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Abstract. Piecewise divergence-free nonconforming virtual elements are designed for Stokes
problem in any dimensions. After introducing a local energy projector based on the Stokes problem
and the stabilization, a divergence-free nonconforming virtual element method is proposed for Stokes
problem. A detailed and rigorous error analysis is presented for the discrete method. An important
property in the analysis is that the local energy projector commutes with the divergence operator.
With the help of a divergence-free interpolation operator onto a generalized Raviart-Thomas element
space, a pressure-robust nonconforming virtual element method is developed by simply modifying the
right hand side of the previous discretization. A reduced virtual element method is also discussed.
Numerical results are provided to verify the theoretical convergence.
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1. Introduction. In this paper, we shall construct piecewise divergence-free
nonconforming virtual elements for Stokes problem in any dimensions. Assume that
Ω ⊂ Rd (d ≥ 2) is a bounded polytope. The Stokes problem is governed by

(1.1)


− div(νε(u))−∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

where u is the velocity field, p is the pressure, ε(u) := (∇u + (∇u)ᵀ)/2 is the sym-
metric gradient of u, f ∈ L2(Ω;Rd) is the external force field, and constant ν > 0
is the viscosity. The incompressibility constraint divu = 0 in (1.1) describes the
conservation of mass for the incompressible fluid.

Since the nonconforming P1-P0 element is a stable pair for the Stokes problem [19],
as the generalization of the nonconforming P1 element, it is spontaneous that the H1-
nonconforming virtual element in [5] is adopted to discretize the Stokes problem in
[14, 26]. On the other hand, the incompressibility constraint is not satisfied exactly
in general at the discrete level for the discrete methods in [14, 26], which is very
important for the Navier-Stokes problem [24, 15]. To design the discrete method
with the exact divergence-free discrete velocity, one idea is to combine the discon-
tinuous Galerkin technique and the H(div)-conforming virtual elements, such as the
divergence-free weak virtual element method [18]. The more compact idea in [7, 6, 1]
is to construct divergence-free conforming virtual elements in two and three dimen-
sions by defining the space of shape functions through the local Stokes problem with
Dirichlet boundary condition. By enriching an H(div)-conforming virtual element
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with some divergence-free functions, a divergence-free nonconforming virtual element
in two dimensions is advanced in [31], in which each element in the partition is required
to be convex.

Following the ideas in [17, 23], we shall devise piecewise divergence-free H1-
nonconforming virtual elements in any dimensions based on the generalized Green’s
identity for Stokes problem, which are also H(div)-nonconforming. The degrees of
freedom of the proposed virtual elements for the velocity are same as those in [14], i.e.
d copies of the degrees of freedom of the H1-nonconforming virtual elements in [5].
And the space of shape functions V k(K) for the velocity is defined from the local
Stokes problem with Neumann boundary condition, which is different from that in [7]
due to the constraint on the boundary. Our virtual elements are locally divergence-free
since divV k(K) = Pk−1(K). The divergence-free velocity means the mass conserva-
tion. It is pointed out in [15] that many important conservation laws are lost with
the loss of mass conservation, including energy, momentum, angular momentum. A
common theme for all ‘enhanced-physics’ based schemes is that the more physics is
built into the discretization, the more accurate and stable the discrete solutions are,
especially over longer time intervals [15].

A novelty of this paper is to introduce a local energy projector ΠK
k : H1(K;Rd)→

Pk(K;Rd) based on the Stokes problem:

(ε(ΠK
k w), ε(v))K + (div v, PKw)K = (ε(w), ε(v))K ∀ v ∈ Pk(K;Rd),

(div(ΠK
k w), q)K = (divw, q)K ∀ q ∈ Pk−1(K),

while the local H1 projector is adopted in all the previous papers. The local Stokes-
based projector ΠK

k commutes with the divergence operator. Then we define a sta-
bilization involving all the degrees of freedom of the virtual elements for the velocity
except those corresponding to Gk−2(K) := ∇Pk−1(K). With the help of the local
projector ΠK

k and the stabilization, we propose a piecewise divergence-free noncon-
forming virtual element method for Stokes problem, where the velocity is discretized
by the virtual elements and the pressure is discretized by the piecewise polynomi-
als. Differently from [7, 14, 21], the computable projection ΠK

k uh in this paper is
divergence-free on each element K.

Furthermore, applying the technique in [7], we remove the degrees of freedom
corresponding to Gk−2(K) for the velocity, reduce the space of shape functions V k(K)

to Ṽ k(K) = {v ∈ V k(K) : div v ∈ P0(K)}, and then derive the reduced virtual
element method, in which the pressure is discretized by piecewise constant functions.
Hence we can first acquire the discrete velocity by solving the reduced discrete method,
and then recover the discrete pressure elementwisely.

A detailed and rigorous error analysis is presented for the piecewise divergence-
free nonconforming virtual element method. We first prove the norm equivalence of
the stabilization on the kernel of the local projector ΠK

k . Then the interpolation error
estimate is acquired after setting up the Galerkin orthogonality of the interpolation
operator. With the norm equivalence of the stabilization and the interpolation error
estimate, we build up the discrete inf-sup condition, and thus the piecewise divergence-
free nonconforming virtual element method is well-posed. Finally the optimal error
estimate comes from the discrete inf-sup condition and the interpolation error estimate
in a standard way.

Following the ideas in [25, 24], we devise a pressure-robust nonconforming virtual
element method for the Stokes problem (1.1) by modifying the right hand side of the
previous discrete method. We first define a generalized Raviart-Thomas element space
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R̃T h based on the partition Th by extending the Raviart-Thomas element [29, 28, 4]
on simplices to polytopes. And introduce a divergence-free interpolation operator

IRT
h : V h → R̃T h satisfying

(1.2) div(IRT
h vh) = divh vh ∀ vh ∈ V h.

Property (1.2) is vital to derive the pressure-robust error estimate for velocity, which
is true for our divergence-free virtual element, but not the case for the virtual element
in [14]. Then replace 〈f ,vh〉 by (f , IRT

h vh) to get the pressure-robust discretization.
Very recently a pressure-robust conforming virtual element method for Stokes problem
in two dimensions is proposed in [21] by employing a similar idea, while the computable
ΠK

k uh in [21] is not divergence-free.
The rest of this paper is organized as follows. In Section 2, we present some

notation and inequalities. The divergence-free nonconforming virtual elements, local
energy projector, stabilization and interpolation operator are constructed in Section 3.
We show the divergence-free nonconforming virtual element methods for the Stokes
problem and the error analysis in Section 4. A reduced virtual element method is
given in Section 5. In Section 6, numerical results are provided to verify the theoretical
convergence.

2. Preliminaries.

2.1. Notation. Denote by M the space of all d × d tensors, S the space of all
symmetric d×d tensors, and K the space of all skew-symmetric d×d tensors. Denote
the deviatoric part and the trace of the tensor τ by dev τ and tr τ accordingly, then
we have

dev τ = τ − 1

d
(tr τ )I.

