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Abstract. We design a variational asymptotic preserving scheme for the Vlasov-Poisson-Fokker-
Planck system with the high field scaling, which describes the Brownian motion of a large system
of particles in a surrounding bath. Our scheme builds on an implicit-explicit framework, wherein
the stiff terms coming from the collision and field effects are solved implicitly while the convection
terms are solved explicitly. To treat the implicit part, we propose a variational approach by viewing
it as a Wasserstein gradient flow of the relative entropy and solve it via a proximal quasi-Newton
method. In so doing, we get positivity and asymptotic preservation for free. The method is also
massively parallelizable and thus suitable for high dimensional problems. We further show that the
convergence of our implicit solver is uniform across different scales. A suite of numerical examples
are presented at the end to validate the performance of the proposed scheme.

1. Introduction. The kinetic description of a gas of charged particles interact-
ing through a mean electrostatic field created by their spatial distribution can be
described by the Vlasov-Poisson-Fokker-Planck (VPFP) system:

∂tf + v · ∇xf −
q

me
∇xφ · ∇vf =

1

τe
∇v · (vf + µe∇vf) ,(1.1a)

−4xφ =
q

ε0
(ρ− h).(1.1b)

Here f(t, x, v) is the distribution function of particles at t ∈ R+, position x ∈ Rd, and
with velocity v ∈ Rd. ρ(t, x) is the density of electrons

(1.2) ρ(t, x) =

∫
Rd
f(t, x, v)dv,

and φ(t, x) is the potential of electrostatic field obtained self consistently through
the Poisson equation (1.1b). h(x) is the density of positive background charges that
satisfies global neutrality relation:∫

Rd

∫
Rd
f(0, x, v)dxdv =

∫
Rd
h(x)dx.

The constants q, me, ε0 and τe represent the elementary charge, electron mass, vac-

uum permittivity, and relaxation time, respectively.
√
µe =

√
kBTth
me

is the thermal

velocity, with kB being the Boltzmann constant and Tth the temperature of the bath.
The Fokker-Planck term on the right hand side of (1.1) represents the interaction of
particles with background as a thermal bath.

There has been a vast literature on the analytical aspect of the VPFP system.
Existence and uniqueness results have been obtained in several frameworks: the ex-
istence of classical solutions was obtained by Victory and O’Dwyer in [36] locally in
time and Weckler and Rein [32] globally in time. Bouchut [3, 4] also gave an existence
and uniqueness result in three dimensions for strong and global in time solution. In
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the more general setting of weak solutions, Carrillo and Soler allowed initial data in
Lp space [10] and Morrey space [11] and proved the existence of locally in time weak
solution. Zheng and Majda obtained the existence of global measure solutions in one
dimension [38]. The investigation of the quantitative properties of this system, espe-
cially its long time behavior, has also been adequate. Among them, we refer to the
paper by Bouchut and Dolbeault [5] and reference therein for the strong convergence
to the unique stationary solution of the Cauchy problem via compactness argument,
the one by Carrillo, Soler and Vazquez [12] on the asymptotic behavior of the fric-
tionless case by similarity argument, and the one by Bonilla, Carrillo, and Soler [35]
for the initial boundary value problem.

To study the physical behavior of the VPFP system, two important quantities
are considered. One is the mean free path le =

√
µeτe, which is the average distance

traveled by a particle between two successive collisions, and the other is the Debye

length Λ =
√

ε0kBTth
q2N , where N denotes the concentration of the particles. When the

mean free path of the electrons is much smaller than the Debye length, (1.1) can be
rewritten in the following dimensionless form:

∂tf + v · ∇xf −
1

ε
∇xφ · ∇vf =

1

ε
∇v · (vf +∇vf) ,(1.3a)

−4xφ = ρ− h ,(1.3b)

where ε = ( leΛ )2. See [1] for more details about the asymptotic limits. Sending ε→ 0,
we arrive at the so-called high field limit

∂tρ−∇x · (ρ∇xφ) = 0,(1.4)

−4xφ = ρ− h ,

which is a nonlinear convection equation for mass density ρ. Indeed, one can first
integrate equation (1.1a) w.r.t v to get

(1.5) ∂tρ+∇x · J = 0,

where J =

∫
Rd
vf(t, x, v)dv. Then multiplying (1.1a) by v and integrating w.r.t v,

one obtains

(1.6) ε(∂tJ +∇x ·Q) + ρ∇xφ+ J = 0,

where Q =

∫
Rd
v ⊗ vf(t, x, v)dv. In the limit of ε → 0, (1.6) leads to J = −ρ∇xφ.

Then (1.4) comes from plugging the above relation into (1.5). See [13, 29, 17, 31] for
a physical and rigorous derivation of this limit, as well as the well-posedness of the
limiting system.

Numerically solving the VPFP system (1.1) shares the same difficulty as most
of the kinetic equation: high dimensionality. Several methods have been developed,
such as [19, 20, 37, 15], to name a few. These methods are either deterministic or
stochastic, with an effort in capturing some physical phenomena associated with the
Vlasov-Poisson system such as Landau damping when the diffusion effect is rather
weak. However, in the high field scaling we consider here, additional challenge comes
from the stiffness of the field and collision terms, which generally calls for a resolved
spatial and temporal discretization that can be very expensive. Asymptotic preserving
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method, which aims at treating the stiff system and preserving its corresponding
asymptotic limit at the discrete level, provides a unified solver to mutiscale problems.
See [23, 22] for a review. In the specific context of VPFP system with high field
scaling, we mention two particular methods. One is developed by Jin and Wang
[24] based on an implicit-explicit (IMEX) time discretization with a finite difference
method in space and velocity, and the other is a quadrature-based moment closure
method by Cheng and Rossmanith [14].

In this paper, we intend to design a new asymptotic preserving method for VPFP
system in the same vein as [24] but with marked difference. In particular, simi-
lar to [24], we group the stiff field and collision terms into one spatially dependent
Fokker-Planck type operator and solve it implicitly, while treating the rest non-stiff
terms explicitly. However, unlike the direct iterative solver (e.g., conjugate gradient
or GMRES) employed in [24] for the implicit part, here we propose a variational ap-
proach. This is hinted by the fact that the stiff term can be viewed as a Wasserstein
gradient flow of the relative entropy with respect to the local Maxwellian, and there-
fore can be solved with the Jordan-Kinderlehrer-Otto (JKO) scheme [25]. It then
remains to solve the resulting optimization problem, for which we propose a proxi-
mal quasi-Newton method. The reason is that, when ε is small or the magnitude of f
varies significantly, the gradient type optimization methods experience a deteriorative
convergence. Therefore, we design a pre-conditioner that uses partial second order
information. As a result, our method is not only asymptotic preserving in the sense
that we allow for unresolved spatial, temporal, and velocity discretization to capture
the correct high field limit, but also the resulting implicit system solver enjoys a uni-
form convergence. This is an important issue that has not been emphasized in the
literature. We also point out that, the variational formulation together with the JKO
scheme, offers a natural implicit treatment for the collision term that also mimics the
real physical process (i.e., entropy decrease), and therefore provides a desirable addi-
tion to the current family of asymptotic preserving (AP) schemes for kinetic equation.
Moreover, its parallelizability makes it very appealing for high dimensional problems.

The rest of the paper is organized as follows. In the next section, we recall the
implicit-explicit treatment for (1.3), which can be split into three steps: an explicit
convection step, a Poisson solver, and an implicit collision step. We then put em-
phasize on the implicit collision solver by first introducing the variational formulation
and then proposing the corresponding Newton-type optimization solver. In section 3,
we examine the properties of the proposed method, including positivity, asymptotic
preservation and uniform convergence. Section 4 is devoted to numerous numerical
examples, which validates the efficiency of our method as well as the aforementioned
properties. The paper is concluded in Section 5.

2. Numerical method. In this section, we provide a detailed derivation of our
numerical scheme, including temporal and spatial discretization, along with the opti-
mization algorithm for inverting the implicit algebraic system. Throughout the paper,
we consider one dimension in space and d-dimension (d = 1, 2, 3) in velocity. We also
restrict ourselves to periodic boundary contion in x, and Fourier spectral method
is adopted in solving the Poisson equation. As will be explained below, the spatial
and velocity treatments are decoupled in the Vlasov-Fokker-Planck equation, there-
fore extending to higher dimension in space is straightforward and will not introduce
substantial additional computational cost if the algorithm is parallelized.

