem 40, since the minimum distance is
the minimum rank of P among all the nonzero P ∈ RMθ(r,n) of θ-degree equal to r.
Upper bound. Let now r > 1, and ℓ, s the unique integers satisfying r =

∑m
i=s+1(ni − 1) + ℓ, with

1 6 ℓ < ns. For every i ∈ {s + 1, . . . ,m}, choose a K-subspace Vi of Li with dimension ni − 1 that does
not contain K, that is, Vi ∩ K = {0}. Moreover, choose Vs to be any K-subspace of Ls of dimension ℓ
that does not contain K. For each i ∈ {s, . . . ,m}, let Pi ∈ Li[θi] to be the annihilator θi-polynomial of Vi.

Observe that if j 6= i, then for every x ∈ Lj we have Pi(x) = Pi(1)x. Thus, define P̃i := Pi(1)
−1Pi, and

consider the θ-polynomial P̃ := P̃s ◦ P̃s+1 ◦ · · · ◦ P̃m. We then have P̃ (Vi) = 0 for every i > s.
Given j ∈ {s, . . . ,m} let us define

Uj := L1 · · ·Lj−1Vj = L(j−1)Vj ⊆ L,

where for two K-subspaces W,W ′ of L, we define WW ′ := SpanK {ww′ | w ∈ W,w′ ∈ W ′}, and L(j−1)

denotes the compositum of L1, . . . ,Lj−1. Then, we see that for every j > s we have ker(P̃ ) ⊇ Uj and
Uj ∩ (Uj+1 + · · ·+ Um) = {0}. Therefore,

rk(P̃ ) =

m
∏

i=1

ni − dim(ker(P̃ )) 6

m
∏

i=1

ni −
m
∑

j=s

dim(Uj).

Since dim(Us) = ℓ
∏s−1

i=1 ni and dim(Uj) = (nj − 1)
∏j−1

i=1 ni for j > s+ 1, this yields

rk(P̃ ) 6

m
∏

i=1

ni −
m
∑

j=s+1

(nj − 1)

j−1
∏

i=1

ni − ℓ

s−1
∏

i=1

ni = (ns − ℓ)

s−1
∏

j=1

nj
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from which we get the desired upper bound. �

8.3. Duality. In this section we study the duality properties of θ-Reed–Muller codes, showing that such
a family is essentially closed under duality (see Proposition 50). For this purpose, let us denote θinv =
(θ−1

1 , . . . , θ−1
m ). It is clear that θinv is also a system of generators for the Galois group G. Let us also

denote θ−1 = θ−1
1 ◦ · · · ◦ θ−1

m .

Proposition 50. Let p =
∑m

j=1(nj − 1). Then we have:

RMθ(r,n)
⊥ = RMθinv(p− r − 1,n) ◦ θ−1 = θ−1 ◦ RMθinv(p− r − 1,n) .

Proof. It is clear that the dual of RMθ(r,n) is the L-span of the set
{

θi | i ∈ ∆(n), i1 + · · ·+ im > r
}

.

Observe that we can write θi = (θ−1)n−1−i ◦ θ−1 = θ−1 ◦ (θ−1)n−1−i. Moreover, i ∈ ∆(n) with
∑m

j=1 ij > r if and only if n − 1 − i ∈ ∆(n) with
∑m

j=1 nj − 1 − ij 6 p − r − 1. This concludes the
proof. �

Proposition 50 can be translated in the vector setting as follows.

Corollary 51. Let B be a basis of L/K and p =
∑m

j=1(nj − 1). Then we have:

(RMθ(r,n)(B))⊥ = RMθinv(p− r − 1,n)(θ−1(B∗)) .

Proof. Combining Theorem 27 and Proposition 50, we get that

RMθ(r,n)(B)⊥ =
(

RMθ(r,n)
⊥
)

(B∗) =
(

RMθinv(p− r − 1,n) ◦ θ−1
)

(B∗).

At this point one can observe that for every P ∈ L[G], it holds evB∗(P ◦ θ−1) = evθ−1(B∗)(P ), giving
(

RMθinv(p− r − 1,n) ◦ θ−1
)

(B∗) = RMθinv(p− r − 1,n)(θ−1(B∗)).

