

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. © 2021 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. S249--S268

VARIABLE PROJECTION FOR NONSMOOTH PROBLEMS\ast

TRISTAN VAN LEEUWEN\dagger AND ALEKSANDR Y. ARAVKIN\ddagger

Abstract. Variable projection solves structured optimization problems by completely minimiz-
ing over a subset of the variables while iterating over the remaining variables. Over the past 30
years, the technique has been widely used, with empirical and theoretical results demonstrating both
greater efficacy and greater stability compared to competing approaches. Classic examples have ex-
ploited closed-form projections and smoothness of the objective function. We extend the approach to
problems that include nonsmooth terms, develop an inexact adaptive algorithm that solves projec-
tion subproblems inexactly by iterative methods, and analyze its computational complexity. Finally,
we illustrate the effectiveness of the adaptive algorithm with numerical examples. Code to reproduce
the examples is available at https://github.com/TristanvanLeeuwen/VarProNS.

Key words. variable projection, proximal gradient, inexact gradient

AMS subject classifications. 68Q25, 68R10, 68U05

DOI. 10.1137/20M1348650

1. Introduction. In this paper we consider finite-dimensional separable opti-
mization problems of the form

(1.1) min
x,y

f(x, y) + r1(x) + r2(y),

where f smoothly couples (x, y) but may be nonconvex, while r1 and r2 encode ad-
ditional constraints or regularizers. We are particularly interested in the case where
f(x, \cdot) + r2 is strongly convex in y, so that fast solvers are be available for optimizing
over y for fixed x. These problems arise any time nonsmooth regularization or con-
straints are used to regularize certain difficult nonlinear inverse problems or regression
problems. We give three motivating examples below.

1.1. Motivating examples.

Model calibration. Consider the nonlinear fitting problem

(1.2) min
x,y

\| A(x)y - b\| 2,

where A(x) defines a linear model with calibration parameters x and b denotes the
data. Well-known examples include exponential data fitting and model calibration in
inverse problems. Adding regularization terms immediately gives a problem of the
form (1.1).

Machine learning. Trimming is a model-agnostic tool for guarding against out-
liers. Given any machine learning model that minimizes some objectives \ell i over a
training set of m data points, we introduce m auxiliary parameters y that serve to

\ast Received by the editors June 29, 2020; accepted for publication (in revised form) February 19,
2021; published electronically May 13, 2021.

https://doi.org/10.1137/20M1348650
\dagger Centrum Wiskunde \& Informatica, Amsterdam, 1098 XG, The Netherlands (T.van.Leeuwen@

cwi.nl).
\ddagger Department of Applied Mathematics, University of Washington, Seattle, WA 98195 USA

(saravkin@uw.edu).

S249

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://github.com/TristanvanLeeuwen/VarProNS
https://doi.org/10.1137/20M1348650
mailto:T.van.Leeuwen@cwi.nl
mailto:T.van.Leeuwen@cwi.nl
mailto:saravkin@uw.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S250 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

distinguish inliers from outliers and solve

min
x,y

m\sum
i=1

yi\ell i(x) s.t. 0 \leq yi \leq 1 for i \in \{ 1, . . . ,m\} ,
m\sum
i=1

yi = k,

where k \leq m is the number of datapoints we want to fit. The functions \ell i can capture
a wide range of machine learning models.

PDE-constrained optimization. Many PDE-constrained optimization prob-
lems in data assimilation, inverse problems, and optimal control can be cast as

min
x,y

\| Py - d\| 2 + \lambda \| A(x)y - q\| 2,

where y denotes the state of the system, P is the sampling operator, A(x)y = q is the
discretized PDE with coefficients y and source term q, and \lambda is a penalty parameter.
Adding regularization terms or changing the data fidelity term gives a problem of the
form (1.1).

1.2. Approach. The development of specialized algorithms for (1.1) goes back
to the classic variable projection (VP) technique for separable nonlinear least-squares
problems of the form (1.2), where the matrix-valued map x \mapsto \rightarrow A(x) is smooth and
the matrix A(x) has full rank for each x. Early work on the topic, notably by [8], has
found numerous applications in chemistry, mechanical systems, neural networks, and
telecommunications. See the surveys of [9] and [10] and references therein.

The VP approach is based on eliminating the variable y, as for each fixed x, we
have a closed-form solution

y(x) = A(x)\dagger b,

where A(x)\dagger denotes the Moore--Pensrose pseudo-inverse of A(x). We can thus express
(1.2) in reduced form as

(1.3) min
x

\| (A(x)A(x)\dagger - I)b\| 2,

which is a nonlinear least-squares problem. Note that A(x)A(x)\dagger - I is an orthogonal
projection onto the null-space of A(x)T ; hence, the name variable projection.

It was shown by [8] that the Jacobian of A(x)A(x)\dagger b contains only partial deriv-
atives of A(x) w.r.t. x and does not include derivatives of y(x) w.r.t. x. Ruhe and
Wedin [14] showed that when the Gauss--Newton method for (1.2) converges superlin-
early, so do certain Gauss--Newton variants for (1.3). Numerical practice shows that
the latter schemes actually outperform the former because of a better conditioning of
the reduced problem.

The underlying principle of the VP method is much broader than the class of
separable nonlinear least-squares problems. For example, [5, 2] consider the class of
problems

(1.4) min
x,y

f(x, y),

where f is a C2-smooth function; the classic VP problem (1.2) is a special case of (1.4).
Although we generally do not have a closed-form expression for y(x), we define it as

y(x) = argmin
y

f(x, y)

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSMOOTH VARIABLE PROJECTION S251

and express (1.4) using the projected function

(1.5) f(x) := f(x, y(x)).

Projection in the broader context of (1.4) refers to epigraphical projection [12] or
partial minimization of y. Under mild conditions, f(x) is C2-smooth as well, and its
gradient is given by

(1.6) \nabla f(x) = \nabla xf(x, y)
\bigm| \bigm| \bigm|
y=y(x)

;

i.e., it is the gradient of f w.r.t. x, evaluated at y(x) [5]. Again, we do not need to
compute any sensitivities of y(x) w.r.t. x. This is seen by formally computing the
gradient of f using the chain rule:

(1.7) \nabla f(x) =
\Bigl(
\nabla xf(x, y) +\nabla yf(x, y) \cdot \nabla xy(x)

\bigm| \bigm| \bigm|
y=y(x)

.

Since y(x) is a minimizer of f(x, y), it satisfies \nabla yf(x, y(x)) = 0, and the second term
vanishes. Similarly, the Hessian of f is the Schur complement of \nabla 2

yyf of the full
Hessian of f [14]:

(1.8) \nabla 2f(x) =
\Bigl(
\nabla 2

xxf(x, y) - \nabla 2
xyf(x, y)

\bigl(
\nabla 2

yyf(x, y)
\bigr) - 1 \nabla 2

yxf(x, y)
\bigm| \bigm| \bigm|
y=y(x)

.