Given a bounded domain K ⊂ Rd and a non-negative integer m, let Hm(K) be the
usual Sobolev space of functions on K, and Hm(K;X) be the usual Sobolev space of
functions taking values in the finite-dimensional vector space X for X being M, S, K
or Rd. The corresponding norm and semi-norm are denoted respectively by ‖ · ‖m,K

and | · |m,K . Let (·, ·)K be the standard inner product on L2(K) or L2(K;X). If K
is Ω, we abbreviate ‖ · ‖m,K , | · |m,K and (·, ·)K by ‖ · ‖m, | · |m and (·, ·), respectively.
Let Hm

0 (K;Rd) be the closure of C∞0 (K;Rd) with respect to the norm ‖ · ‖m,K . For
integer k ≥ 0, notation Pk(K) stands for the set of all polynomials over K with the
total degree no more than k. Set P−1(K) = P−2(K) = {0}. And denote by Pk(K;X)
the vectorial or tensorial version space of Pk(K). Let QK

k (QK
k ) be the L2-orthogonal

projector onto Pk(K) (Pk(K;X)).
Let {Th} be a family of partitions of Ω into nonoverlapping simple polytopal

elements with h := max
K∈Th

hK and hK := diam(K). Let Fr
h be the set of all (d − r)-

dimensional faces of the partition Th for r = 1, 2. Moreover, we set for each K ∈ Th

F(K) := {F ∈ F1
h : F ⊂ ∂K}.

Similarly, for F ∈ F1
h, we define

E(F ) := {e ∈ F2
h : e ⊂ F}.

For any F ∈ F1
h, denote by hF its diameter and fix a unit normal vector nF . For

any F ⊂ ∂K, denote by nK,F the unit outward normal to ∂K. Without causing any
confusion, we will abbreviate nK,F as n for simplicity.
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For non-negative integer k, let

Pk(Th) := {v ∈ L2(Ω) : v|K ∈ Pk(K) for each K ∈ Th}.

Define

H1(Th;Rd) := {v ∈ L2(Ω;Rd) : v|K ∈H1(K;Rd) for each K ∈ Th},

and the usual broken H1-type norm and semi-norm

‖v‖1,h :=
( ∑

K∈Th
‖v‖21,K

)1/2
, |v|1,h :=

( ∑
K∈Th

|v|21,K
)1/2

.

Let εh and divh be the piecewise counterparts of ε and div with respect to Th.
We introduce jumps on (d−1)-dimensional faces. Consider two adjacent elements

K+ and K− sharing an interior (d−1)-dimensional face F . Denote by n+ and n− the
unit outward normals to the common face F of the elements K+ and K−, respectively.
For a scalar-valued or tensor-valued function v, write v+ := v|K+ and v− := v|K− .
Then define the jump on F as follows:

JvK := v+nF · n+ + v−nF · n−.

On a face F lying on the boundary ∂Ω, the above term is defined by JvK := vnF · n.
Denote the space of rigid motions by

RM := {c+Ax : c ∈ Rd, A ∈ K},

where x := (x1, · · · , xd)ᵀ. For any v := (v1, · · · , vd)ᵀ ∈ H1(K;Rd), curlv ∈
L2(K;K) is defined by

(curlv)ij :=
∂vi
∂xj
− ∂vj
∂xi

for i, j = 1, · · · , d.

For positive integer k, set Gk−2(K) := ∇Pk−1(K). Take G⊕k−2(K) being any subspace

of Pk−2(K;Rd) such that

(2.1) Pk−2(K;Rd) = G⊕k−2(K)⊕Gk−2(K),

where ⊕ is the direct sum. One choice of G⊕k−2(K) is given by (3.11) in [3, 4]

(2.2) G⊕k−2(K) =

{
x⊥Pk−3(K), for d = 2,

x ∧ Pk−3(K;R3), for d = 3,

where x⊥ :=

(
x2
−x1

)
and ∧ is the exterior product. Let QK

G⊕k−2
be the L2-orthogonal

projector onto G⊕k−2(K).

2.2. Mesh conditions and some inequalities. We impose the following con-
ditions on the mesh Th in this paper:

(A1) Each element K ∈ Th is star-shaped with respect to a ball BK ⊂ K with
radius hK/γK , where the chunkiness parameter γK is uniformly bounded;

(A2) There exists a shape regular simplicial mesh T ∗h such that
− each K ∈ Th is a union of some simplexes in T ∗h ;
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− for each K ∈ Th, TK := {K ′ ∈ T ∗h : K ′ ⊂ K} is a quasi-uniform partition
of K, and the mesh size of TK is proportional to hK .

Throughout this paper, we use “. · · · ” to mean that “≤ C · · · ”, where C is a generic
positive constant independent of the mesh size h and the viscosity ν, but may de-
pend on the chunkiness parameter of the polytope, the degree of polynomials k, the
dimension of space d, and the shape regularity and quasi-uniform constants of the
virtual triangulation T ∗h , which may take different values at different appearances.
And A h B means A . B and B . A.

Under the mesh condition (A1), we have the trace inequality of H1(K) [13, (2.18)]

(2.3) ‖v‖20,∂K . h−1K ‖v‖
2
0,K + hK |v|21,K ∀ v ∈ H1(K),

the Poincaré-Friedrichs inequality [13, (2.15)]

(2.4) ‖v‖0,K . hK |v|1,K + h
1−d/2
K

∣∣∣∣∫
∂K

v ds

∣∣∣∣ ∀ v ∈ H1(K),

and the Korn’s second inequality [20]

(2.5) |v|1,K . ‖ε(v)‖0,K ∀ v ∈H1(K;Rd) satisfying QK
0 (curlv) = 0.

Recall the Babuška-Aziz inequality [9]: for any q ∈ L2(K), there exists v ∈H1(K;Rd)
such that

(2.6) div v = q, h−1K ‖v‖0,K + |v|1,K . ‖q‖0,K .

When q ∈ L2
0(K), we can choose v ∈ H1

0(K;Rd). For any τ ∈ L2(K;M) satisfying
QK

0 (tr τ ) = 0, it holds (cf. [16, Lemma 3.4])

(2.7) ‖τ‖0,K . ‖dev τ‖0,K + ‖ div τ‖−1,K .

Let Ks ⊂ Rn be the regular inscribed simplex of BK , where all the edges of
Ks have the same length. It holds for any nonnegative integers ` and i that [23,
Lemma 4.3 and Lemma 4.4]

(2.8) ‖q‖0,K h ‖q‖0,Ks
∀ q ∈ P`(K),

(2.9) ‖q‖0,K . h−iK ‖q‖−i,K ∀ q ∈ P`(K).

Lemma 2.1. For any nonnegative integers `, i and j, we have

(2.10) h−jK ‖q‖−j,K h h−iK ‖q‖−i,K ∀ q ∈ P`(K).

Proof. It is sufficient to prove

(2.11) ‖q‖0,K h h−iK ‖q‖−i,K ∀ q ∈ P`(K)

with i ≥ 1. Applying the Poincaré-Friedrichs inequality (2.4) recursively, we get for
any v ∈ Hi

0(K) that

(q, v)K ≤ ‖q‖0,K‖v‖0,K . hK‖q‖0,K |v|1,K . · · · . hiK‖q‖0,K |v|i,K .

Then it follows

‖q‖−i,K = sup
v∈Hi

0(K)

(q, v)K
|v|i,K

. hiK‖q‖0,K ,

which together with (2.9) yields (2.11).
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Recall the error estimates of the L2 projection. For each F ∈ F(K) and nonneg-
ative integer `, we have

‖v −QK
` v‖0,K . h`+1

K |v|`+1,K ∀ v ∈ H`+1(K),(2.12)

‖v −QF
` v‖0,F . h

`+1/2
K |v|`+1,K ∀ v ∈ H`+1(K).(2.13)

Lemma 2.2. We have for any q ∈ Pk−1(K) that

(2.14) ‖q‖0,K . sup
w∈Pk(K;Rd)

(divw, q)K

h−1K ‖w‖0,K + |w|1,K
.