To be more specific, let Ωx = [−Lx, Lx] be the spatial domain, and we partition it
into Nx uniform cells with ∆x = 2Lx

Nx
, and denote each grid point by xi = −Lx+ i∆x,
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1 ≤ i ≤ Nx. Likewise, we denote Ωv = [−Lv, Lv]d as the velocity domain, and evenly
partition it into Nv pieces in each dimension with ∆v = 2Lv

Nv
. Then the velocity grid

point is denoted as vjk = −Lv + (jk − 1
2 )∆v with 1 ≤ jk ≤ Nv , 1 ≤ k ≤ d. Let τ

be the time step, then tn = nτ , n ≥ 0. Hence fni,j represents the approximation of
f(tn, xi,vj), where j = {j1, · · · , jd}. We always use zero flux boundary condition in
v, i.e., ((v +∇xφ)f +∇vf) · ν = 0, where ν is the outer normal direction for Ωv.

2.1. Implicit-Explicit scheme. As is done in [24], we group the stiff terms
in (1.3) into one spatially dependent Fokker-Planck type operator, treat it implicitly,
and solve the rest non-stiff parts explicitly. Therefore, we have the following semi-
discrete scheme:

fn+1 − fn

τ
+ v · ∇xfn =

1

ε
∇v · ((v +∇xφ)f +∇vf)

n+1
,

−4xφn+1 = ρn+1 − h.

To implement, we note that the above semi-discretization scheme can be split into
three steps without introducing the splitting error.
Step 1: Explicit transport step
We first get an intermediate stage f∗ from the transport step f∗ = fn − τv · ∇xfn,
where the spatial discretization is conducted via the MUSCL scheme:

f∗i,j = fni,j +
τ

∆x
vj(fi+ 1

2 ,j
− fi− 1

2 ,j
) .

Here the flux is taken as

fi+ 1
2 ,j

= max(vj , 0)

(
fi,j +

1

2
φ
(
θi+ 1

2 ,j

)
(fi+1,j − fi,j)

)
+ min(vj , 0)

(
fi+1,j +

1

2
φ
(
θi+ 1

2 ,j

)
(fi+1,j − fi,j)

)
,

where θi+ 1
2 ,j

=
fi,j−fi−1,j

fi+1,j−fi,j is the smoothness indicator function, and we choose the

minmod slope limiter φ(θ) = max{0,min{1, θ}}.
Step 2: Poisson Step
After obtaining f∗, we get ρ∗ by integrating f∗ over v, for which we can use a simple
midpoint rule: ρ∗i =

∑
j f
∗
i,j(∆v)d. We then solve for φ∗ via the Fourier based spectral

method, and then get ∇xφ∗.
Step 3: Implicit collision step
First note that the mass is conserved in the collision step, thus ρn+1 = ρ∗ and φn+1 =
φ∗. Then for each xi, we have

(2.2)
fn+1
i − f∗i

τ
=

1

ε
∇v · ((v +∇xφ∗i )fn+1

i +∇vfn+1
i ) ,

which will be solved by the variational method described blow.

2.2. Variational formulation. This section is devoted to the development of
a variational numerical scheme for the implicit collision step. First, we would like to
mention that there exist quite a few methods for discretizing the Fokker-Planck oper-
ator, such as Chang-Cooper scheme [7], Scharfetter-Gummel discretization [34], and
squareroot approximation [21]. Among them, some are known to preserve positivity
and dissipate entropy, two properties for the continuum equation that are desirable
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to be preserved at the discrete level. Here we intend to provide a different approach
to address the stiffness issue. In particular, when ε is small, a generic time implicit
scheme would lead to a linear system that is ill-conditioned. Our variational scheme
induces a natural way of building preconditioners arising from an optimization method
and efficiently resolves the ill-condition issue. As a result, our method not only en-
joys positivity preserving and entropy dissipating, but also is asymptotic preserving
and uniformly efficient. Other smart preconditioners can also be devised for classical
methods to avoid stiffness.

Let

(2.3) M∗i =
ρ∗i

(
√

2π)d
e−
|v+(∇xφ)∗i |

2

2

be the local Maxwellian, then (2.2) can be rewritten as

(2.4)
fn+1
i − f∗i

τ
=

1

ε
∇v ·

(
fn+1
i ∇v ln

(
fn+1
i

M∗i

))
=

1

ε
∇v ·

(
fn+1
i ∇v

δE(fn+1
i |M∗)
δfn+1
i

)
,

where E(f |M) =
∫
Rd f ln( fM )dv is the relative entropy of f with respect to M , and

δE
δf denotes the first variation of E in f . In view of (2.4), it can be considered as the
gradient flow of the relative entropy in the Wasserstein metric, i.e.,

fn+1
i − f∗i

τ
= −1

ε
∇dWE(fn+1

i |M∗i ) ,

which can be solved via the celebrated JKO scheme [25]. That is, fn+1
i is obtained

to minimize the following functional

(2.5) fn+1
i ∈ argmin

fi∈Pac(Ωv)

{
1

2
dW(fi, f

∗
i )2 +

τ

ε
E(fi|M∗i )

}
,

where dW(fi, f
∗
i ) is the Wasserstein distance between fi and f∗i , and Pac(Ωv) is the

set of probability measures on Ωv that are absolutely continuous with respect to
Lebesgue measure. The formulation (2.5) has attracted a lot of attention on the
analytical level as it provides a natural choice for fn+1 that decreases the relative
entropy, i.e., E(fn+1

i |M∗i ) ≤ E(fni |M∗i ). However, when it comes to numerical imple-
mentation, the computation of the Wasserstein distance constitutes a major obstacle.
Only recent advances in this regard have helped to make this formulation numerically
accessible, see [30] and reference therein. In this paper, we will adopt the dynamic
formulation by Benamou and Brenier [2] and its fully discrete version [9]. In partic-
ular, we can reframe the Wasserstein distance into a convex optimization subject to
linear constraints:

(2.6) dW(f0, f1)2 = min
(f,m)∈C1

∫ 1

0

∫
Ωv

Φ(f(t, v), ‖m(t, v)‖)dvdt,

where

Φ(f, ‖m‖) =


‖m‖2
f if f > 0,

0 if (f,m) = (0, 0),
+∞ otherwise .
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and the constraint set C1 consists of

∂tf +∇v ·m = 0 on Ωv × [0, 1], m · ν = 0 on ∂Ωv × [0, 1],

f(·, 0) = f0, f(·, 1) = f1 on Ωv ,

where ν is the outer normal direction of Ωv.
Plugging (2.6) into (2.5), we arrive at the following constrained optimization

problem: given M∗(v) and f∗(v), one obtains fn+1(v) = f(1, v) with f(t, v) solving

(2.7) min
(f,m)∈C

{
ε

∫ 1

0

∫
Ωv

Φ(f, ‖m‖)dvdt+ 2τE(f(1, v)|M(v))

}
,

where the constraint set C is

(2.8) ∂tf+∇v ·m = 0 on Ωv×[0, 1], m·ν = 0 on ∂Ωv×[0, 1], f(0, v) = f∗(v) on Ωv.

Here the subscript i is omitted as this step is independent of x. Note the difference
between constraints C and C1 is that in C1, we do not know f(1, v) a priori, and it
is in fact coming from solving the optimization (2.7), which is similar to an optimal
control problem.

We further write down the fully discrete form for (2.7) and (2.8). Denote f =
[fj ]ᵀ ∈ RdNv and m = [m1; · · · ;md] ∈ RdNv×d, where ml = [ml,j ]ᵀ ∈ RdNv . Then

‖m‖2j =
∑d
l=1m

2
l,j . The fully discrete JKO scheme now writes:

fn+1
j ∈ arg min

f,m

∑
j

(
εΦ(fj , ‖m‖j) + 2τfj ln

(
fj
M∗j

))
∆vd

 ,(2.9)

s.t. fj − f∗j +

d∑
l=1

Dv,lml,j = 0, ml,j · ν|∂Ω = 0 ,(2.10)

where Dv,l is a discrete representation of the divergence that will be detailed later.
Note that the PDE constraint in (2.8) is discretized only in time step, which has been
pointed out in [27] (Theorem 3) that it will significantly reduce the dimension of the
problem while maintaining the first order accuracy in τ . Indeed, if we discretize the
auxiliary inner time derivative in (2.8) with Nt nodes, then the unknown f would be
of size dNv × Nt, and m is of size dNv × Nt × d. Here we choose Nt = 1 and thus
keeps the size of f and m to a minimum.