It follows that a local minimizer, x, of f together with y(x) constitute a local minimizer
of f . An interlacing property of the eigenvalues of the Schur complement can be used
to show that the reduced problem has a smaller condition number than the original
problem [17]. The expression for the derivative furthermore suggests that we can
approximate the gradient of f when y(x) is known only approximately by ignoring
the second term.

We may extend this approach to solve problems of the form (1.1) by including r2
in the computation of y(x) and using an appropriate algorithm to minimize f + r1.
Define the proximity operator for any function g as

prox
\alpha g

(z) = argmin
x

1
2\alpha \| x - z\| 2 + g(x),

where \alpha > 0 is any scaling factor or step size. We can now view the entire approach
as proximal-gradient descent on the projected function f,

(1.9) xk+1 = prox
\alpha r1

\bigl(
xk - \alpha \nabla f(xk)

\bigr)
,

where \alpha is an appropriate step and \nabla f is computed using (1.6). This gives rise to
the following protoype Algorithm 1.1.

Naively, this approach can be applied to nonsmooth problems; however, it is not
immediately obvious that it is guaranteed to converge. In particular, the resulting
reduced objective f may not be smooth, and hence the gradient formula (1.6) may
not be valid. This is illustrated in the following example.

Example. To illustrate the possibilities and limitation for extending the VP
approach to nonsmooth functions, consider the following functions:

F1(x, y) =
1
2 (x - y)2 + 1

2y
2,

F2(x, y) =
1
2 (x - y)2 + | y| ,

F3(x, y) =
1
2 (x - y)2 + \delta [- 1,1](y),

F4(x, y) = | x - y| + x2| y| .

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S252 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

Algorithm 1.1 Prototype VP algorithm for solving (1.1).

Require: Initial iterate, x0, Lipschitz constant, L, of \nabla f
\alpha = 1/L
k = 0
while not converged do

yk+1 = argminy f(xk, y) + r2(y)

xk+1 = prox\alpha r1
\bigl(
xk - \alpha \nabla xf(xk, yk+1)

\bigr)
k = k + 1

end while

−2 0 2
x

−1

0

1

y(
x)

−2 0 2
x

−2 0 2
x

−2 0 2
x

−2 0 2
x

0.0

0.5

1.0

f(x
)

−2 0 2
x

−2 0 2
x

−2 0 2
x

Fig. 1.1. Optimal solution(s) y(x) and projected function f(x) for functions F1--F4. For cases
1--3, y is continuous (but not necessarily smooth), leading to a smooth projected function. For F4, y
is not continuous (at x = \pm 1, the solution is not unique), leading to a nonsmooth projected function.

The corresponding y(x) and f(x) are shown in Figure 1.1. For cases 1--3, y is con-
tinuous (but not smooth), leading to a smooth projected function. For F4, y is not
continuous (at x = \pm 1, the solution is not unique), leading to a nonsmooth projected
function. Continuity of y thus appears to be important rather than smoothness of
F (x, y) in y. We therefore restrict our attention to problems of the form (1.1) that
are strongly convex in y for all x of interest.

The goal of this paper is to extend the variable projection technique to problems of
the form (1.1) with nonsmooth regularization terms, which arise in high-dimensional
statistics, signal processing, and many machine learning problems; sparse regulariza-
tion and simple constraints are frequently used in this setting.

1.3. Contributions and outline. Our contributions are as follows:
1. sufficient conditions under which f is smooth and its gradient can be evaluated

by (1.6);
2. development and analysis of an inexact adaptive version of Algorithm 1.1

based on inexact evaluations of y(x).
In section 2, we develop derivative formulas for the value function (1.5) and design

an inexact version of Algorithm 1.1. In section 3, we present a few case studies.
Conclusions complete the paper.

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSMOOTH VARIABLE PROJECTION S253

2. Derivative formulas and inexact VP. In this section, we present deriva-
tive formulas and develop the approaches briefly described in the introduction. The
proofs of the following statements are found in the appendices. By \| \cdot \| , we de-
note the Euclidean norm. We make the following blanket assumptions on f and
F (x, y) = f(x, y) + r2(y):
A1 \nabla xf and \nabla yf exist and are Lipschitz continuous for all (x, y):

\| \nabla xf(x, y) - \nabla xf(x
\prime , y)\| \leq Lxx\| x - x\prime \| ,

\| \nabla xf(x, y) - \nabla xf(x, y
\prime)\| \leq Lxy\| y - y\prime \| ,

\| \nabla yf(x, y) - \nabla yf(x
\prime , y)\| \leq Lyx\| x - x\prime \| ,

\| \nabla yf(x, y) - \nabla yf(x, y
\prime)\| \leq Lyy\| y - y\prime \| .

A2 F (x, y) is \mu -strongly convex in y for all x.

2.1. Derivative formulas. We first establish Lipschitz continuity of the solu-
tion y w.r.t. x in the following lemma.

Lemma 2.1. Let F satisfy assumptions (A1)--(A2). Then y(x) = argminy F (x, y)
is Lipschitz continuous as a function of x:

\| y(x) - y(x\prime)\| \leq (Lyx/\mu)\| x - x\prime \| .

Next, we establish that the naive derivative formula (1.7) holds under the afore-
mentioned assumptions.

Theorem 2.2. Let F satisfy assmptions (A1)--(A2), and define f(x) = miny F (x, y).
The gradient of the projected function is then given by \nabla f(x) = \nabla xf(x, y(x)), with
y(x) = argminy F (x, y).

Finally, we establish Lipschitz continuity of the gradient of the projected function.

Corollary 2.3. The gradient of f is Lipschitz continuous,

\| \nabla f(x) - \nabla f(x\prime)\| \leq L\| x - x\prime \| ,

where
L = Lxx + LxyLyx/\mu .

Remark 2.4. Note that the bound in Corollary 2.3 is consistent with the expres-
sion for the Hessian in (1.8) in the smooth case.

These results immediately establish the convergence of Algorithm 1.1 to a stationary
point for a broad class of problems of the form (1.1).

2.2. Inexactness. In many applications, we do not have a closed-form expres-
sion for y, and it must be computed with an iterative scheme. An obvious choice is
to use a proximal gradient method

yl+1 = prox\beta r2 (yl - \beta \nabla yf(x, yl)) ,

with \beta \in (0, 2/Lyy). The resulting approximation, \widetilde y(x), of y(x) yields an approxima-
tion of the gradient of f with error

\| \nabla xf(x, y(x)) - \nabla xf(x, \widetilde y(x))\| \leq Lxy\| y(x) - \widetilde y(x)\| .
This gives rise to an inexact counterpart of (1.9),

(2.1) xk+1 = prox\alpha r1 (xk - \alpha \nabla xf(xk, \widetilde y(xk))) ,

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S254 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

with \alpha \in (0, 2/L). We denote the error in the gradient as ek = \nabla xf(xk, \widetilde y(xk)) -
\nabla xf(xk, y(xk)). We can immediately bound this error as

(2.2) \| ek\| \leq Lxy\| y(xk) - \widetilde y(xk)\| .

