
ar
X

iv
:2

10
4.

05
44

6v
1 

 [
m

at
h.

N
A

] 
 1

2 
A

pr
 2

02
1

High order cut discontinuous Galerkin methods for

hyperbolic conservation laws in one space dimension

Pei Fu∗, Gunilla Kreiss ∗

Abstract

In this paper, we develop a family of high order cut discontinuous Galerkin

(DG) methods for hyperbolic conservation laws in one space dimension. The

ghost penalty stabilization is used to stabilize the scheme for small cut ele-

ments. The analysis shows that our proposed methods have similar stability

and accuracy properties as the standard DG methods on a regular mesh. We

also prove that the cut DG method with piecewise constants in space is total

variation diminishing (TVD). We use the strong stability preserving Runge-

Kutta method for time discretization and the time step is independent of the

size of cut element. Numerical examples demonstrate that the cut DG methods

are high order accurate for smooth problems and perform well for discontinuous

problems.

Keywords: Hyperbolic conservation laws; Discontinuous Galerkin method;

Cut element method; Stabilization; Condition number.

1 Introduction

In this paper, we will develop a high order cut discontinuous Galerkin (DG) method

to solve one dimensional scalar hyperbolic conservation laws,

{
ut + (f(u))x = 0, x ∈ Ω = (xl, xr), t > 0,

u(x, 0) = u0(x),
(1.1)

with inflow or periodic boundary condition. The DG method was first introduced

in 1973 by Reed and Hill [26]. A breakthrough was made by Cockburn et al. in
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[8, 7, 6, 9] to solve hyperbolic conservation laws, coupled with Runge-Kutta method

[31] for time discretization and total variation bounded (TVB) nonlinear limiters [29]

to achieve non-oscillatory properties in the presence of strong shocks. DG methods

have low dispersion and dissipation errors for hyperbolic problems [16] and have broad

applications in many areas. We refer to [20, 16, 27] for more details.

Most applications based on DG methods are defined on fitted meshes. To achieve

the full potential accuracy of a DG method the mesh quality needs to be high. This

requirement can be problematic for problems posed on complicated domains and

implies remeshing for problems on moving domains or moving interfaces. Typically

the resulting mesh will contain small elements, which for time-dependent problems

may lead to very severe time-step restrictions. Small elements or cells cause severe

problems also for continuous element methods and finite volume methods. Examples

of efforts to overcome these difficulties are the finite volume based h-box method,

Helzel et el [2, 1] and the recent stabilized DG method by Engwer et. al [10], where

transport along the characteristics is explicitly taken into account. Many unfitted

methods have also been developed, as for example the extended finite element method

[11], immersed boundary methods [22], and unfitted finite element methods [3].

In unfitted finite element methods, the physical domain is immersed in a back-

ground mesh. A possible approach is to solve for all degrees of freedom corresponding

to the smallest set of elements covering the physical domain. The weak forms defin-

ing the numerical scheme are defined on the physical domain. Thus, for each element

integration will only be done over the part that intersects the physical domain. If

the intersection is very small, this will result in ill-conditioning of the mass and

stiffness matrices, and a very severe time-step restriction. There are two common

approaches to overcome these problems. One is the cell merging (or agglomeration)

[18, 19, 23, 24, 25, 28], where the small cut part is absorbed into a neighbour element

by extending the basis functions of the neighbour element. The other common ap-

proach is to add ghost penalty stabilization terms to the weak form [5, 15, 21, 32, 33].

Some efforts have been made to develop DGmethods with ghost stabilization. Gürkan

and Massing consider elliptic problems [14] and stationary hyperbolic equations [13].

In this paper, we develop a family of cut DG methods with ghost penalty stabi-

lization for first order hyperbolic problems. We consider linear and nonlinear scalar

equations in one space dimension. Our scheme is based on the standard DG meth-

ods, which saves considerable implementational effort. We add stabilization terms

on the interior interfaces between cut elements and their neighbours. We will anal-

yse the stability and accuracy of the resulting cut DG method, and discuss how the

stabilization terms effect the condition numbers and eigenvalues of the involved ma-
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trices. For the linear advection equation we prove an accuracy result, which is a

half order lower compared to the accuracy of the standard DG method. However,

we will report numerical observations showing optimal accuracy, both for linear and

nonlinear problems. We also prove the total variation diminishing (TVD) property

of the cut DG scheme with piecewise constants in space and explicit forward Euler

time discretization. We can not prove the TVD property for the mean value (TVDM)

for the proposed method based on high order polynomial spaces. However, we have

observed numerically that the total variation is bounded for high order polynomials

and explicit time stepping for problems with smooth solutions, and for discontinuous

solutions when we apply the TVD minmod limiter. On coarse meshes with one small

cut element and meshes with more small cut elements, some oscillations are triggered

when a discontinuity passes a cut element and its neighbours. By applying a more

robust limiting near cut elements, which explicitly lowers the polynomial degree when

non-smoothness is detected, these oscillations can be avoided.

This paper is organized as follows. We will introduce notation and definitions

of spaces and projections in Section 2. The proposed cut DG method is given in

Section 3, and we discuss how the stabilization terms effect the condition number of

the mass matrix and the eigenvalues of spatial discretization matrices. The stability

and a priori error estimate will be analysed in Section 4. Section 5 contains some

numerical results. The paper is concluded with a summary and a brief discussion of

how the proposed ideas can be extended to hyperbolic systems and higher dimensions.

2 Discrete spaces and projections

Let the computational domain be T = [xL, xR] partitioned by xL = x 1

2

< x 3

2

<

· · · < xN+ 1

2

= xR, which defines the background mesh in which the physical domain

Ω = [xl, xr] is immersed. Let Ij = [xj− 1

2

, xj+ 1

2

] denote an element and E denote the

set containing the edges in the background mesh. For simplicity, we assume all Ij’s

have length h. Define the cut mesh as

Th = {Ij ∩ Ω 6= ∅ : j = 1, · · · , N},TΓ = {Ij ∈ Th|Ij ∩ Γ 6= ∅}, (2.1)

Fh = {F ∈ E ∩ Ω},FΓ = {F ∈ Fh = Ij ∩ Ik|Ij ∈ TΓ, d(Ij,Γ) < 0.5h, j 6= k}. (2.2)

Here, Γ is the boundary point xl or one or more interface points xp, each of which

cuts one background element into two cut elements and d(Ij,Γ) denotes the cut size

of the element Ij cut by Γ. We will consider two settings. In the first, the boundary

is immersed in the background mesh and the physical boundary point xl cuts the left
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most element I1 with the cut size αh, α ∈ [0, 1]. We assume α ≪ 1, since this will be

the difficult case. We have TΓ = I1,FΓ = x 3

2

.

αh

xL = x 1

2

xl

x 3

2

x 5

2

xj− 1

2

xj+ 1

2

xN− 1

2 xR = xN+ 1

2

xrphysical domain Ω

computational domain T

Figure 1: Discretization of the physical domain Ω and the computational domain T.