To facilitate the explanation later, we let u = [f ;m] and rewrite (2.9)-(2.10) into

min
u

F (u) :=
∑
j

(
εΦ(fj , ‖m‖j) + 2τfj ln

(
fj
M∗j

))
∆vd s.t. Au = b,(2.11)

where A :=
(
IdNv×dNv Am

)
and b := f∗. Note that all the operations here are

element-wise. Here Am gives a discretized divergence Dv,lml,j , which satisfies the
zero flux boundary condition. For instance, we use the center difference here. Then
in one dimension, the boundary grid points are v 1

2
= −Lv and vNv+ 1

2
= Lv, and the

boundary condition becomes 0 = m 1
2

= m0+m1

2 , which implies m0 = −m1. Then

Dvm1 = m2−m0

2∆v = m2+m1

2∆v . Extension to higher dimension is straightforward. As an
example, we give A for d = 3. We denote

A =
(
I A1 A2 A3

)
.
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where A1, A2, A3 represent the discritizations of Dv1
, Dv2

, Dv3
respectively. Define

Dv =
1

2∆v


1 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 −1

 ∈ RNv×Nv .

Denote Kronecker tensor product as ⊗, then we have

A1 = IN2
v
⊗ Dv, A2 = INv ⊗ (Dv ⊗ INv ) , A3 = Dv ⊗ IN2

v
.

2.3. Proximal quasi-Newton method. In this subsection, we introduce the
proximal quasi-Newton type method. First of all, we rewrite (2.11) as an uncon-
strained problem by using the following indicator function:

χ(u) =

{
0, if Au = b,

+∞, otherwise.

Then (2.11) becomes

(2.12) min
u
F (u) + χ(u) ,

where F (u) is defined in (2.11). As written, F (u) is a convex but nonsmooth function
of u, and therefore a proximal type of algorithm is needed, as stated in [9]. However,
in our specific case considered here, a simplification can be made. In fact, as shown in
[25, Theorem 5.1], the minimizer of (2.11) converges to the unique positive solution
of the equation

(2.13) ∂tf =
1

ε
∇v · ((v +∇xφ)f +∇vf)

when τ → 0. Moreover, thanks to Lemma 8.6 in [33] and mass conservation, the strict
positivity of fnj can be established as long as initially f0 is non-negative f0

j ≥ 0, and

has strictly positive initial mass, i.e.
∑

j f
0
j > 0. Therefore, we can simplify F (u) as:

F (u) =
∑
j

(
ε
‖mj‖2

fj
+ 2τfj ln

(
fj
Mj

))
∆vd ,

which is now a smooth function in u, and hence gives access to the second order
information that could significantly accelerate the convergence.

Below we first state our algorithm, and then we explain the reasons for this choice.
Here the stepsize γ > 0 is chosen such that fk � 0 for every iteration.
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Algorithm 2.1 Proximal quasi-Newton algorithm for (2.5)

Require: u(0) = [f∗;m∗] with m∗ ≡ 0, the maximum iteration number (Nmax),
step-size γ > 0
while k ≤ Nmax do
repeat

1. Compute (Hk)i,j =

{
(∇2F (u(k))i,i, if i = j,

0, otherwise.

2. Update u(k+1) = proxHk

χ (u(k) − γ(Hk)−1∇F (u(k))).
until stopping criteria achieved
u(∞) = u(k+1).

end while
return un+1 = u(∞) = [f (∞);m(∞)].

There are two reasons for choosing this algorithm. One reason is due to the
appearance of ε and small values of fni,j . When ε is small or the magnitude of fni,j
varies largely, the convergence of any optimization algorithm that only uses first order
information will converge very slowly. This is because the Hessian of F (u) becomes
ill-conditioned in these scenarios. Therefore, using the second order information as in
our algorithm would significantly improve the convergence rate (See Theorem 3.2 and
Remarks 3.3 & 3.4). More importantly, although the stiffness introduced by small ε
has been handled by the implicit JKO scheme and therefore enjoys the AP property—
it allows for under-resolved mesh sizes and captures the correct asymptotic limit, it
still comes with another difficulty which renders a direct implicit solver converging
non-uniformly. The proximal quasi-Newton method we proposed here overcomes this
difficulty. Another reason is that, it is well-known that computing the Hessian is ex-
pensive and often results in a dense matrix, which poses additional computational cost
especially when the dimension is high. Instead, we only use the diagonal information
of the Hessian as a surrogate, which is shown to still serve the purpose of accelerating
the convergence while maintaining the sparsity of the matrix.

Next we show how to compute the scaled proximal operator z = proxH
χ(u), which

can be obtained from a closed-form formula in our specific case. First, the definition
of the scaled proximal operator is:

z = proxH
χ(u) ∈ argmin

z
χ(z) +

1

2
‖z − u‖2H = argmin

z:Az=b

1

2
‖z − u‖2H.

Its corresponding Lagrangian is: L(z, λ) = 1
2‖z − u‖

2
H + λᵀ(b− Az). Then optimality

condition gives ∂L
∂z = H(z − u)− Aᵀλ = 0. Hence

(2.14) z = u+ H−1Aᵀλ.

By the primal feasibility, i.e. Az = b, and (2.14), we get

λ = (AH−1Aᵀ)−1(b− Au),

which gives the closed-form formula for proxH
χ:

(2.15) z = proxH
χ(u) = u+ H−1Aᵀ(AH−1Aᵀ)−1(b− Au).
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In practice, computing the inverse of a matrix can be expensive. In our formula (2.15),
there are two inverse of matrix, H−1 and (AH−1Aᵀ)−1. Computing H−1 is trivial as
it is diagonal, whereas computing (AH−1Aᵀ)−1 might be time-consuming. However,
due to the special structure of A and H, there exists fast methods. Indeed, to clearly
illustrate the idea, consider 1D case and the diagonal matrix H of the form

H =

(
H1 0
0 H2

)
.

By definition of A = [I D], we get AH−1Aᵀ = H−1
1 +DH−1

2 Dᵀ. Note that H2 is diagonal
and hence DH2D

ᵀ is just a weighted Laplacian, which can be efficiently inverted by
fast algorithms such as multigrid method, see for instance [8].

Alternately, instead of fixing the stepsize γ in Algorithm 1, we can also use a line
search technique, and the algorithm is summarized in Algorithm 2.

Algorithm 2.2 Proximal quasi-Newton algorithm with line search for (2.5)

Require: u(0) = [f∗;m∗] with m∗ ≡ 0, 0 < θ < 1
2 , the maximum iteration Number

(Nmax)
Let k = 0
while k ≤ Nmax do
repeat

1. Compute (Hk)i,j =

{
(∇2F (u(k)))i,i, if i = j,

0, otherwise.

2. Line search: let tl = 1, vk = proxHk

χ (u(k) − (Hk)−1∇F (u(k)))− u(k).

while F (u(k) + tlvk) > F (u(k)) + tlθ(∇F (u(k)))ᵀvk and minj f
(k)
j < 0 do

tl = 1
2 t
l.

end while
u(k+1) = u(k) + tlvk.

until stopping criteria achieved
u(∞) = u(k+1).

end while
return un+1 = u(∞) = [f (∞);m(∞)].

The advantages of the line search are obvious. First, the search step automatically

preserves the positivity of f
(k)
j . Second, it often needs less steps to converge, see the

numerical examples in Section 4. In addition, Algorithm 2 falls into the category
of proximal Newton-type methods in [26], for which it is proven that if {Hk} are
uniformly positive definite, i.e. sI � Hk uniformly for s > 0, then for a closed, convex
objective function whose infimum can be attained, {u(k)} generated by Algorithm
2 is guaranteed to converge to the optimal point. In our numerical examples, we
observe that tl = 1 after sufficiently many iterations, and therefore we see superlinear
convergence at the neighborhood of the optimal point (see Fig.1).

3. Properties. In this section, we study some properties of the numerical scheme.
We firstly focus on the convergence behavior of the Newton type method, and then
examine the properties of the entire solver, including positivity and asymptotic pre-
serving property.

3.1. Convergence of the proximal Newton type method. We mainly focus
on the convergence behavior of Algorithm 2.1 in this subsection. We first examine
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the convexity of F in the following lemma.

Lemma 3.1. F (u) is strictly convex, i.e. ∇2F (u) � 0 if f � 0 for any d = 1, 2, 3.