Conditions under which such iterations converge in case f is (strongly) convex have
been well studied [7, 15]. The basic gist of these results is that convergence of (2.1)
can be ensured when the error decays sufficiently fast with k.

We did not find any results for general f in the literature and therefore establish
convergence of the inexact prox-gradient method for general Lipschitz-smooth f in
the following theorem.

Theorem 2.5 (convergence of inexact proximal gradient, general case). Denote

F (x) := f(x) + r1(x),

and let L be the Lipschitz constant of \nabla f . The iteration

(2.3) xk+1 = prox
\alpha r1

\bigl(
xk - \alpha (\nabla f(xk) + ek)

\bigr)
,

using step size \alpha = 1/L and with errors obeying \| ek\| \leq C\| xk+1 - xk\| with C < L/2,
produces iterates for which

min
k\in \{ 0,1,...,n - 1\}

\| xk+1 - xk\| \leq A

\sqrt{}
F (x0) - F (x\ast)

n
,

with A =
\sqrt{}

2
L - 2C

.

The proof of this theorem along with supporting lemmas are presented in Appen-
dix D. This result immediately establishes convergence of (2.1) for problems satisfying
assumptions A1--A2 when the errors in the gradient obey \| ek\| < (L/2)\| xk+1 - xk\| .
We discuss how to ensure this in practice in a subsequent section.

Stronger statements on the rate of convergence can be made by making stronger
assumptions about f . When f is convex (i.e., when f is jointly convex in (x, y)), a
sublinear convergence rate of \scrO (1/k) can be ensured when \| ek\| = \scrO (1/k1+\delta) for any
\delta > 0 [15, Prop. 1]. A linear convergence for strongly convex f can be ensured when
\| ek\| = \scrO (\gamma k) for any \gamma < 1 [15, Prop. 3].

2.3. Asymptotic complexity. In this section, we analyze the asymptotic com-
plexity of finding an \epsilon -optimal estimate \widetilde x of the solution to (1.1) which satisfies

| f(\widetilde x) - f(x)| \leq \epsilon .

We measure the complexity in terms of the total number of inner iterations required
to achieve this. To usefully analyze the asymptotic complexity, we assume that f is
(strongly) convex.

We first note that we can produce an \epsilon -optimal estimate of y for which \| \widetilde y - y\| \leq \epsilon
in \scrO (log 1/\epsilon) inner iterations. This follows directly from linear convergence of the
proximal gradient method for strongly convex problems. This also implies that we
can compute an approximation of the gradient of \nabla f with error bounded by Lxy\epsilon in
\scrO (log 1/\epsilon) inner iterations.

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSMOOTH VARIABLE PROJECTION S255

Convex case To achieve sublinear convergence of the outer iterations for convex f ,
we need \| ek\| = \scrO (1/k1+\delta) for any \delta > 0 [15, Prop. 1]. To achieve this,
we need to decrease the inner tolerance at the same rate: \epsilon k = \scrO (1/k1+\delta).
Due to linear convergence of the inner iterations, this requires \scrO (log k) inner
iterations. A total of K outer iterations thus has an asymptotic complexity of
\scrO (K logK). Due to sublinear convergence of the outer iterations, we require
K = \scrO (1/\epsilon) outer iterations, giving a complexity of \scrO (1/\epsilon log 1/\epsilon).

Strongly convex case To achieve linear convergence of the outer iterations for
strongly convex f , we need \| ek\| = \scrO (\gamma k) for any \gamma < 1 [15, Prop. 3].
To achieve this, we need to decrease the inner tolerance at the same rate:
\epsilon k = \scrO (\gamma k). Due to linear convergence of the inner iterations, this requires
\scrO (k) inner iterations. A total of K outer iterations then require \scrO (K2) in-
ner iterations. Due to linear convergence of the outer iterations, we require
K = \scrO (log 1/\epsilon) outer iterations, giving an overall complexity of \scrO ((log 1/\epsilon)2).

2.4. Practical implementation. A basic proximal gradient method for solving
problems of the form (1.1) is shown in Algorithm 2.1, where we denote

r

\biggl(\biggl[
x
y

\biggr] \biggr)
:= r1(x) + r2(y).

Algorithm 2.1 Prox-gradient for (1.1).

Require: Initial iterates, x0, y0, Lipschitz constant, L, of \nabla f .
\alpha = 1/L
k = 0
while \| xk - xk - 1\| + \| yk - yk - 1\| > \epsilon do\biggl[

xk+1

yk+1

\biggr]
= prox\alpha r

\biggl(\biggl[
xk

yk

\biggr]
 - \alpha \nabla f

\biggl(\biggl[
xk

yk

\biggr] \biggr) \biggr)
k = k + 1

end while

The conventional VP algorithm with accurate inner solves is given in Algo-
rithm 2.2. By Lemma E.1, the stopping criterion for the inner iterations guarantees
that at outer iteration k, we have \| yl - y(xk)\| \leq (2Lyy/\mu)\epsilon and hence that the error
in the gradient is bounded by

\| \nabla f(xk, y(xk)) - \nabla f(xk, yl)\| \leq (2LxyLyy/\mu) \epsilon .

We use warmstarts for the inner iterations, which is expected to dramatically reduce
the required number of inner iterations, especially when getting close to the solution.

An inexact version of Algorithm 2.2 can be implemented by specifying a decreasing
sequence of tolerances \{ \epsilon k\} k. However, in practice, it would be hard to figure out
exactly how fast to decrease the tolerance. Inspired by the requirement for convergence
of the inexact proximal gradient method, we therefore propose a stopping criterion
based on the progress in the outer iterations. Theorem 2.5 requires that the error
in the gradient \| ek\| is bounded by (L/2)\| xk+1 - xk\| . We can guarantee this by
combining various bounds. By (2.2) and Lemma E.1, we get

\| yl - yl - 1\| \leq L\mu

2LyyLxy
\| xk+1 - xk\| ,

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S256 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

Algorithm 2.2 Variable projection for (1.1) with accurate inner solves.

Require: Initial iterates, x0, y0, Lipschitz constants L,Lyy, tolerances \epsilon , \epsilon .
\alpha = 1/L
\beta = 1/Lyy

k = 0
while \| xk - xk - 1\| > \epsilon do

l = 0
while \| yl - yl - 1\| > \epsilon do

yl+1 = prox\beta r2 (yl - \beta \nabla yf(xk, yl))
l = l + 1

end while
y0 = yl \triangleleft Warmstart
xk+1 = prox\alpha r1 (xk - \alpha \nabla xf(xk, yl))
k = k + 1

end while

which guarantees the required bound on the error. Note that xk+1 implicitly depends
on yl and xk through xk+1 = prox\alpha r1 (xk - \alpha \nabla xf(xk, yl)).

A practical implementation of the inexact method is shown in Algorithm 2.3. In
practice, the constants L,Lyy, Lxy, and \mu may difficult to estimate. Moreover, the
bounds may be very loose. We therefore introduce a parameter, \rho , to use in the
stopping criterion instead.

