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MORE APPLICATIONS OF THE \bfitd -NEIGHBOR EQUIVALENCE:
ACYCLICITY AND CONNECTIVITY CONSTRAINTS\ast 

BENJAMIN BERGOUGNOUX\dagger AND MAMADOU MOUSTAPHA KANT\'E\ddagger 

Abstract. In this paper, we design a framework to obtain efficient algorithms for several prob-
lems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set,
Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feed-
back Vertex Set. We design a meta-algorithm that solves all these problems and whose running

time is upper bounded by 2O(k) \cdot nO(1), 2O(k log(k)) \cdot nO(1), 2O(k2) \cdot nO(1), and nO(k) where k is
respectively the clique-width, \BbbQ -rank-width, rank-width, and maximum induced matching width of
a given decomposition. Our approach simplifies and unifies the known algorithms for each of the
parameters and its running time matches asymptotically also the running times of the best known
algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our frame-
work is based on the d-neighbor equivalence defined in [B. Bui-Xuan, J. A. Telle, and M. Vatshelle,
Theoret. Comput. Sci., (2013), pp. 66--76] and the rank-based approach introduced in [H. L. Bod-
laender, M. Cygan, S. Kratsch, and J. Nederlof, Inform. and Comput., 243 (2015), pp. 86--111]. The
results we obtain highlight the importance of the d-neighbor equivalence relation on the algorithmic
applications of width measures. We also prove that our framework could be useful for W[1]-hard
problems parameterized by clique-width such as Max Cut and Maximum Minimal Cut. For these

latter problems, we obtain nO(k), nO(k), and n2O(k)
time algorithms where k is respectively the

clique-width, the \BbbQ -rank-width, and the rank-width of the input graph.

Key words. connectivity problem, feedback vertex set, d-neighbor equivalence, \sigma , \rho -domination,
clique-width, rank-width, mim-width
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1. Introduction. Tree-width is one of the most well-studied graph parameters
in the graph algorithm community, due to its numerous structural and algorithmic
properties. Nevertheless, despite the broad interest on tree-width, only sparse graphs
can have bounded tree-width. But many NP-hard problems are tractable on dense
graph classes. For many graph classes, this tractability can be explained through
other width measures. The most remarkable ones are certainly clique-width [13],
rank-width [32], and maximum induced matching width (a.k.a. mim-width) [40].

We obtain most of these parameters through the well-known notion of layout
(a.k.a. branch-decomposition) introduced in [38]. A layout of a graph G is a tree
T whose leaves are in bijection with the vertices of G. Every edge e of the layout
is associated with a vertex bipartition of G through the two connected components
obtained by the removal of e. Given a symmetric function f : 2V (G) \rightarrow \BbbN , one can
associate with each layout T a measure, usually called f-width, defined as the max-
imum f(A) over all the vertex bipartitions (A,A) of V (G) associated with the edges
of T . For instance, rank-width is defined from the function f(A) which corresponds
to the rank over GF (2) of the adjacency matrix between the vertex sets A and A; if
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1882 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

we take the rank over \BbbQ , we obtain a variant of rank-width introduced in [33], called
\BbbQ -rank-with. For mim-width, f(A) is the maximum size of an induced matching in
the bipartite graph between A and A.

These other width measures have a modeling power strictly stronger than the
modeling power of tree-width. For example, if a graph class has bounded tree-width,
then it has bounded clique-width [13], but the converse is false as cliques have clique-
width at most 2 and unbounded tree-width. While (\BbbQ -)rank-width has the same
modeling power as clique-width, mim-width has the strongest one among all these
width measures and is even bounded on interval graphs [4]. Despite their generality,
a lot of NP-hard problems admit polynomial time algorithms when one of these width
measures is fixed. But, designing efficient algorithms with these width measures is
known to be harder than with tree-width.

Concerning their computations, it is not known whether the clique-width (resp.,
mim-width) of a graph can be approximated within a constant factor in time f(k)\cdot nO(1)

(resp., nf(k)) for some function f. However, for (\BbbQ -)rank-width, there is a 23k \cdot n4 time
algorithm that, given a graph G as input and k \in \BbbN , either outputs a decomposition
for G of (\BbbQ -)rank-width at most 3k + 1 or confirms that the (\BbbQ -)rank-width of G is
more than k [33, 34].

Finding efficient algorithms parameterized by one of these width measures is by
now a standard exercise for problems based on local constraints [12, 39]. In contrast,
the task is quite complicated for problems involving a global constraint, e.g., connec-
tivity or acyclicity. For a long time, our knowledge on the parameterized complexity
of this latter kind of problem, with as parameters the common width measures, was
quite limited even for tree-width. For a while, the parameterized complexity commu-
nity used to think that for problems involving global constraints the naive kO(k) \cdot nO(1)

time algorithm, k being the tree-width of the input graph, could not be improved.
But, quite surprisingly, in 2011, Cygan et al. introduced in [15] a technique called
Cut \& Count to design Monte Carlo 2O(k) \cdot nO(1) time algorithms for a wide range of
problems with global constraints, including Hamiltonian Cycle, Feedback Ver-
tex Set, and Connected Dominating Set. Later, Bodlaender et al. proposed in
[9] a general toolkit, called the rank-based approach, to design deterministic 2O(k) \cdot n
time algorithms to solve a wider range of problems.

In a recent paper [6], the authors adapted the rank-based approach of [9] to
obtain 2O(k) \cdot n time algorithms, k being the clique-width of a given decomposition,
for many problems with a global constraint, e.g., Connected Dominating Set and
Feedback Vertex Set.

Unlike tree-width and clique-width, algorithms parameterized by rank-width and
mim-width for problems with a global constraint were not investigated, except for
some special cases such as Feedback Vertex Set [21, 28] and Longest Induced
Path [27].

One successful way to design efficient algorithms with these width measures is
through the notion of d-neighbor equivalence. This concept was introduced by Bui-
Xuan, Telle, and Vatshelle in [12]. Formally, given A \subseteq V (G) and an integer d \geq 1,
two sets X,Y \subseteq A are d-neighbor equivalent over A if, for all v \in V (G) \setminus A, we have
min(d, | N(v) \cap X| ) = min(d, | N(v) \cap Y | ), where N(v) is the set of neighbors of v in
G. Notice that X and Y are 1-neighbor equivalent over A if and only if both have
the same neighborhood in V (G) \setminus A.

The d-neighbor equivalence gives rise to a width measure, called in this paper
d-neighbor-width. This width measure, based also on layouts, is defined from the
function s-necd(A) which corresponds to the maximum number of equivalence classes
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1883

Table 1
Upper bounds on s-necd(\scrL )O(1) \cdot nO(1) with \scrL a layout and d a constant.

Tree-width Clique-width Rank-width \BbbQ -rank-width Mim-width

2O(k) \cdot nO(1) 2O(k) \cdot nO(1) 2O(k2) \cdot nO(1) 2O(k log(k)) \cdot nO(1) nO(k)

of the d-neighbor equivalence over A and V (G) \setminus A. It is worth noticing that the
boolean-width of a layout introduced in [11] corresponds to the binary logarithm of
the 1-neighbor-width.

These notions were used by Bui-Xuan, Telle, and Vatshelle in [12] to design effi-
cient algorithms for the family of problems called (\sigma , \rho )-Dominating Set problems.
This family of problems was introduced by Telle and Proskurowski in [39]. Given a
pair (\sigma , \rho ) of finite or co-finite subsets of \BbbN and a graph G, a (\sigma , \rho )-dominating set of
G is a subset D of V (G) such that, for each vertex x \in V (G), the number of neighbors
of x in D is in \sigma if x \in D and in \rho otherwise. A problem is a (\sigma , \rho )-Dominating
Set problem if it consists in finding a minimum (or maximum) (\sigma , \rho )-dominating
set. For instance, the Dominating Set problem asks for the computation of a mini-
mum (\BbbN ,\BbbN \setminus \{ 0\} )-dominating set. Many NP-hard problems based on local constraints
belong to this family; see [12, Table 1].

Bui-Xuan, Telle, and Vatshelle [12] designed a meta-algorithm that, given a rooted
layout \scrL , solves any (\sigma , \rho )-Dominating Set problem in time s-necd(\scrL )O(1) \cdot nO(1)

where d is a constant depending on the considered problem. The known upper bounds
on s-necd(\scrL ) (see Lemma 2.4) and the algorithm of [12] give efficient algorithms to
solve any (\sigma , \rho )-Dominating Set problem, with parameters tree-width, clique-width,
(\BbbQ -)rank-width, and mim-width. The running times of these algorithms are given in
Table 1.

Our contributions. In this paper, we design a framework based on the 1-
neighbor equivalence relation and some ideas from the rank-based approach of [9]
to design efficient algorithms for many problems involving a connectivity constraint.
This framework provides tools to reduce the size of the sets of partial solutions we
compute at each step of a dynamic programming algorithm. We prove that many ad
hoc algorithms for these problems can be unified into a single meta-algorithm that is
almost the same as the one from [12] computing a (\sigma , \rho )-dominating set.

We use our framework to design a meta-algorithm that, given a rooted layout
\scrL , solves any connectivity variant (a solution must induce a connected graph) of a
(\sigma , \rho )-Dominating Set problem. This includes some well-known problems such as
Connected Dominating Set, Connected Vertex Cover, or Node Weighted
Steiner Tree. The running time of our algorithm is polynomial in n and s-necd(\scrL ),
with d a constant that depends on \sigma and \rho . Consequently, each connectivity variant
of a (\sigma , \rho )-Dominating Set problem admits algorithms with the running times given
in Table 1.