�

8.4. Decoding θ-Reed–Muller codes. In this section, we shortly explain how error-correcting pairs
allow to decode θ-Reed–Muller codes up to some error weight. The decoding capability is however non-
optimal, and we leave open the question of the decoding θ-Reed–Muller codes up to half their minimum
distance.

The key point is to notice the following.

Lemma 52. Let r, r′ > 0 such that r + r′ 6 p :=
∑m

i=1(ni − 1). Then we have

RMθ(r,n) ◦ RMθ(r
′,n) = RMθ(r + r′,n) .

Proof. This is clear since degθ(θ
iθj) 6 r + r′ whenever degθ(θ

i) 6 r and degθ(θ
j) 6 r′. �

We recall that d(r,n) and k(r,n) respectively represent the minimum distance and the dimension of
θ-Reed–Muller. Their definition are given in Theorem 49 and Proposition 47.

Proposition 53. Let r, t > 0 and assume that 2t+ 1 6 d(r,n) Set N =
∏m

i=1 ni and p :=
∑m

i=1(ni − 1).
Let A = RMθinv(a,n) and B = RMθinv(b,n) be such that

(1) a+ b 6 p− r − 1,
(2) k(a,n) > t,
(3) d(p− 1− b,n) > t,
(4) d(a,n) + d(r,n) > N .

Then, (A,B) is an error-correcting pair for C = RMθ(r,n) ◦ θ−1.

Proof. It follows from the definition of error-correcting pairs and the duality results from Proposition 51.
�

A natural question is to compute the maximum decoding radius t one can get with a t-error correcting
pair for a given code Cr = RMθ(r,n). In the following example, we initiate this study by considering the
simplest non-trivial case n = (n, n), n > 2.
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Example 54. Let us fix n = (n, n) and r 6 2n − 3. For clarity let us also use the simpler notation
d(x) := d(x,n) and k(x) := k(x,n). The goal is to find the maximum t for which there exists a pair (a, b)
such that (RMθinv(a,n),RMθinv(b,n)) is a t-error-correcting pair for RMθ(r,n). In other words, we look
for

tmax = max
{

min{k(a), d(2n− 3− b)} − 1
∣

∣

∣ d(a) + d(r) > n2 + 1 and a+ b 6 2n− 3− r
}

.

In this context, we have

d(x) =

{

n2 − nx if 0 6 x 6 n− 1
2n− 1− x if n 6 x 6 2n− 2

and

k(x) =

{

(x+1)(x+2)
2 if 0 6 x 6 n− 1

n2 − (2n−1−x)(2n−2−x)
2 if n 6 x 6 2n− 2.

Maps d and k are illustrated in Figure 1.
If r > n−1, then d(r) = 2n−1−r and one needs to set a = 0 to fulfill the condition d(a)+d(r) > n2+1.

Thus tmax = 0, which means that RMθ(r,n) admits no non-trivial error-correcting pair of the desired form.
Therefore, let us consider the more interesting case r 6 n − 2. Define u = 2n − 3 − a − b. Since

d(r) = n2 − nr, we have

tmax = max
{

min{k(a), d(a+ u)} − 1
∣

∣

∣ d(a) > nr + 1 and u > r
}

.

For any fixed a, the map u 7→ min{k(a), d(a + u)} is decreasing, therefore tmax is reached for u = r.
Moreover, the condition d(a) > nr+1 is equivalent to a 6 n−r−1. We also see that d(·) is decreasing and
k(·) is increasing, thus tmax = min{k(⌊α⌋), d(⌈α⌉+ r)}− 1 where α ∈ [0, n− 1− r] is the only real number

satisfying k(α) = d(α + r). A simple computation shows that α = −n− 3
2 +

√

3n2 + (3− 2r)n+ 1
4 .

Asymptotically, let us set ρ = limn→∞
r
n . Then we see that α = (

√
3− 2γ − 1)n + O(

√
n), hence

tmax = (2 − γ −√
3− 2γ)n2 +O(n3/2). It means that the corresponding error-correcting pair can correct

approximately (2 − γ − √
3− 2γ)n2 errors, while the unique decoding radius of RMθ(r,n) is ⌊d(r)−1

2 ⌋ ≃
1−γ
2 n2. See Figure 1 for a comparison.