In particular settings, the structure of the inner problem in y can be exploited
to achieve superlinear convergence of the inner iterations. A further improvement
could be to use a line search or an accelerated proximal gradient method for the
outer iterations. However, accelerated proximal gradient methods are generally more
sensitive to errors or require more information on the function, as pointed out by [15].

Algorithm 2.3 Algorithm for (1.1) with adaptive tolerance for the inner solves.

Require: Initial iterates, x0, y0, Lipschitz constants L,Lyy, parameter \rho
\alpha = 1/L
\beta = 1/Lyy

k = 0
while \| xk - xk - 1\| > \epsilon do

l = 0
repeat

xk+1 = prox\alpha r1 (xk - \alpha \nabla xf(xk, yl)) \triangleleft Prospective update of xk

yl+1 = prox\beta r2 (yl - \beta \nabla yf(xk, yl)) \triangleleft Update of yl
l = l + 1

until \| yl - yl - 1\| \leq \rho \| xk+1 - xk\|
y0 = yl \triangleleft Warmstart
k = k + 1

end while

3. Case studies.

3.1. Reproducibility. The Python code used to conduct the numerical exper-
iments is available at https://github.com/TristanvanLeeuwen/VarProNS. We imple-

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://github.com/TristanvanLeeuwen/VarProNS

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSMOOTH VARIABLE PROJECTION S257

Table 3.1
Some examples of exponential data fitting in applications.

Application \phi ij

Pharmaco-kinetic modelling xitj
Multiple signal classification \imath xihj

Radial basis function interpolation \alpha 2
i \| xi - \xi j\| 2

mented Algorithm 2.1 (hereafter referred to as the joint approach), Algorithm 2.2
(VP), and Algorithm 2.3 (adaptive VP). Instead of the absolute tolerance for the
inner iterations in Algorithm 2.2, we use a relative tolerance and stop the inner itera-
tions in Algorithm 2.2 when \| yl - yl - 1\| \leq \epsilon \| yl - 1\| . For the outer iterations, we use a
stopping criterion on the function value. The Lipschitz constants L,L, Lyy and other
algorithmic parameters are specified for each example. We show results for several
values of \rho to investigate the sensitivity of the results to this parameter.

Aside from the example-specific results, we report the convergence history (in
terms of the value of the objective) as a function of the number of outer iterations and
the total number of iterations. The latter is used as an indication of the computational
cost and will be referred to as cost.

3.2. Exponential data fitting. We begin with the general class of exponential
data-fitting problems---one of the prime applications of variable projection [11]. The
general formulation of these problems assumes a model of the form

di =

n\sum
j=1

yj exp(- \phi ij(x)), i = 1, 2, . . . ,m,

where y \in \BbbR n are unknown weights, d \in \BbbR m are the measurements, and \phi ij are given
functions that depend on an unknown parameter x \in \BbbR n. Some examples of this class
are given in Table 3.1.

The exponential data-fitting problem is traditionally formulated as a least-squares
problem

min
x,y

\| A(x)y - d\| 2.

In many applications, however, it is natural to include regularization terms and/or use
another data fidelity term. For example, [6, 16] consider positivity constraints yi \geq 0.
Another common regularization that enforces sparsity of y is r2(\cdot) = \lambda \| \cdot \| 1. This is
useful in cases where the system is overparametrized and we are looking for a fit of the
data with as few components as possible. Even with regularization, we expect a highly
ill-posed problem where many parameter combinations lead to a nearly identical data
fit.

For the conditions of the previous theorems to hold, we require A(x)TA(x) to be
invertible for all x. Note that this would require xi \not = xj for i \not = j. As long as we
initialize the xi to be different, we do not expect any problems. Alternatively, a small
quadratic term in y could be added to ensure that f(x, y) = \| A(x)y - d\| 2 + \delta \| y\| 2 is
strongly convex in y.

3.2.1. Example 1. We model the data via a normal distribution with mean
di =

\sum n
j=1 yj exp(- tixj) and variance \sigma . To generate the data, we set m = 11, n = 2,

ti = (i - 1)/2, x = (0.1, 1.5), y = (2.1, 1.9), and \sigma = 0.1. Since the number of
components, n, is not typically known in practice, we attempt to fit the data using

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S258 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

2

3

4

d(
t)

joint VP VP adapt

0 2 4
t

0.00

0.25

0.50

0.75

1.00

ex
p(

−x
it)

0 2 4
t

0 2 4
t

Fig. 3.1. Top: data and fitted data resulting from the various methods. Bottom: individual
components exp(- xit) resulting from the optimization as well as the ground-truth components (black
dashed line).

0 50 100 150 200
iteration

3.75 × 100

3.76 × 100

3.77 × 100

3.78 × 100

3.79 × 100

3.8 × 100

3.81 × 100

F k

0 1000 2000 3000 4000 5000 6000
cost

joint
VP
VP adaptive (ρ= 1)
VP adaptive (ρ= 10)
VP adaptive (ρ= 100)

Fig. 3.2. Convergence history and computational cost for Algorithms 1.1, 2.1, and 2.3. Note
that the inexact VP algorithm retains the same favorable rate of convergence of the full VP algorithm
while being significantly cheaper than the two alternatives.

n = 5 components and use an \ell 1-regularization term with \lambda = 1 (chosen by trial and
error) to find a parsimonious solution. The variational problem is then given by

min
x,y

\| A(x)y - d\| 2 + \lambda \| y\| 1 s.t. yi \geq 0 for i = 1, 2, . . . , n.

Here, A(x) is an m\times n matrix with elements exp(- tixj). The Lipschitz constants of
f and f are set to L = L = 1 \cdot 103 (selected by trial and error). For the inner solves,
we let Lyy = \| A(x)\| 2 (for the true x), \epsilon = 10 - 6 for VP, and \rho \in \{ 1, 10, 100\} for
adaptive VP. With these settings, we run Algorithm 2.1 (joint), Algorithm 2.2 (VP),
and Algorithm 2.3 (adaptive VP). The results are shown in Figures 3.1 and 3.2. The
VP approach gives a slightly better recovery of the modes exp(- xit) while achieving
the same level of data fit as the joint approach. This indicates that the ill-posedness
of the problem is effectively dealt with by the VP approach. The VP approach
converges much faster than the joint approach. While the exact VP approach is much
more expensive than the joint approach, the adaptive VP method is much cheaper
than the joint approach.

3.2.2. Example 2. Here, we model the data via a Poisson distribution with
parameter di =

\sum n
j=1 yj exp(- tixj). We set m = 11, n = 2, ti = (i - 1)/2, x =

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSMOOTH VARIABLE PROJECTION S259

10

20

30

40

d(
t)

joint VP VP adapt

0 2 4
t

0.00

0.25

0.50

0.75

1.00

ex
p(

−x
it)

0 2 4
t

0 2 4
t

Fig. 3.3. Top: data and fitted data resulting from the various methods. Bottom: individual
components exp(- xit) resulting from the optimization as well as the ground-truth components (black
dashed line).