Proof. We only prove the d = 3 case as the other two cases can be easily reduced
to. Recall u = [f ;m], then the Hessian ∇2F ∈ R4Nv×4Nv reads:

∇2F :=


M C1 C2 C3

C1 B 0 0
C2 0 B 0
C3 0 0 B

 ,

where M,B,Cl ∈ RNv×Nv are all diagonal matrices defined as:

(M)p,q =

{
(2ε

∑3
l=1 m

2
l

f3 + 2τ
f )q∆v

3, if p = q,

0, otherwise,

(B)p,q =

{
( 2ε
f )q∆v

3, if p = q,

0, otherwise,

(Cl)p,q =

{
(− 2εml

f2 )q∆v
3, if p = q,

0, otherwise.

To obtain the eigenvalues ζ of ∇2F , note that each entry in ∇2F is a diagonal matrix,
thus they are pairwise multiplication commutative, we then have:

|∇2F − ζI| = −|C3|

∣∣∣∣∣∣
C1 C2 C3

B− ζI 0 0
0 B− ζI 0

∣∣∣∣∣∣+ |B− ζI|

∣∣∣∣∣∣
M− ζI C1 C2

C1 B− ζI 0
C2 0 B− ζI

∣∣∣∣∣∣
= −|C3||(B− ζI)2C3|+ |B− ζI||(M− ζI)(B− ζI)2 − (B− ζI)C2

2 − (B− ζI)C2
1|

= |B− ζI|2|(M− ζI)(B− ζI)− C2
1 − C2

2 − C2
3|.

After calculation, eigenvalues of ∇2F are:

ζ1,q = (
2ε

f
)q∆v

3 ;

(3.1)

ζ2,q =

ε∑3
l=1m

2
l

f3
+
τ + ε

f
+

√
(
ε
∑3
l=1m

2
l

f3
)2 +

2ε
∑3
l=1m

2
l (τ + ε)

f4
+ (

τ − ε
f

)2


q

∆v3 ;

(3.2)

ζ3,q =

ε∑3
l=1m

2
l

f3
+
τ + ε

f
−

√
(
ε
∑3
l=1m

2
l

f3
)2 +

2ε
∑3
l=1m

2
l (τ + ε)

f4
+ (

τ − ε
f

)2


q

∆v3 .

(3.3)

which can be easily shown to be positive given f > 0.

This lemma ensures that ∇2F (u(k)) are positive definite provided f (k) > 0. Moreover,
we can easily see that Hk, which only keeps the diagonal elements of ∇2F (u(k)) are
positive definite as well, and therefore guarantees the executability of our algorithm.

Similar to the result in [27], we have the following local convergence estimate,
which indicates the role of Hk.
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Theorem 3.2. Denote u∗ the unique minimizer of (2.12). Let Gk =
∫ 1

0
∇2F (u∗+

s(u(k)−u∗))ds and suppose that there exists 0 < α < β, such that αI � (Hk)−1Gk � βI,
then for Algorithm 2.1 we have ‖u(k+1) − u∗‖Hk ≤ C‖u(k) − u∗‖Hk , where C =
max(|1 − γα|, |γβ − 1|). In particular, if we choose γ = 2

α+β , we have the optimal

convergence rate with C = β−α
β+α .

Proof. First notice that u∗ = proxH
χ(u∗−γH−1∇F (u∗)) for H = Hk, then we have

‖u(k+1) − u∗‖Hk

= ‖ proxHk

γχ(u(k) − γ(Hk)−1∇F (u(k)))− proxHk

γχ(u∗ − γ(Hk)−1∇F (u∗))‖Hk

≤ ‖(u(k) − u∗)− γ(Hk)−1∇(F (u(k))− F (u∗))‖Hk
= ‖(I− γ(Hk)−1Gk)(u(k) − u∗)‖Hk

= ‖(Hk)
1
2 (I− γ(Hk)−1Gk)(u(k) − u∗)‖

= ‖(I− γ(Hk)−
1
2Gk(Hk)−

1
2 )(Hk)

1
2 (u(k) − u∗)‖

≤ ‖I− γ(Hk)−
1
2Gk(Hk)−

1
2 ‖‖u(k) − u∗‖Hk .

Here the first inequality uses the fact that proxHk

γχ is a nonexpansive operator under Hk

norm, i.e., ‖ proxHk

γχ(u)− proxHk

γχ(v)‖Hk ≤ ‖u− v‖Hk (see for instance [26] for a proof)

and the second equation uses the fact that F (u(k))−F (u∗) = Gk(u(k)−u∗). Now since

(Hk)−
1
2Gk(Hk)−

1
2 is similar to (Hk)−1Gk, we have C = ‖I − γ(Hk)−

1
2Gk(Hk)−

1
2 ‖ =

max(|1− γα|, |γβ − 1|).
Remark 3.3. Adapting Theorem 3.2 to our case, we know that the convergence

rate highly depends on the structure of (Hk)−1Gk. Note that when Hk = I, our
method reduces to the projected gradient method. According to (3.1), (3.2), (3.3),
the eigenvalue ζ1,q → 0 when ε→ 0, which implies that α in the above theorem goes
to zero, hence C → 1. This explains why the gradient type methods converge slowly
when ε is close to 0. On the contrary, with the preconditioner (Hk)−1, the diagonal
entries of (Hk)−1Gk all approximately equal to 1 in the neighborhood of optimal point
u∗, thus we can approximate the eigenvalues σ of (Hk)−1Gk by solving (here we adopt
the notations in Lemma 1):∣∣∣∣∣∣∣∣

I− σI M−1C1 M−1C2 M−1C3

B−1C1 I− σI 0 0
B−1C2 0 I− σI 0
B−1C3 0 0 I− σI

∣∣∣∣∣∣∣∣ = 0.

This implies

(1− σ)2I · |(1− σ)2I−M−1B−1(C2
1 + C2

2 + C2
3)| = 0.

Thus

(3.4) σ = 1 or 1±

(√
2ε
∑3
l=1m

2
l

2ε
∑3
l=1m

2
l + 2τf2

)
i

∆v3 ,

which indicates that σ → 1 when ε → 0. Therefore the condition number is close to
1 and hence gives much faster linear convergence (C � 1).
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Remark 3.4. Another case that may render the condition number of Gk big is
when the magnitude of f varies largely. We will see in the following that the precon-
ditioner Hk also helps in this case. Let j1, j2 be two indexes such that fj1 = O(η)
where η � 1 and fj2 = O(1). In the gradient type method when Hk = I, according
to (3.1), we have max ζ ≥ 2ε

fmin
and min ζ ≤ 2ε

fmax
, which implies that the conditional

number κ of Gk has κ ≥ fmax
fmin

= O( 1
η ). Immediately according to Theorem 3.2, the

convergence rate C → 1 when κ→∞.
On the other hand, from the expression of the eigenvalues (3.4) for (Hk)−1Gk,

one sees

√
2ε
∑3
l=1m

2
l

2ε
∑3
l=1m

2
l + 2τf2

=

√√√√√ 2ε
∑3
l=1 m

2
l

f2

2ε
∑3
l=1 m

2
l

f2 + 2τ
=

√√√√√√ ε
(
‖m‖
f

)2

ε
(
‖m‖
f

)2

+ τ
.

Therefore, if the speed ‖m‖f to the continuity equation (2.8) is bounded above by C1

and below by C2, then the above quantity is bounded between εC2

εC2+τ and εC1

εC1+τ ,
which readily gives a uniform bound on the condition number. Here we do not have a
rigorous proof to show the existence of C1 and C2, but from the numerical examples,

we do observe a uniform bound on ‖m‖f .

Similarly, we have the local convergence estimate for Algorithm 2.2 with line search
as follows.

Theorem 3.5. Suppose that there exists r, r′, R′ > 0, such that r′I ≺ Hk ≺ R′I
and rI ≺ ∇2F (u(k)) for all k ≥ 0. Assume also that ∇2F is Lipschitz continuous with
constant L2. Let {u(k)} be the sequence generated by Algorithm 2.2 after sufficient
large number of iteration, then

‖u(k+1) − u∗‖Hk ≤ C‖u(k) − u∗‖2Hk + (1− (1− q)tl)‖u(k) − u∗‖Hk ,

where C = L2

√
R′

2r
√
r′

(2− tl + qtl) and q = ‖I − (Hk)−1/2∇2F (u(k))(Hk)−1/2||.

See the proof in Appendix A.

Remark 3.6. As with Algorithm 2.1, the convergence behavior of Algorithm 2.2
depends on the structure of (Hk)−1∇2F (u(k)) (Note that here we have ∇2F (u(k))
instead of Gk in Theorem 3.2). From Remark 3.3, we see that eigenvalues σ of
(Hk)−1∇2F (u(k)) satisfy σ ∈ (0, 2) when ∆v ≤ 1, thus q ∈ (0, 1), which ensures the
local linear convergence. In the case of ε→ 0, from (3.4) we have q → 0, and therefore

‖u(k+1) − u∗‖Hk ≤ C‖u(k) − u∗‖2Hk + (1− tl)‖u(k) − u∗‖Hk .