0 n− 1 2n− 2
0

n

n2

x
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(r
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(r
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k(r)

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

γ

ra
d
iu
s

relative unique decoding radius 1− γ

relative ECP radius 2− γ −
√
3− 2γ

Figure 1. On the left, representation of the minimum distance d(r) and the dimension k(r)
of RMθ(r,n) depending on r, for n = (n, n). On the right, representation of relative decoding
radii of RMθ(γn,n) with n ≫ 1, depending on γ.

8.5. Connection with classical Reed–Muller codes. In this section we prove a relation between
θ-Reed–Muller codes and affine cartesian codes in the specific setting where the base field K contains
all the ni-th roots of unity. For convenience, we restrict our study to θ-Reed–Muller codes of type
n = (n, . . . , n) ∈ Nm, for which affine cartesian codes are classical q-ary Reed–Muller codes. See [13, 19]
for more details on affine cartesians codes.
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We therefore consider a Galois extension L/K of degree N = nm, such that Gal(L/K) = 〈θ1, . . . , θm〉 ∼=
(Z/nZ)m. Furthermore, we assume that L/K is a Kummer extension, hence xn − 1 completely splits in
linear factors in K. Equivalently, K contains all the n–th roots of unity.

We give some additional notation now. Fix i ∈ {1, . . . ,m}. The subgroup Gi := 〈θj | j ∈ {1, . . . ,m} \
{i}〉 yields a fixed field Li := LGi , for i ∈ {1, . . . ,m}. Let us also define Ei := Lθi . We see that L = LiEi,
Li ∩ Ei = K and L = L1L2 · · ·Lm. Moreover, since L/K is a Kummer extension and [Li : K] = n, the
extension Li/K is also a Kummer extension with Galois group Gal(Li/K) = 〈θi〉 ∼= Z/nZ. Additionally,
for this kind of extensions we have the following theorem, which is a consequence of the more general
abelian Kummer theory (see [18, Ch. VI, Sec. 8]).

Theorem 55. Let L/K be an abelian extension and K contains the n–th roots of unity. If Gal(L/K)
has exponent1 n, then L = K( n

√
a1, . . . , n

√
am) for some a1, . . . , am ∈ K∗. Conversely, every extension

K( n
√
a1, . . . , n

√
am) is abelian of exponent n.

As a consequence of Theorem 55, there exist ai ∈ K and αi ∈ Li such that αn
i = ai and Li = K(αi).

This implies that the set Ai := {αj
i | j = 0, 1, . . . , n− 1} is a K-basis of Li/K and

A1 · A2 · · ·Am :=

{

m
∏

i=1

αji
i

∣

∣

∣

∣

∣

j1, . . . , jm ∈ {0, . . . , n− 1}
}

is a K-basis of L/K. Furthermore, L = K(α1, . . . , αm) and we have

(12) θsi (α
r
j ) =

{

αr
j if i 6= j

ζrsn αr
j if i = j,

where ζn ∈ K is a primitive n-th root of unity. Consider now for i ∈ {0, . . . ,m} the set Bi := A1 · · ·Ai,
where U · V = {uv, u ∈ U , v ∈ V}. By convention, B0 := {1}. Moreover, for α = (α1, . . . , αm) and

i = (i1, . . . , im) ∈ ∆(n)m, we write αi :=
∏m

j=1 α
ij
j . We consider the reverse lexicographic order ≺ on Nm,

from which we reorder the set ∆(n)m = {i1, . . . iN}. With this notation Bm = {αi1 , . . . ,αiN }, and for
every t ∈ {1, . . . ,m} we have Bt = {αi1 , . . . ,αint }. In particular, it holds that

(13) Bm =

n
⋃

j=1

αj
m · Bm−1.