We introduce some new concepts to deal with acyclicity. We use these concepts to
deal with the AC variants1 (a solution must induce a tree) of (\sigma , \rho )-Dominating Set
problems. Both Maximum Induced Tree and Longest Induced Path are AC
variants of (\sigma , \rho )-Dominating Set problems. We prove that we can modify slightly
the meta-algorithm for connectivity constraints so that it can solve these AC variants
in the running times given in Table 1. To obtain these results, we rely heavily on
the d-neighbor equivalence. However, we were not able to upper bound the running

1AC stands for ``acyclic and connected.""
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1884 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

time of this modified meta-algorithm by a polynomial in n and s-necd(\scrL ) for some
constant d.

We then reduce any acyclic variant (a solution must induce a forest) of a (\sigma , \rho )-
Dominating Set problem to solving the AC-variant of the same problem. In par-
ticular, this shows that we can use the algorithm for Maximum Induced Tree to
solve the Feedback Vertex Set problem.

Up to a constant in the exponent, the running times of our meta-algorithms and
their algorithmic consequences match those of the best known algorithms for basic
problems such as Vertex Cover and Dominating Set [12, 33]. Moreover, the
2O(k) \cdot nO(1) time algorithms we obtain for clique-width are optimal under the well-
known exponential time hypothesis (ETH) [25]. That is, unless ETH fails, there are
no 2o(k) \cdot nO(1) time algorithms, k being the clique-width of a given decomposition, for
the NP-hard problems considered in this paper. This follows from the facts that the
clique-width of a graph is at most its number of vertices and that (under well-known
Karp reduction [25, 26]) those problems do not admit a 2o(n) \cdot nO(1) time algorithm
unless ETH fails.

Our results reveal that the d-neighbor equivalence relation can be used for prob-
lems which are not based only on local constraints. This highlights the importance and
the generalizing power of this concept on many width measures: for many problems
and many width measures, one obtains the ``best"" algorithms by using the upper
bounds on s-necd(\scrL ) (see Lemma 3.3). We prove that the d-neighbor equivalence
relation could be also useful for problems that are W[1]-hard parameterized by clique-
width. We provide some evidence for this potentiality by showing that, given an
n-vertex graph and a rooted layout \scrL , one can use the n-neighbor equivalence to
solve, with almost the same algorithm as for solving the Independent Set problem,

1. Max Cut in time s-nec
O(1)
n (\scrL ) \cdot nO(1). This algorithm gives the best known

algorithms parameterized by clique-width, \BbbQ -rank-width, and rank-width for
Max Cut.

2. Maximum Minimal Cut, a variant of Max Cut, with two connectivity
constraints discussed in [17, 18]. This is done by combining our algorithm for
Max Cut and our framework.

Finally, we also show the wide applicability of our framework by explaining how
to use it for solving locally checkable partitioning problems with multiple global con-
straints.

Our approach. To solve the considered problems, our algorithms do a bottom-
up traversal of a given layout \scrL of the input graph G and at each step we compute a
set of partial solutions. In our case, the steps of our algorithms are associated with the
vertex bipartitions (A,A) induced by the edges of a layout and the partial solutions
are subsets of A.

Let us explain our approach for the variant of (\sigma , \rho )-Dominating Set with
the connected and AC variants of the Dominating Set problem. At each step,
our algorithms compute, for each pair (R,R\prime ) where R (resp., R\prime ) is a 1-neighbor
equivalence class of A (resp., A), a set of partial solutions \scrA R,R\prime \subseteq R. The way we
compute these sets guarantees that the partial solutions in \scrA R,R\prime will be completed
with sets in R\prime . Consequently, we have information about how we will complete our
partial solutions since every Y \in R\prime has the same neighborhood in A.

To deal with the local constraint of these problems, namely the domination con-
straint, we use the ideas of Bui-Xuan, Telle, and Vatshelle [12]. For each pair (R,R\prime ),
let us say that X \subseteq A is coherent with (R,R\prime ) if (1) X \in R and (2) X\cup Y dominates A
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1885

in the graph G for every Y \in R\prime . To compute a minimum dominating set, Bui-Xuan,
Telle, and Vatshelle proved that it is enough to keep, for each pair (R,R\prime ), a partial
solution X of minimum weight that is coherent with (R,R\prime ). Intuitively, if a partial
solution X that is coherent with (R,R\prime ) could be completed into a dominating set
of G with a set Y \in R\prime , then it is the case for every partial solution coherent with
(R,R\prime ). This is due to the fact that any pair of sets in R (resp., R\prime ) dominates the
same vertices in A (resp., A).

To solve the connectivity variant, we compute, for each (R,R\prime ), a set \scrA R,R\prime 

of partial solutions coherent with (R,R\prime ). Informally, \scrA R,R\prime has to be as small as
possible, but if a partial solution coherent with (R,R\prime ) leads to a minimum connected
dominating set, then \scrA R,R\prime must contain a similar partial solution. To deal with
this intuition, we introduce the relation of R\prime -representativity between sets of partial
solutions. We say that \scrA  \star R\prime -represents a set \scrA if, for all sets Y \in R\prime , we have
best(\scrA , Y ) = best(\scrA  \star , Y ) where best(\scrB , Y ) is the minimum weight of a set X \in \scrB 
such that G[X \cup Y ] is connected.

The main tool of our framework is a function reduce that, given a set of partial
solutions \scrA and a 1-neighbor equivalence class R\prime of A, outputs a subset of \scrA that R\prime -
represents \scrA and whose size is upper bounded by s-nec1(\scrL )2. To design this function,
we use ideas from the rank-based approach of [9]. That is, we define a small matrix
\scrC with | \scrA | rows and s-nec1(\scrL )2 columns. Then, we show that a basis of minimum
weight of the row space of \scrC corresponds to an R\prime -representative set of \scrA . Since \scrC 
has s-nec1(\scrL )2 columns, the size of a basis of \scrC is smaller than s-nec1(\scrL )2. By calling
reduce after each computational step, we keep the sizes of the sets of partial solutions
polynomial in s-nec1(\scrL ). Besides, the definition of R\prime -representativity guarantees that
the set of partial solutions computed for the root of \scrL contains a minimum connected
dominating set.

For the AC variant of dominating set, we need more information in order to deal
with the acyclicity. We obtain this extra information by considering that R (resp., R\prime )
is a 2-neighbor equivalence class over A (resp., A). This way, for all sets X \subseteq A, the
set X+2 of vertices in X that have at least two neighbors in some W \in R\prime corresponds
exactly to the set of vertices in X that have at least two neighbors in Y , for all Y \in R\prime .
The vertices in X+2 play a major role in the acyclicity constraint because if we control
them, then we control the number of edges between X and the sets Y \in R\prime . To obtain
this control, we prove in particular that if there exists Y \in R\prime such that X \cup Y is a
forest, then | X+2| \leqslant 2mim(A) where mim(A) is the size of an induced matching in
the bipartite graph between A and A. Consequently, the size of X+2 must be small,
otherwise the partial solution X can be discarded.

We need also a new notion of representativity. We say that \scrA  \star R\prime -ac-represents a
set\scrA if, for all sets Y \in R\prime , we have bestacy(\scrA , Y ) = bestacy(\scrA  \star , Y ) where bestacy(\scrB , Y )
is the minimum weight of a set X \in \scrB such that G[X \cup Y ] is a tree.

As for the R\prime -representativity, we provide a function that, given a set of partial
solutions \scrA and a 2-neighbor equivalence class R\prime of A, outputs a small subset \scrA  \star of
\scrA that R\prime -ac-represents \scrA . Unfortunately, we were not able to upper bound the size
of \scrA  \star by a polynomial in n and s-necd(\scrL ) (for some constant d). Instead, we prove
that, for clique-width, rank-width, \BbbQ -rank-width, and mim-width, the size of \scrA  \star can
be upper bounded by, respectively, 2O(k) \cdot n, 2O(k2) \cdot n, 2O(k log(k)) \cdot n, and nO(k).
The key to compute \scrA  \star is to decompose \scrA into a small number of sets \scrA 1 . . . ,\scrA \ell ,
called R\prime -consistent, where the notion of R\prime -ac-representativity matches the notion of
R\prime -representativity. More precisely, any R\prime -representative set of an R\prime -consistent set
\scrA is also an R\prime -ac-representative set of \scrA .
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To compute an R\prime -ac-representative set of \scrA it is then enough to compute an
R\prime -representative set for each R\prime -consistent set in the decomposition of \scrA . The union
of these R\prime -representative sets is an R\prime -ac-representative set of \scrA . Besides the notion
of representativity, the algorithm for the AC variant of Dominating Set is very
similar to the one for finding a minimum connected dominating set.

It is worth noticing that we cannot use the same trick as in [9] to ensure the
acyclicity, that is, counting the number of edges induced by the partial solutions.
Indeed, we would need to differentiate at least nk partial solutions (for any parameter
k considered in Table 1) in order to update this information. We give more explanation
on this statement at the beginning of section 6.

For Max Cut, we use the n-neighbor equivalence, with n the number of vertices
of G. For every X,W \subseteq A, we prove that if X and W are n-neighbor equivalent over
A, then, for every Y \subseteq A, the number of edges between X and Y are the same as the
number of edges between W and Y . It follows that if the number of edges between X
and A \setminus X is greater than the number of edges between W and A \setminus W , then X \cup Y is
a better solution than W \cup Y for every Y \subseteq A. Consequently, it is sufficient to keep a
partial solution for each n-neighbor equivalence class over A. This observation leads
to an s-necn(\scrL )O(1) \cdot nO(1) time algorithm for Max Cut.