In the second setting we consider problems with one or more interior interfaces,

resulting in cut elements located in the interior part of the domain, see Figure 2. For

each interface xp there are two cut elements with cut size αh and (1−α)h, respectively,

and the computational domain T is equal to Ω. In this setting, TΓ = IJ ,FΓ = {xJ− 1

2

}.
The background element IJ includes [xJ− 1

2

, xp] and [xp, xJ+ 1

2

]. Thus, IJ will be used

αh
(1− α)h

xL = x 1

2

xl

x 3

2

xJ− 3

2

xJ− 1

2

xp xJ+ 1

2

xJ+ 3

2

xN− 1

2 xR = xN+ 1

2

xr

Figure 2: Discretization of the physical domain Ω with the mesh partition having

equal size h = (xr−xl)/N and the middle element is split into two elements of length

αh and (1− α)h.

twice in the weak formulation as background element for both cut elements. Note that

for the periodic problem, a boundary point can equivalently be taken as an interior

point, and analyzing the mesh setting in Figure 1 suffices.

As for the standard DG method, we use the piecewise polynomial space

V
r
h = {vh : vh|Ij ∈ P r(Ij), ∀Ij ∈ Th}, (2.3)

where P r(Ij) is the space of polynomials with degree at most r in Ij. We note that

the space Vr
h and basis functions of space Vr

h are defined on the background mesh.

As usual, we define the average and the jump of a function v at x as

{v} =
1

2
(v+ + v−), [v] = (v+ − v−). (2.4)

For any v ∈ Vr
h, v

+ = lim
ǫ→0+

v(x+ ǫ) and v− = lim
ǫ→0+

v(x− ǫ) denote the limit values of

v at x from right and left. For square integrable functions on a given domain K, the
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inner product and the L2 norm are denoted

(v, w)K :=

∫

K

vwdx, ‖v‖K :=
√

(v, v)K, ∀v, w ∈ L2(K). (2.5)

3 The DG scheme

In this section, we will present the cut DG method for the scalar equation (1.1) with

periodic boundary condition, on the mesh with one cut element on the left boundary,

as in Figure 1. We will show how we stabilize and investigate how this effects the

condition number and the eigenvalues of the matrices from the space discretization

for the linear advection equation.

3.1 The cut DG scheme without stabilization

In this subsection, we use a methods of lines approach. We will discretize in space

and give the semi-discrete DG method for the scalar hyperbolic equation (1.1). We

multiply the equation (1.1) by the test function vh and integrate it by parts. Then

we get the semi-discrete DG method which is to look for uh(·, t) ∈ Vr
h such that for

any vh ∈ Vr
h, and for all Ij ∈ Th,

(uh,t, vh) Ij∩Ω + f̂jrv
−
h,jr − f̂jlv

+
h,jl − (f(uh), (vh)x)Ij∩Ω = 0. (3.1)

Here f̂∗ = f̂
(
u−
h (x∗, t), u

+
h (x∗, t))

)
is numerical flux function to approximate flux f(u)

at the point x∗, and xjl and xjr denote the end points of Ij∩Ω representing xl or xj± 1

2

.

As in the standard DG method [30], we use monotone fluxes which satisfies consis-

tency: f̂(u, u) = f(u), continuity: f̂ (u−, u+) is at least Lipschitz continuous with

respect to both arguments, and monotonicity f̂(↑, ↓): f̂ (u−, u+) is a non-decreasing

function of its first argument and a non-increasing function of its second argument.

We sum the cut DG scheme (3.1) over j and write it as

(uh,t, vh)Ω + a (uh, vh) = 0, ∀vh ∈ V
r
h, (3.2)

a(u, v) = f̂N+ 1

2

v−
N+ 1

2

− f̂lvl −
N∑

j=2

f̂j− 1

2

[v]j− 1

2

−
N∑

j=1

(f(u), vx)Ij∩Ω. (3.3)

Next, we will consider the matrix form of the cut DG scheme (3.2) for the periodic

linear advection equation with f(u) = βu and β > 0 in (1.1)

ut + (βu)x = 0, x ∈ (xl, xr), t > 0. (3.4)
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Let {φk
j (x)}rk=0 be the basis of P r on the element Ij, and express uh(·, t) ∈ Vr

h as

uh|Ij =
r∑

k=0

uk
j (t)φ

k
j (x), (3.5)

with uk
j (t) being the unknown time-dependent coefficients of numerical solution uh.

Our implementation uses the orthogonal Legendre polynomials 1, ξj, ξ
2
j − 1/3, · · · ,

with ξj =
x−xj

h/2
as the basis functions in each element Ij and xj denotes the centre

point of Ij. Thus, the local mass matrices on regular elements are diagonal, while

they will be full on the cut elements because of the integration over only a part of

the element. Introduce uh (3.5) into the cut DG scheme (3.2) with the upwind flux

f̂(u−
h , u

+
h ) = βu−

h for equation (3.4) with periodic boundary condition leads to the

matrix form of the semi-discrete problem,

MUt = SU, or Ut = M
−1SU. (3.6)

Here M is the block-diagonal mass matrix, S is the stiffness matrix, and U is the

coefficients vector of uh, which will be a smooth function of t. The temporal stability

of the semi-discrete scheme (3.2) depends on the eigenvalues of M−1S. For (3.6) to

be stable the eigenvalues of M−1S need to be in the negative half-plane. If this is

satisfied, eigenvalues with large absolute values will set the time-step limit for explicit

time-stepping methods. Also interesting is the mass matrix condition number, since

ill-conditioning here may cause difficulties in time-stepping.

In Table 1, we show results for the domain [0, 2] with a background mesh of 8

elements, where one cut element is located on the left boundary. We use β = 1 and

consider α = 10−2, 10−10. Note that for the higher polynomial orders eigenvalues

with positive real part appear as alpha goes to zero, which indicates instability. For

lower orders eigenvalues of large magnitude appear, which cause severe explicit time-

stepping limits. The results also indicate a sharply increasing condition number of

the mass matrix, with the degree of the polynomials space, and as the size of the cut

goes to zero. To overcome these problems, we will include stabilization.