Different bases of L/K produce equivalent vector codes (in the rank-metric sense). For this reason, we
can restrict our study to RMθ,B(r,n) ⊆ LN for the specific basis B = Bm defined above. We already
know that a basis for the space RMθ(r,n) is given by the set Tr,n = {θi | i ∈ ∆(n), |i| 6 r}. We define
θ̄ := (θ1, . . . , θm−1) and n̄ := (n, . . . , n) ∈ Nm−1 and we write

(14) Tr,n =

r
⋃

j=0

{θ̄iθjm | i ∈ ∆(n̄), 0 6 j < n, |i| 6 r − j} =

r
⋃

j=0

θjmTr−j,n̄,

where Tr,n̄ = ∅ whenever r < 0. Furthermore, for a given s ∈ {0, . . . ,m}, we denote by Diag(Bs) the
ns × ns diagonal matrix whose entries are given by αi, ordered in the reverse lexicographic order ≺.

With this notation, we can now study the generator matrix of the k-dimensional code RMθ,Bm
(r,n).

Proposition 56. Let Gr,m ∈ Lk×N be the generator matrix of RMθ,Bm
(r,n) obtained by evaluating the

θ-monomials in Tr,n. Then Gr,m = Yr,mDiag(Bm), where

(1) If r = 0, then Y0,m = (1, 1, . . . , 1).
(2) If m = 1, then

Yr,1 =











1 1 1 . . . 1
1 ζn ζ2n . . . ζn−1

n
...

...
...

...

1 ζrn ζ2rn . . . ζ
(n−1)r
n











.

1A group G is said to have exponent n if every element g ∈ G satisfies gn = id
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(3) If r > 1 and m > 2, then

Yr,m =















Yr,m−1 Yr,m−1 Yr,m−1 . . . Yr,m−1

Yr−1,m−1 ζnYr−1,m−1 ζ2nYr−1,m−1 . . . ζn−1
n Yr−1,m−1

Yr−2,m−1 ζ2nYr−2,m−1 ζ4nYr−2,m−1 . . . ζ
2(n−1)
n Yr−2,m−1

...
...

...
...

Y0,m−1 ζrnY0,m−1 ζ2rn Y0,m−1 . . . ζ
r(n−1)
n Y0,m−1















Proof. (1) If r = 0, then RMθ(0,n) = SpanL {Id}, and hence for every ordered basis B of L/K, we
have G0,m = (1, . . . , 1)Diag(B). In particular, it holds for Bm.

(2) If m = 1, then we are in the case of a cyclic Galois group G = 〈θ〉. It is easy to see by (12), that
the action of θ leads to Yr,1 being a Vandermonde matrix.

(3) We order the elements in Tr,n according to the reverse lexicographic order θ1 ≺ . . . ≺ θm, and
evaluate them in increasing order. This leads to a block division of Gr,m, in which the first block of
rows corresponds to the evaluation of Tr,n̄, the second block of rows to the evaluation of θmTr−1,n̄,
and so on as explained in (14). Moreover, we have also ordered the elements of the basis Bm

according to the reverse lexicographic order, which leads to a columns division of Gr,m in blocks as
explained in (13). The first block of columns correspond to Bm−1, the second block of columns to
αm · Bm−1 and so on. To sum up, this produces a block structure of Gr,m in which the (i, j)-block
corresponds to the evaluation of θi−1

m Tr−i+1,n̄ in αj−1
m · Bm−1.

Now, by (12) we have σ(αm) = αm for every σ ∈ Tr−i+1,n̄. Moreover, it holds that θm(Bm−1) =

Bm−1 and θi−1
m (αj−1

m ) = ζ
(i−1)(j−1)
m αm. By definition, the matrix associated to Tr−i+1,n̄(Bm−1) is

Yr−i+1,m−1Diag(αj−1
m · Bm−1). Hence, the (i, j)-block of Gr,m is equal to

ζ(i−1)(j−1)
m Yr−i+1,m−1Diag(αj−1

m · Bm−1),

which gives the desired result.
�

As a byproduct we now show that we get a characterization of the generator matrix Gr,m which relates
θ-Reed–Muller codes with classical Reed–Muller codes (or affine variety codes or affine cartesian codes).
Consider the set

Pr,m := {p ∈ K[x1, . . . , xm] | deg p 6 r} .
For a finite subset U ⊂ K with cardinality n, we consider the set X := U × · · · × U = Um, and a total
order on it, such that we can write X = {u1, . . . , unm}. Then the classical Reed–Muller code (or affine
variety code, or affine cartesian code) on X is

HRMX(r,m) = {(p(u1), . . . , p(unm)) | p ∈ Pr,m} ⊆ KN .