Relation to previous works. One general question in parameterized complex-
ity is, given a function f : \BbbN \rightarrow \BbbN and a parameter k, to identify problems which
admit algorithms running in time f(k) \cdot nO(1) for any input of size n (or nf(k) if the
problem is known to be W [i]-hard for some i \geq 1), and the literature on parameter-
ized complexity is full of exemplified functions and problems (see, for instance, the
book [14] with a bunch of upper and lower bounds on running times of algorithms,
under (S)ETH). Among the exemplified functions, the one [k \mapsto \rightarrow 2O(k)] is probably
the most considered one, maybe because it allows us to solve efficiently the same
problems in instances whose parameters are logarithmic in their sizes. Indeed, there
are a lot of problems, parameterized by tree-width or clique-width, that were identi-
fied to admit algorithms running in time 2O(k) \cdot nO(1) and that are essentially tight
under ETH (see, for instance, [12, 14]). The authors of [6] and [9] pushed further
this set of problems by showing that many problems with connectivity or acyclicity
constraints admit also 2O(k) \cdot nO(1) time algorithms, parameterized by tree-width or
clique-width. We can transform in polynomial time a decomposition of clique-width
k into a layout of d-neighbor-width at most 2kd (Theorem 2.3 and Lemma 3.3), and
given a vertex separator S of size k, the number of d-neighbor equivalence classes over
S (resp., V (G) \setminus S) is upper bounded by 2k (resp., (d+ 1)k). For this reason, we can
consider our framework as a generalization of the rank-based approach considered in
[6] and [9] as it allows us to consider more parameters and push further the set of
problems that can be solved efficiently, under ETH, when considering these parame-
ters, for instance, mim-width and rank-width. Notice, however, that the constants in
the running times of the algorithms in [6, 9] are better than those of our algorithms.
For instance, the authors in [6] obtained a 15k \cdot 2(\omega +1)\cdot k \cdot kO(1) \cdot n time algorithm for
Feedback Vertex Set, while in this paper, we design a 54k \cdot 22(\omega +1)\cdot k \cdot n4 time
algorithm for this latter problem. Indeed, our approach is based on a more general
parameter and is optimized for neither tree-width nor clique-width. Even though
the use of partitions can be considered as a formalism in [6] and [9], our framework
avoids naturally the use of partitions. We prove that for connected and/or acyclic
constraints, classifying the partial solutions with respect to their d-neighborhoods,
for some d \geq 1 depending on the considered problem, is enough to show that, if M
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is a binary matrix whose rows are the partial solutions computed so far, and its col-
umns are the possible extensions of the partial solutions into complete solutions, any
minimum (or maximum) weighted basis of M is a representative set. We moreover
prove that one can indeed compute a minimum (or maximum) weighted basis of size
bounded by a polynomial on the number of 1-neighborhoods for connectivity con-
straints (see Theorem 4.3). For acyclicity constraints, we prove a bound polynomial
on the number of 2-neighborhoods and linear in a parameter \scrN f that depends on the
considered graph parameter f (see Theorem 6.12). Consequently, the definitions of
the dynamic programming tables and the computational steps of our algorithms are
simpler than those in [6, 9] and are almost the same as the ones given in [12], except
for the fact we call the reduce function in addition at each step. This is particularly
true for Feedback Vertex Set where the use of weighted partitions to encode the
partial solutions in [6] takes care of many technical details concerning the acyclicity.

The results we obtain simplify the 2O(k2) \cdot nO(1) time algorithm parameterized
by rank-width for Feedback Vertex Set from [21] and the nO(k) time algorithms
parameterized by mim-width for Feedback Vertex Set and Longest Induced
Path from [27, 28]. We also notice that contrary to the algorithm for Max Cut
(and its variants) given in [17, 18, 19], there is no need to assume that the graph
is given with a clique-width expression as our algorithm can be parameterized by
\BbbQ -rank-width, which is always smaller than clique-width and for which also a fast
fixed-parameter tractable (FPT) (3k + 1)-approximation algorithm exists [33, 34].

Concerning mim-width, we provide unified polynomial time algorithms for the
considered problems for all well-known graph classes having bounded mim-width and
for which a layout of bounded mim-width can be computed in polynomial time [4]
(e.g., interval graphs, circular arc graphs, permutation graphs, Dilworth-k graphs, and
k-polygon graphs for all fixed k). Notice that we also generalize one of the results from
[31] proving that the Connected Vertex Cover problem is solvable in polynomial
time for circular arc graphs.

It is worth noticing that the approach used in [15] called Cut \& Count can also
be generalized to the d-neighbor-width for any Connected (\sigma , \rho )-dominating set
problem with more or less the same arguments used in this paper (see the Ph.D.
thesis [5, Theorem 4.66]). However, it is not clear how to generalize the Cut \& Count
approach to solve the acyclic variants of the Connected (\sigma , \rho )-dominating set
problems with the width measures considered in this paper.

Organization of this paper. We give some general definitions and notations in
section 2 and present the d-neighbor equivalence relation in section 3. The framework
based on the 1-neighbor equivalence relation is given in section 4. The applications
to connectivity and acyclicity constraints on (\sigma , \rho )-Dominating Set problems are
given in sections 5 and 6. The algorithms concerning Max Cut and variants are
given in section 7. In section 8, we explain how to use our framework for solving
locally checkable partitioning problems with multiple global constraints. Finally, we
conclude with some open questions and by giving some examples of problems which
might be interesting to tackle with the help of the d-neighbor equivalence relation in
section 9.

2. Preliminaries. We denote by \BbbN the set of nonnegative integers and by \BbbN +

the set \BbbN \setminus \{ 0\} . Let V be a finite set. The size of a set V is denoted by | V | and its
power set is denoted by 2V . A set function f : 2V \rightarrow \BbbN is symmetric if, for all S \subseteq V ,
we have f(S) = f(V \setminus S). We write A \setminus B for the set difference of A from B. We let
min(\emptyset ) := +\infty and max(\emptyset ) :=  - \infty .
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1888 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

Graphs. Our graph terminology is standard and we refer to [16]. The vertex set
of a graph G is denoted by V (G) and its edge set by E(G). All the graphs considered
in this paper are node-weighted, and for all of them, we denote by w : V (G) \rightarrow \BbbQ the
weight function. For every X \subseteq V (G), we denote by w(X) the sum

\sum 
x\in X w(x) and

we consider that w(\emptyset ) = 0.
For every vertex set X \subseteq V (G), when the underlying graph is clear from context,

we denote by X the set V (G) \setminus X. An edge between two vertices x and y is denoted
by xy or yx. The set of vertices that are adjacent to x is denoted by NG(x). For a set
U \subseteq V (G), we define NG(U) := (\cup x\in UNG(x)) \setminus U . If the underlying graph is clear,
then we may remove G from the subscript.

The subgraph of G induced by a subsetX of its vertex set is denoted by G[X]. For
two disjoint subsets X and Y of V (G), we denote by G[X,Y ] the bipartite graph with
vertex set X \cup Y and edge set \{ xy \in E(G) : x \in X and y \in Y \} . Moreover, we write
E(X,Y ) to denote the set E(G[X,Y ]) and we denote by MX,Y the adjacency matrix
between X and Y , i.e., the (X,Y )-matrix such that MX,Y [x, y] = 1 if y \in N(x) and
0 otherwise. When X or Y is empty, MX,Y is the empty matrix and E(X,Y ) = \emptyset .

A matching is a set of edges having no common endpoint and an induced matching
is a matching M where every pair of edges of M do not have a common adjacent edge
in G. The size of an induced matching M refers to the number of edges in M .

For two subsets \scrA and \scrB of 2V (G), we define the merging of \scrA and \scrB , denoted by
\scrA \otimes \scrB , as \scrA \otimes \scrB := \{ X \cup Y : X \in \scrA and Y \in \scrB \} . Observe that \scrA \otimes \scrB = \emptyset whenever
\scrA = \emptyset or \scrB = \emptyset .

For a graph G, we denote by cc(G) the partition \{ V (C) : C is a connected
component of G\} . Let X \subseteq V (G). A consistent cut of X is an ordered bipartition
(X1, X2) of X such that N(X1) \cap X2 = \emptyset . We denote by ccut(X) the set of all
consistent cuts of X. In our proofs, we use the following facts.

Fact 2.1. Let X \subseteq V (G). For every C \in cc(G[X]) and every (X1, X2) \in 
ccut(X), we have either C \subseteq X1 or C \subseteq X2.

We deduce from the above fact that | ccut(X)| = 2| cc(G[X])| .

Fact 2.2. Let X and Y be two disjoint subsets of V (G). We have (W1,W2) \in 
ccut(X \cup Y ) if and only if the following conditions are satisfied:

1. (W1 \cap X,W2 \cap X) \in ccut(X),
2. (W1 \cap Y,W2 \cap Y ) \in ccut(Y ), and
3. N(W1 \cap X) \cap (W2 \cap Y ) = \emptyset and N(W2 \cap X) \cap (W1 \cap Y ) = \emptyset .

Rooted layout. A rooted binary tree is a binary tree with a distinguished vertex
called the root. Since we manipulate at the same time graphs and trees representing
them, the vertices of trees will be called nodes.

A rooted layout of G is a pair \scrL = (T, \delta ) of a rooted binary tree T and a bijective
function \delta between V (G) and the leaves2 of T .

For each node x of T , let Lx be the set of all the leaves l of T such that the path
from the root of T to l contains x. We denote by V \scrL 

x the set of vertices that are in
bijection with Lx, i.e., V

\scrL 
x := \{ v \in V (G) : \delta (v) \in Lx\} . When \scrL is clear from the

context, we may remove \scrL from the superscript. Observe that every rooted layout of
an n-vertex graph has 2n - 1 nodes.

All the width measures dealt with in this paper are special cases of the following
one, the difference being in each case the used set function. Given a set function

2When | V (G)| = 1 the only rooted layout of G is an isolated vertex that is considered as a leaf.
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1889

f : 2V (G) \rightarrow \BbbN and a rooted layout \scrL = (T, \delta ), the f-width of a node x of T is f(V \scrL 
x )

and the f-width of (T, \delta ), denoted by f(T, \delta ) (or f(\scrL )), is max\{ f(V \scrL 
x ) : x \in V (T )\} .