3.2 The cut DG method with ghost penalty stabilization

In this subsection the starting point is a scaled version of the ghost penalty suggested

in [21],

j1(u, v) =
∑

F∈FΓ

r∑

k=1

wkh
2k+1

[
∂ku
]
F

[
∂kv
]
F
. (3.7)
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Table 1: Condition number of the mass matrix M and the maximal absolute value

and maximal real part of the eigenvalue vi of the spacial operator (M−1S) in the cut

DG scheme without stabilization.
α = 10−2 α = 10−10

degree K(M) max(|vi|) max(Re(vi)) K(M) max(|vi|) max(Re(vi))

P 0 1.00E+02 3.51E+02 -3.51E+00 1.00E+10 3.50E+10 -3.50E+00

P 1 5.94E+06 8.59E+02 -6.97E+00 1.31E+26 3.50E+10 -6.96E+00

P 2 7.48E+11 1.42E+03 -9.25E+00 2.65E+26 5.72E+10 1.24E+10

P 3 1.15E+17 2.05E+03 -1.10E+01 2.34E+27 5.40E+12 5.40E+12

This stabilization is also suggested for a wave propagation problem in [33]. In this

work we propose to use

Js(u, v) =
∑

F∈FΓ

r∑

k=0

wkh
2k+s

[
∂ku
]
F

[
∂kv
]
F
. (3.8)

to stabilize both mass and stiffness matrices. Compared to j1(u, v) (3.7) we have

included the jump of u to ensure that all terms are stabilized. With the stabilization

J1(ut, v) and J0(u, v), the semi-discrete cut DG scheme has the following form: look

for uh(·, t) ∈ Vr
h such that for ∀vh ∈ Vr

h,

(uh,t, vh)Ω + γMJ1(uh,t, vh) + a(uh, vh) + γAJ0(uh, vh) = 0. (3.9)

Here, a(u, v) are defined in (3.3) and γM , γA are positive constants. With vh = 1 in

(3.9), we get
d

dt

∫

Ω

uhdx+ f̂N+ 1

2

− f̂l = 0. (3.10)

Thus, the cut DG scheme with stabilization J1(uh,t, vh) and J0(uh, vh) is globally

conservative. We note that it is locally conservative for all elements which do not have

a cut element as a neighbour, and for on all patches of elements that are connected

by faces where the stabilization is applied.

Next, we study the eigenvalues and condition numbers of the matrices resulting

from applying the stabilized cut DG scheme (3.9) to the linear advection equation

(3.4) with parameter values γM = 0.25, γA = 0.75 and ωk = 1
(2k+1)k!2

as in [33]. We

write the scheme (3.9) with the periodic boundary condition in the matrix form as

M̃Ut = S̃U. (3.11)

Here, M̃ is stabilized mass matrix with M̃Ut = (uh,t, vh)Ω + γMJ1(uh,t, vh) and S̃

is stabilized stiffness matrix with S̃U = −a(uh, vh) − γAJ0(uh, vh). In Table 2 the

condition number of M̃, the maximal absolute value and the maximal real part of the

eigenvalues of the spatial operator (M̃−1S̃) are listed. Comparing the results in Table
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2 and Table 1, the condition number of M̃ is much smaller than for the original mass

matrix. Besides, the maximal absolute eigenvalue and its real part from the stabilized

scheme are almost the same as for the standard DG method on a uniform mesh in

Table 3. We therefore expect similar time-step restrictions for the stabilized cut DG

method as for the standard DG method. We have also tested the scheme with more

small cut elements in the interior and get very similar results as in Table 2.

Table 2: Condition number of mass matrix M̃ and maximal absolute value and max-

imal real part of the eigenvalue vi of the spatial operator (M̃−1S̃) in the cut DG

scheme with stabilization.
α = 10−2 α = 10−10

degree K(M̃) max(|vi|) max(Re(vi)) K(M̃) max(|vi|) max(Re(vi))

P 0 6.53E+00 2.34E+01 3.47E-15 6.85E+00 2.45E+01 -8.39E-17

P 1 4.79E+01 2.22E+01 5.93E-16 5.07E+01 2.45E+01 -2.56E-15

P 2 3.77E+03 4.08E+01 1.12E-15 4.04E+03 4.11E+01 5.33E-16

P 3 8.58E+05 6.69E+01 5.07E-15 9.39E+05 6.70E+01 -2.53E-16

P 4 1.93E+08 9.65E+01 4.34E-15 2.16E+08 9.67E+01 -5.60E-16

In Figure 3, we plot the eigenvalues of ∆tM̃−1S̃ from the stabilized cut DG scheme

(3.9) for different polynomials and varying cut size with α = 10−2, 10−10. In our case

the physical domain is [0, 2], and in the cut cases the background mesh consists of

8 elements, of which two cut elements [1, 1 + αh], [1 + αh, 1 + h] are included as in

Figure 2. The time steps are taken to be ∆t = λh with λ = 0.3, 0.2, 0.1, 0.1 for

r = 1, 2, 3, 4 ∈ Vr
h polynomials, as for the standard DG method. From the results, we

can observe that the eigenvalues are all located in the stable region of fourth order

Runge-Kutta method. Thus, our proposed cut DG methods can use a similar time

step as the standard DG method even with a very small cut cell.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-3

-2

-1

0

1

2

3 RK4

P1

P2

P3

P4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-3

-2

-1

0

1

2

3 RK4

P1

P2

P3

P4

Figure 3: The eigenvalue distributions v of ∆tM̃−1S̃ from the cut DG scheme with

different polynomial spaces P r and α = 10−2 (left), 10−10 (right) on the mesh setting

in Figure 2.
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3.3 Condition number of the mass matrix with stabilization

Without stabilization the mass matrix is a block diagonal matrix with (r + 1) ×
(r + 1) local stiffness matrices as diagonal blocks. For regular elements these blocks

are diagonal. With the stabilization term, the mass matrix couples the degrees of

freedom in cut elements with those of their neighbours. This coupling gives rise to a

2k(r+1)×2k(r+1) matrix with k being the number of stabilized cut elements. Note

that the global mass matrix M̃ is still block-diagonal but not element by element.

Following the analysis in [33], we can estimate the condition number of the mass

matrix.

Lemma 3.1. The condition number of the modified mass matrix with stabilization

J1(ut, v) with γM > 0 has an upper bound

κ(M̃) ≤ CMκ (M) . (3.12)

Here, M is the mass matrix for the standard DG scheme on a uniform mesh. For

fixed γM > 0 and fixed weights ωk the constant CM depends only on the polynomial

order, and not on h or α. It will grow unboundedly if γM approaches zero.

For details and proof of Lemma 3.1 we refer to the paper [33].

4 Analysis of the cut DG method with stabiliza-

tion

In this section we analyze the stabilized cut DG scheme (3.9) with respect to stability

and accuracy.

4.1 L2 stability

We will use the entropy inequality in [17] to prove that the stabilized cut DG method

(3.9) for periodic scalar hyperbolic problems is L2 stable.

Theorem 4.1. With the parameters γM ≥ 0, γA ≥ 0 and flux f̂ satisfying consistency,

monotonicity and continuity, the semi-discrete cut DG scheme (3.9) for the periodic

scalar hyperbolic equation (1.1) satisfies

||uh(·, t)||2Ω + γMJ1(uh(·, t), uh(·, t)) ≤ ||uh(·, 0)||2Ω + γMJ1(uh(·, 0), uh(·, 0)).

Proof. Taking vh = uh(·, t) in the scheme (3.9) we get

(uh,t, uh)Ω + γMJ1(uh,t, uh) + a(uh, uh) + γAJ0(uh, uh) = 0. (4.1)

9



That is

0 =

∫

Ω

uh,tuhdx+ γMJ1(uh,t, uh) + γAJ0(uh, uh)

+
∑

j

(
−
∫

Ij∩Ω

f (uh) (uh)x dx+ f̂jru
−
h,jr − f̂jlu

+
h,jl

)
. (4.2)

We define Gj = −
∫
Ij∩Ω

f (uh) (uh)x dx + f̂jru
−
h,jr − f̂jlu

+
h,jl and F̃ (u) =

∫ u
f(u)du.