Theorem 57. [13, Proposition 5][19, Theorem 3.8] If r > 1 and U has cardinality n > 2, then the code
HRMX(r,m) is an [N, k, d]K code in the Hamming metric, with N = nm and d = (n− ℓ)nm−s−1, where ℓ
and s are the unique non-negative integers such that r = s(n− 1) + ℓ and 0 6 ℓ < n− 1.

We now consider the special case when U = Un is the set of n-th roots of unity. Every element in (Un)
m

is of the form (ζj1n , ζj2n , . . . , ζjmn ) =: ζj , where j = (j1, . . . , jm) ∈ ∆(n)m. We order the elements ζj ’s of
X := Um

n according to the reverse lexicographic order on ∆(n)m, and we obtain the following result.

Theorem 58. The θ-Reed–Muller code RMθ,Bm
(r,n) has a generator matrix of the form Gr,n := Yr,mDiag(Bm),

where Yr,m ∈ Kk×N is the generator matrix of the classical Reed–Muller codes HRMX(r,m) obtained by
evaluating the monomials on the points of X := (Un)

m.

Proof. The generator matrix for a classical Reed–Muller codes HRMX(r,m) follows the same recursive
relations described in Proposition 56 part 3, with the same initial conditions given in 1 and 2. �

In the general case of Gal(L/K) ∼= Z/n1Z × · · · × Z/nmZ, i.e. for a θ-Reed–Muller code of type
n = (n1, . . . , nm), a similar result can be shown. More specifically, let Vi := {x ∈ K | xni = 1} and
X := V1 × · · · × Vm. Then the code RMθ,Bm

(r,n) has a generator matrix which is equal to the generator
matrix of the code HRMX(r,m) multiplied on the right by Diag(B), where B is the ordered K-basis
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of L/K with respect to the reverse lexicographic order, which is constructed as explained for the case
n1 = · · · = nm = n.

9. Conclusion and open problems

In this paper was presented a general description of codes seen as subspaces of the group algebra L[G]
with arbitrary Galois extensions L/K. Analogues of Reed–Muller codes were constructed as an application,
but there remains some way to go towards practicality of these codes.

First, one can wonder whether θ-Reed–Muller codes can be decoded up to hald their minimum distance.
Such decoding algorithms are known for Hamming-metric Reed–Muller codes over finite fields. However
they require to embed the code in a Reed–Solomon code over the extension field L, and to use the decoder
attached to this code. To our opinion, this technique seems difficult to adapt in our context, given the
fact that there is no way to embed a θ-Reed–Muller code into a Gabidulin code (since G is not cyclic).

Second, the lack of practicality of our codes relies on the fact that, if L/K is not cyclic, then L cannot
be a finite field. This raises the two following issues: (i) find Galois extensions L/K in which computations
are efficiently doable (so-called effective fields), and (ii) find maps π : L → F, where F is an effective field,
such that π sends a code C ⊆ L[G] to a “good” code π(C) ⊆ Fn whose properties can be derived from
those of C.
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Appendix A. A second proof for the minimum distance lower bound

The algebra L[G] can also be represented as a skew polynomial ring modulo a particular two–sided ideal.
Let us recall that the skew polynomial ring L[x; θ] = L[x1, . . . , xm; θ1, . . . , θm] is the ring of polynomials
Q(x) = Q(x1, . . . , xn) where the addition is defined as in the usual polynomial ring, and the multiplication
follows the following rules

xixj = xjxi for any i, j ∈ {1, . . . ,m},
xia = θi(a)xi for any a ∈ L,

and is extended by associativity. It is known that the center of this ring is K[xn], and the ideal generated
by (xn1

1 − 1, xn2
2 − 1, . . . , xnm

m − 1) is two-sided. We will indicate such ideal by In.
The ring L[x; θ] is a very particular case of left Poincaré-Birkhoff-Witt ring, for which the theory of

Gröbner basis is well-defined and it works practically in the same way as for commutative rings. For a
deeper understanding on the topic, we refer the interested reader to [6].