0 200 400 600 800 1000
iteration

3.608 × 101

3.61 × 101

3.612 × 101

3.614 × 101

3.616 × 101

3.618 × 101

3.62 × 101

3.622 × 101

F k

0 50000 100000
cost

joint
VP
VP adaptive (ρ= 1)
VP adaptive (ρ= 10)
VP adaptive (ρ= 100)

Fig. 3.4. Convergence history and computational cost for Alorithms 2.1, 2.2, and 2.3. Note
that the inexact VP algorithm retains the same favorable rate of convergence of the full VP algorithm
while being significantly cheaper than the two alternatives.

(0.1, 1.5), y = (21, 19). The other settings are exactly the same as the previous
example. The variational problem is now given by

min
x,y

\ell (A(x)y, d) + \lambda \| y\| 1 s.t. yi \geq 0 for i = 1, . . . , n,

where \ell denotes the Poisson log-likelihood function. The Lipschitz constants of f and
f are set to L = L = 5 \cdot 104 (selected by trial and error). For the inner solves we
let Lyy = \| A(x)\| 2 (for the true x), \epsilon = 10 - 6 for inexact VP and \rho \in \{ 1, 10, 100\} for
adaptive VP. With these settings we run Algorithm 2.1 (joint), Algorithm 2.2 (VP),
and Algorithm 2.3 (adaptive VP). The results are shown in Figures 3.3 and 3.4. Here
again, the VP approach gives a slightly better recovery of the modes exp(- xit) while
achieving the same level of data fit as the joint approach. This indicated the ill-
posedness of the problem that is effectively dealt with by the VP approach. The VP
approach converges much faster than the joint approach. The adaptive VP method is
(much) cheaper than the joint approach, and even the regular VP approach eventually
beats the joint approach.

3.3. Trimmed robust formulations in machine learning. Many formula-
tions in high-dimensional regression, machine learning, and statistical inference can

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S260 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

be formulated as minimization problems

min
x

n\sum
i=1

\ell i(x),

where the training set comprises n examples and \ell i is the error or negative log-
likelihood corresponding to the ith training point. This approach can be made ro-
bust to perturbations of input data (for example, incorrect features, gross outliers,
or flipped labels) using a trimming approach. The idea, first proposed by [13] in
the context of least-squares fitting, is to minimize the k \leq n best residuals. The
general trimmed approach, formulated and studied by [20], considers the equivalent
formulation

min
x,y

n\sum
i=1

yi\ell i(x), y \in \^\Delta k,

where \^\Delta k := \{ y \in [0, 1]n : 1T y = k\} denotes the capped simplex and admits an
efficient projection [19, 1]. Jointly solving for (x, y) selects the k inliers as the model
x is fit. Indeed, the reader can check that the solution in y for fixed x selects the
smallest k terms fi. The problem therefore looks like a good candidate for VP, but the
projected function f(x) is nonsmooth because the solution for y may not be unique.1

However, the smoothed formulation

(3.1) min
x,y

n\sum
i=1

yi\ell i(x) +
\delta
2\| y\|

2, y \in \^\Delta k,

does lead to a differentiable f\delta (x), as the problem is now strongly convex in y.
To illustrate the trimming method and the potential benefit of the VP approach,

we consider the following stylized example.

3.3.1. Example 1. We aim to compute the (trimmed) mean of a set of samples
\{ di\} ni=1 by setting \ell i(x) =

1
2\| x - di\| 2. We generate data by sampling, generating a

total of n = 1000 samples di \in \BbbR 2; k = 200 are drawn from a normal distribution
with mean (- 1, - 1) and variance 1, while the remaining 800 are drawn from a normal
distribution with mean (1, 1) and variance 0.5. We let \delta = 1 \cdot 10 - 3, L = L = k and
Lyy = \delta , \epsilon = 10 - 6 for VP and \rho = 1 for adaptive VP. The results for Algorithm 2.1
(joint), Algorithm 1.1 (VP), and Algorithm 2.3 (adaptive VP) are shown in Figures
3.5 and 3.6. We note that the VP approach gives a better recovery of the inliers.
Moreover, the VP approach converges much faster than the joint approach. As the
inner problem is a simple quadratic, both the exact and the adaptive VP approach
have essentially the same computational cost.

3.4. Tomography. In computed tomography, the data consist of a set of line
integrals of an unknown function

dij =

\int
\ell ij

u(t)dt,

where \ell ij represents a line with angle \theta i and offset oj . Collecting measurements for
angles \{ \theta i\} ki=1 and offsets \{ oj\} mj=1 and representing the function u as a piecewise
continuous function on a grid of n \times n rectangular pixels leads to a system of linear

1Consider, for example, a case where a number of residuals have the same value.

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSMOOTH VARIABLE PROJECTION S261

−2.5 0.0 2.5
−4

−2

0

2

joint

−2.5 0.0 2.5

VP

−2.5 0.0 2.5

VP adapt

Fig. 3.5. Samples di (black), selected inliers (red), and estimated mean (white) for each method.

0 100 200 300 400 500
iteration

2 × 102

3 × 102

4 × 102

6 × 102

F k

0 200 400 600 800 1000
cost

joint
VP
VP adaptive (ρ= 1)

0 2 4 6 8 10
iteration

2 × 102

3 × 102

4 × 102

6 × 102

F k

0 2 4 6 8 10
cost

joint
VP
VP adaptive (ρ= 1)

Fig. 3.6. Convergence history and computational cost for Algorithms 2.1, 1.1, and 2.3. The
adaptive VP algorithm retains the same favorable rate of convergence of the full VP algorithm while
being significantly cheaper than the two alternatives. The bottom plots show more clearly what
happens in the first few iterations.

equations d = Ay, with A \in \BbbR m\cdot k\times n2

, with yi representing the gray value of the image
in the ith pixel. In many applications, the angles and absolute offsets are not known
exactly due to calibration issues. To model this, we include additional parameters
xi = (\Delta \theta i,\Delta si) for each angle. This leads to the signal model

d = A(x)y + e,

where x \in \BbbR 2k contains the calibration parameters and e represents measurement
noise.2 We can ensure that A(x) depends smoothly on x by using higher-order inter-
polation [18]. Many alternative methods have been proposed to solve the calibration
problem [18, 3], and we do not claim that the proposed VP approach is superior; we
merely use this problem as an example to compare the joint, VP, and adaptive VP
approaches with each other.

2In low-dose applications, a Poisson noise model is more realistic.

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S262 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
ground truth

0.0 0.5 1.0

joint

0.0 0.5 1.0

VP

0 10 20 30 40 50
iteration

104

F k

0 200 400 600 800 1000
cost

joint
VP
VP adaptive (ρ= 1)
VP adaptive (ρ= 10)
VP adaptive (ρ= 100)

Fig. 3.7. Top: ground-truth and reconstructed images. Bottom: convergence history and
computational cost for Algorithms 2.1, 2.2, and 2.3. The inexact VP algorithm retains the same
favorable rate of convergence of the full VP algorithm while being significantly cheaper than the two
alternatives.