Then, we have

Gj =
(
−F̃

(
u−
h,jr

)
+ f̂jru

−
h,jr

)
−
(
−F̃

(
u−
h,jl

)
+ f̂jlu

−
h,jl

)
+Θjl.

Here,

Θjl = −F̃
(
u−
h,jl

)
+ f̂jlu

−
h,jl + F̃

(
u+
h,jl

)
− f̂jlu

+
h,jl.

By the mean value theorem it follows that

Θ = −F̃
(
u−
h

)
+ f̂u−

h + F̃
(
u+
h

)
− f̂u+

h =
(
u+
h − u−

h

) (
F̃ ′(ξ)− f̂(u−

h , u
+
h )
)

(4.3)

= (u+
h − u−

h )(f(ξ)− f̂(u−
h , u

+
h )) ≥ 0,

where ξ is a value between u−
h and u+

h , and the monotonicity f̂(↑, ↓) as well as con-
sistency f(ξ) = f̂(ξ, ξ) of flux function f̂ are used. Thus, the equation (4.2) becomes

0 =

∫

Ω

uh,tuhdx+ γMJ1(uh,t, uh) + γAJ0(uh, uh) +
∑

j

Gj

=

∫

Ω

uh,tuhdx+ γMJ1(uh,t, uh) + γAJ0(uh, uh) +
∑

j

Θjl. (4.4)

Here,
∑
j

((
−F̃

(
u−
h,jr

)
+ f̂jru

−
h,jr

)
−
(
−F̃

(
u−
h,jl

)
+ f̂jlu

−
h,jl

))
= 0 follows from the pe-

riodic boundary condition. With γM ≥ 0, γA ≥ 0 in the stabilization we have

1

2

d

dt

(∫

Ω

u2
hdx+ γMJ1(uh, uh)

)
=

∫

Ω

uh,tuhdx+ γMJ1(uh,t, uh) ≤ 0. (4.5)

Integrating this relation in time completes the proof.

Further, with γM > 0 Theorem 4.1 can be combined with Lemma 3.1 to yield a cor-

responding estimate for the coefficient vector |U(t)| =
√
UTU , which is independent

of the cut size α. We point out that the semi-discrete cut DG scheme (3.1) without

stabilization also satisfies L2 stability, and that the terms J1(ut, v) and J0(u, v) do

not destroy the stability. Comparing with standard DG method, we can not have the

cell entropy inequality in each cell because the stabilization terms combine the cut

cells and their neighbours.
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4.2 a priori error estimate

In this subsection, we will derive an a priori error estimate for the semi-discrete

stabilized cut DG scheme (3.9) applied to the linear advection equation (3.4).

First, we give some properties of the unfitted L2 projection πe
h, which are stated

in [13]. The projection πe
h satisfies the following error estimates

‖v − πe
hv‖Th,s . hr−s‖v‖r,Ω, 0 6 s 6 r, (4.6)

‖v − πe
hv‖Fh,s

. hr−s−1/2‖v‖r,Ω, 0 6 s 6 r − 1/2, (4.7)

‖v − πe
hv‖Γ,s . hr−s−1/2‖v‖r,Ω, 0 6 s 6 r − 1/2. (4.8)

Here, the . − relation denotes a . b ⇔ a ≤ Cb with C being some constant that is

independent of h and r. Further, || · ||m,Ω denotes the usual norm of Sobolev spaces

Hm(Ω) and || · ||2
Th,s

=
∑

K∈Th
|| · ||2s,K.

We assume u(·, t) is the exact solution of problem (3.4) and uh(·, t) ∈ V
r
h is the

approximate solution satisfying the cut DG scheme (3.9). Thus, we have

(ut, vh)Ω + γMJ1(ut, vh) + a(u, vh) + γAJ0(u, vh) = 0, ∀vh ∈ V
r
h. (4.9)

Subtracting equation (3.9) from (4.9) yields for ∀vh ∈ V
r
h

((u− uh)t, vh)Ω + γMJ1((u− uh)t, vh) + a(u− uh, vh) + γAJ0(u− uh, vh) = 0.

(4.10)

Furthermore, we assume u ∈ L∞ ((0, t);Hr+2(Ω)) and ut ∈ L∞ ((0, t);Hr+1(Ω)).

Then, we have the following error estimate.

Theorem 4.2. We assume u is a sufficiently smooth exact solution of the linear

advection equation (3.4) with periodic boundary condition, and uh(·, t) ∈ Vr
h (3.5) is

the approximation satisfying the stabilized cut DG scheme (3.9). Then, we have the

a priori error estimate

||u(·, t)− uh(·, t)||2Ω ≤ Ch2r+1. (4.11)

Here, C is a constant depending on final time t, on u and its derivatives, and on

parameters γM , γA, ωk in the stabilization terms. In particular, it is independent of

the size of the cut geometries.

Proof. Define η = u − πe
hu, θ = πe

hu − uh and we have θ ∈ Vr
h which is a smooth

function of t. Then, we can rewrite the error equation (4.10) as

(θt, vh)Ω + γMJ1(θt, vh) + a(θ, vh) + γAJ0(θ, vh)
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= −(ηt, vh)Ω + γMJ1((π
e
hu)t, vh)− a(η, vh) + γAJ0(π

e
hu, vh), for ∀vh ∈ V

r
h. (4.12)

Taking the test function vh = θ(·, t) at a particular time t in equation (4.12), we have

Lhs : = (θt, θ)Ω + γMJ1(θt, θ) + a(θ, θ) + γAJ0(θ, θ)

=
1

2

d

dt

(
||θ||2Ω + γMJ1(θ, θ)

)
+ γAJ0(θ, θ) +

β

2
[θ]2l +

β

2

N∑

j=2

[θ]2
j− 1

2

,

Rhs : = −(ηt, θ)Ω + γMJ1((π
e
hu)t, θ)− a(η, θ) + γAJ0(π

e
hu, θ)

= −(ηt, θ)Ω + γMJ1((π
e
hu)t, θ) + γAJ0(π

e
hu, θ)

−
(
−βη̂l[θ]

2
l −

N∑

j=2

βη̂j− 1

2

[θ]j− 1

2

−
N∑

j=1

(βη, θx)Ij∩Ω

)
.

In the above two equations, we used θ̂N+ 1

2

= θ̂l, η̂N+ 1

2

= η̂l and [θ]l = θ(x+
l , t)− θ−

N+ 1

2

based on the periodic boundary condition. Using Cauchy-Schwarz inequality, we

obtain

Rhs ≤ 1

2

(
||ηt||2Ω + ||θ||2Ω + γMJ1((π

e
hu)t, (π

e
hu)t) + γMJ1(θ, θ) + γAJ0(π

e
hu, π

e
hu)
)

+ γAJ0(θ, θ) +
β

2

(
N∑

j=2

[θ]2
j− 1

2

+ [θ]2l +

N∑

j=2

η̂2
j− 1

2

+ η̂2l + h−2||η||2Ω + h2||θx||2Ω

)
.