Finally, the f-width of G is the minimum f-width over all rooted layouts of G.

Clique-width/Module-width. We will not define clique-width but define its
equivalent measure module-width [36]. The module-width of a graph G is the mw-
width where mw(A) is the cardinality of \{ N(v) \cap A : v \in A\} for all A \subseteq V (G). One
also observes that mw(A) is the number of different rows in MA,A. The following
theorem shows the link between module-width and clique-width.

Theorem 2.3 (see [36, Theorem 6.6]). For every n-vertex graph G, mw(G) \leqslant 
cw(G) \leqslant 2mw(G), where cw(G) denotes the clique-width of G. One can moreover
translate, in time at most O(n2), a given decomposition into the other one with width
at most the given bounds.

(\BbbQ -)rank-width. The rank-width and \BbbQ -rank-width are, respectively, the rw-
width and rw\BbbQ -width where rw(A) (resp., rw\BbbQ (A)) is the rank over GF (2) (resp., \BbbQ )
of the matrix MA,A for all A \subseteq V (G).

mim-width. The mim-width of a graph G is the mim-width of G where mim(A)
is the size of a maximum induced matching of the graph G[A,A] for all A \subseteq V (G).

It is worth noticing that module-width is the only parameter associated with a
set function that is not symmetric.

The following lemma provides some upper bounds between mim-width and the
other parameters that we use in section 6. All of these upper bounds are proved in
[40].

Lemma 2.4 (see [40]). Let G be a graph. For every A \subseteq V (G), mim(A) is upper
bounded by mw(A), rw(A), and rw\BbbQ (A).

Proof. Let A \subseteq V (G). It is clear that mim(A) is upper bounded by the number of
different rows in MA,A, so mim(A) \leqslant mw(A). Let S be the vertex set of a maximum

induced matching of the graph G[A,A]. Observe that the restriction of the matrix
MA,A to rows and columns in S is the identity matrix. Hence, mim(A) is upper
bounded by both rw(A) and rw\BbbQ (A).

3. The \bfitd -neighbor equivalence. Let G be a graph. The following definition
is from [12]. Let A \subseteq V (G) and d \in \BbbN +. Two subsets X and Y of A are d-neighbor
equivalent over A, denoted by X \equiv A

d Y , if min(d, | X \cap N(u)| ) = min(d, | Y \cap N(u)| )
for all u \in A. It is not hard to check that \equiv A

d is an equivalence relation. See Figure
1 for an example of 2-neighbor equivalent sets.

A A

X

Y

Fig. 1. We have X \equiv A
2 Y , but it is not the case that X \equiv A

3 Y .
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1890 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

For all d \in \BbbN +, we let necd : 2V (G) \rightarrow \BbbN where, for all A \subseteq V (G), necd(A) is the
number of equivalence classes of \equiv A

d . Notice that while nec1 is a symmetric function
[29, Theorem 1.2.3], necd is not necessarily symmetric for d \geq 2. For example, if a
vertex x of G has c neighbors, then, for every d \in \BbbN +, we have necd(\{ x\} ) = 2 and
necd(\{ x\} ) = 1 + min(d, c). It is worth noticing that, for all d \in \BbbN + and A \subseteq V (G),
necd(A) and necd(A) are at most nec1(A)d log2(nec1(A)) [12].

The following fact follows directly from the definition of the d-neighbor equiva-
lence relation. We use it several times in our proofs.

Fact 3.1. Let A,B \subseteq V (G) such that A \subseteq B and let d \in \BbbN +. For all X,Y \subseteq A,
if X \equiv A

d Y , then X \equiv B
d Y .

In order to manipulate the equivalence classes of \equiv A
d , one needs to compute a rep-

resentative for each equivalence class in polynomial time. This is achieved with the
following notion of a representative. Let G be a graph with an arbitrary ordering of
V (G) and let A \subseteq V (G). For each X \subseteq A, let us denote by repAd (X) the lexicograph-
ically smallest set R \subseteq A among all R \equiv A

d X of minimum size. Moreover, we denote
by \scrR A

d the set \{ repAd (X) : X \subseteq A\} . It is worth noticing that the empty set always

belongs to \scrR A
d for all A \subseteq V (G) and d \in \BbbN +. Moreover, we have \scrR V (G)

d = \scrR \emptyset 
d = \{ \emptyset \} 

for all d \in \BbbN +. In order to compute \scrR A
d , we use the following lemma.

Lemma 3.2 (see [12]). Let G be an n-vertex graph. For every A \subseteq V (G) and
d \in \BbbN +, one can compute in time O(necd(A)\cdot n2 \cdot log(necd(A))) the sets \scrR A

d and a data
structure that, given a set X \subseteq A, computes repAd (X) in time O(| A| \cdot n \cdot log(necd(A))).

\bfitd -neighbor-width. For every graph G and d \in \BbbN +, the d-neighbor-width is the
parameter obtained through the symmetric function s-necd : 2V (G) \rightarrow \BbbN such that

s-necd(A) = max(necd(A), necd(A)).

The following lemma shows how the d-neighbor-width is upper bounded by the
other parameters; most of the upper bounds were already proved in [4, 33].

Lemma 3.3 (see [4, 33, 40]). Let G be a graph. For every A \subseteq V (G) and d \in \BbbN +,
we have the following upper bounds on necd(A) and necd(A):

(a) (d+ 1)mw(A),

(b) 2d\cdot rw(A)2 ,

(c) (d \cdot rw\BbbQ (A) + 1)rw\BbbQ (A),
(d) nd\cdot mim(A).

Proof. The first upper bound was proved in [40, Lemma 5.2.2]. The second
upper bound was implicitly proved in [40] and is due to the fact that necd(A) \leqslant 
mw(A)d\cdot mim(A) [40, Lemma 5.2.3]. Sincemim(A) \leqslant rw(A) by Lemma 2.4 andmw(A) \leqslant 
2rw(A) [34], we deduce that necd(A) \leqslant 2d\cdot rw(A)2 . The third upper bound was proved
in [33, Theorem 4.2]. The fourth was proved in [4, Lemma 2].

Lemma 3.3 implies the following.

Corollary 3.4. If there exists an algorithm that, given an n-vertex graph G and
a rooted layout \scrL of G, solves a problem \Pi on G in time s-necc(\scrL )O(1) \cdot nO(1) for some
constant c, then \Pi is decidable on G within the following running times:

\bullet 2O(mw(\scrL )) \cdot nO(1),
\bullet rw\BbbQ (G)O(rw\BbbQ (G)) \cdot nO(1),

\bullet 2O(rw(G)2) \cdot nO(1),
\bullet nO(mim(\scrL )).

Observe that the running times given in Corollary 3.4 for rank-width and \BbbQ -
rank-width use the width of the input graph and not the width of the rooted layout.

D
ow

nl
oa

de
d 

03
/2

5/
22

 to
 1

29
.1

77
.1

69
.2

28
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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This follows from the fact that, given a graph G, we can compute a rooted layout of
rank-width 3rw(G)+1 (resp., \BbbQ -rank width 3rw\BbbQ (G)+1) in time 2O(rw(G)) \cdot n3 (resp.,
2rw\BbbQ (G) \cdot nO(1)) [33, 34].

To deal with theMax Cut problem and the acyclic variants of (\sigma , \rho )-Dominating
Set problems, we use the n-neighbor equivalence with n being the number of ver-
tices of the input graph. For both problems, we use the following property of the
n-neighbor equivalence.

Lemma 3.5. Let G be a graph and A \subseteq V (G). For all X,W \subseteq A such that
X \equiv A

n W and for every Y \subseteq A, we have | E(X,Y )| = | E(W,Y )| .
Proof. Let X,W \subseteq A such that X \equiv A

n W . Observe that, for every v \in A, we
have min(n, | N(v) \cap X| ) = | N(v) \cap X| . We deduce that, for every v \in A, we have
| N(v) \cap X| = | N(v) \cap W | . Thus, for every Y \subseteq A, we have

| E(X,Y )| =
\sum 
v\in Y

| N(v) \cap X| =
\sum 
v\in Y

| N(v) \cap W | = | E(W,Y )| .

For the acyclic variants of (\sigma , \rho )-Dominating Set problems, we use the n-
neighbor equivalence over vertex sets of small size. Given an integer t \in \BbbN , a graph
G, and A \subseteq V (G), we denote by nec\leqslant t

n (A) the number of equivalence classes gener-
ated by the n-neighbor equivalence over the set \{ X \subseteq A : | X| \leqslant t\} . To deduce the
algorithmic consequences on rank-width and \BbbQ -rank-width of our algorithm, we need
the following upper bounds on nec\leqslant t

n (A).

Lemma 3.6. Let G be a graph. For every A \subseteq V (G), nec\leqslant t
n (A) is upper bounded

by (t+ 1)rw\BbbQ (A), (t+ 1)mw(A), and 2t\cdot rw(A).

Proof. We start by proving that | nec\leqslant t
n (A)| \leqslant (t + 1)rw\BbbQ (A). Observe that this

inequality was implicitly proved in [33, Theorem 4.2] and that we use the same
arguments here. For X \subseteq A, let \sigma (X) be the vector corresponding to the sum
over \BbbQ of the row vectors of MA,A corresponding to X. Observe that, for every

X,W \subseteq A, we have X \equiv A
n W if and only if \sigma (X) = \sigma (W ). Hence, we have

nec\leqslant t
n (A) = | \{ \sigma (X) : X \subseteq A \wedge | X| \leqslant t\} | .
Let C be a set of rw\BbbQ (A) linearly independent columns of MA,A. Since the

rank over \BbbQ of MA,A is rw\BbbQ (A), every linear combination of row vectors of MA,A is
completely determined by its entries in C. For every X \subseteq A, the values in \sigma (X) are
between 0 and t. Hence, we conclude that nec\leqslant t

n (A) = | \{ \sigma (X) : X \subseteq A \wedge | X| \leqslant 
t\} | \leqslant (t+1)rw\BbbQ (A). Since mw(A) corresponds to the number of different rows in MA,A,

we have rw\BbbQ (A) \leqslant mw(A). Thus, we have nec\leqslant t
n (A) \leqslant (t+ 1)mw(A).