Theorem 59. Let G := Gal(L/K) = 〈θ1, . . . , θm〉 ∼= Z/n1Z× · · · × Z/nmZ. Then the map

Φ :

{

L[x; θ] −→ L[G]
∑

i∈Nm bix
i 7−→ ∑

i∈Nm biθ
i

is a surjective ring homomorphism with kerΦ = In. In particular, it induces an isomorphism Φ̄ :
L[x; θ]/In → L[G].

With this framework in mind, we propose a second proof of the lower bound on the rank of a nonzero
θ-polynomial P given in Theorem 40. Precisely, we will prove the following: if P ∈ RMθ(r,n), then

rkK(P ) > min

{

m
∏

i=1

(ni − ui)
∣

∣

∣ u = (u1, . . . , um) ∈ ∆(n), |u| 6 r

}

.
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Second proof: Let P =
∑

i∈∆(n) biθ
i ∈ RMθ(r,n) be a θ-polynomial. Observe again that the minimum is

attained for a θ-polynomial of θ-degree equal to r, and we set

δ := min

{

m
∏

i=1

(ni − ui) | u = (u1, . . . , um) ∈ ∆(n), |u| = r

}

.

Therefore, we need to prove that wtI(P ) > δ, where wtI(P ) = dimL(L[G]/AnnL[G](P )). Equivalently,
we have to show that that there exists an L-subspace T of L[G] of dimension at least δ such that T ∩
AnnL[G](P ) = {0}. Consider the isomorphism Φ̄ : L[x; θ]/In → L[G] introduced in Theorem 59. Using
this isomorphism, our goal is equivalent to finding an L-subspace V of L[x; θ]/In of dimension at least δ,
such that g(x)Φ̄−1(P )(x) 6= 0 mod In for every g(x) ∈ V .

First, we observe that the set {xn1
1 − 1, . . . , xnm

m − 1} is a universal Gröbner basis for the ideal In.
We choose the representative P̄ (x) ∈ L[x; θ] of Φ̄−1(P )(x) reduced modulo the Gröbner basis {xn1

1 −
1, . . . , xnm

m − 1}, that is P̄ (x) =
∑

i∈∆(n) bix
i ∈ L[x; θ]. Moreover, we fix a monomial order ≺, and we

consider the leading term of P̄ (x) with respect to ≺, that is lt≺(P̄ (x)) = xu, for u = (u1, . . . , um), and
we consider the set

Z = {f(x) ∈ L[x; θ] | degxi
(f) < ni − ui, i = 1, . . . ,m}.

Note that Z ∩ In = {0}. This is due to the fact that the set {xn1
1 − 1, . . . , xnm

m − 1} is a universal Gröbner
basis for the ideal In and none of the monomials in Z belongs to monomial ideal spanned by the leading
terms of the generators of In, namely lt≺(In) = (xn1

1 , . . . , xnm
m ). Therefore, the canonical projection

π : L[x; θ] → L[x; θ]/In is injective when restricted to Z.
At this point let us take an arbitrary skew polynomial f(x) ∈ Z and consider its leading term

lt≺(f(x)) = xv, where, by definition of the space Z, we have v = (v1, . . . , vm) and vi < ni − ui for
all i = 1, . . . ,m. Then,

lt≺(f(x)P̄ (x)) = lt≺(f(x))lt≺(P̄ (x)) = xvxu = xu+v.

Since ui + vi < ni for every i, we have that lt≺(f(x)P̄ (x)) /∈ (xn1
1 , . . . , xnm

m ) = lt≺(In). Therefore,
f(x)P̄ (x) /∈ In. Denote by π : L[x; θ] → L[x; θ]/In the canonical projection modulo the ideal In. Hence,
π(f(x))π(P̄ (x)) = π(f(x))Φ̄−1(P ) 6= 0. Thus, the space V := π(Z) is such that g(x)Φ̄−1(P )(x) 6= 0
mod In for every g(x) ∈ V . Moreover,

dimL(π(Z)) = dimL(Z) =

m
∏

i=1

(ni − ui),

which concludes the proof. �
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