Using the inverse inequality h||θx||Ω ≤ C||θ||Ω and combining the above equations in

this subsection, we can get

d

dt

(
||θ||2Ω + γMJ1(θ, θ)

)

≤ ||ηt||2Ω + ||θ||2Ω + γMJ1((π
e
hu)t, (π

e
hu)t) + γMJ1(θ, θ) + γAJ0(π

e
hu, π

e
hu)

+ β

N∑

j=2

η̂2
j− 1

2

+ βη̂2l + h−2β||η||2Ω + h2β||θx||2Ω

≤ C1(||θ||2Ω + γMJ1(θ, θ)) + I + II + III + IV + V, (4.13)

where

I = ||ηt||2Ω, II = βh−2||η||2Ω, III = γMJ1((π
e
hu)t, (π

e
hu)t),

IV = γAJ0(π
e
hu, π

e
hu), V = β

N∑

j=2

η̂2
j− 1

2

+ βη̂2l .

Here, ηt = (u − πe
hu)t = ut − πe

hut. Thus, based on the properties of πe
h in (4.6) and

assuming u ∈ L∞ ((0, t);Hr+2(Ω)) , ut ∈ L∞ ((0, t);Hr+1(Ω)), we have

I = ||ηt||2Ω ≤ ||ηt||2Th ≤ Ch2r+2||ut||2Hr+1(Ω), (4.14)
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II = h−2β||η||2Ω ≤ h−2β||η||2
Th

≤ Ch2r+2||u||2Hr+2(Ω). (4.15)

For the stabilization terms III, IV , we use the trace property (4.7) and Js(u, vh) = 0

with u sufficiently smooth. Then, we can obtain

1

γA
IV = J0(π

e
hu, π

e
hu) = J0(π

e
hu− u, πe

hu− u) =
∑

F∈FΓ

r∑

k=0

ωkh
2k[∂k(u− πe

hu)]
2
F

≤ 2
∑

F∈FΓ

r∑

k=0

ωkh
2k||∂k(u− πe

hu)||2F

≤ C ′
∑

F∈FΓ

r∑

k=0

ωkh
2kh2(r+1)−2k−1||u||2Hr+1(Ω) ≤ Ch2r+1||u||2Hr+1(Ω).

Similar to the analysis of the above inequality, we also have

1

γM
III = J1((π

e
hu)t, (π

e
hu)t) ≤ Ch2r+2||ut||2Hr+1(Ω). (4.16)

Using the trace inequality (4.7) and upwind flux η̂ = η−, we have

V = β
N∑

j=2

η̂2
j− 1

2

+ βη̂2l ≤ Ch2r+1||u||2Hr+1(Ω). (4.17)

Combing the above inequalities (4.13)-(4.17), we can get

d

dt

(
||θ||2Ω + γMJ1(θ, θ)

)
≤ C1(||θ||2Ω + γMJ1(θ, θ)) + C2h

2r+1. (4.18)

Thus,

d

dt
e−C1t

(
||θ||2Ω + γMJ1(θ, θ)

)
≤ C2e

−C1th2r+1, (4.19)

which can be integrated in time to yield

||θ||2Ω + γMJ1(θ, θ) ≤ eC1t
(
||θ||2Ω + γMJ1(θ, θ)

)
|t=0 + C2

∫ t

0

eC1(t−τ)dτh2r+1. (4.20)

We note that the initialization of uh is based on the stabilized L2 projection Πhu0 [4]

of the smooth initial data u0(x). Thus, combing the property of projection πe
h with

the error estimation of stabilized L2 projection Πh, we have

||θ||2Ω|t=0 ≤ ||πe
hu0 − u0||2Ω + ||u0 −Πhu0||2Ω ≤ Ch2r+2,

(4.21)

J1(θ, θ)|t=0 ≤ 2 (J1(π
e
hu0 − u0, π

e
hu0 − u0) + J1(u0 − Πhu0, u0 − Πhu0)) ≤ Ch2r+2.
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Then, with initial error (4.21) and (4.20), we obtain

||θ||2Ω + γMJ1(θ, θ) ≤ Ch2r+1.

Finally, applying the triangle inequality and the property of projection πe
h, we have

the a priori error estimate (4.11).

Remark 4.3. Our estimate based on the projection πe
h yields lower accuracy than

for the standard method. In Section 5 optimal accuracy is observed numerically.

4.3 TVD stability

In this subsection, we will prove that the stabilized cut DG scheme (3.9) with piecewise

constants in space for the linear advection equation (3.4) with periodic boundary

condition is TVD stable when the explicit Euler time discretization is applied. Let

un
j denote the solution uh(x, tn) in the element Ij ∩ Ω. A DG scheme is TVD stable

if it satisfies

TV
(
uh

n+1
)
≤ TV (uh

n) , with TV (uh
n) =

∑

j

∣∣un
j+1 − un

j

∣∣ . (4.22)

With the setting in Figure 1, we have the cut DG scheme (3.9) with piecewise

constants in space and explicit Euler time discretization as

αun+1
1 + γMun+1

1 − γMun+1
2 =αun

1 − γMun
2 + γMun

1 (4.23)

+ λ (un
N − un

1) + λγA (un
2 − un

1) ,

un+1
2 + γMun+1

2 − γMun+1
1 =un

2 − γMun
1 + γMun

2 (4.24)

+ λ (un
1 − un

2 )− λγA (un
2 − un

1) ,

un+1
j =un

j + λ
(
un
j−1 − un

j

)
, j = 3, · · · , N. (4.25)

Here, λ = ∆t/h is Courant number. For this scheme, we have the following theorem.

Theorem 4.4. The stabilized cut DG scheme (3.9) with piecewise constants in space

and the explicit Euler time discretization for linear advection equation with β = 1

is TVD stable under the condition that the time step satisfies ∆t
h

≤ α + γM
γM+1

, and

parameters satisfy 0 < γM ≤ γA and (1 + α)γA − γM ≤ 1− α.

Proof. With the periodic boundary condition we define u0 = uN and divide

N∑

j=1

|uj − uj−1| =
N∑

j=3

|uj+1 − uj|+ |u2 − u1|+ |u3 − u2|+ |u1 − uN |.
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We first consider un+1
2 − un+1

1 by subtracting equation (4.23) from equation (4.24)

multiplied by α,

un+1
2 −un+1

1 =

(
1− λ

α + αγA + γA
α + αγM + γM

)
(un

2 − un
1 )+

λ

α + αγM + γM
(un

1 − un
N) . (4.26)

Next, we compute un+1
3 − un+1

2 by subtracting equation (4.24) from equation (4.25)

with j = 3 and get

un+1
3 − un+1

2 = γM
(
un+1
2 − un+1

1

)
+ (1− λ) (un

3 − un
2 ) + (λ+ λγA − γM) (un

2 − un
1) .