Concerning rank-width, since there are at most 2rw(A) different rows in the matrix
MA,A, we conclude that nec\leqslant t

n (A) \leqslant 2t\cdot rw(A).

For the algorithms in section 6, we use the n-neighbor equivalence over sets of
size at most 2mim(A), so we do not need any upper bounds on nec\leqslant t

n (A) in function of
mim-width as it is trivially upper bounded by n2mim(A). Moreover, for module-width,
we will use another fact to get the desired running time.

It is worth noticing that upper bounds (b) and (c) of Lemma 3.3 are implied by
Lemma 3.6 and the fact that, for every d \in \BbbN and A \subseteq V (G), a representative of
minimum size of a d-neighbor equivalence class over A has size at most d \cdot rw\BbbQ (A) and
d \cdot rw(A) [12, 33].

For Max Cut, we use the n-neighbor equivalence over sets of arbitrary size. In
particular, we use the following property of this equivalence relation.
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Fact 3.7. Let A \subseteq V (G). For every X,W \subseteq A such that X \equiv A
n W , we have

A \setminus X \equiv A
n A \setminus W .

Proof. Let X,W \subseteq A such that X \equiv A
n W and let v be a vertex of A. We have

| N(v) \cap A| = | N(v) \cap X| + | N(v) \cap (A \setminus X)| .

As X \equiv A
n W , by Lemma 3.5, we have | N(v) \cap X| = | N(v) \cap W | . We deduce that

| N(v) \cap A|  - | N(v) \cap W | = | N(v) \cap (A \setminus X)| .

Since | N(v)\cap A|  - | N(v)\cap W | = | N(v)\cap (A\setminus W )| , we conclude that | N(v)\cap (A\setminus X)| =
| N(v) \cap (A \setminus W )| . As this equality holds for every v \in A, we can conclude that
A \setminus X \equiv A

n A \setminus W .

The following lemma provides some upper bound on necn(A) and necn(A).

Lemma 3.8. Let G be an n-vertex graph. For every A \subseteq V (G), we have the
following upper bounds on necn(A) and necn(A):

(a) nmw(A), (b) nrw\BbbQ (A), (c) n2rw(A)

.

Proof. Let A \subseteq V (G). If A = V (G), then obviously we have necn(A) = 1.
Otherwise, we have necn(A) = nec\leqslant n - 1

n (A) and by Lemma 3.6, we conclude that
necn(A) \leqslant nrw\BbbQ (A).

Since rw\BbbQ (A) \leqslant mw(A) (see the previous proof), we deduce that necn(A) \leqslant 
nmw(A). Moreover, as any binary matrix M of rank k over GF (2) has at most 2k

different rows, we have mw(A) \leqslant 2rw(A). Thus, we conclude that necn(A) \leqslant n2rw(A)

.
These upper bounds on necn(A) hold also on necn(A) because rw\BbbQ and rw are sym-
metric functions.

Observe that the upper bounds of Lemma 3.8 are almost tight, that is, for every
k \in \BbbN , we prove in the appendix that there exists a graph G and A \subseteq V (G) such that

rw(A) = k + 1, mw(A) = rw\BbbQ (A) = 2k, and necn(A) \in (n/2k  - 1)2
k

.
Lemma 3.8 has the following consequences.

Corollary 3.9. If there exists an algorithm that, given a graph G and a rooted
layout \scrL of G, solves a problem \Pi on G in time s-necn(\scrL )O(1) \cdot nO(1) for some constant
c, then \Pi is decidable on G within the following running times:

\bullet nO(mw(G)), \bullet nO(rw\BbbQ (G)), \bullet n2O(rw(G))

.

It is worth noticing that the running time given by Corollary 3.9 for module-width
depends on the width of the graph. This is due to the facts that, for every graph G,
we have rw\BbbQ (G) \leqslant mw(G) [33, Theorem 3.6] and we can compute a rooted layout of
G of \BbbQ -rank-width at most 3rw\BbbQ (G) + 1 in time 2O(rw\BbbQ (G)) \cdot nO(1) [33, Theorem 3.1].

4. Representative sets. In the following, we fix G an n-vertex graph, (T, \delta ) a
rooted layout of G, and w : V (G) \rightarrow \BbbQ a weight function over the vertices of G.

In this section, we define a notion of representativity between sets of partial solu-
tions for the connectivity. Our notion of representativity is defined w.r.t. some node
x of T and the 1-neighbor equivalence class of some set R\prime \subseteq Vx. In our algorithms,

R\prime will always belong to \scrR Vx

d for some d \in \BbbN +. Our algorithms compute a set of

partial solutions for each R\prime \in \scrR Vx

d . The partial solutions computed for R\prime will be
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1893

completed with sets d-neighbor equivalent to R\prime over Vx. Intuitively, the R\prime 's repre-
sent some expectation about how we will complete our sets of partial solutions. For
the connectivity and the domination, d = 1 is enough but if we need more information
for some reason (for example, the (\sigma , \rho )-domination or the acyclicity), we may take
d > 1. This is not a problem as the d-neighbor equivalence class of R\prime is included in
the 1-neighbor equivalence class of R\prime . Hence, in this section, we fix a node x of T and
a set R\prime \subseteq Vx to avoid to overloading the statements by the sentence ``let x be a node
of T and R\prime \subseteq Vx."" We let opt \in \{ min,max\} ; if we want to solve a maximization (or
minimization) problem, we use opt = max (or opt = min). We use it also, as here, in
the next sections.

We recall that two subsets Y,W of Vx are 1-neighbor equivalent over Vx if they
have the same neighborhood in Vx, i.e., N(Y ) \cap Vx = N(W ) \cap Vx.

Definition 4.1 ((x,R\prime )-representativity). Given a weight function w : V (G) \rightarrow 
\BbbQ , for every \scrA \subseteq 2V (G) and Y \subseteq V (G), we define

best(\scrA , Y ) := opt\{ w(X) : X \in \scrA and G[X \cup Y ] is connected \} .

Let \scrA ,\scrB \subseteq 2Vx . We say that \scrB (x,R\prime )-represents \scrA if, for every Y \subseteq Vx such that

Y \equiv Vx
1 R\prime , we have best(\scrA , Y ) = best(\scrB , Y ).

When \scrA = \emptyset or there is no X \in \scrA such that G[X \cup Y ] is connected, we have
best(\scrA , Y ) = opt(\emptyset ) and this equals  - \infty if opt = max or +\infty when opt = min.

Notice that the (x,R\prime )-representativity is an equivalence relation. The set \scrA is
meant to represent a set of partial solutions of G[Vx] which have been computed. We
expect to complete these partial solutions with partial solutions of G[Vx] which are
1-neighbor equivalent to R\prime over Vx. If \scrB (x,R\prime )-represents \scrA , then we can safely
substitute \scrA by \scrB because the quality of the output of the dynamic programming

algorithm will remain the same. Indeed, for every subset Y of Vx such that Y \equiv Vx
1 R\prime ,

the optimum solutions obtained by the union of a partial solution in \scrA and Y will
have the same weight as the optimum solution obtained from the union of a set in \scrB 
and Y .

The next theorem presents the main tool of our framework: a function reduce
that, given a set of partial solutions \scrA , outputs a subset of \scrA that (x,R\prime )-represents
\scrA and whose size is upper bounded by s-nec1(\scrL )2. To design this function, we use
ideas from the rank-based approach of [9]. That is, we define a small matrix \scrC with
| \scrA | rows and s-nec1(Vx)

2 columns. Then, we show that a basis of maximum weight
of the row space of \scrC corresponds to an (x,R\prime )-representative set of \scrA . Since \scrC has
s-nec1(\scrL )2 columns, the size of a basis of \scrC is smaller than s-nec1(\scrL )2. To compute this
basis, we use the following lemma. The constant \omega denotes the matrix multiplication
exponent, which is known to be strictly less than 2.3727 due to [41].

Lemma 4.2 (see [9]). Let M be a binary n \times m-matrix with m \leqslant n and let
w : \{ 1, . . . , n\} \rightarrow \BbbQ be a weight function on the rows of M . Then, one can find a basis
of maximum (or minimum) weight of the row space of M in time O(nm\omega  - 1).

In order to compute a small (x,R\prime )-representative set of a set \scrA \subseteq 2Vx , the
following theorem requires that the sets in \scrA are pairwise 1-neighbor equivalent over
Vx. This is useful since in our algorithm we classify our sets of partial solutions with
respect to this property. We need this to guarantee that the partial solutions computed
for R\prime will be completed with sets d-neighbor equivalent to R\prime over Vx. However, if
one wants to compute a small (x,R\prime )-representative set of a set \scrA that does not
respect this property, then it is enough to compute an (x,R\prime )-representative set for
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1894 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

each 1-neighbor equivalence class of \scrA . The union of these (x,R\prime )-representative sets
is an (x,R\prime )-representative set of \scrA .

Theorem 4.3. Let R \in \scrR Vx
1 and R\prime \subseteq Vx. Then, there exists an algorithm

reduce that, given \scrA \subseteq 2Vx such that X \equiv Vx
1 R for all X \in \scrA , outputs in time

O(| \scrA | \cdot nec1(Vx)
2(\omega  - 1) \cdot n2) a subset \scrB \subseteq \scrA such that \scrB (x,R\prime )-represents \scrA and

| \scrB | \leqslant nec1(Vx)
2.