3.4.1. Example 1. We let n = 50 and take m = 50 offsets regularly sampled
in [- 1.5, 1.5] and k = 50 angles regularly sampled in [0, 2\pi]. This does not guarantee
an invertible Hessian A(x)TA(x) (e.g., strongly convex f(x, \cdot)) for all x; however, we
will see that this does not lead to numerical issues in this particular example. As a
safeguard, one could add a small quadratic regularizer \delta \| y\| 2 to the objective.

The data are generated with an additional random perturbation on the offset
and angles (both are normally distributed with zero mean and variance 0.5) and
measurement noise (normally distributed with zero mean and variance 1).

To regularize the problem, we include positivity constraints:

min
x,y

\| A(x)y - d\| 2 s.t. yi \geq 0.

For the optimization, we let L = L = 1 \cdot 106 and Lyy = \| A(x)\| 2 (for the true x),
\epsilon = 10 - 6 for VP, and \rho \in \{ 1, 10, 100\} for adaptive VP. With these settings, we run
Algorithm 2.1 (joint), Algorithm 2.2 (VP), and Algorithm 2.3 (adaptive VP). The
results are shown in Figure 3.7. The VP approach gives a much better reconstruction
than the joint approach due to the much faster convergence. The adaptive VP meth-
ods are cheaper than the joint method, again because they converge much faster. The
adaptive VP approach, in turn, is much cheaper than the exact VP approach.

3.4.2. Example 2. The settings are the same as in the previous example, except
that we use a TV-regularization term,

min
x,y

\| A(x)y - d\| 2 + \lambda TV(y),

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSMOOTH VARIABLE PROJECTION S263

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
ground truth

0.0 0.5 1.0

joint

0.0 0.5 1.0

VP

0 10 20 30 40 50
iteration

104

6 × 103

F k

0 200 400 600 800 1000
cost

joint
VP
VP adaptive (ρ= 1)
VP adaptive (ρ= 10)
VP adaptive (ρ= 100)

Fig. 3.8. Top: ground-truth and reconstructed images. Bottom: convergence history and
computational cost for Algorithms 2.1, 2.2, and 2.3. Note that the inexact VP algorithm retains the
same favorable rate of convergence of the full VP algorithm while being significantly cheaper than
the two alternatives.

with

TV(y) =
\sum
i

\sqrt{}
(D1y)2i + (D2y)2i ,

where Dky returns a finite-difference approximation of the first derivative of the image
y in the kth direction. We let \lambda = 2 \cdot 101 (chosen by trial and error). The results
are shown in Figure 3.8. The VP approach gives a much better reconstruction than
the joint approach due to the much faster convergence. Both exact and adaptive VP
are cheaper than the joint method, again because they converge much faster. The
adaptive VP approach, in turn, is much cheaper than the exact VP approach.

4. Conclusions. Variable projection has been successfully used in a variety of
contexts; the popularity of the approach is largely due to its superior numerical per-
formance when compared to joint optimization schemes. In this paper, we extend
its use to wide class of nonsmooth and constrained problems occurring in various
applications. In particular, we give sufficient conditions for the applicability of an
inner-outer proximal gradient method. We also propose an inexact algorithm with
an adaptive stopping criterion for the inner iterations and show that it retains the
same convergence rate as the exact algorithm. Numerical examples on a wide range of
nonsmooth applications show that (i) the variable projection approach leads to faster
convergence than the joint approach and that (ii) the adaptive variable projection
method outperforms both the joint method and the exact variable projection method
in terms of computational cost. The adaptive method includes a parameter, \rho , that
controls the stopping tolerance for the inner iterations. In the numerical experiments,
we observe that a larger value for \rho leads to a smaller number of outer iterations.
There appears to be little danger of setting \rho too large; even when varying it over two

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S264 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

orders of magnitude, the adaptive VP method is consistently faster than the exact VP
method. As \rho \rightarrow 0, the adaptive method coincides with the exact method. Heuristics
could be developed to set this parameter automatically, but since this will be highly
application specific, it is outside the scope of this paper.

Appendix A. Proof of Lemma 2.1.

Proof. Denote F (x, y) = f(x, y) + r2(y). For ease of notation, we fix x, x\prime and
denote the corresponding (unique) optimal solutions by y and y\prime , respectively. These
optimal solutions are implicitly defined by the first-order optimality conditions 0 \in
\partial yF (x, y) and 0 \in \partial yF (x\prime , y\prime) or, equivalently,

(A.1) - \nabla yf(x, y) \in \partial r2(y), - \nabla yf(x
\prime , y\prime) \in \partial r2(y

\prime).

We start from strong convexity of F . For any \widetilde x, we have

(A.2) \mu \| y\prime - y\| 2 \leq \langle g\prime \widetilde x - g\widetilde x, y\prime - y\rangle ,

with g\widetilde x \in \partial yF (\widetilde x, y) and g\prime \widetilde x \in \partial yF (\widetilde x, y\prime). We note that \partial yF (\widetilde x, y) = \{ \nabla yf(\widetilde x, y) +
h | h \in \partial r2(y)\} , so we can write

g\widetilde x = \nabla yf(\widetilde x, y) + h, h \in \partial r2(y),

g\prime \widetilde x = \nabla yf(\widetilde x, y\prime) + h\prime , h\prime \in \partial r2(y
\prime),

with (A.2) holding for any choice of h and h\prime . Using (A.1), we make the particular
choices h = - \nabla yf(x, y) \in \partial r2(y) and h\prime = - \nabla yf(x

\prime , y\prime) \in \partial r2(y
\prime). From (A.2), we

now have

\mu \| y\prime - y\| 2 \leq \langle \nabla yf(\widetilde x, y\prime) - \nabla yf(x
\prime , y\prime), y\prime - y\rangle + \langle \nabla yf(x, y) - \nabla yf(\widetilde x, y), y\prime - y\rangle .

Setting \widetilde x = x, we get

\mu \| y\prime - y\| 2 \leq \langle \nabla yf(x, y
\prime) - \nabla yf(x

\prime , y\prime), y\prime - y\rangle .

Finally, using Cauchy--Schwarz and the Lipschitz smoothness of f in y, we have

\| y\prime - y\| \leq (Lxy/\mu)\| x\prime - x\| .

Appendix B. Proof of Theorem 2.2.

Proof. We set out to show that

(B.1) lim
\| e\| \rightarrow 0

| f(x+ e) - f(x) - \nabla xf(x, y(x)) \cdot e|
\| e\|

= 0,

which would confirm that \nabla xf(x, y(x)) is indeed the gradient of f(x).
Using the definition of f , we rewrite (B.1) as

lim
\| e\| \rightarrow 0

| F (x+ e, y(x+ e)) - F (x, y(x)) - \nabla xf(x, y(x)) \cdot e|
\| e\|

.