(4.27)

Replacing un+1
2 − un+1

1 in equation (4.27) by equation (4.26), we have

un+1
3 − un+1

2 =λ
α + γM + αγA
α+ γM + αγM

(un
2 − un

1) + (1− λ) (un
3 − un

2)

+
λγM

α+ αγM + γM
(un

1 − un
N) . (4.28)

Then, we consider un+1
1 − un+1

N . By subtracting α times equation (4.25) with j = N

from equation (4.23), and replacing un+1
2 − un+1

1 by equation (4.26), we obtain

un+1
1 − un+1

N =
λ (γA − γM)

α + αγM + γM
(un

2 − un
1) +

(
1− λ

γM + 1

α + αγM + γM

)
(un

1 − un
N)

− λ(un
N−1 − un

N). (4.29)

For the standard part with 4 ≤ j ≤ N , we have

un+1
j − un+1

j−1 = (1− λ)(un
j − un

j−1) + λ(un
j−1 − un

j−2). (4.30)

Summing the absolute of equations (4.26), (4.28), (4.29) and (4.30), we get

N∑

j=1

∣∣un+1
j − un+1

j−1

∣∣ ≤
(∣∣∣∣1−

λ(γM + 1)

α + αγM + γM

∣∣∣∣+
λ(γM + 1)

α + γM + αγM

)
|un

1 − un
N |

+

(∣∣∣∣1− λ
α + αγA + γA
α+ αγM + γM

∣∣∣∣ +
∣∣∣∣

λ(γA − γM)

α + αγM + γM

∣∣∣∣+ λ
α + γM + αγA
α + γM + αγM

)
|un

2 − un
1 |

+

N∑

j=3

|un
j − un

j−1|.

In the above inequality, the parameters γM ≥ 0, γA ≥ 0 and 0 < λ ≤ 1 are used.

With γM ≤ γA and (1 + α)γA − γM ≤ 1 − α, we have λ α+αγA+γA
α+αγM+γM

≤ λ γM+1
α+αγM+γM

≤ 1

under the time step satisfying λ = ∆t
h

≤ α + γM
γM+1

. Thus, we have

1− λ(γM + 1)

α + αγM + γM
≥ 0, 1− λ

α + αγA + γA
α+ αγM + γM

≥ 0, γA − γM ≥ 0, (4.31)
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and we can get

N∑

j=1

∣∣un+1
j − un+1

j−1

∣∣ ≤
N∑

j=3

|un
j − un

j−1|+ |un
1 − un

N |+ |un
2 − un

1 | =
N∑

j=1

|un
j − un

j−1|.

As for the standard DG scheme, we can not get the TVD stability for higher order

polynomials. Similar to the standard DG method, we use the TVB minmod limiter

in [8] to control the oscillations and overshoot produced from the stabilized cut DG

scheme (3.9). We define the cell average of the solution u as

uj =
1

|Ij ∩ Ω|

∫

Ij∩Ω

udx,

and further define

ũj = u−
j+ 1

2

− uj , ˜̃uj = uj − u+
j− 1

2

,∆+uj = uj+1 − uj , ∆−uj = uj − uj−1.

We modify both ũj and ˜̃uj by the TVB minmod limiter m̃,

ũ
(mod)
j = m̃ (ũj,∆+uj ,∆−uj) , ˜̃u

(mod)

j = m̃
(
˜̃uj,∆+uj,∆−uj

)
. (4.32)

For the definitions of function m̃ and details of the TVB limiter, we refer to [8]. Then

we recover the limited function u
(mod)
h by maintaining the old cell average ūj and the

new point values given by u
(mod)
h

(
x−
j+ 1

2

)
= ūj + ũ

(mod)
j , u

(mod)
h

(
x+
j− 1

2

)
= ūj − ˜̃u

(mod)

j .

This recovery is unique for P k polynomials with k ≤ 2. When k > 2, the recovery is

done by setting high order coefficients than 2 to zero.

Note that we can not prove the TVDM property of the stabilized cut DG scheme

with high order polynomials. The reason is the jump of high order derivatives in

the stabilization Js(uh, v). However, we observe numerically that the stabilized cut

DG scheme is TVB when the limiter is applied. On coarse meshes with one small

cut element and meshes with more small cut elements, some oscillations are triggered

when a discontinuity passes a cut element and its neighbours. In appendix B, we

describe a modified limiting procedure, where the approximation is locally reduced to

the P 0 scheme in a cut element and its neighbours when the standard limiter indicates

that limiting is needed in a cut element or its neighbour.

5 Numerical examples

In this section, we present numerical examples that demonstrate the performance of

our proposed stabilized cut DG scheme (3.9) for scalar problems (1.1). Based on
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the numerical studies for eigenvalues of the spatial operator in Section 3 and the

analysis in Section 4 we include both stabilization terms J1(ut, v) and J0(u, v) with

coefficients γM = 0.25, γA = 0.75, ωk = 1
(2k+1)k!2

. Both linear and nonlinear cases are

considered. In all our computations, the third order TVD RK method [12] is used

when r ≤ 2, and the fourth order five stages RK method is used when r = 3 for the

time discretization. We use a time step ∆t = λh, where the Courant number λ varies

with polynomial order. We consider the case with a cut element at the boundary, see

Figure 1, and cases with one or more cut elements in the interior, see Figure 2. In

the problems with non-smooth solutions, limiting is used to control oscillations.

5.1 Accuracy test for the linear case

In this subsection, we consider the one dimensional linear advection equation and

periodic boundary condition,

ut + ux = 0, 0 < x < 2, t > 0, (5.1)

with the initial data u(x, 0) = 1.0 + 0.5 sin(πx). The exact solution is u(x, t) =

1 + 0.5 sin(π(x − t)). We test the problem (5.1) on the mesh setting in Figure 1

with one cut element on the left boundary. The computational domain [xL, xR] =

[xl − (1 − α)h, xr] with α ∈ (0, 1] and h the regular size of interior elements. In

our test, ∆t = λ xr−xl

N+α−1
with N = 40, 80, 160, 320, 640 and λ = 0.5, 0.3, 0.2, 0.14 for

r = 0, 1, 2, 3 respectively. The stabilized cut DG scheme (3.9) with upwind flux is

applied up to time t = 1. In Figure 4, we plot L2 and L∞ errors of the numerical

solutions on the mesh with a cut element of size α = 10−4 and the corresponding

average convergence rates are shown in the legend. Note that the stabilized cut DG

schemes are stable and converge optimally with the same Courant number λ as the

standard DG scheme. We have also tested this problem on the mesh in Figure 2, and

with α’s as small as 10−10. In all cases the results are very similar.

5.2 The linear case with non-smooth data

In this subsection, we consider the linear advection problem ut + ux = 0 with non-

smooth initial data and a non-smooth boundary condition. We have tested many

more α values than those presented, and the solutions behave similarly for all α

values.
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10−2.5 10−2 10−1.5

10−10

10−5

h
E
rr
or

P 0L2 0.99

P 0L∞ 0.97

P 1L2 2.01

P 1L∞ 2.01

P 2L2 3.02

P 2L∞ 3.02

P 3L2 4.03

P 3L∞ 4.02

Figure 4: L2 and L∞ errors for the stabilized scheme (3.9) of different polynomial

orders for the advection problem (5.1) at t = 1. The average convergence rate is given

in the legend.