Proof. We assume without loss of generality (w.l.o.g.) that opt = max; the proof

is symmetric for opt = min. First, we suppose that R\prime \equiv Vx
1 \emptyset . Observe that, for every

Y \equiv Vx
1 \emptyset , we have N(Y ) \cap Vx = N(\emptyset ) \cap Vx = \emptyset . It follows that, for every Y \subseteq Vx

such that Y \equiv Vx
1 \emptyset and Y \not = \emptyset , G[X \cup Y ] cannot be connected for any \emptyset \not = X \in \scrA ,

and thus we have best(\scrA , Y ) = 0 if \emptyset \in \scrA and G[Y ] is connected, or  - \infty otherwise.
Moreover, we have best(\scrA , \emptyset ) = max\{ w(X) : X \in \scrA and G[X] is connected\} . Note
that we consider the empty graph G[\emptyset ] to be connected and we have w(\emptyset ) = 0. Hence,

if R\prime \equiv Vx
1 \emptyset , then it is sufficient to return a set \scrB constructed as follows: if \scrA contains

a set inducing a connected graph, we add to \scrB a set in \scrA of maximum weight that
induces a connected graph and if \emptyset \in \scrA , we add the empty set to \scrB .

Assume from now on that R\prime is not 1-neighbor equivalent to \emptyset over Vx. Let

X \in \scrA . If there exists C \in cc(G[X]) such that N(C)\cap R\prime = \emptyset , then, for all Y \equiv Vx
1 R\prime ,

we have N(C)\cap Y = \emptyset . Moreover, as R\prime is not 1-neighbor equivalent to \emptyset over Vx, we

have Y \not = \emptyset . Consequently, for every Y \equiv Vx
1 R\prime , the graph G[X \cup Y ] is not connected.

We can conclude that \scrA \setminus \{ X\} (x,R\prime ) represents \scrA . Thus, we can safely remove from
\scrA all such sets and this can be done in time | \scrA | \cdot n2. From now on, we may assume
that, for all X \in \scrA and for all C \in cc(G[X]), we have N(C) \cap R\prime \not = \emptyset . It is worth
noticing that if R = \emptyset or more generally N(R) \cap R\prime = \emptyset , then by assumption, \scrA = \emptyset .

Indeed, ifN(R)\cap R\prime = \emptyset , then, for everyX \in \scrA , we haveN(X)\cap R\prime = N(R)\cap R\prime =
\emptyset and in particular, for every C \in cc(G[X]), we have N(C) \cap R\prime = \emptyset (and we have
assumed that no such set exists in \scrA ).

Symmetrically, if for some Y \subseteq Vx there exists C \in cc(G[Y ]) such thatN(C)\cap R =
\emptyset , then, for every X \in \scrA , the graph G[X\cup Y ] is not connected. Let \scrD be the set of all

subsets Y of Vx such that Y \equiv Vx
1 R\prime and, for all C \in cc(G[Y ]), we have N(C)\cap R \not = \emptyset .

Notice that the sets in 2Vx \setminus \scrD do not matter for the (x,R\prime )-representativity.
For every Y \in \scrD , we let vY be one fixed vertex of Y . In the following, we

denote by R the set \{ (R\prime 
1, R

\prime 
2) \in \scrR Vx

1 \times \scrR Vx
1 \} . Let \scrM , \scrC , and \scrC be, respectively, an

(\scrA ,\scrD )-matrix, an (\scrA ,R)-matrix, and an (R,\scrD )-matrix such that

\scrM [X,Y ] :=

\Biggl\{ 
1 if G[X \cup Y ] is connected,

0 otherwise.

\scrC [X, (R\prime 
1, R

\prime 
2)] :=

\Biggl\{ 
1 if \exists (X1, X2)\in \sansc \sansc \sansu \sanst (X) such that N(X1)\cap R\prime 

2 = \emptyset and N(X2)\cap R\prime 
1 = \emptyset ,

0 otherwise.

\scrC [(R\prime 
1, R

\prime 
2), Y ] :=

\Biggl\{ 
1 if \exists (Y1, Y2) \in \sansc \sansc \sansu \sanst (Y ) such that vY \in Y1, Y1 \equiv Vx

1 R\prime 
1 and Y2 \equiv Vx

1 R\prime 
2,

0 otherwise.

Intuitively, \scrM contains all the information we need. In fact, a basis of maximum
weight of the row space of \scrM in GF (2) is an (x,R\prime )-representative set of \scrA . But, \scrM 
is too big to be computable efficiently. Instead, we prove that a basis of maximum
weight of the row space of \scrC is an (x,R\prime )-representative set of \scrA . This follows from the
fact that (\scrC \cdot \scrC )[X,Y ] equals the number of consistent cuts (W1,W2) in ccut(X \cup Y )
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1895

such that vY \in W1. That is, (\scrC \cdot \scrC )[X,Y ] = 2| cc(G[X\cup Y ])|  - 1. Consequently, \scrM =2 \scrC \cdot \scrC ,
where =2 denotes the equality in GF (2), i.e., (\scrC \cdot \scrC )[X,Y ] is odd if and only if G[X\cup Y ]
is connected. We deduce the running time of reduce and the size of reduce(\scrA ) from
the size of \scrC (i.e., | \scrA | \cdot nec1(Vx)

2).
We start by proving that \scrM =2 \scrC \cdot \scrC . Let X \in \scrA and Y \in \scrD . We want to prove

the following equality:

(\scrC \cdot \scrC )[X,Y ] =
\sum 

(R\prime 
1,R

\prime 
2)\in R

\scrC [X, (R\prime 
1, R

\prime 
2)] \cdot \scrC [(R\prime 

1, R
\prime 
2), Y ] = 2| cc(G[X\cup Y ])|  - 1.

We prove this equality with the following two claims.

Claim 4.4. We have \scrC [X, (R\prime 
1, R

\prime 
2)] \cdot \scrC [(R\prime 

1, R
\prime 
2), Y ] = 1 if and only if there exists

(W1,W2) \in ccut(X \cup Y ) such that vY \in W1, W1 \cap Y \equiv Vx
1 R\prime 

1, and W2 \cap Y \equiv Vx
1 R\prime 

2.

Proof. By definition, we have \scrC [X, (R\prime 
1, R

\prime 
2)] \cdot \scrC [(R\prime 

1, R
\prime 
2), Y ] = 1 if and only if

(a) \exists (Y1, Y2) \in ccut(Y ) such that vY \in Y1, Y1 \equiv Vx
1 R\prime 

1, Y2 \equiv Vx
1 R\prime 

2 and
(b) \exists (X1, X2) \in ccut(X) such that N(X1) \cap R\prime 

2 = \emptyset and N(X2) \cap R\prime 
1 = \emptyset .

Let (Y1, Y2) \in ccut(Y ) and (X1, X2) \in ccut(X) that satisfy, respectively, proper-

ties (a) and (b). By definition of \equiv Vx
1 , we haveN(X1)\cap Y2 = \emptyset becauseN(X1)\cap R\prime 

2 = \emptyset 
and Y2 \equiv Vx

1 R\prime 
2. Symmetrically, we have N(X2) \cap Y1 = \emptyset . By Fact 2.2, we deduce

that (X1 \cup Y1, X2 \cup Y2) \in ccut(X \cup Y ). This proves the claim.

Claim 4.5. Let (W1,W2) and (W \prime 
1,W

\prime 
2) \in ccut(X \cup Y ). We have W1 \cap Y \equiv Vx

1

W \prime 
1 \cap Y and W2 \cap Y \equiv Vx

1 W \prime 
2 \cap Y if and only if W1 = W \prime 

1 and W2 = W \prime 
2.

Proof. We start by an observation about the connected components of X \cup Y .
As Y \in \scrD , for all C \in cc(G[Y ]), we have N(C) \cap R \not = \emptyset . Moreover, by assumption,

for all C \in cc(G[X]), we have N(C) \cap R\prime \not = \emptyset . Since X \equiv Vx
1 R and Y \equiv Vx

1 R\prime , every
connected component of G[X \cup Y ] contains at least one vertex of X and one vertex
of Y .

Suppose that W1 \cap Y \equiv Vx
1 W \prime 

1 \cap Y and W2 \cap Y \equiv Vx
1 W \prime 

2 \cap Y . Assume toward a
contradiction that (W1,W2) \not = (W \prime 

1,W
\prime 
2). As these cuts are a bipartition of X \cup Y , we

deduce that W1 \not = W \prime 
1 and W2 \not = W \prime 

2. Since W1 \not = W \prime 
1, by Fact 2.1, we deduce that

there exists C \in cc(G[X\cup Y ]) such that either (1) C \subseteq W1 and C \subseteq W \prime 
2 or (2) C \subseteq W \prime 

1

and C \subseteq W2. We can assume w.l.o.g. that there exists C \in cc(G[X \cup Y ]) such that
C \subseteq W1 and C \subseteq W \prime 

2. From the above observation, C contains at least one vertex ofX
and one of Y and we have N(C\cap X)\cap (W1\cap Y ) \not = \emptyset and N(C\cap X)\cap (W \prime 

2\cap Y ) \not = \emptyset . But,
since W2\cap Y \equiv Vx

1 W \prime 
2\cap Y , we have N(C\cap X)\cap (W2\cap Y ) \not = \emptyset . This implies in particular

that N(W1)\cap W2 \not = \emptyset . It is a contradiction with the fact that (W1,W2) \in ccut(X\cup Y ).
The other direction being trivial we can conclude the claim.