Moreover, when ε� 1, ‖Hk −∇2F (uk)‖ → 0 as k →∞, thus {Hk}k satisfies Dennis-
Moré criterion, i.e., ‖(Hk−∇2F (u∗))(uk+1−uk)‖/‖uk+1−uk‖ → 0, and Algorithm 2.2
accepts unit step length after sufficient large number of iterations, i.e. tl = 1 (See
Lemma 3.5 in [26]). Therefore, a superlinear convergence is obtained after sufficient
large number of iterations, which agrees with our numerical experiments (see Fig. 3).

In close, we state the following global sublinear convergence of Algorithm 2.2.

Theorem 3.7. Let {u(k)}+∞k=1 be a sequence generated by Algorithm 2.2, then

min
k=0,··· ,K−1

{‖u(k+1) − u(k)‖2Hk} ≤
θ

K
F (u(0)).
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Proof. According to the search direction property (Proposition 2.4 in [26]), we
have

(∇F (u(k)))ᵀvk + ‖vk‖2Hk ≤ 0.

Thus by the sufficient descent requirement in the line search and the above inequality,
we have

F (u(k+1)) = F (u(k) + tlvk) ≤ F (u(k)) + tlθ(∇F (u(k)))ᵀvk

≤ F (u(k))− tlθ‖vk‖2Hk

= F (u(k))− θ

tl
‖u(k+1) − u(k)‖2Hk

≤ F (u(k))− θ‖u(k+1) − u(k)‖2Hk .

Summing up all the inequalities for k = 0, · · · ,K − 1, we get

F (u(K)) ≤ F (u(0))− θ
K−1∑
k=0

‖u(k+1) − u(k)‖2Hk ,

which readily implies the result.

3.2. Positivity. Note first that the MUSCL scheme we used in the transport
step preserves the positivity. Also, the proximal quasi-Newton method for the collision
step is positivity preserving as long as the iteration step size γ is properly chosen (In
practice, this is done either by line search as explained in Algorithm 2.2, or by trial and
error as used in Algorithm 2.1). Therefore, the full scheme is positivity preserving.
It then remains to show that the step γ can indeed be chosen properly, that is, its
magnitude does not go to zero when ε vanishes. For simplicity, we consider d = 1 in
the rest of this subsection.

To start, we write down update rule explicitly, using Algorithm 1 or 2 with (2.15):

u(k+1) = u(k) − γH−1∇F (u(k)) + H−1Aᵀ(AH−1Aᵀ)−1[b− A(u(k) − γH−1∇F (u(k)))],

= u(k) − γ[I− H−1Aᵀ(AH−1Aᵀ)−1A]H−1∇F (u(k)).

Here we omit the superscript (k) in H for notation simplicity. Recall that A = [I D],

H−1∇F = [e(f,m) m]ᵀ, where e(f,m) =
−εm2

f2 +2τ(log f
M )+1

2m
2

f3 + 2τ
f

and H :=

(
H1 0
0 H2

)
with H1,H2 ∈ RNv×Nv and

(H1)i,j =

{
(2ε

m2
i

f3
i

+ 2τ
fi

)∆v, if i = j,

0, otherwise,

(H2)i,j =

{
( 2ε
fi

)∆v, if i = j,

0, otherwise.

Then we have

H−1Aᵀ(AH−1Aᵀ)−1A =

(
P PD
· ·

)
,

where P = H−1
1 (H−1

1 + DH−1
2 Dᵀ)−1 = (I + DH−1

2 DᵀH1)−1. Thus

f (k+1) = f (k) − γ[e(f (k),m(k))− (Pe(f (k),m(k)) + PDm(k))].
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Since Dm(k) = f (0) − f (k) = f∗ − f (k) from the constraint, one sees

f (k+1) = f (k) − γ[e(f (k),m(k))− (Pe(f (k),m(k)) + P(f∗ − f (k)))]

= f (k) − γ[(I− P)e(f (k),m(k)) + Pf (k)] + γPf∗

= (1− γP)f (k) + γPf∗ − γ(I− P)e(f (k),m(k)) .(3.5)

To proceed, we study the ε dependence of matrix P when ε vanishes in the following
proposition. Note that when ε� 0, (H1)i,i ≈ 2τ

fi
∆v and (H−1

2 )i,i ≈ fi
2ε∆v.

Proposition 3.8. For P = (I + DH−1
2 DᵀH1)−1, there exists an invertible matrix

U and a diagonal matrix Λ, both of which are independent of ε, such that P = U( 1
εΛ+

I)−1U−1.

Proof. First, we note that D has exactly one zero eigenvalue, where D is:

D =


1 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 −1

 ∈ RNv×Nv .

Next we define the diagonal matrix (Ĥ2)i,i := 2
fi∆v

, then H−1
2 = 1

ε Ĥ
−1
2 and DH−1

2 DᵀH1 =
1
εDĤ

−1
2 DᵀH1. Consequently, along with the fact that both H1 and Ĥ2 are invertible,

Rank(DĤ−1
2 DᵀH1) = Rank((DĤ

−1/2
2 )(DĤ

−1/2
2 )ᵀH1) = Nv − 1. Also note that since

DĤ−1
2 Dᵀ is symmetric and H1 is positive definite, we have

H
1
2
1 DĤ

−1
2 DᵀH1H

− 1
2

1 = H
1
2
1 DĤ

−1
2 DᵀH

1
2
1 ,

and therefore DĤ−1
2 DᵀH1 is similar to a symmetric matrix, and thus diagonalizable.

Moreover, since both DĤ−1
2 Dᵀ and H1 are positive semi-definite, we conclude that

DĤ−1
2 DᵀH1 has exactly one zero eigenvalue and all the rest are positive. So there

exist invertible matrix U independent of ε, s.t.

DĤ−1
2 DᵀH1 = UΛU−1.

where Λ is a diagonal matrix with non-negative entries and likewise

DH−1
2 DᵀH1 =

1

ε
UΛU−1.

As a result,

K = I + DH−1
2 DᵀH1 = U(

1

ε
Λ + I)U−1

is invertible. Thus

P = K−1 = U(
1

ε
Λ + I)−1U−1.

From the above proposition, we see that when ε→ 0, the matrix P→ 0, and (3.5)
becomes

f (k+1) = f (k) − γe(f (k),m(k)).

Therefore the selection of step size γ that guarantees positivity doesn’t vanish with
ε, instead its magnitude only depends on the initial data f (0).
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3.3. Asymptotic property. First we look at the implicit collision step. Con-
sider (2.9)–(2.10) for any fixed xi, and let ε → 0 we have the following constrained
optimization:

fn+1
j ∈ argmin

f

∑
j

fj ln

(
fj
M∗j

)
∆vd

 , s.t.
∑
j

fj =
∑
j

M∗j .(3.6)

where the constraint is obtained by summing over j in (2.10). To make this limit of the
variational problems (2.9)–(2.10) towards (3.6) as ε→ 0 fully rigorous, one can make a
direct use of the theory of Γ-convergence, see [6]. Let us denote by Fε(u) the functional
defining the variational problems (2.9)–(2.10) and F0(u) the functional for (3.6). In
fact, it is very easy to check that in this finite dimensional setting, the sequence of
functionals Fε(u) is monotone with respect to ε and thus, the Γ-convergence of the
ε-regularized problems (2.9)–(2.10) to (3.6) follows from [6, Chapter 2]. This shows
that the infimum value of the functional Fε(u) converges to the infimum value of the
functional F0(u) as ε → 0. Moreover, any cluster point of approximating sequences
in ε will converge to a point where the infimum of F0(u) is achieved. Therefore,
this shows our claim above on the right limiting optimization problem. Since further
discussion of this point is not needed for the purposes of this work, we leave to the
reader to check that we have ε-equicoercivity of the minimizing sequences in the f
variables and in the scaled

√
εm variables, this together with the previous statement

of convergence of the infimum values and the constraint (2.10) lead to the convergence
of the minimizers of Fε to the minimizer of F0.

Coming back to limiting collisional step (3.6), the corresponding Lagrangian
writes as:

L(f, λ) =
∑
j

fj ln

(
fj
M∗j

)
∆vd + λ

∑
j

fj −
∑
j

M∗j

 ,

which leads to the following optimality condition:

δL

δfj
= ln

(
fj
M∗j

)
∆vd + (λ+ ∆vd)1 = 0.