5.2.1 Non-smooth initial data

Here, we test the advection problem (5.1) with periodic boundary condition on domain

Ω = [0, 1] and non-smooth initial data

u(x, 0) =

{
1 0.1 < x < 0.5,

0 otherwise.
(5.2)

We use a mesh partition with equal size h = (xr − xl)/N , with the middle element

[0.5, 0.5+h] split into two cut elements [0.5, 0.5+αh], [0.5+αh, 0.5+h] with α = 10−4,

as in Figure 2. We first solve this problem using the cut DG scheme (3.9) with P 0

approximation and upwind flux, and the Courant number λ = 0.2. The stabilization

is added only on the interior interface point x = 0.5 since α < 0.5. In Figure 5 (a),

we show the solution based on P 0 cut DG scheme. We do not observe any overshoots

from our stabilized cut DG scheme. This is expected by the TVD stability.

To show the performance of the high order cut DG scheme, we also test this

problem with P 1 polynomial space and α = 10−4, λ = 0.3. In Figure 5 (b)-(d), we

show the numerical solution uh and the total variation of the mean values TV (ūh) of

uh for different element sizes. We can see that on the coarsest mesh the numerical

solution has an overshoot near the cut element and that TV (ūh) decreases after the

discontinuity passes through the cut element. On the finer meshes we have not seen

any overshoots. In the Figure 5 (d), we also study the performance of the stabilized

DG scheme in a long time simulation. Note that there are many small increases in

total variation TV (ūh) (red line) when the standard limiting is applied, each such

increase decays rapidly with time and TV (ūh) remains bounded. We believe the

overshoots may be caused by the higher derivative terms in the stabilization term

Js(u, v). With the modified limiting descried in appendix B, the results improve, see
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Figure 5 (c). There are no overshoots even on the coarsest mesh, and TV (ūh) (green

line in (d)) is diminishing monotonically. Comparing with the standard DG method

(blue line in (d)), we note that our proposed cut DG methods are more dissipative.

We note that limiter and modified in the legend of figures mean the standard limiting

and modified limiting is applied to the scheme, respectively.
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1 with modified limiting
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Standard DG:  limiter
Cut DG: limiter
Cut DG: modified

(d) TV (u) up to t = 100 with N = 20

Figure 5: Numerical solutions for the advection equation with non-smooth initial

data at t = 0.3 (a-c), and TV (uh) as function of t (d). Results are for one small cut

element with α = 10−4.

5.2.2 Non-smooth boundary data

Next, similar to computations in [34], we test the advection equation (5.1) on the

physical domain [xl, xr] = [0, 2] with the left boundary condition being

g(t) =

{
0, t 6 1,

−1, t > 1.
(5.3)

We solve this example by the stabilized cut DG scheme (3.9) with P 2 polynomials

and upwind flux. Here the time step is ∆t = 0.2h with h = (xr − xl)/(N + 1 − α).
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We use the mesh setting in Figure 1, with a cut element with α = 10−2 located on

the left boundary. From the results in Figure 6, we can observe that the cut DG

scheme with sufficient mesh refinement can simulate this problem well and capture

the discontinuity. However, also for this case, we observe undershoots on coarse

meshes. These decay with time after the discontinuity passes the cut element. The

phenomena is not seen on fine meshes.
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Figure 6: Numerical P 2 solutions for the advection equation with non-smooth bound-

ary data, and one small cut element with α = 10−2 at x = 0. Left: without limiter,

right: with limiter.

5.3 Nonlinear case: Burgers’ equation

In this subsection, we apply the high order stabilized cut DG scheme (3.9) with

Godunov flux to the Burgers’ equation

ut +

(
u2

2

)

x

= 0, x ∈ [xl, xr], t > 0. (5.4)

In these computation we used Courant number λ = α + γM
γM+1

, 0.3, 0.2, 0.1 for poly-

nomial spaces P r with r = 0, 1, 2, 3, respectively. In all computation for Burgers’

equation, we use the mesh setting in Figure 2 with many cut elements located in an

interval in the central part of the domain. The cut elements are created by splitting

each regular element in the interval into one small cut element of size αkh and another

of size (1− αk)h. Here αk = sα with α = 10−4 and s a random number in [0.01, 1].

5.3.1 Smooth initial data

We first test the Burgers’ equation (5.4) with smooth initial data u0(x) = sin(πx), x ∈
[0, 2] and periodic boundary condition. This problem has a known solution, which
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we use as a reference when computing errors. The solution is initially smooth, but at

t = 1
π
a shock forms at x = 1. We compute the problem for accuracy until time t = 0.2,

which is before the shock appears. The uniform meshes with N = 40, 80, 160, 320, 640

elements are used as the background mesh. The cut elements are located in [0.75, 1.25]

with N/4 small cut elements. In Figure 7 the errors are shown and the slope of the

error lines are given in the legend for r = 0, 1, 2, 3. Observe that our method has

optimal accuracy also in this case. We also ran this problem with more small cut

elements, located on [0.5, 1.5], with very similar result.
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100
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E
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P 2L2 3.04

P 2L∞ 2.71

P 3L2 4.06

P 3L∞ 3.74

Figure 7: L2 and L∞ errors of uh from scheme (3.9) on the mesh with α = 10−4 and

cut elements in [0.75, 1.25] for the Burgers’ equation (5.4) with periodic boundary

condition at t = 0.2.

Next we solved the Burgers’ equation with P 2 approximation with cut elements

in [0.75, 1.25] until time t = 0.5, when the shock has been formed. Results for

h = 1/40, 1/160 (corresponding to 20, 80 small cut elements) with standard and

modified limiting are shown in the Figure 8. With standard limiting there are some

overshoots and oscillations near the shock and at the cut elements. With the modified

limiting in Appendix B, there are no such artefacts.

5.3.2 Riemann problems

Consider Burgers’ equation (5.4) with initial data

u0(x) =

{
ul, x ≤ 0,

ur, x > 0.

We will use our proposed stabilized cut DG scheme (3.9) with the P 0 and P 1 approx-

imations, and let all elements in [−0.5, 0.5] be cut.

First we let ul = −1 < 0 < ur = 1. In this case, a rarefaction wave is the weak

solution, which satisfies the entropy condition. We solve this problem up to time
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Figure 8: The numerical solutions of Burgers’ equation (5.4) at t = 0.5, by the P 2

scheme (3.9), with standard (left) and modified (right) limiting. All elements in

[0.75, 1.25] are cut.

t = 0.5 with an outflow boundary condition on the left side and an inflow boundary

on the right side. The results are shown in Figure 9. The cut DG scheme based on

P 0 can simulate this rarefaction wave well. For the P 1 approximation, overshoots are

observed near the contact points, −0.5 and 0.5, when no limiter is applied. With the

standard TVB limiter, these oscillations disappear. However, oscillations are instead

introduced in cut elements inside the rarefaction. With the modified limiting, no

oscillations are observed on any meshes we tested.