Proof. Due to (2.6), there exists v ∈H1(Ks;Rd) such that

div v = q|Ks h−1Ks
‖v‖0,Ks + |v|1,Ks . ‖q‖0,Ks .

Let IBDM
Ks

: H1(Ks;Rd) → Pk(Ks;Rd) be the Brezzi-Douglas-Marini interpolation
[10, 4], then

div(IBDM
Ks

v) = QKs

k−1 div v = q|Ks ,

‖v − IBDM
Ks

v‖0,Ks
. hKs

|v|1,Ks
. hKs

‖q‖0,Ks
.

It follows from the inverse inequality (2.9) and (2.12) that

|IBDM
Ks

v|1,Ks
= |IBDM

Ks
v −QKs

0 v|1,Ks
. h−1Ks

‖IBDM
Ks

v −QKs
0 v‖0,Ks

. h−1Ks
‖v − IBDM

Ks
v‖0,Ks

+ h−1Ks
‖v −QKs

0 v‖0,Ks

. |v|1,Ks
. ‖q‖0,Ks

.

Noting that IBDM
Ks

v ∈ Pk(Ks;Rd) can be spontaneously extended to the domain K,

let w ∈ Pk(K;Rd) such that w|Ks = IBDM
Ks

v. Thus

(divw − q)|Ks
= 0, h−1Ks

‖w‖0,Ks
+ |w|1,Ks

. ‖q‖0,Ks
.

Again due to divw − q being a polynomial, (divw − q)|Ks = 0 implies divw = q on
K. And it follows from (2.8) that

h−1K ‖w‖0,K + |w|1,K . h−1Ks
‖w‖0,Ks

+ |w|1,Ks
. ‖q‖0,Ks

≤ ‖q‖0,K .

Therefore we arrive at (2.14).

3. Divergence-Free Nonconforming Virtual Elements. We will construct
the divergence-free nonconforming virtual elements for Stokes problem in this section.

3.1. Virtual elements. For any K ∈ Th, u,v ∈ H1(K;Rd) and p ∈ L2(K)
satisfying div ε(u) + ∇p ∈ L2(K;Rd), and (ε(u)n + pn)|F ∈ L2(F ;Rd) for each
F ∈ F(K), it follows from the integration by parts that

(3.1) (ε(u), ε(v))K + (div v, p)K = −(div ε(u) +∇p,v)K + (ε(u)n+ pn,v)∂K .

Inspired by the Green’s identity (3.1), we propose the following local degrees of free-
dom of the divergence-free nonconforming virtual elements for Stokes problem

(v, q)F ∀ q ∈ Pk−1(F ;Rd) on each F ∈ F(K),(3.2)

(v, q)K ∀ q ∈ Pk−2(K;Rd) = G⊕k−2(K)⊕Gk−2(K).(3.3)
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Denote by Nk(K) all the degrees of freedom (3.2)-(3.3). And define the space of shape
functions as

V k(K) := {v ∈H1(K;Rd) : div v ∈ Pk−1(K), there exists some

s ∈ L2(K) such that div ε(v) +∇s ∈ G⊕k−2(K),

and (ε(v)n+ sn)|F ∈ Pk−1(F ;Rd) ∀ F ∈ F(K)}.

By the direct sum decomposition (2.1), clearly we have Pk(K;Rd) ⊆ V k(K).

Lemma 3.1. The dimension of V k(K) is same as the number of the degrees of
freedom (3.2)-(3.3).

Proof. To count the dimension of V k(K), we introduce the space

W k(K) := {(v, s) ∈H1(K;Rd)× L2(K) : div ε(v) +∇s ∈ G⊕k−2(K),

div v ∈ Pk−1(K), and (ε(v)n+ sn)|F ∈ Pk−1(F ;Rd) ∀ F ∈ F(K)}.

Consider the local Stokes problem with the Neumann boundary condition

(3.4)


−div(ε(u))−∇p = f1 in K,

divu = f2 in K,

ε(u)n+ pn = gF on each F ∈ F(K),

where f1 ∈ G⊕k−2(K), f2 ∈ Pk−1(K), and gF ∈ Pk−1(F ;Rd). Employing the Green’s
identity (3.1), we acquire

(3.5) (ε(u), ε(v))K + (div v, p)K = (f1,v)K +
∑

F∈F(K)

(gF ,v)F .

If taking v = q ∈ RM in (3.5), we have the compatibility condition

(3.6) (f1, q)K +
∑

F∈F(K)

(gF , q)F = 0 ∀ q ∈ RM .

Given f1 ∈ G⊕k−2(K), f2 ∈ Pk−1(K), and gF ∈ Pk−1(F ;Rd) satisfying the compati-
bility condition (3.6), due to (3.5), the weak formulation of the local problem (3.4) is
to find u ∈H1(K;Rd)/RM and p ∈ L2(K) such that

(3.7)

(ε(u), ε(v))K + (div v, p)K = (f1,v)K +
∑

F∈F(K)

(gF ,v)F ,

(divu, q)K = (f2, q)K ,

for all v ∈H1(K;Rd)/RM and q ∈ L2(K). According to the Babuška-Brezzi theory
[10], the mixed formulation (3.7) is uniquely solvable. Hence

dim(W k(K)/(RM × {0})) = ddimPk−2(K) + 1 + d
∑

F∈F(K)

dimPk−1(F )− dimRM .

Furthermore, if all the data f1, f2 and gF vanish, then the set of the solution (u, p)
of the local Stokes problem (3.4) is exactly RM × {0}. As a result

dimW k(K) = ddimPk−2(K) + 1 + d
∑

F∈F(K)

dimPk−1(F ).
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Define operator RK
k : W k(K) → V k(K) as RK

k (v, s) := v. It is obvious that
RK

k W k(K) = V k(K). For any (v, s) ∈W k(K) ∩ ker(RK
k ), it follows v = 0. By the

definition of W k(K), we have

∇s ∈ G⊕k−2(K) and s|F ∈ Pk−1(F ) ∀ F ∈ F(K).

Thus ∇s = 0, and s ∈ P0(K). This implies W k(K) ∩ ker(RK
k ) = {0} × P0(K) and

dimW k(K) ∩ ker(RK
k ) = 1. Thanks to

dimV k(K) = dimRK
k W k(K) = dimW k(K)− dimW k(K) ∩ ker(RK

k ),

we acquire dimV k(K) = ddimPk−2(K) + d
∑

F∈F(K)

dimPk−1(F ).

Thanks to Lemma 3.1, following the argument in [5, Lemma 3.1] and [7, Propo-
sition 3.2], it is easy to show that the degrees of freedom (3.2)-(3.3) are unisolvent for
the local virtual element space V k(K).

The degrees of freedom (3.2)-(3.3) are same as those in [5, 14, 17], but the spaces
of shape functions V k(K) are different. We use the local Stokes problem with the
Neumann boundary condition to define V k(K), while the local Poisson equation with
the Neumann boundary condition is adopted in [5, 14, 17]. The virtual elements in
this paper are piecewise divergence-free.

Remark 3.2. Assume K is a simplex. It follows

dimV k(K)−dimPk(K;Rd) = d(d+1)Cd−1
k+d−2 +dCd

k+d−2−dCd
k+d = (k−1)dCd−2

k+d−2.

Hence, we have V 1(K) = P1(K;Rd) for k = 1, and the virtual element (K, N1(K),
V 1(K)) is exactly the nonconforming P1 element in [19]. For k ≥ 2, Pk(K;Rd) is a
proper subset of V k(K).