Therefore, one sees that fj differs from M∗j by one constant multiplier exp(−λ+∆vd

∆vd
)

for all j. Along with mass conservation, we then have fn+1 = M∗. Recall the
definition of M∗ in (2.3), and since ρ∗ = ρn+1, we have

fn+1
j → ρn+1

(
√

2π)d
e−
|vj+∇xφn+1|2

2 , for all n > 0 .

This allows us now to connect to the transport step in order to obtain the limiting
scheme and check for consistency with the limiting equation (1.4), i.e., showing the
asymptotic property of the scheme. Plugging it into the transport step and summing
over j, we have

(3.7)
ρn+1 − ρn

τ
+
∑
j

vj · ∇xfnj = 0 ,
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where

∑
j

vj · ∇xfnj = ∇x ·

∑
j

(vj +∇xφn −∇xφn) e−
|vj+∇xφn|2

2
ρn

(
√

2π)d


= −∇x ·

∑
j

∇xφne−
|vj+∇xφn|2

2
ρn

(
√

2π)d


= −∇x · (ρn∇xφn)

∑
j

1

(
√

2π)d
e−
|vj+∇xφn|2

2 .

It is obvious that
∑

j
1

(
√

2π)d
e−
|vj+∇xφn|2

2 approximates one with at least second order

accuracy in v. Therefore (3.7) gives a consistent semi-discretization for the limit
equation (1.4), which concludes the asymptotic property of our scheme.

4. Numerical examples. In this section, we provide several examples demon-
strating the efficiency and accuracy of our algorithms. The examples are presented in
the order of increasing dimensions in v. The stopping criteria is chosen as:

|F (u(k+1))− F (u(k))|
|F (u(k))|

< δ,
‖u(k+1) − u(k)‖1
‖u(k)‖1

< δ .

where δ = 10−7 for all examples. Throughout the examples, we use Algorithm 2 with
θ = 0.01 unless otherwise specified.

4.1. 1D in velocity.

4.1.1. Convergence. We first show that the convergence of our optimization
algorithm is uniform in ε. As this step matters only in v direction, we consider the
spatially homogeneous case:

(4.1)

{
∂tf = 1

ε∇v · (vf +∇vf),

f(0, v) = 2e−
(v−1.5)2

1.2 + 1
2e
− (v+1.5)2

1.5 .

The computational domain is chosen as v ∈ [−5, 5], and time step τ = 0.05. For one
step JKO scheme, we show convergence behavior with varying ε by computing the
relative error

(4.2) errork =
‖u(k) − u∗‖1
‖u∗‖1

.

in Fig. 1 for both fixed step size and adaptive step size with line search. Here u∗ is
obtained by using Algorithm 1 with 160 iterations. It is seen that with fixed step size,
a linear convergence is observed; while with line search, an initial linear convergence is
followed by a super-linear convergence, which happens when the step size approaches
one. We also record the real simulation time of two methods in one outer time step
when δ = 1e−7 and τ = 0.05. Result are shown in Table 1, where one sees that these
two approaches are comparable in terms of efficiency.

Next, we check the dependence of convergence on the mesh size ∆v and time
step τ with the same setting as above. Two cases with ε = 1 and ε = 1e − 5 are
considered. u∗ is again obtained by running Algorithm 1 with 160 iterations. The
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Fig. 1. Convergence of one step JKO scheme with respect to ε. Left: Proximal quasi-Newton
with fixed step size: γ = 0.5, 0.5, 0.5, 0.4, 0.4, 0.4 for ε = 1, 1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5
respectively. Right: Proximal quasi-Newton with line search. In both cases, ∆v = 10/64, τ = 0.05.

Method Fix step size Line search

ε = 1 0.017s 0.008s
ε = 1e− 1 0.011s 0.008s
ε = 1e− 2 0.013s 0.015s
ε = 1e− 3 0.02s 0.007s
ε = 1e− 4 0.013s 0.011s
ε = 1e− 5 0.013s 0.030s

Table 1
Run time of one outer time step. For fix step size method, we use γ = 0.5, 0.5, 0.5, 0.4, 0.4, 0.4

for ε = 1, 1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5 respectively. In both cases, ∆v = 10/64, τ = 0.05.
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Fig. 2. Convergence of Algorithm 1 with different ∆v (top), or different τ (bottom). Top left:
ε = 1, step size γ = 0.5 and τ = 0.05. Top right: ε = 1e−5, step size γ = 0.4 and τ = 0.05. Bottom
left: ε = 1, step size γ = 0.5 and ∆v = 10/64. Bottom right: ε = 1e − 5, step size γ = 0.4 and
∆v = 10/64.
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Fig. 3. Convergence of Algorithm 2 with different ∆v (top), or different τ (bottom). Top left:
ε = 1, τ = 0.05. Top right: ε = 1e − 5, τ = 0.05. Bottom left: ε = 1, Nv = 64. Bottom right:
ε = 1e− 5, Nv = 64.

results are collected in Fig. 2 and 3, where an almost uniform convergence behavior
is observed with different ∆v, which indicates the independency of our algorithm on
the mesh size.

We also show convergence behavior at different time steps. In Fig 4, in the case
when ε large, it converges slower at beginning for both fix step size method and line
search method. As f approaches to the equilibrium, less iterations are required to
converge. And in the case ε is small, it reaches equilibrium in merely one time step,
thus we see flat curve after first several time steps, which implies it stay at equilibrium.
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Fig. 4. Convergence behavior at different time steps with τ = 0.05, ∆v = 10/64 and stopping
criterion δ = 1e − 7. Left figure is generated by Algorithm 1 with γ = 0.5, 0.5, 0.5, 0.4, 0.4, 0.4 for
ε = 1, 1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5 respectively. Right figure is generated by Algorithm 2.

4.1.2. Accuracy. In this subsection, we test the order of accuracy of our varia-
tional scheme with distinct ε. For accuracy in v, we consider spatially homogeneous
case (4.1) with fix τ = 0.0063, and compute the following relative error with decreasing
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∆v:

e∆v = ‖f∆v(v, T )− f∆v
2

(v, T )‖1 :=

Nv∑
j=1

|(f∆v)j(T )− (f∆v
2

)j(T )|∆v.

The results are gathered in Fig. 5, where a uniform second order accuracy is observed.
To check the accuracy in x and t, we consider the spatially inhomogeneous VPFP
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Fig. 5. Relative error e∆v with ∆v = 10/64, 10/128, 10/256, 10/512, 10/1024 and fixed τ =
0.0063, T = 0.1 and Nmax = 1000. The black line indicates second order accuracy.

system (1.3) with the following initial condition:
(4.3)

ρ0(x) =
√

2π(2+cos(2πx)), f0(x, v) =
ρ0(x)

2
√

2π

(
e−
|v+1.5|2

2 + e−
|v−1.5|2

2

)
, h(x) =

5.0132

1.2661
ecos(2πx).

and compute the relative error:

eτ = ‖fτ (T, x, v)− f τ
2
(T, x, v)‖1 :=

Nx∑
i=1

Nv∑
j=1

|(fτ )i,j(T )− (f τ
2
)i,j(T )|∆v∆x.

and

e∆x = ‖f∆x(T, x, v)− f∆x
2

(T, x, v)‖1 :=

Nx∑
i=1

Nv∑
j=1

|(f∆x)i,j(T )− (f∆x
2

)i,j(T )|∆v∆x.

As expected, we observe first order accuracy in time and second order accuracy in
space, both uniformly in ε. The results are shown in Fig. 6.
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Fig. 6. Left: relative error eτ with fixed ∆v = 12/64, ∆x = 1/16, and varying τ =
∆x/8,∆x/16,∆x/32,∆x/64,∆x/128. The black line indicates first order accuracy. Right: relative
error e∆x with fixed ∆v = 10/64, and varying ∆x = 1/16, 1/32, 1/64, 1/128, 1/256 and τ = ∆x/8.
The black line indicates second order accuracy. In both cases, T = 0.1, Nmax = 1000.
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4.1.3. The asymptotic preserving property. This section is devoted to check
the asymptotic property of our scheme. For this purpose, consider the spatially in-
homogeneous VPFP system (1.3) with the following initial condition (4.3). The com-
putational domain is chosen as x ∈ [0, 1] and v ∈ [−6, 6]. At every time tn = n · τ , we
consider the l1 distance between our solution fn with the local equilibrium Mn as

‖fn −Mn‖1 =
∑
i,j

|fn(xi, vj)−Mn
i (vj)|∆x∆v.