Writing F (x + e, y(x + e)) = F (x, y(x + e)) + \nabla xf(\xi , y(x + e)) with \xi = x + te for
t \in [0, 1], we get

(B.2) lim
\| e\| \rightarrow 0

| F (x, y(x+ e)) +\nabla xf(\xi , y(x+ e)) \cdot e - F (x, y(x)) - \nabla xf(x, y(x)) \cdot e|
\| e\|

.

We now set out to bound the terms in the numerator of (B.2) in terms of \| e\| 2:

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSMOOTH VARIABLE PROJECTION S265

\bullet For the gradient terms, we get (by Cauchy--Schwarz)

| (\nabla xf(\xi , y(x+e)) - \nabla xf(x, y(x)))\cdot e| \leq \| \nabla xf(\xi , y(x+e)) - \nabla xf(x, y(x))\| \cdot \| e\| .

Furthermore, by Lipschitz continuity of \nabla xf , we have

\| \nabla xf(\xi , y(x+ e)) - \nabla xf(x, y(x))\| \leq Lxx\| \xi - x\| + Lxy\| y(x+ e) - y(x)\| .

Using that \xi = x+ te and Lipschitz continuity of y (Lemma 2.1), we find

\| \nabla xf(\xi , y(x+ e)) - \nabla xf(x, y(x))\| \leq (Lxx + LxyLyx/\mu)\| e\|) .

This results in

| (\nabla xf(\xi , y(x+ e)) - \nabla xf(x, y(x))) \cdot e| \leq (Lxx + LxyLyx/\mu)\| e\| 2.

\bullet Next, we need to bound | F (x, y(x+ e)) - F (x, y(x))| in terms of \| e\| 2. Since
y(x) is the optimal solution at x, we have | F (x, y(x + e)) - F (x, y(x))| =
F (x, y(x+ e)) - F (x, y(x)). Using the convexity of F (x, \cdot), we have

F (x, y(x+ e)) - F (x, y(x)) \leq \langle u, y(x+ e)) - y(x)\rangle ,

with u \in \partial yF (x, y(x+e)). This can be expressed as u = \nabla yf(x, y(x+e))+w
with w \in \partial r2(y(x+ e)). Choosing w appropriately as w = - \nabla yf(x+ e, y(x+
e)), we get

F (x, y(x+ e)) - F (x, y(x))

\leq \| \nabla yf(x, y(x+ e)) - \nabla yf(x+ e, y(x+ e))\| \| y(x+ e)) - y(x)\| .

Using Lipschitz continuity of \nabla yf and y, we get

F (x, y(x+ e)) - F (x, y(x)) \leq (LyxLxy/\mu)\| e\| 2.

We have thus upper-bounded the term in (B.2) in terms of \| e\| . As this upper bound
tends to zero as \| e\| \rightarrow 0 and the fraction is always nonnegative, we conclude that the
limit tends to zero.

Appendix C. Proof of Corollary 2.3.

Proof. For ease of notation we fix x, x\prime and denote the corresponding (unique)
optimal solutions by y and y\prime respectively. Using the definition \nabla f(x) = \nabla xf(x, y)
we have

\| \nabla xf(x, y) - \nabla xf(x
\prime , y\prime)\| \leq \| \nabla xf(x, y) - \nabla xf(x

\prime , y)\| + \| \nabla xf(x
\prime , y) - \nabla xf(x

\prime , y\prime)\| .

Using Lipschitz continuity of \nabla xf and y we immediately find

\| \nabla xf(x, y) - \nabla xf(x
\prime , y\prime)\| \leq (Lxx + LxyLyx/\mu)\| x - x\prime \| .

Appendix D. Proximal gradient with errors. Consider solving

min
x

F (x),

with F (x) = f(x) + g(x), where f is proper, closed, and L - Lipschitz smooth and g
proper closed and convex. We consider an inexact proximal gradient method of the
form

(D.1) xk+1 = prox\alpha g (xk - \alpha (\nabla f(xk) + ek)) .

For the following, we closely follow [4].

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S266 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

Lemma D.1 (sufficient decrease of inexact proximal gradient). The iteration
(D.1) produces iterates that obey

F (xk) - F (xk+1) \geq
\bigl(
\alpha - 1 - L/2

\bigr)
\| xk+1 - xk\| 2 - \langle ek, xk+1 - xk\rangle .

Proof. By the smoothness assumption, we have

f(xk+1) \leq f(xk) + \langle \nabla f(xk), xk+1 - xk\rangle +
L

2
\| xk+1 - xk\| 2.

By [4, Thm. 6.39], we have

\langle xk - \alpha \nabla f(xk) - \alpha ek - xk+1, xk - xk+1\rangle \leq \alpha g(xk) - \alpha g(xk+1),

which yields

\langle \nabla f(xk), xk+1 - xk\rangle \leq - \alpha - 1\| xk+1 - xk\| 2 - \langle ek, xk+1 - xk\rangle + g(xk) - g(xk - 1).

Combining gives the result.

We let \alpha < 2/L and state a simple corollary that ensures that we can get descent
if \| ek\| is small enough.

Corollary D.2 (existence of small enough errors). At any iterate, we can
always take \| ek\| small enough to ensure descent, unless xk is a stationary point.

Proof. Introduce the prox-gradient mapping T :

T (x) = prox
\alpha g

(x - \alpha \nabla f(x)).

If xk is nonstationary, we know that \gamma := \| T (xk) - xk\| is bounded away from 0. On
the other hand, the function

h(ek) := \| prox
\alpha g

(xk - \alpha \nabla f(xk) - \alpha ek) - xk\|

is \alpha -Lipschitz continuous since the norm and the prox map are both 1-Lipschitz con-
tinuous, and we have h(0) = \| T (xk) - xk\| and h(ek) = \| xk+1 - xk\| . Therefore, if we
take \| ek\| \leq \gamma

2\alpha , we have

\| h(0) - h(ek)\| \leq \alpha \| ek\| \leq \gamma

2

and therefore
| \| xk+1 - xk\| - \gamma | < \gamma

2
\Rightarrow \| xk+1 - xk\| >

\gamma

2
.

So, if we take \| ek\| \leq min(\gamma
2\alpha ,

\gamma
(2(\alpha - 1 - L/2)), we are guaranteed that \| ek\| < (\alpha - 1 -

L/2)\| xk+1 - xk\| , ensuring descent by Lemma D.1.

Theorem D.3 (convergence of inexact proximal gradient, general case). The
iteration (D.1) with step size \alpha = 1/L and errors obeying \| ek\| \leq C\| xk+1 - xk\| with
C < L/2 produces iterates for which

min
k\in \{ 0,1,...,n - 1\}

\| xk+1 - xk\| \leq A

\sqrt{}
F (x0) - F (x\ast)

n
,

with A =
\sqrt{}

2
L - 2C .

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NONSMOOTH VARIABLE PROJECTION S267

From Lemma D.1, we have

\| xk+1 - xk\| 2 \leq 2

L
((F (xk) - F (xk+1)) + cos \theta k\| ek\| \| xk+1 - xk\|) .

Summing over k, we have

n - 1\sum
k=0

\| xk+1 - xk\| 2 \leq 2

L
(F (x0) - F (x\ast)) +

2

L

n - 1\sum
k=0

\| ek\| \| xk+1 - xk\| .