3.2. Local projection. With the degrees of freedom (3.2)-(3.3), define a local
operator ΠK

k : H1(K;Rd)→ Pk(K;Rd) as follows: givenw ∈H1(K;Rd), let ΠK
k w ∈

Pk(K;Rd) and PKw ∈ Pk−1(K) be the solution of the local Stokes problem

(ε(ΠK
k w), ε(v))K + (div v, PKw)K = (ε(w), ε(v))K ∀ v ∈ Pk(K;Rd),(3.8)

div(ΠK
k w) = QK

k−1(divw),(3.9)

QK
0 (curl ΠK

k w) = QK
0 (curlw),(3.10)

QK
0 (ΠK

k w) = QK
0 w.(3.11)

Similarly as (3.2) in [13], an equivalent formulation of the local Stokes problem (3.8)-
(3.11) is

((ΠK
k w,v))K + (div v, PKw)K = ((w,v))K ∀ v ∈ Pk(K;Rd),

(div(ΠK
k w), q)K = (divw, q)K ∀ q ∈ Pk−1(K),

where

((w,v))K := (ε(w), ε(v))K +QK
0 (curlw) : QK

0 (curlv) +QK
0 w ·Q

K
0 v

with symbols : and · being the inner products of the tensors and vectors respectively.
The inf-sup condition (2.14) indicates (Pk(K;Rd),Pk−1(K)) is a stable pair for

Stokes problem, thus the local Stokes problem (3.8)-(3.11) is uniquely solvable. To
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simplify the notation, we will rewrite ΠK
k as ΠK . Apparently the projector ΠK can

be computed using only the degrees of freedom (3.2)-(3.3). The unique solvability of
the local Stokes problem (3.8)-(3.11) implies the operator ΠK is a projector, i.e.

ΠKq = q ∀ q ∈ Pk(K;Rd).

It follows from (3.10)-(3.11), (2.12)-(2.13) and the Korn’s inequality (2.5) that

(3.12) ‖v‖0,K + hK |v|1,K +
∑

F∈F(K)

h
1/2
K ‖v‖0,F . hK‖ε(v)‖0,K ∀ v ∈ ker(ΠK),

where ker(ΠK) := {v ∈H1(K;Rd) : ΠKv = 0}. Due to (3.9), the local Stokes-based
projector ΠK commutes with the divergence operator, i.e.

(3.13) div(v −ΠKv) = 0 ∀ v ∈ V k(K).

By the Babuška-Brezzi theory [10], we get from the inf-sup condition (2.14) that

‖ε(ΠKw)‖0,K + ‖PKw‖0,K . sup
v∈Pk(K;Rd),q∈Pk−1(K)

(ε(w), ε(v))K + (divw, q)K
‖ε(v)‖0,K + ‖q‖0,K

,

which means the stability

(3.14) ‖ε(ΠKw)‖0,K . ‖ε(w)‖0,K ∀ w ∈H1(K;Rd).

3.3. Norm equivalence. Given w,v ∈H1(K;Rd), let the stabilization

SK(w,v) := h−2K

(
QK

G⊕k−2
w,QK

G⊕k−2
v
)
K

+
∑

F∈F(K)

h−1F (QF
k−1w,Q

F
k−1v)F ,

and the local bilinear form

aKh (w,v) := (QK
k−1ε(w),QK

k−1ε(v))K + SK(w −ΠKw,v −ΠKv).

From (3.12) and (3.14), we have for any w,v ∈H1(K;Rd) that

(3.15) aKh (w,v) ≤
(
aKh (w,w)aKh (v,v)

)1/2
. ‖ε(w)‖0,K‖ε(v)‖0,K .

Henceforth we will assume the following norm equivalence holds

(3.16) hK‖curl q‖0,K h ‖q‖0,K ∀ q ∈ G⊕k−2(K).

We first prove the norm equivalence (3.16) for some special choices of G⊕k−2(K).

Lemma 3.3. When G⊕k−2(K) is the L2-orthogonal complement space of Gk−2(K)

in Pk−2(K;Rd), the norm equivalence (3.16) holds.

Proof. Let r ∈ Pk−1(K) satisfy

(∇r,∇s)BK
= (q,∇s)BK

∀ s ∈ Pk−1(BK).

Then (q −∇r)|BK
∈ G⊕k−2(BK). Since ‖curl · ‖0,BK

is a norm on G⊕k−2(BK), we get
from the scaling argument that

‖q −∇r‖0,BK
. hK‖curl (q −∇r)‖0,BK

= hK‖curl q‖0,BK
≤ hK‖curl q‖0,K .

Using the fact q ∈ G⊕k−2(K), we obtain from (2.8) that

‖q‖0,K ≤ ‖q −∇r‖0,K . ‖q −∇r‖0,BK
. hK‖curl q‖0,K .

The other side follows from the inverse inequality (2.9).
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Lemma 3.4. If G⊕k−2(K) is given by (2.2), the norm equivalence (3.16) holds.

Proof. We only give the proof d = 2. For any q ∈ Pk−3(K), noting the fact that
(x⊥q)|BK

∈ G⊕k−2(BK), we achieve from the scaling argument that

‖x⊥q‖0,BK
h hK‖curl (x⊥q)‖0,BK

,

which combined with (2.8) implies (3.16).

Lemma 3.5. For any v ∈ V k(K) and s ∈ L2(K) satisfying div ε(v) + ∇s ∈
G⊕k−2(K), it holds

(3.17) hK‖ div ε(v) +∇s‖0,K . ‖ε(v)‖0,K .

Proof. Since div ε(v) +∇s ∈ G⊕k−2(K), we get from (3.16) and (2.9) that

‖ div ε(v) +∇s‖0,K . hK‖curl (div ε(v) +∇s)‖0,K = hK‖curl (div ε(v))‖0,K
. h−1K ‖curl (div ε(v))‖−2,K . h−1K ‖ε(v)‖0,K ,

as required.

For any F ∈ F(K), let Rd−1
F be the (d − 1)-dimensional affine space passing

through F , FF (K) := {F ′ ∈ F(K) : F ′ ⊂ Rd−1
F }, and λF := nᵀ

F (x−xF )/hK . Clearly
λF |F = 0. Define face bubble function

bF :=

( ∏
F ′∈F(K)\FF (K)

λF ′

)( ∏
F ′∈FF (K)

∏
e∈E(F ′)

nᵀ
F ′,e

x− xe

hK

)
,

for each F ∈ F(K). The first factor in the definition of bF is to ensure that bF vanishes
on all (d− 1)-dimensional faces of K except those sharing the same affine hyperplane
with F . And the second factor is to ensure that bF vanishes on the boundary of all
(d − 1)-dimensional faces of K sharing the same affine hyperplane with F . Thus bF
vanishes on all (d− 2)-dimensional faces of K.

Lemma 3.6. For each F ∈ F(K), we have for any v ∈ V k(K) and s ∈ L2(K)
satisfying div ε(v) +∇s ∈ G⊕k−2(K) that

(3.18)
∑

F ′∈FF (K)

h
1/2
K

∥∥ε(v)n+ (s−QK
0 (s+

1

d
div v))n

∥∥
0,F ′

. ‖ε(v)‖0,K .

Proof. Let τ = ε(v) + (s−QK
0 (s+ 1

d div v))I for simplicity, then

div τ = div ε(v) +∇s ∈ G⊕k−2(K), QK
0 (tr τ ) = 0.