Fig. 7 shows that this distance decreases at the order of O(ε) with decreasing ε, which
confirms asymptotic property.
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Fig. 7. Evolution of distance between our solution f and the local equilibrium M and with
decreasing ε. Here Nmax = 1000, ∆x = 1/64, ∆v = 12/64, and τ = ∆x/16.

4.1.4. Entropy decay. In this section, we first consider the Vlasov-Fokker-
Planck (VFP) system

∂tf + v∇xf −∇xφ0 · ∇vf = ∇v · (vf +∇vf)

with a fix external potential φ0(x) and check the entropy decay property. The initial
condition is taken to be:

ρ0(x) =
√

2π(2 + cos(2πx)), f0(x, v) =
ρ0(x)

2
√

2π

(
e−
|v+1.5|2

2 + e−
|v−1.5|2

2

)
,

φ0(x) =
1

5
sin(2πx).

According to [5, 16, 18], f converges exponentially fast to the global equilibrium

f∞ =
2
√

2π∫ 1

0
e−

1
5 sin xdx

e−
v2

2 −
1
5 sin(2πx).

To see this, we compute the evolution of the relative entropy

(4.4) E(f |f∞) =

∫ ∫
f log

f

f∞
dvdx

and display the results in Fig. 8. As shown, the relative entropy decays in time with
an exponential rate at the beginning. This decay, however, is flattened at around
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Fig. 8. Left: exponential decay of entropy with Nx = 32. Right: entropy decay with different
Nx. Here x ∈ [0, 1], v ∈ [−6, 6], Nmax = 1000, ∆x = 1/Nx, ∆v = 12/64, and τ = ∆x/15.

10−2, which indicates a discrepancy between f and f∞. On the right figure of Fig. 8,
we see that this discrepancy decays with finer grids, which implies that our scheme
does not preserve the global equilibrium exactly, but only up to some numerical error.

Next we consider VPFP system (1.3) with ε = 1 and check the entropy decay.
The initial data is taken the same as that in Section 4.1.3,and the computational
domain is chosen as x ∈ [0, 1] and v ∈ [−6, 6]. In this case, we do not have an explicit
formula for f∞, so we compute it numerically by running our scheme for long enough
time until it converges to a steady state. Fig. 9 then displays the exponential decay
of the relative entropy (4.4), as partially predicted in [28].
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Fig. 9. Exponential decay of the relative entropy E(f |f∞) with Nmax = 1000, ∆x = 1/32,
∆v = 12/64 and τ = ∆x/16. f∞ is computed at t = 5.

4.1.5. Mixing regime. In this section, we test the performance of our scheme
when ε has a mixing magnitude:

ε(x) =

{
ε0 + 1

2 (tanh(5− 10x) + tanh(5 + 10x)) x ≤ 0.3,
ε0 x > 0.3,

with ε0 = 10−3. The initial condition is chosen as:

ρ0(x) =

√
2π

6
(2 + sin(πx)), f0(x, v) =

ρ(x)√
2π
e−
|v+φ0

x|2
2 , h(x) =

1.6711

2.5321
ecos(πx).

In Fig. 10, we plot the shape of the solution at two different times t = 0.2 and t = 0.3,
and compare our solution with the reference solution obtained by explicit solver,
which uses the second order Runge-Kutta discretization in time and MUSCL scheme
for space discretization. Here a good agreement between two solutions is observed,
which confirms the efficiency of our method.



22 JOSE A.CARRILLO, LI WANG, WUZHE XU AND MING YAN

-1 -0.5 0 0.5 1

x

0.4

0.6

0.8

1

1.2

t=0.2

Reference (t)

(t)

-1 -0.5 0 0.5 1

x

0.4

0.6

0.8

1

1.2

t=0.3

Reference (t)

(t)

Fig. 10. Comparison of our solution with the reference solution obtained by explicit solver.
Here we use x ∈ [0, 1], v ∈ [−6, 6], Nx = 100, ∆x = 2/Nx, ∆v = 12/64, and τ = ∆x/15 for our
method. Use Nx = 2000, ∆x = 2/Nx, ∆v = 12/64, τ = min{ ∆x

max |v| , ε0∆x, ε0∆v2}/5 = 7.0313e− 6

for the explicit reference solver.

4.2. 2D in velocity.

4.2.1. Convergence rate. For the two dimensional case, we start again by
checking the convergence of our proximal quasi-Newton method to the spatially ho-
mogeneous case with varying ε. Here we consider the initial condition with four
bumps:

f0(v) = e(v2−1)2−(v1−1)2

+
1

π
e(v2+1)2−(v1+1)2

+
2

π
e(v2−1)2−(v1+1)2

+
4

π
e(v2+1)2−(v1−1)2

,

where v ∈ [−5, 5]× [−5, 5]. In Fig. 11, we compute the relative error (4.2) with respect
to k, where u∗ is obtained by running the same algorithm with 110 iterations.
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Fig. 11. Convergence of Algorithm 2 with varying ε. Here Nv = 40, τ = 0.05.

4.2.2. Evolution of two semi-torus like initial condition. In this section,
we plot the evolution of VPFP system using Algorithm 2 with the following initial
condition:

f0(v) = 1.5

(
1 +

(√
(v1 − 2)2 + (v2 − 2)2 − 2

)2
)−10

+ 2

(
1 +

(√
(v1 + 2)2 + (v2 + 2)2 − 2

)2
)−10

in Fig. 12. An evolving to the equilibrium and exponential convergence in entropy is
observed.
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Fig. 12. Evolution of f(t, v). Top two are initial states in different viewpoints; second and
third rows are the evolution along time; bottom are equilibrium and evolution of entropy in time.
Here we use v ∈ [−5, 5]× [−5, 5], τ = 0.05, Nmax = 1000, ∆v = 0.25, δ = 10−7 and ε = 0.2.

4.2.3. The asymptotic preserving property. Consider 1dx×2dv VPFP sys-
tem with initial condition

f0(v) =
ρ0(x)

4π
[e(v2−2)2−(v1−2)2

+e(v2+2)2−(v1+2)2

+e(v2−2)2−(v1+2)2

+e(v2+2)2−(v1−2)2

] ,

where v ∈ [−5, 5]× [−5, 5] and

ρ0(x) =

√
2π

2
(2 + cos(2πx)), h(x) =

5.0132

1.2661
ecos(2πx), x ∈ (0, 1) .

As in the one dimensional case, we compute the l1 distance between our solution and
the local equilibrium at each time tn as

‖fn −Mn‖1 =
∑
i,j,k

|fn(xi, vj , vk)−Mn
i (vj , vk)|∆x∆v2.

In Fig. 13, we again observe an order O(ε) distance with decreasing ε, which indicate
the asymptotic preserving property of our scheme.
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Fig. 13. Evolution of the distance between our solution f and local equilibrium M with decreas-
ing ε. Here ∆x = 1/16, ∆v = 10/40, Nmax = 1000, and τ = 0.0078.

4.3. 3D in velocity. At last, we’d like to emphasize that our scheme can be
easily extended to higher dimensions due to its passive parallelizability. To this end,
we consider one example in three dimensions. The initial data is taken to be

f0(v1, v2, v3) = (2π)−3/2(e−(v1−1)2−(v2+1)2−v2
3/2 + e−(v1+1)2−(v2−1)2−v2

3/2) ,

as displayed in Fig. 14. The computational domain is v ∈ [−L,L]× [−L,L]× [−L,L]
with L = 4 and it is partitioned into 16 cells in each direction, i.e., ∆v = 0.5. We
take ε = 0.2, ∆t = 0.05, and Nmax = 1000. Fig. 15 gives the evolution of the initial
profile towards the equilibrium and also the decay of entropy.
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Fig. 14. Initial state of f(0, v1,−2, v3) and f(0, v1, v2,−2).