Notice that Claim 4.5 implies that, for every (R\prime 
1, R

\prime 
2) \in R, there exists at most

one consistent cut (W1,W2) \in ccut(X \cup Y ) such that vY \in W1, W1 \cap Y \equiv Vx
1 R\prime 

1 and

W2 \cap Y \equiv Vx
1 R\prime 

2. We can thus conclude from these two claims that

(\scrC \cdot \scrC )[X,Y ] = | \{ (W1,W2) \in ccut(X \cup Y ) : vY \in W1\} | .

By Fact 2.1, we deduce that (\scrC \cdot \scrC )[X,Y ] = 2| cc(G[X\cup Y ])|  - 1 since every connected
component of G[X \cup Y ] that does not contain vY can be in both sides of a consistent
cut. Hence, (\scrC \cdot \scrC )[X,Y ] is odd if and only if | cc(G[X \cup Y ])| = 1. We conclude that
\scrM =2 \scrC \cdot \scrC .
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Let \scrB \subseteq \scrA be a basis of maximum weight of the row space of \scrC over GF (2). We

claim that \scrB (x,R\prime )-represents \scrA . Let Y \subseteq Vx such that Y \equiv Vx
1 R\prime . Observe that, by

definition of \scrD , if Y /\in \scrD , then best(\scrA , Y ) = best(\scrB , Y ) =  - \infty . Thus, it is sufficient
to prove that, for every Y \in \scrD , we have best(\scrA , Y ) = best(\scrB , Y ).

Let X \in \scrA and Y \in \scrD . Recall that we have proved that M [X,Y ] =2 (\scrC \cdot \scrC )[X,Y ].
Since \scrB is a basis of \scrC , there exists3 \scrB \prime \subseteq \scrB such that, for each (R\prime 

1, R
\prime 
2) \in R, we have

\scrC [X, (R\prime 
1, R

\prime 
2)] =2

\sum 
W\in \scrB \prime \scrC [W, (R\prime 

1, R
\prime 
2)]. Thus, we have the following equality:

\scrM [X,Y ] =2

\sum 
(R\prime 

1,R
\prime 
2)\in R

\scrC [X, (R\prime 
1, R

\prime 
2)] \cdot \scrC [(R\prime 

1, R
\prime 
2), Y ]

=2

\sum 
(R\prime 

1,R
\prime 
2)\in R

\Biggl( \sum 
W\in \scrB \prime 

\scrC [W, (R\prime 
1, R

\prime 
2)]

\Biggr) 
\cdot \scrC [(R\prime 

1, R
\prime 
2), Y ]

=2

\sum 
W\in \scrB \prime 

\left(  \sum 
(R\prime 

1,R
\prime 
2)\in R

\scrC [W, (R\prime 
1, R

\prime 
2)] \cdot \scrC [(R\prime 

1, R
\prime 
2), Y ]

\right)  
=2

\sum 
W\in \scrB \prime 

(\scrC \cdot \scrC )[W,Y ] =2

\sum 
W\in \scrB \prime 

\scrM [W,Y ].

If \scrM [X,Y ] = 1 (i.e., G[X \cup Y ] is connected), then there is an odd number of sets
W in \scrB \prime such that \scrM [W,Y ] = 1 (i.e., G[W \cup Y ] is connected). Hence, there exists at
least oneW \in \scrB \prime such that G[W\cup Y ] is connected. LetW \in \scrB \prime such that\scrM [W,Y ] = 1
and w(W ) is maximum. Assume toward a contradiction that w(W ) < w(X). Notice
that (\scrB \setminus \{ W\} ) \cup \{ X\} is also a basis of \scrC . Indeed, by definition of \scrB \prime , for every
(R\prime 

1, R
\prime 
2), we have \scrC [W, (R\prime 

1, R
\prime 
2)] =2 \scrC [X, (R\prime 

1, R
\prime 
2)]+

\sum 
Z\in \scrB \prime \setminus \{ W\} \scrC [Z, (R\prime 

1, R
\prime 
2)]. That

is, we can generate the row of W in \scrC with the rows of (\scrB \setminus \{ W\} ) \cup \{ X\} . As \scrB is a
basis of \scrC , we deduce that (\scrB \setminus \{ W\} )\cup \{ X\} is also a basis of \scrC . Since w(W ) < w(X),
the weight of the basis (\scrB \setminus \{ W\} )\cup \{ X\} is strictly greater than the weight of the basis
\scrB , yielding a contradiction. Thus, we have w(X) \leqslant w(W ). Hence, for all Y \in \scrD and
all X \in \scrA , if G[X \cup Y ] is connected, then there exists W \in \scrB such that G[W \cup Y ]
is connected and w(X) \leqslant w(W ). This is sufficient to prove that \scrB (x,R\prime )-represents
\scrA . Since \scrB is a basis, the size of \scrB is at most the number of columns of \scrC , thus,
| \scrB | \leqslant nec1(Vx)

2.
It remains to prove the running time. We claim that \scrC is computable in time

O(| \scrA | \cdot nec1(Vx)
2 \cdot n2) By Fact 2.1, \scrC [X, (R\prime 

1, R
\prime 
2)] = 1 if and only if, for each C \in 

cc(G[X]), we have either N(C) \cap R\prime 
1 = \emptyset or N(C) \cap R\prime 

2 = \emptyset . Thus, each entry of \scrC 
is computable in time O(n2). Since \scrC has | \scrA | \cdot | \scrR Vx

1 | 2 = | \scrA | \cdot nec1(Vx)
2 entries, we

can compute \scrC in time O(| \scrA | \cdot nec1(Vx)
2 \cdot n2). Furthermore, by Lemma 4.2, a basis of

maximum weight of \scrC can be computed in time O(| \scrA | \cdot nec1(Vx)
2(\omega  - 1)). We conclude

that \scrB can be computed in time O(| \scrA | \cdot nec1(Vx)
2(\omega  - 1) \cdot n2).

Now to boost up a dynamic programming algorithm P on some rooted layout
(T, \delta ) of G, we can use the function reduce to keep the size of the sets of partial
solutions bounded by s-nec1(T, \delta )

2. We call P \prime the algorithm obtained from P by
calling the function reduce at every step of computation. We can assume that the
set of partial solutions \scrA r computed by P and associated with the root r of (T, \delta )
contains an optimal solution (this will be the cases in our algorithms). To prove
the correctness of P \prime , we need to prove that \scrA \prime 

r (r, \emptyset )-represents \scrA r where \scrA \prime 
r is the

3Notice that \scrB \prime is unique because \scrB is a row basis of \scrC .
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1897

set of partial solutions computed by P \prime and associated with r. For doing so, we
need to prove that at each step of the algorithm the operations we use preserve the
(x,R\prime )-representativity. The following fact states that we can use the union without
restriction; it follows directly from Definition 4.1 of (x,R\prime )-representativity.

Fact 4.6. If \scrB and \scrD (x,R\prime )-represents, respectively, \scrA and \scrC , then \scrB \cup \scrD (x,R\prime )-
represents \scrA \cup \scrC .

The second operation we use in our dynamic programming algorithms is the merg-
ing operator \otimes . In order to safely use it, we need the following notion of compatibility
that just tells which partial solutions from Va and Vb can be joined to possibly form
a partial solution in Vx. (It was already used in [12] without naming it.)

Definition 4.7 (d-(R,R\prime )-compatibility). Suppose that x is an internal node of

T with a and b as children. Let d \in \BbbN + and R \in \scrR Vx

d . We say that (A,A\prime ) \in \scrR Va

d \times \scrR Va

d

and (B,B\prime ) \in \scrR Vb

d \times \scrR Vb

d are d-(R,R\prime )-compatible if we have

\bullet A \cup B \equiv Vx

d R,

\bullet A\prime \equiv Va

d B \cup R\prime , and

\bullet B\prime \equiv Vb

d A \cup R\prime .

The d-(R,R\prime )-compatibility just tells which partial solutions from Va and Vb can
be joined to possibly form a partial solution in Vx.

Lemma 4.8. Suppose that x is an internal node of T with a and b as children.

Let d \in \BbbN + and R \in \scrR Vx

d . Let (A,A\prime ) \in \scrR Va

d \times \scrR Va

d and (B,B\prime ) \in \scrR Vb

d \times \scrR Vb

d that are

d-(R,R\prime )-compatible. Let \scrA \subseteq 2Va such that, for all X \in \scrA , we have X \equiv Va

d A, and

let \scrB \subseteq 2Vb such that, for all W \in \scrB , we have W \equiv Vb

d B. If \scrA \prime \subseteq \scrA (a,A\prime )-represents
\scrA and \scrB \prime \subseteq \scrB (b, B\prime )-represents \scrB , then \scrA \prime \otimes \scrB \prime (x,R\prime )-represents \scrA \otimes \scrB .

Proof. We assume w.l.o.g. that opt = max; the proof is symmetric for opt = min.
Suppose that \scrA \prime \subseteq \scrA (a,A\prime )-represents \scrA and \scrB \prime \subseteq \scrB (b, B\prime )-represents \scrB . To prove
the lemma, it is sufficient to prove that best(\scrA \prime \otimes \scrB \prime , Y ) = best(\scrA \otimes \scrB , Y ) for every

Y \equiv Vx
1 R\prime .

Let Y \subseteq Vx such that Y \equiv Vx
1 R\prime . We start by proving the following facts: (a) for

every W \in \scrB , we have W \cup Y \equiv Va
1 A\prime and (b) for every X \in \scrA , we have X\cup Y \equiv Vb

1 B\prime .

Let W \in \scrB . Owing to the d-(R,R\prime )-compatibility, we have B \cup R\prime \equiv Va

d A\prime . Since

W \equiv Vb

d B and Vb \subseteq Va, by Fact 3.1, we deduce thatW \equiv Va

d B and thusW\cup R\prime \equiv Va

d A\prime .