Employing (2.7), (2.10) and (3.17), we get

‖τ‖0,K . ‖ dev τ‖0,K + ‖ div τ‖−1,K = ‖ dev(ε(v))‖0,K + ‖ div τ‖−1,K
. ‖ε(v)‖0,K + hK‖ div ε(v) +∇s‖0,K . ‖ε(v)‖0,K .(3.19)

Noting that τn|F ′ is a polynomial for each F ′ ∈ FF (K), let

EF (τn) :=

{
τn|F ′ in F ′ ∈ FF (K),

0 in Rd−1
F \FF (K),
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which is a piecewise polynomial defined on Rd−1
F . Then we extend EF (τn) to Rd.

For any x ∈ Rd, let xP
F be the projection of x on Rd−1

F . Define

EK(τn)(x) := (EF (τn))(xP
F ).

Let Rd
F ′ := {x ∈ Rn : xP

F ∈ F ′}, and φF be a piecewise polynomial defined as

φF (x) =

b
2
FEK(τn), x ∈ Rd

F ′ , F
′ ∈ FF (K),

0, x ∈ Rd\
⋃

F ′∈FF (K)

Rd
F ′ .

Since bF vanishes on all (d − 2)-dimensional faces of K, φF (x) is continuous in Rd.
And we have

(3.20) ‖φF ‖0,K .
∑

F ′∈FF (K)

h
1/2
K ‖τn‖0,F ′ , ‖τn‖20,F ′ h (τn,φF )F ′ .

Thus we obtain from (3.19), the inverse inequality (2.9) and (3.17) that∑
F ′∈FF (K)

‖τn‖20,F ′ '
(
τ , ε(φF )

)
K

+ (div ε(v) +∇s,φF )K

. ‖τ‖0,K‖ε(φF )‖0,K + ‖div ε(v) +∇s‖0,K‖φF ‖0,K

. h−1K ‖ε(v)‖0,K‖φF ‖0,K ,

which combined with (3.20) implies (3.18).

With previous preparations, now we can prove the norm equivalence of the sta-
bilization on ker(ΠK) ∩ V k(K).

Lemma 3.7. The stabilization has the norm equivalence

(3.21) SK(v,v) h ‖ε(v)‖20,K ∀ v ∈ ker(ΠK) ∩ V k(K).

Proof. Let τ be defined as in the proof of Lemma 3.6. Since div v = 0 by (3.13),
we get from (3.17) that

‖ε(v)‖20,K =
(
τ , ε(v)

)
K

= −(div τ ,v)K +
∑

F∈F(K)

(τn,v)F

≤ ‖div τ‖0,K
∥∥QK

G⊕k−2
v
∥∥
0,K

+
∑

F∈F(K)

∥∥τn∥∥
0,F
‖QF

k−1v‖0,F

≤ h−1K

∥∥QK
G⊕k−2

v
∥∥
0,K
‖ε(v)‖0,K +

∑
F∈F(K)

∥∥τn∥∥
0,F
‖QF

k−1v‖0,F ,

which together with (3.18) implies ‖ε(v)‖20,K . SK(v,v).
On the other hand, by the trace inequality (2.3) and (3.12),

SK(v,v) = h−2K

∥∥QK
G⊕k−2

v
∥∥2
0,K

+
∑

F∈F(K)

h−1F ‖Q
F
k−1v‖20,F

. h−2K ‖v‖
2
0,K +

∑
F∈F(K)

h−1F ‖v‖
2
0,F . h−2K ‖v‖

2
0,K + |v|21,K . ‖ε(v)‖20,K ,

which ends the proof.
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Thanks to (3.14), apparently we have

‖ε(v)‖20,K h ‖QK
k−1ε(v)‖20,K + ‖ε(v −ΠKv)‖20,K ∀ v ∈ V k(K),

which combined with (3.21) implies the norm equivalence

(3.22) aKh (v,v) h ‖ε(v)‖20,K ∀ v ∈ V k(K).

3.4. Interpolation operator. Let IK : H1(K;Rd)→ V k(K) be the canonical
interpolation operator based on the degrees of freedom (3.2)-(3.3). Since all the values
of the degrees of freedom (3.2)-(3.3) of v−IKv vanish, we have for any v ∈H1(K;Rd)

ΠK(v − IKv) = 0,(3.23)

div(IKv) = QK
k−1(div v).(3.24)

Then adopting the argument in [17, Lemma 5.1], we get the Galerkin orthogonality

(3.25) aKh (v − IKv,w) = 0 ∀ v,w ∈H1(K;Rd).

Now we present the interpolation error estimate by the aid of the Galerkin or-
thogonality (3.25).

Proposition 3.8. For any v ∈ Hs(K;Rd) with positive integer s ≤ k + 1, we
have

(3.26) ‖v − IKv‖0,K + hK |v − IKv|1,K . hsK |v|s,K .

Proof. Take any q ∈ Pk(K;Rd). We obtain from (3.22), (3.25) with w = q−IKv
and (3.15) that

‖ε(q − IKv)‖20,K . aKh (q − IKv, q − IKv) = aKh (q − v, q − IKv)

. ‖ε(v − q)‖0,K‖ε(q − IKv)‖0,K .

Thus
‖ε(q − IKv)‖0,K . ‖ε(v − q)‖0,K ,

and then

‖ε(v − IKv)‖0,K ≤ ‖ε(v − q)‖0,K + ‖ε(q − IKv)‖0,K . ‖ε(v − q)‖0,K .

By the Bramble-Hilbert Lemma [12, Lemma 4.3.8], we get

‖ε(v − IKv)‖0,K . inf
q∈Pk(K;Rd)

‖ε(v − q)‖0,K . hs−1K |v|s,K .

Finally we conclude (3.26) from (3.12) and (3.23).

4. Divergence-Free Nonconforming Virtual Element Methods. We will
present the divergence-free nonconforming virtual element methods for the Stokes
problem (1.1) in this section. The variational formulation of the Stokes problem (1.1)
is to find u ∈H1

0(Ω;Rd) and p ∈ L2
0(Ω) such that

ν(ε(u), ε(v)) + (div v, p) = (f ,v) ∀ v ∈H1
0(Ω;Rd),(4.1)

(divu, q) = 0 ∀ q ∈ L2
0(Ω).(4.2)
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4.1. Discretization. Define the global virtual element space for the velocity as

V h := {vh ∈ L2(Ω;Rd) :vh|K ∈ V k(K) for each K ∈ Th; QF
k−1vh is continuous

through F for all F ∈ F1
h; QF

k−1vh = 0 if F ⊂ ∂Ω}.

And the discrete space for the pressure is given by

Qh = {qh ∈ L2
0(Ω) : qh|K ∈ Pk−1(K) for each K ∈ Th}.

Since we use the symmetric gradient in the Stokes problem (4.1)-(4.2) and the discrete
Korn’s inequality does not hold for V h when k = 1 [11], hereafter we always assume
integer k ≥ 2. We refer to [22] for overcoming the failure of the discrete Korn’s
inequality for the case k = 1 by adding a jump penalization.

By the definition of V h, we have

QF
k−1(JvhK) = 0 ∀ vh ∈ V h, F ∈ F1

h.

Thanks to (3.6) in [16], it follows

|vh|1,h . ‖εh(vh)‖0 ∀ vh ∈ V h.

Then similarly as Lemma 4.6 and Lemma 4.8 in [17], we get for any vh ∈ V h that∑
F∈F1

h

h−1F

∥∥JvhK
∥∥2
0,F

. ‖εh(vh)‖20,

and the discrete Poincaré inequality

(4.3) ‖vh‖1,h . |vh|1,h . ‖εh(vh)‖0.