5. Conclusion and discussion. In this paper, we propose an asymptotic pre-
serving (AP) scheme for the VPFP system with high field scaling. The scheme falls
into the category of implicit-explicit methods, which is often adopted in designing AP
schemes. The major contribution, however, is the treatment of the implicit part, for
which we use a variational formulation. Therefore, instead of directly inverting the
implicit system, we solve an minimization problem. The minimizer then automati-
cally conserves mass and preserves positivity, both of which are desirable features of
numerical schemes. More importantly, the implicit system is stiff and often suffers
from ill-conditioning, a problem that has been overlooked in the literature. The op-
timization algorithm we developed, on the contrary, includes a pre-conditioner that
comes from the Hessian of the objective function, and therefore enjoys uniform con-
vergence across different scales. Numerical examples also show that this convergence
is insensitive to the dimension of the problem, an important property that is de-
sired for high dimensional problems. Furthermore, the massive parallelizability of our
scheme also makes it amenable in high dimensions. Although the implicit part of the
VPFP system may be solved efficiently with more sophisticated designed algorithm
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Fig. 15. Evolution of f(t, v1,−2, v3) and f(t, v1, v2,−2). Top two are t = 0.05, middle two are
t = 0.15, bottom left is f(2.1, v1,−2, v3) and bottom right is entropy decay in time.

such as multigrid method, our method has a much better generalizability. In fact,
the variational formulation offers a natural implicit treatment that also mimics the
real physical process (i.e., entropy decrease) for the collision term in many kinetic
equations. And we hope that, the variational framework we put forward in this pa-
per, together with the advanced optimization solver, can provide a new class of AP
schemes for kinetic equations applicable to high dimensions efficiently.

Acknowledgement: The authors would like to thank the anonymous reviewers
for their comments and suggestions. JAC was supported by EPSRC grant number
EP/P031587/1 and the Advanced Grant Nonlocal-CPD (Nonlocal PDEs for Complex
Particle Dynamics: Phase Transitions, Patterns and Synchronization) of the European
Research Council Executive Agency (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 883363). LW and WX was
partially supported by NSF grant DMS-1903420 and DMS-1846854. MY was partially
supported by NSF grant DMS-2012439.

Appendix A. Proof of Theorem 3.5.

Lemma A.1. Suppose H1 and H2 are positive definite matrices with bounded eigen-
values: m1I � H1 � M1I and m2I � H2 � M2I. Let ∆u1 and ∆u2 be the search
directions generated using H1 and H2 respectively:

∆u1 = proxH1
χ

(
u− H−1

1 ∇F (u)
)
− u ,

∆u2 = proxH2
χ

(
u− H−1

2 ∇F (u)
)
− u .
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Then these two search directions satisfy

‖∆u1 −∆u2‖H1 ≤ ‖I − H
−1/2
1 H2H

−1/2
1 ‖‖∆u2‖H1 .

Proof. The main part of the proof is similar to that in [26, proof of Proposition
3.6] with a little alteration except the very last estimate. But we still include the
details for completeness. By the definition of search direction

∆u = proxH
χ

(
u− H−1∇F (u)

)
− u.

we have
H(H−1∇F (u)−∆u) ∈ ∂χ(u+ ∆u) ,

thus
H∆u ∈ −∇F (u)− ∂χ(u+ ∆u).

Then
∆u1 = argmin

d
(∇F (u))ᵀd+ (1/2)dᵀH1d+ χ(u+ d),

∆u2 = argmin
d

(∇F (u))ᵀd+ (1/2)dᵀH2d+ χ(u+ d).

which leads to

(∇F (u))ᵀ∆u1 + (1/2)∆uᵀ1H1∆u1 + χ (u+ ∆u1)

≤(∇F (u))ᵀ∆u2 + (1/2)∆uᵀ2H1∆u2 + χ (u+ ∆u2)

− (1/2)(∆u1 −∆u2)ᵀH1(∆u1 −∆u2).

which is equivalent to

(∇F (u))ᵀ∆u1 + ∆uᵀ1H1∆u1 + χ (u+ ∆u1)

≤(∇F (u))ᵀ∆u2 + ∆uᵀ1H1∆u2 + χ (u+ ∆u2) .

Similarly, we have

(∇F (u))ᵀ∆u2 + ∆uᵀ2H2∆u2 + χ (u+ ∆u2)

≤ (∇F (u))T∆u1 + ∆uᵀ1H2∆u2 + χ (u+ ∆u1) .

Summing up these two inequalities to get

(∆u1)ᵀH1∆u1 − (∆u1)ᵀ (H1 + H2) ∆u2 + (∆u2)ᵀH2∆u2 ≤ 0.

By completing square we have

(∆u1)ᵀH1∆u1 − 2(∆u1)ᵀH1∆u2 + (∆u2)ᵀH1∆u2

≤(∆u1)ᵀ (H2 − H1) ∆u2 + (∆u2)ᵀ (H1 − H2) ∆u2.

Consequently,

‖∆u1 −∆u2‖2H1
≤ (∆u1 −∆u2)ᵀ(H2 − H1)∆u2

= (H
1/2
1 (∆u1 −∆u2))ᵀ(H

−1/2
1 H2H

−1/2
1 − I)H

1/2
1 ∆u2

≤ ‖∆u1 −∆u2‖H1
‖H−1/2

1 H2H
−1/2
1 − I‖‖∆u2‖H1

.

which leads to the result.



VARIATIONAL AP SCHEME FOR VPFP SYSTEM 27

Lemma A.2. Suppose that there exist constants r, r′, R′, L2 > 0 such that r′I ≺
Hk ≺ R′I, rI ≺ ∇2F (u(k)), and ∇2F is Lipschitz continuous with constant L2. Let

u
(k+1)
nt := u(k) + ∆u

(k)
nt , where ∆u

(k)
nt is the search direction by the proximal Newton

method. Then

‖u(k+1)
nt − u∗‖Hk ≤

R
√
R′

2r
√
r′
‖u(k) − u∗‖2Hk .

Proof.

‖u(k+1)
nt − u∗‖Hk ≤

√
R′‖u(k+1)

nt − u∗‖

≤
√
R′√
r
‖u(k+1)

nt − u∗‖∇2F (u(k))

≤
√
R′√
r

L2

2
√
r
‖u(k) − u∗‖2

≤ L2

√
R′

2r
√
r′
‖u(k) − u∗‖2Hk .

The third inequality comes from the quadratic convergence of proximal Newton method
(Theorem 3.4 in [26]).

Proof of Theorem 3.5:

Proof. Let ∆u
(k)
nt be the search direction generated by the proximal newton method

and ∆u(k) generated by Algorithm 2.2. Then we have

‖u(k+1) − u∗‖Hk = ‖u(k) + tl∆u(k) − u∗‖Hk

= ‖u(k) + ∆u
(k)
nt − u∗ −∆u

(k)
nt + tl∆u(k)‖Hk

= ‖u(k) + ∆u
(k)
nt − u∗ − tl∆u

(k)
nt + tl∆u(k) − (1− tl)∆u(k)

nt ‖Hk

≤ ‖u(k) + ∆u
(k)
nt − u∗‖Hk + tl‖∆u(k) −∆u

(k)
nt ‖Hk + (1− tl)‖∆u(k)

nt ‖Hk

≤ C‖u(k) − u∗‖2Hk + tlq‖∆u(k)
nt ‖Hk + (1− tl)‖∆u(k)

nt ‖Hk

= C‖u(k) − u∗‖2Hk + (1− tl + qtl)‖∆u(k)
nt ‖Hk

= C‖u(k) − u∗‖2Hk + (1− tl + qtl)‖u(k) + ∆u
(k)
nt − u(k) + u∗ − u∗‖Hk

≤ C‖u(k) − u∗‖2Hk + (1− tl + qtl)(‖u(k+1)
nt − u∗‖Hk + ‖u(k) − u∗‖Hk)

≤ C ′‖u(k) − u∗‖2Hk + (1− tl + qtl)‖u(k) − u∗‖Hk .

Here C = L2

√
R′

2r
√
r′

, C ′ = L2

√
R′

2r
√
r′

(2− tl + qtl), and the second and third inequalities use

Lemmas A.1 and A.2.
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[24] S. Jin and L. Wang. An asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck
system in the high field regime. Acta Mathematica Scientia, 31(6):2219–2232, 2011.

[25] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker–Planck
equation. SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998.

[26] J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for minimizing com-
posite functions. SIAM Journal on Optimization, 24(3):1420–1443, 2014.

[27] W. Li, J. Lu, and L. Wang. Fisher information regularization schemes for wasserstein gradient
flows. Journal of Computational Physics, page 109449, 2020.

[28] C. Mouhot and L. Neumann. Quantitative perturbative study of convergence to equilibrium
for collisional kinetic models in the torus. Nonlinearity, 19(4):969, 2006.

[29] J. Nieto, F. Poupaud, and J. Soler. High-field limit for the Vlasov-Poisson-Fokker-Planck
system. Archive for rational mechanics and analysis, 158(1):29–59, 2001.



VARIATIONAL AP SCHEME FOR VPFP SYSTEM 29
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