Next we consider the case with initial data ul = 1 > 0 > ur = −0.5, for which the

exact solution has a shock moving with speed v = 1/4. We solve using our cut DG

scheme based on P 0 and P 1 polynomials up to time t = 0.5 and t = 4. The results

are shown in Fig 10. We can observe that the piecewise constant approximation

can capture the shock, and we did not observe any overshoots or undershoots up to

t = 4. For the P 1 approximation at t = 0.5, we observe some undershoots on the

coarser meshes, which disappear when we apply the modified limiter. At time t = 4,

the shock has passed all the cut elements as well as their neighbours, and we see

no undershoots or oscillations even on the coarser meshes when standard limiting is

applied.

6 Conclusions and future work

We have developed a stabilized cut DG method of different orders for scalar first order

hyperbolic problems in one space dimension. To avoid severe time-step restrictions

or temporal instability the method includes jump stabilization at element interfaces

adjacent to cut elements. Theoretical results include L2 stability for the semi-discrete

22



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P0, h=1/20
P0, h=1/80
P1, h=1/20, no limiter
P1, h=1/80, no limiter
exact

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4 P0, h=1/20
P0, h=1/80
P1, h=1/20, no limiter
P1, h=1/80, no limiter
exact

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

P1, N=80, limiter
P1, N=320, limiter
P1, N=80, modified
P1, N=320, modified
exact

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

P1, N=80, limiter
P1, N=320, limiter
P1, N=80, modified
P1, N=320, modified
exact

Figure 9: Numerical solutions at t = 0.5 for the Burgers’ equation Riemann problem

with a rarefaction solution, based on P 0 or on P 1, with different limiting options. The

figures to the right are magnifications of the left figures. All elements in [−0.5, 0.5]

are cut.
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Figure 10: Numerical solutions of the Burgers’ equation Riemann problem with a

shock wave solution, based on P 0 or on P 1 with different limiting options. All elements

in [−0.5, 0.5] are cut. Left: t = 0.5, right: t = 4.
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method independently of how small the cut elements are, and an accuracy result for

the linear problems, based on the unfitted L2 projection. For discontinuous solutions

TVD stability is essential, and we prove that the stabilized cut DG method based

on piecewise constants is TVD. From an analysis of the eigenvalues of the spatial

discretization, we expect similar Courant numbers as for the standard DG method.

Numerical experiments further investigate the properties of the methods, and

demonstrate several important features. A first result is that the CFL conditions

for our cut DG methods are very similar to the CFL conditions of the correspond-

ing standard DG methods. Secondly, a series of computations demonstrate that for

smooth solutions we obtain optimal accuracy, even though the corresponding theo-

retical result is weaker by half an order. Thirdly, we could observe the TVB property

numerically when a TVB or a TVD limiter is applied to our scheme. With standard

limiting overshoots are observed as a discontinuity or shock passes a cut element or its

neighbours, when higher order polynomials are used. Finally, we propose a modified

limiting procedure involving the stabilization, which removes these artefacts.

The analysis and computations presented here can be extended to problems with

interfaces where coefficients change abruptly. Of particular importance are the con-

servation properties at such interfaces, and we have started the investigation, and

will present results elsewhere. Further analysis also includes investigating more ro-

bust limiters to control oscillations on the cut elements and if a cut element and the

corresponding stabilization introduces extra dissipation, compared to the standard

DG method. The cut DG method in this paper will also be extended to systems

and to multiple dimensions in future work. We plan to consider standard cartesian

elements, which are allowed to be arbitrarily cut by boundaries and/or interfaces,

together with ghost stabilization for both mass and stiffness matrix. We expect, as

for second order wave equations (see [33]), that the approach will yield L2 stability,

high order accuracy, and reasonable CFL-numbers also for systems, and for problems

in multiple space dimensions. The positive experience reported in this paper, of ap-

plying standard DG techniques, gives reason to believe that the approach can also be

applied to the extensions.

A The condition numbers and eigenvalues from

standard DG method

In Table 3, we give the condition number of mass matrix M, and maximal absolute

value and maximal real part of the eigenvalue vi of the spatial operator (M
−1S) from
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the standard DG scheme. It is used to compared the results from the stabilized cut

DG scheme.

Table 3: Condition number of mass matrix M and maximal absolute value and real

part of the eigenvalue vi of the spatial operator (M−1S) in the standard DG scheme

on the uniform mesh without cut elements (N=7 elements on the domain [0, 2]).

degree K(M) max(|vi|) max(Re(vi))

P
0 1.00E+00 6.82E+00 1.04E-15

P
1 3.00E+00 2.10E+01 2.60E-16

P
2 1.13E+01 4.11E+01 2.60E-15

P
3 4.38E+01 6.70E+01 9.26E-16

P
4 1.72E+02 9.67E+01 -1.18E-15

B Modified limiting for the total variation stabil-

ity

In this appendix, we describe a modified stabilized cut DG scheme for problems with

discontinuities. For simplification, the forward Euler method is used to present the

scheme. Starting with un
h compute un+1

h by the following steps.

• The minmod limiter is used as an indicator to check if the cut element or its

neighbours are near a discontinuity or not.

• If no, we use the stabilized cut DG (3.9) scheme without modification to update

the solution un+1
h .

• If yes, the cut element or its neighbour needs to be limited and we define

the limited solution u
(mod)
h |IJ = ūh|IJ . Then, we modify the stabilization and

polynomial space in the stabilized cut DG scheme with P 0 approximation on

the cut element and its neighbour elements which need be stabilized, which is

∫

IJ

un+1
h vdx+ γMh[un+1

h ]JlvJl =

∫

IJ

umod,n
h vdx+ γMh[umod,n

h ]JlvJl

−f̂(umod,n
h (xJr, t))v

−
Jr + f̂(umod,n

h (xJl, t))v
+
Jl − γA[u

mod,n
h ]JlvJl, ∀v ∈ V 0

h ,∫

IK

un+1
h vdx− γMh[un+1

h ]JlvJl =

∫

IK

umod,n
h vdx− γMh[umod,n

h ]JlvJl

−f̂(umod,n
h (xKr, t))v

−
Kr + f̂(umod,n

h (xKl, t))v
+
Kl
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+γA[u
mod,n
h ]JlvJl −

∫

IK

f(umod,n
h )vdx, ∀v ∈ V 0

h .

(B.1)

Here, IJ is the cut element. We assume IK is its neighbour element which need

to stabilized and xJL is the interior interface between IJ and IK .

• Update numerical solution un+1
h . Here, un+1

h on elements IJ , IK are constants

and un+1
h is piecewise high order polynomial on the other elements.

We note that we just modify the stabilized cut DG scheme on the cut element and

its neighbours when the limiting is needed at the cut element or its neighbours. It

won’t change the scheme in the problems with continuous solution.
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