Let Ql
h : L2(Ω) → Pl(Th) be the L2-orthogonal projector onto Pl(Th): for any

v ∈ L2(Ω),
(Ql

hv)|K := QK
l (v|K) ∀ K ∈ Th.

The vectorial or tensorial version of Ql
h is denoted by Ql

h. And define Πh as the

global version of ΠK similarly.
The divergence-free nonconforming virtual element method based on the varia-

tional formulation (4.1)-(4.2) for the Stokes problem (1.1) is to find uh ∈ V h and
ph ∈ Qh such that

νah(uh,vh) + bh(vh, ph) = 〈f ,vh〉 ∀ vh ∈ V h,(4.4)

bh(uh, qh) = 0 ∀ qh ∈ Qh,(4.5)

where
ah(uh,vh) :=

∑
K∈Th

aKh (uh,vh), bh(vh, ph) := (divh vh, ph),

〈f ,vh〉 :=

{
(f ,Πhvh), k = 2,

(f ,Qk−2
h vh), k ≥ 3.

Obviously we have from (3.15) that

ah(w,v) . ‖εh(w)‖0‖εh(v)‖0 ∀ w,v ∈H1(Th;Rd),

bh(v, p) . ‖εh(v)‖0‖p‖0 ∀ v ∈H1(Th;Rd), p ∈ L2(Ω).
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4.2. Inf-sup conditions. To show the well-posedness of the nonconforming vir-
tual element method (4.4)-(4.5), we derive some stability results.

Denote by Ih : H1
0(Ω;Rd) → V h the global canonical interpolation operator

based on the degrees of freedom (3.2)-(3.3), i.e., (Ihv)|K := IK(v|K) for any v ∈
H1

0(Ω;Rd) and K ∈ Th. Due to (2.6), (3.24) and (3.26), we have divh V h = Qh and
the inf-sup condition (cf. [10, Section 5.4.3])

(4.6) ‖qh‖0 . sup
vh∈V h

bh(vh, qh)

‖vh‖1,h
∀ qh ∈ Qh.

Lemma 4.1. We have the inf-sup condition

ν1/2‖εh(ũh)‖0 + ν−1/2‖p̃h‖0

. sup
vh∈V h,qh∈Qh

νah(ũh,vh) + bh(vh, p̃h) + bh(ũh, qh)

ν1/2‖εh(vh)‖0 + ν−1/2‖qh‖0
(4.7)

for any ũh ∈ V h and p̃h ∈ Qh.

Proof. By (4.6), we have the inf-sup condition

ν−1/2‖qh‖0 . sup
vh∈V h

bh(vh, qh)

ν1/2‖εh(vh)‖0
∀ qh ∈ Qh.

And we get from (3.22) that

ν‖εh(vh)‖20 . νah(vh,vh) ∀ vh ∈ V h.

Therefore (4.7) follows from the Babuška-Brezzi theory.

According to the stability result (4.7), the divergence-free nonconforming virtual
element method (4.4)-(4.5) is uniquely solvable. Thanks to (3.9), the computable
ΠKuh is divergence-free for each K ∈ Th.

4.3. Error analysis. Now it’s ready to show the optimal error estimate of the
nonconforming virtual element method (4.4)-(4.5).

Theorem 4.2. Let (uh, ph) ∈ V h × Qh be the solution of the divergence-free
nonconforming virtual element method (4.4)-(4.5). Assume u ∈ Hk+1(Ω;Rd), p ∈
Hk(Ω) and f ∈Hk−1(Ω;Rd). Then it holds

(4.8) ν‖εh(u− uh)‖0 + ‖p− ph‖0 . hk(ν|u|k+1 + |p|k + |f |k−1).

Proof. Take any vh ∈ V h and qh ∈ Qh. Following the arguments in [17, 5], we
achieve the consistency errors

ν(ε(u), εh(vh)) + (divh vh, p)− 〈f ,vh〉 . hk(ν|u|k+1 + |p|k + |f |k−1)‖εh(vh)‖0,

(4.9) ah(Ihu,vh)− (ε(u), εh(vh)) . hk|u|k+1‖εh(vh)‖0.

Then we get from (4.4)-(4.5), (3.24) and the second equation in problem (1.1) that

νah(Ihu− uh,vh) + bh(vh, Q
k−1
h p− ph) + bh(Ihu− uh, qh)

=νah(Ihu,vh) + bh(vh, Q
k−1
h p) + bh(Ihu, qh)− 〈f ,vh〉

=νah(Ihu,vh) + bh(vh, p)− 〈f ,vh〉
.hk(ν|u|k+1 + |p|k + |f |k−1)‖εh(vh)‖0.
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Due to (4.7) with ũh = Ihu− uh and p̃h = Qk−1
h p− ph, it follows

ν1/2‖εh(Ihu− uh)‖0 + ν−1/2‖Qk−1
h p− ph‖0

. sup
vh∈V h,qh∈Qh

hk(ν|u|k+1 + |p|k + |f |k−1)‖εh(vh)‖0
ν1/2‖εh(vh)‖0 + ν−1/2‖qh‖0

. hk(ν1/2|u|k+1 + ν−1/2|p|k + ν−1/2|f |k−1).

Hence

ν‖εh(Ihu− uh)‖0 + ‖Qk−1
h p− ph‖0 . hk(ν|u|k+1 + |p|k + |f |k−1).

Thus we achieve (4.8) from the triangle inequality, (3.26) and (2.12).

4.4. Pressure-robust discretization. Following the ideas in [25, 24], we will
modify the right hand side of (4.4) to develop a pressure-robust nonconforming virtual
element method for the Stokes problem (1.1) in this subsection.

To this end, we first extend the Raviart-Thomas element [29, 28, 4] on simplices to
polytopes. For each simplex K ′ ∈ T ∗h , introduce the shape function space of Raviart-
Thomas element RT k−1(K ′) := Pk−1(K ′;Rd) + xPk−1(K ′). For each polytope K ∈
Th, let the space of shape functions

R̃T k−1(K) := {v ∈H(div,K) :v|K′ ∈ RT k−1(K ′) for each K ′ ∈ TK ,
and div v ∈ Pk−1(K)}.

It is obvious that R̃T k−1(K) = RT k−1(K) when K is a simplex. Since the divergence
operator div : xPk−1(K)→ Pk−1(K) is bijective, it holds the decomposition

R̃T k−1(K) = R̃T k−1(K; div 0)⊕ xPk−1(K),

where R̃T k−1(K; div 0) := {v ∈ R̃T k−1(K) : div v = 0}. Thus

dim R̃T k−1(K) = #F(TK) dimPk−1(F ) + #TK dimPk−2(K;Rd)

−#TK dimPk−1(K) + dimPk−1(K)

= #F(TK) dimPk−1(F ) + dimPk−2(K;Rd)

+ (#TK − 1)(dimG⊕k−2(K)− 1),

where F(TK) is the set of all (d− 1)-dimensional faces of the partition TK , and F is
some face in F(TK).

Remark 4.3. The local space R̃T k−1(K; div 0) can be explicitly expressed by us-

ing the finite element de Rham complex [4]. Indeed we have R̃T k−1(K; div 0) =
curlV c

k (TK) in two and three dimensions, where

V c
k (TK) := {v ∈ H1(K) : v|K′ ∈ Pk(K ′) for each K ′ ∈ TK}

in two dimensions, and

V c
k (TK) := {v ∈ H(curl;K) : v|K′ ∈ Pk(K ′;R3) for each K ′ ∈ TK}

in three dimensions.
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The degrees of freedom for space R̃T k−1(K) are given by

(v · n, q)F ∀ q ∈ Pk−1(F ) on each F ∈ F∂(TK),(4.10)

(v, q)K ∀ q ∈ Pk−2(K;Rd),(4.11)

(v, q)K ∀ q ∈ Bk−2(TK),(4.12)

where F∂(TK) := {F ∈ F(TK) : F ⊂ ∂K}, and

Bk−2(TK) := {v ∈ R̃T k−1(K) ∩H0(div,K) : (v, q)K = 0 ∀ q ∈ Pk−2(K;Rd)}.