Assuming that \| ek\| \leq C\| xk+1 - xk\| , we get

n - 1\sum
k=0

\| xk+1 - xk\| 2 \leq 2

L
(F (x0) - F (x\ast)) +

2C

L

n - 1\sum
k=0

\| xk+1 - xk\| 2,

so \biggl(
1 - 2C

L

\biggr) n - 1\sum
k=0

\| xk+1 - xk\| 2 \leq 2

L
(F (x0) - F (x\ast)).

Hence,
n - 1\sum
k=0

\| xk+1 - xk\| 2 \leq
\biggl(
1 - 2C

L

\biggr) - 1
2

L
(F (x0) - F (x\ast)).

Thus,

min
k\in \{ 0,1,...,n - 1\}

\| xk+1 - xk\| \leq

\sqrt{}
2(F (x0) - F (x\ast))

(L - 2C)n
.

Appendix E. A stopping criterion for prox-gradient descent. When
solving

min
x

f(x) + g(x),

where f is L - Lipschitz smooth and f + g is \mu - strongly convex, with a proximal
gradient method, we need a practical stopping criterion that can guarantee a certain
distance to the optimal solution. The following bound is useful.

Lemma E.1 (a stopping criterion for proximal gradient descent). Introduce the
prox-gradient mapping T and the gradient mapping, G(x),

T (x) = prox
\alpha g

(x - \alpha \nabla f(x)),

G(x) = \alpha - 1(x - T (x)),

where f is L - Lipschitz smooth and \mu - strongly convex, g is convex, and \alpha \in (0, 2/L).
Define the fixed point of G by x. Then

\| T (x) - x\| \leq 1 + \alpha L

\mu
\| G(x)\| .

Proof. By strong convexity of F = f + g, we have

\mu \| T (x) - x\| 2 \leq \langle d, T (x) - x\rangle ,

with d \in \partial F (T (x)). Note that \partial F (x) = \nabla f(x) + \partial g(x) and that

\alpha - 1(x - T (x)) - \nabla f(x) \in \partial g(T (x))

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S268 TRISTAN VAN LEEUWEN AND ALEKSANDR Y. ARAVKIN

by definition of the proximal operator. Picking this particular element in \partial g(T (x)),
we obtain

\mu \| T (x) - x\| 2 \leq \langle G(x), T (x) - x\rangle + \langle \nabla f(T (x)) - \nabla f(x), T (x) - x\rangle .

By Lipschitz-smoothness and Cauchy--Schwarz, we get

\| T (x) - x\| \leq 1 + \alpha L

\mu
\| G(x)\| .

Remark E.2. When applying a standard proximal gradient method x+ = T (x),
we can immediately use this bound to devise a stopping criterion \| x+ - x\| \leq \epsilon that
guarantees \| x+ - x\| \leq \epsilon (\alpha - 1 + L)/\mu .

REFERENCES

[1] A. Aravkin and D. Davis, A Smart Stochastic Algorithm for Nonconvex Optimization with
Applications to Robust Machine Learning, preprint, arXiv:1610.01101, 2016.

[2] A. Y. Aravkin and T. van Leeuwen, Estimating nuisance parameters in inverse problems,
Inverse Problems, 28 (2012), 115016.

[3] A. P. Austin, Z. Wendy, S. Leyffer, and S. M. Wild, Simultaneous sensing error recovery
and tomographic inversion using an optimization-based approach, SIAM J. Sci. Comput.,
41 (2019), pp. B497--B521.

[4] A. Beck, First-Order Methods in Optimization, SIAM, Philadelphia, 2017.
[5] B. M. Bell and J. V. Burke, Algorithmic differentiation of implicit functions and optimal

values, Advances in Automatic Differentiation, C. H. Bischof, H. M. B\"ucker, P. D. Hovland,
U. Naumann, and J. Utke, eds., Springer, Berlin, 2008, pp. 67--77.

[6] A. Cornelio, E. L. Piccolomini, and J. G. Nagy, Constrained variable projection method
for blind deconvolution, J. Phys. Conf. Ser., 386 (2012), pp. 6--11.

[7] O. Devolder, F. Glineur, and Y. Nesterov, First-order methods of smooth convex opti-
mization with inexact oracle, Math. Program., 146 (2014), pp. 37--75.

[8] G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least
squares whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413--432.

[9] G. H. Golub and V. Pereyra, Separable nonlinear least squares: The variable projection
method and its applications, Inverse Problems, 19 (2003), R1.

[10] M. R. Osborne, Separable least squares, variable projection, and the Gauss-Newton algorithm,
Electron. Trans. Numer. Anal., 28 (2007), pp. 1--15.

[11] V. Pereyra and G. Scherer, eds., Exponential Data Fitting and Its Applications, Bentham
Science Publishers, Sharjah, United Arab Emirates, 2012.

[12] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Vol. 317, Springer, Berlin,
1998.

[13] P. J Rousseeuw, Least median of squares regression, J. Amer. Statist. Assoc., 79 (1984), pp.
871--880.

[14] A. Ruhe and P. A. Wedin, Algorithms for separable nonlinear least squares problems, SIAM
Rev., 22 (1980), pp. 318--337.

[15] M. Schmidt, N. L Roux, and F. R Bach, Convergence rates of inexact proximal-gradient
methods for convex optimization, in Advances in Neural Information Processing Systems,
2011, pp. 1458--1466

[16] P. Shearer and A. C. Gilbert, A generalization of variable elimination for separable inverse
problems beyond least squares, Inverse Problems, 29 (2013), 045003.

[17] R. L. Smith, Some interlacing properties of the Schur complement of a Hermitian matrix,
Linear Algebra Appl., 177 (1992), pp. 137--144.

[18] T. van Leeuwen, S. Maretzke, and K J. Batenburg, Automatic alignment for three-
dimensional tomographic reconstruction, Inverse Problems, 34 (2018), 024004.

[19] W. Wang and C. Lu, Projection onto the Capped Simplex, preprint, arXiv:1503.01002, 2015.
[20] E. Yang, A. C. Lozano, A. Aravkin, et al., A general family of trimmed estimators for

robust high-dimensional data analysis, Electron. J. Stat., 12 (2018), pp. 3519--3553.

D
ow

nl
oa

de
d

06
/0

7/
21

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

	Introduction
	Motivating examples
	Approach
	Contributions and outline

	Derivative formulas and inexact VP
	Derivative formulas
	Inexactness
	Asymptotic complexity
	Practical implementation

	Case studies
	Reproducibility
	Exponential data fitting
	Example 1
	Example 2

	Trimmed robust formulations in machine learning
	Example 1

	Tomography
	Example 1
	Example 2

	Conclusions
	Appendix A. Proof of lma:ybar
	Appendix B. Proof of thm:gradient
	Appendix C. Proof of col:lipgrad
	Appendix D. Proximal gradient with errors
	Appendix E. A stopping criterion for prox-gradient descent
	References