The degrees of freedom (4.12) will disappear when K is a simplex. Clearly the degrees

of freedom (4.10)-(4.12) are unisolvent for space R̃T k−1(K).

Remark 4.4. Due to Remark 4.3, we have Bk−2(TK) = curl V̊ c
k (TK) in two and

three dimensions, where

V̊ c
k (TK) := {v ∈ V c

k (TK) ∩H1
0 (K) : (v, q)K = 0 ∀ q ∈ Pk−3(K)}

in two dimensions, and

V̊ c
k (TK) := {v ∈ V c

k (TK) ∩H0(curl;K) : (v, q)K = 0 ∀ q ∈ curlPk−2(K;R3)}

in three dimensions.

Next we introduce an interpolation operator. Let IRT
K : H1(K;Rd)→ R̃T k−1(K)

be determined by

((IRT
K v) · n)|F = QF

k−1(v · n) ∀ F ∈ F(K),

(IRT
K v, q)K = (v, q)K ∀ q ∈ Pk−2(K;Rd),

(IRT
K v, q)K = (ΠKv, q)K ∀ q ∈ Bk−2(TK).(4.13)

Differently from IKv, the projector IRT
K v can be computed using only the degrees of

freedom (3.2)-(3.3). And we have

IRT
K q = q ∀ q ∈ Pk−1(K;Rd),

(4.14) div(IRT
K v) = QK

k−1(div v) ∀ v ∈H1(K;Rd),

(4.15) ‖v − IRT
K v‖0,K + hK |v − IRT

K v|1,K . hK |v|1,k ∀ v ∈H1(K;Rd).

Define a global generalized Raviart-Thomas element space based on the partition
Th as

R̃T h := {vh ∈ H0(div,Ω) : vh|K ∈ R̃T k−1(K) for each K ∈ Th}.

And let an interpolation operator IRT
h : V h → R̃T h be determined by (IRT

h vh)|K :=
IRT
K (vh|K) for each K ∈ Th. It follows from (4.14) and the fact divh vh ∈ Qh that

(4.16) div(IRT
h vh) = divh vh ∀ vh ∈ V h.

Now we revise the right hand side of (4.4) with the help of IRT
h to acquire a

pressure-robust virtual element method for the Stokes problem (1.1): find uh ∈ V h

and ph ∈ Qh such that

νah(uh,vh) + bh(vh, ph) = (f , IRT
h vh) ∀ vh ∈ V h,(4.17)

bh(uh, qh) = 0 ∀ qh ∈ Qh.(4.18)
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Theorem 4.5. Let (uh, ph) ∈ V h×Qh be the solution of the pressure-robust non-
conforming virtual element method (4.17)-(4.18). Assume u ∈Hk+1(Ω;Rd). Then

(4.19) ν‖εh(u− uh)‖0 + ‖Qk−1
h p− ph‖0 . νhk|u|k+1.

Proof. Noting that IRT
h vh ∈ H0(div,Ω), it follows from the first equation of the

Stokes problem (1.1) and (4.16) that

(f , IRT
h vh) = −ν(div(ε(u)), IRT

h vh) + (p,div(IRT
h vh))

= −ν(div(ε(u)), IRT
h vh) + (p,divh vh).

Then we obtain from the integration by parts and (4.15) that

ν(ε(u), εh(vh)) + (divh vh, p)− (f , IRT
h vh)

=ν(ε(u), εh(vh)) + ν(div(ε(u)), IRT
h vh)

=ν(div(ε(u)), IRT
h vh − vh) + ν

∑
F∈F1

h

(ε(u)nF , JvhK)F

=ν(div(ε(u))−Qk−2
h div(ε(u)), IRT

h vh − vh)

+ ν
∑

F∈F1
h

(ε(u)nF −QF
k−1(ε(u)nF ), JvhK)F ,

which together with (4.15) and the discrete Poincaré inequality (4.3) gives

ν(ε(u), εh(vh)) + (divh vh, p)− (f , IRT
h vh) . νhk|u|k+1‖εh(vh)‖0.

Finally (4.19) holds from (4.9) and the proof of Theorem 4.2.

The estimate (4.19) is pressure-robust in the sense that the right hand side
of (4.19) only involves the velocity u, no pressure p and f .

Remark 4.6. The velocity error in [8, 27] depends on a higher order loading effect,
thus indirectly depends on the pressure. Very recently a similar idea, i.e. a modifi-
cation of the right hand side based on the Raviart-Thomas approximation on a local
subtriangulation of the polygons, is applied to derive a pressure-robust conforming
virtual element method for Stokes problem in two dimensions in [21]. The interpola-
tion operator in [21] is defined by a local least square problem, which is indeed almost
same as IRT

K except (4.13). The local energy projector ΠK here is based on the local
Stokes problem, while the energy projector in [21] is based on the local Poisson equa-
tion. The computable ΠKuh in [21] is not divergence-free. In consideration of small
edges encountered in practice with polytopal grids, we refer to [2] for a pressure-robust
Crouzeix–Raviart element method for the Stokes equation on anisotropic meshes.

5. Reduced Virtual Element Method. In this section, we study the reduced
version of the nonconforming virtual element method (4.4)-(4.5) following the ideas
in [7].

Since the solution uh of the discrete method (4.4)-(4.5) is piecewise divergence-
free, it is possible to discretize the velocity in a subspace of V h, such as satisfying
the divergence-free constraint. To this end, we suggest the local reduced degrees of
freedom Ñk(K)

(v, q)F ∀ q ∈ Pk−1(F ;Rd) on each F ∈ F(K),(5.1)

(v, q)K ∀ q ∈ G⊕k−2(K).(5.2)
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And the reduced space of shape functions is given by

Ṽ k(K) := {v ∈ V k(K) : div v ∈ P0(K)}.

Let the global reduced virtual element space for the velocity

Ṽ h := {vh ∈ V h : vh|K ∈ Ṽ k(K) for each K ∈ Th},

and the discrete space for the pressure

Q̃h := {qh ∈ L2
0(Ω) : qh|K ∈ P0(K) for each K ∈ Th}.

Applying the integration by parts, it holds for any v ∈ Ṽ k(K) and q ∈ Pk−1(K)

(v,∇q)K = −(div v, q)K + (v · n, q)∂K
= −(div v, QK

0 q)K + (v · n, q)∂K = (v · n, q −QK
0 q)∂K .

Hence for any v ∈ Ṽ k(K), we can compute the L2 projection QK
k−2v as follows:

(QK
k−2v, q)K = (v, q)K ∀ q ∈ G⊕k−2(K),(5.3)

(QK
k−2v,∇q)K = (v · n, q −QK

0 q)∂K ∀ q ∈ Pk−1(K).(5.4)

And for any τ ∈ Pk−1(K;S), it follows from the integration by parts

(ε(v), τ )K = −(v,div τ )K + (v, τn)∂K = −(QK
k−2v,div τ )K + (v, τn)∂K .

As a result, we can compute the L2 projection QK
k−1ε(v) for any v ∈ Ṽ k(K) as

(5.5) (QK
k−1ε(v), τ )K = −(QK

k−2v,div τ )K + (v, τn)∂K ∀ τ ∈ Pk−1(K;S).

Thanks to (5.3)-(5.5), for any v ∈ Ṽ k(K), the local projection ΠK
k v is computable

based on the degrees of freedom Ñk(K) (5.1)-(5.2).

Thanks to (3.9), it follows div(ΠK
k v) = div v ∈ P0(K) for any v ∈ Ṽ k(K).

Therefore ΠK
k Ṽ k(K) = Ṽ k(K) ∩ Pk(K;Rd).

Theorem 5.1. Let (uh, ph) ∈ V h × Qh be the solution of the divergence-free

nonconforming virtual element method (4.4)-(4.5), and (ũh, p̃h) ∈ Ṽ h × Q̃h be the
solution of the reduced nonconforming virtual element method

νah(ũh,vh) + bh(vh, p̃h) = 〈f ,vh〉 ∀ vh ∈ Ṽ h,(5.6)

bh(ũh, qh) = 0 ∀ qh ∈ Q̃h.(5.7)

Then

(5.8) ũh = uh, p̃h = Q0
hph.

Proof. Following Section 4.2 and noting Q̃h ⊂ Qh, the reduced virtual element
method (5.6)-(5.7) is uniquely solvable. Thanks to (4.5), we have divh uh = 0 and

thus uh ∈ Ṽ h. Taking vh ∈ Ṽ h ⊂ V h, it follows from (4.4) that

νah(uh,vh) + bh(vh, Q
0
hph) = 〈f ,vh〉.

In other words, (uh, Q
0
hph) ∈ Ṽ h×Q̃h satisfies (5.6) and (5.7), which together with the

unique solvability of the reduced virtual element method (5.6)-(5.7) indicates (5.8).
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After obtaining uh and Q0
hph from the reduced virtual element method (5.6)-(5.7),

we can recover the discrete pressure ph piecewisely. To this end, let p⊥h := ph −Q0
hph

and p⊥K := p⊥h |K for each K ∈ Th. And define local homogenous spaces

V k,0(K) := {v ∈ V k(K) : QK
G⊕k−2

v = 0, and QF
k−1v = 0 for each F ∈ F(K)},

Qk−1,0(K) := Pk−1(K) ∩ L2
0(K).

Apparently divV k,0(K) ⊂ Qk−1,0(K) and p⊥K ∈ Qk−1,0(K).
It is easy to see that div : V k,0(K)→ Qk−1,0(K) is an injection, which combined

with the fact dimV k,0(K) = dimQk−1,0(K) indicates div : V k,0(K)→ Qk−1,0(K) is
a bijection.

For any v ∈ V k,0(K), let vh ∈ V h be defined as

vh =

{
v in K,

0 in K ′ ∈ Th\K.

Then from (4.4) we get the local problem

(5.9) (div v, p⊥K)K = 〈f ,v〉K − νaKh (uh,v) ∀ v ∈ V k,0(K).

Here we have used the fact that (div v, QK
0 ph)K = 0 for any v ∈ V k,0(K). The local

problem (5.9) is well-posed due to the bijection div : V k,0(K)→ Qk−1,0(K).
In summary, we decouple the virtual element method (4.4)-(4.5) in the following

way:
(1) First solve the reduced virtual element method (5.6)-(5.7) to obtain (uh, Q

0
hph);

(2) then solve the local problem (5.9) piecewisely to get p⊥h ;
(3) finally set ph = p⊥h +Q0

hph.

6. Numerical Examples. In this section, some numerical results of the non-
conforming virtual element method (4.4)-(4.5) are provided to verify Theorem 4.2,
Theorem 4.5 and Theorem 5.1. Let the viscosity ν = 1 and k = 2. All of the
numerical examples are implemented by using the FEALPy package [30].

Example 6.1. Consider the Stokes problem (1.1) on the rectangular domain Ω =
(0, 1) × (0, 1). Take f = (0,Ra (1 − y + 3y2))ᵀ with parameter Ra > 0. The exact
solution is (cf. [24, Example 1.1])

u = 0, p = Ra (y3 − y2/2 + y − 7/12).

The parameter Ra only affects the pressure.

The rectangular domain Ω is partitioned by the uniform triangle mesh. The nu-
merical results of error ‖ε(u)− εh(Πhuh)‖0 with Ra = 1, 102, 104, 106 for the virtual
element method (4.4)-(4.5) and the pressure-robust virtual element method (4.17)-
(4.18) are listed in Figure 6.1. From the left subfigure in Figure 6.1, we observe that
‖ε(u)− εh(Πhuh)‖0 achieves the optimal convergence rate O(h2) for the virtual ele-
ment method (4.4)-(4.5), which is in coincidence with Theorem 4.2, but not pressure-
robust. And we can see from the right subfigure in Figure 6.1 that ‖ε(u)−εh(Πhuh)‖0
for the virtual element method (4.17)-(4.18) is zero up to round-off errors, as indicated
by Theorem 4.5. Hence the virtual element method (4.17)-(4.18) is pressure-robust.
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(a) VEM (4.4)-(4.5).
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(b) Pressure-robust VEM (4.17)-(4.18).

Fig. 6.1. Error ‖ε(u)− εh(Πhuh)‖0 of Example 6.1 with k = 2.

Example 6.2. Consider the Stokes problem (1.1) on the L-shaped domain Ω =
(−1, 1)× (−1, 1) \ [0, 1)× (−1, 0]. The exact solution is taken as

u = (2(x3 − x)2(3y2 − 1)(y3 − y), (3x2 − 1)(−2x3 + 2x)(y3 − y)2)ᵀ,

p =
1

x2 + 1
− π

4
.

The exact solution (u, p) is smooth although the L-shaped domain Ω is nonconvex.
We present the polygonal mesh and the corresponding numerical velocity flow with
k = 2 in Figure 6.2. By the numerical results in Table 6.1, we can see that ‖p− p̃h‖0 =
O(h), ‖ε(u)− εh(Πhũh)‖0 = O(h2) and ‖p− ph‖0 = O(h2), which coincide with the
theoretical error estimates in Theorem 4.2 and Theorem 5.1. The convergence rates
of ‖u −Πhuh‖0 = ‖u −Πhũh‖0 = O(h3) are higher than the optimal ones on the
L-shaped domain, which is probably caused by the uniform meshes. To make the
article more concise, here we only show the numerical results of k = 2. For k > 2,
one can run the test script, named StokesRDFNCVEM2d example.py, in directory of
FEALPy/example [30].

(a) Polygonal mesh. (b) Numerical velocity.

Fig. 6.2. Mesh for L-shaped domain and numerical velocity of Example 6.2 with k = 2.
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Table 6.1
Numerical results for Example 6.2 with k = 2.

#Th 65 225 833 3201

‖u−Πhũh‖0 3.5827e-03 6.6167e-04 9.2871e-05 1.2026e-05

Order – 2.44 2.83 2.95

‖p− p̃h‖0 6.5700e-02 3.3869e-02 1.7176e-02 8.6490e-03

Order – 0.96 0.98 0.99

‖ε(u)− εh(Πhũh)‖0 6.7184e-02 2.3092e-02 6.8821e-03 1.8805e-03

Order – 1.54 1.75 1.87

‖u−Πhuh‖0 3.5827e-03 6.6167e-04 9.2871e-05 1.2026e-05

Order – 2.44 2.83 2.95

‖p− ph‖0 1.4686e-02 4.2207e-03 1.0318e-03 2.2019e-04

Order – 1.8 2.03 2.23
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