In particular, we have W \cup R\prime \equiv Va
1 A\prime because d \geq 1. Similarly, we have from Fact

3.1 that W \cup Y \equiv Va
1 A\prime because Y \equiv Vx

1 R\prime and Vx \subseteq Va. This proves fact (a). The
proof for fact (b) is symmetric.

Now observe that, by the definitions of best and the merging operator \otimes , we have
(even if \scrA = \emptyset or \scrB = \emptyset )

\sansb \sanse \sanss \sanst 
\bigl( 
\scrA \otimes \scrB , Y

\bigr) 
= max\{ \sansw (X) + \sansw (W ) : X \in \scrA \wedge W \in \scrB \wedge G[X \cup W \cup Y ] is connected\} .

Since best(\scrA ,W \cup Y ) = max\{ w(X) : X \in \scrA \wedge G[X\cup W \cup Y ] is connected\} , we deduce
that

best
\bigl( 
\scrA \otimes \scrB , Y

\bigr) 
= max\{ best(\scrA ,W \cup Y ) + w(W ) : W \in \scrB \} .
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1898 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

Since \scrA \prime (a,A\prime )-represents \scrA , by fact (a), we have

best
\bigl( 
\scrA \otimes \scrB , Y

\bigr) 
= max\{ best(\scrA \prime ,W \cup Y ) + w(W ) : W \in \scrB \} 
= best

\bigl( 
\scrA \prime \otimes \scrB , Y

\bigr) 
.

Symmetrically, we deduce from fact (b) that best
\bigl( 
\scrA \prime \otimes \scrB , Y

\bigr) 
= best

\bigl( 
\scrA \prime \otimes \scrB \prime , Y

\bigr) 
.

This stands for every Y \subseteq Vx such that Y \equiv Vx
1 R\prime . Thus, we conclude that \scrA \prime \otimes \scrB \prime 

(x,R\prime )-represents \scrA \otimes \scrB .

5. Connected (Co-)(\bfitsigma , \bfitrho )-dominating sets. Let \sigma and \rho be two (nonempty)
finite or co-finite subsets of \BbbN . We say that a subset D of V (G) (\sigma , \rho )-dominates a
subset U \subseteq V (G) if

| N(u) \cap D| \in 

\Biggl\{ 
\sigma if u \in D,

\rho otherwise (if u \in U \setminus D).

A subset D of V (G) is a (\sigma , \rho )-dominating set (resp., Co-(\sigma , \rho )-dominating set)
if D (resp., V (G) \setminus D) (\sigma , \rho )-dominates V (G).

The Connected (\sigma , \rho )-Dominating Set problem asks, given a weighted graph
G, a maximum or minimum (\sigma , \rho )-dominating set which induces a connected graph.
Similarly, one can define Connected Co-(\sigma , \rho )-Dominating Set. Examples of
some Connected (Co-)(\sigma , \rho )-Dominating Set problems are shown in Table 2.

Let d(\BbbN ) := 0 and for a finite or co-finite subset \mu of \BbbN , let

d(\mu ) := 1 +min(max(\mu ),max(\BbbN \setminus \mu )).

The definition of d is motivated by the following observation, which is due to the
fact that, for all \mu \subseteq \BbbN , if d(\mu ) \in \mu , then \mu is co-finite and contains \BbbN \setminus \{ 1, . . . , d(\mu ) - 1\} .

Fact 5.1. Let A \subseteq V (G) and let (\sigma , \rho ) be a pair of finite or co-finite subsets of
\BbbN . Let d := max(1, d(\sigma ), d(\rho )). For all X \subseteq A and Y \subseteq A, X \cup Y (\sigma , \rho )-dominates
A if and only if min(d, | N(v) \cap X| + | N(v) \cap Y | ) belongs to \sigma (resp., \rho ) if v \in X \cup Y
(resp., v /\in X \cup Y ).

As in [12], we use the d-neighbor equivalence relation to characterize the (\sigma , \rho )-
domination of the partial solutions.

In the rest of this section, we fix \sigma , \rho two (nonempty) finite or co-finite subsets
of \BbbN , the integer d := max\{ 1, d(\sigma ), d(\rho )\} , a graph G, and a rooted layout (T, \delta ) of
G. We present an algorithm that computes a maximum (or minimum) connected

Table 2
Examples of (Co-)(\sigma , \rho )-Dominating Set problems. To solve these problems, we use the d-

neighbor equivalence with d = max\{ 1, d(\sigma ), d(\rho )\} . Column d shows the value of d for each problem.

\sigma \rho d Version Standard name

\BbbN \BbbN + 1 Connected Connected Dominating Set

\{ q\} \BbbN q+1 Connected Connected Induced q-Regular Subgraph

\BbbN \{ 1\} 2 Connected Connected Perfect Dominating Set

\{ 0\} \BbbN 1 Connected Co Connected Vertex Cover
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(\sigma , \rho )-dominating set of G by a bottom-up traversal of (T, \delta ). Its running time is
O(s-necd(T, \delta )

O(1) \cdot n3). The same algorithm, with some small modifications, will be
able to find a minimum Steiner tree or a maximum (or minimum) connected Co-(\sigma , \rho )-
dominating set as well. We will need the following lemma in our proof.

Lemma 5.2 (see [12, Lemma 2]). Let A \subseteq V (G). Let X \subseteq A and Y, Y \prime \subseteq A

such that Y \equiv A
d Y \prime . Then (X \cup Y ) (\sigma , \rho )-dominates A if and only if (X \cup Y \prime ) (\sigma , \rho )-

dominates A.

For each node x of T and for each pair (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , we will compute a set
of partial solutions \scrD x[R,R\prime ] coherent with (R,R\prime ) that (x,R\prime )-represents the set of
all partial solutions coherent with (R,R\prime ). We say that a set X \subseteq Vx is coherent with
(R,R\prime ) if X \equiv Vx

d R and X \cup R\prime (\sigma , \rho ) dominates Vx. Observe that by Lemma 5.2, we

have that X\cup Y (\sigma , \rho )-dominates Vx for all Y \equiv Vx

d R\prime and for all X \subseteq Vx coherent with
(R,R\prime ). We compute these sets by a bottom-up dynamic programming algorithm,
starting at the leaves of T . The computational steps are trivial for the leaves. For
the internal nodes of T , we simply use the notion of d-(R,R\prime )-compatibility and the
merging operator.

By calling the function reduce defined in section 4, each set \scrD x[R,R\prime ] contains
at most s-nec1(T, \delta )

2 partial solutions. If we want to compute a maximum (resp.,
minimum) connected (\sigma , \rho )-dominating set, we use the framework of section 4 with
opt = max (resp., opt = min). If G admits a connected (\sigma , \rho )-dominating set, then a
maximum (or minimum) connected (\sigma , \rho )-dominating set can be found by looking at
the entry \scrD r[\emptyset , \emptyset ] with r the root of T .

We begin by defining the sets of partial solutions for which we will compute
representative sets.

Definition 5.3. Let x \in V (T ). For all pairs (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , we let

\scrA x[R,R\prime ] := \{ X \subseteq Vx : X \equiv Vx

d R and X \cup R\prime (\sigma , \rho )-dominates Vx\} .
For each node x of V (T ), our algorithm will compute a table \scrD x that satisfies the

following invariant.

Invariant. For every (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , the set \scrD x[R,R\prime ] is a subset of
\scrA x[R,R\prime ] of size at most s-nec1(T, \delta )

2 that (x,R\prime )-represents \scrA x[R,R\prime ].
Notice that, by the definition of \scrA r[\emptyset , \emptyset ] (r being the root of T ) and the definition

of (x,R\prime )-representativity, if G admits a connected (\sigma , \rho )-dominating set, then \scrD r[\emptyset , \emptyset ]
must contain a maximum (or minimum) connected (\sigma , \rho )-dominating set.

The following lemma provides an equality between the entries of the table \scrA x

and the entries of the tables \scrA a and \scrA b for each internal node x \in V (T ) with a and
b as children. We use this lemma to prove, by induction, that the entry \scrD x[R,R\prime ]

(x,R\prime )-represents \scrA x[R,R\prime ] for every (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d . Note that this lemma can
be deduced from [12].

Lemma 5.4. For all (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , we have

\scrA x[R,R\prime ] =
\bigcup 

(A,A\prime ) and (B,B\prime ) are d-(R,R\prime )-compatible

\scrA a[A,A\prime ]\otimes \scrA b[B,B\prime ],

where the union is taken over all (A,A\prime ) \in \scrR Va

d \times \scrR Va

d and (B,B\prime ) \in \scrR Vb

d \times \scrR Vb

d .

Proof. The lemma is implied by the two following claims.
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Claim 5.5. For all X \in \scrA x[R,R\prime ], there exist d-(R,R\prime )-compatible pairs (A,A\prime ) \in 
\scrR Va

d \times \scrR Va

d and (B,B\prime ) \in \scrR Vb

d \times \scrR Vb

d such that X \cap Va \in \scrA a[A,A\prime ] and X \cap Vb \in 
\scrA b[B,B\prime ].

Proof. Let X \in \scrA x[R,R\prime ], Xa := X \cap Va, and Xb := X \cap Vb. Let A := repVa

d (Xa)

and A\prime := repVa

d (Xb \cup R\prime ). Symmetrically, we define B := repVb

d (Xb) and B\prime :=

repVb

d (Xa \cup R\prime ).
We claim that Xa \in \scrA a[A,A\prime ]. As X \in \scrA x[R,R\prime ], we know, by Definition 5.3,

thatX\cup R\prime = Xa\cup Xb\cup R\prime is a (\sigma , \rho )-dominating set of Vx. In particular, Xa\cup (Xb\cup R\prime )

(\sigma , \rho )-dominates Va. Since A\prime \equiv Va

d Xb \cup R\prime , by Lemma 5.2, we conclude that Xa \cup A\prime 

(\sigma , \rho )-dominates Va. As A \equiv Va

d Xa, we have Xa \in \scrA a[A,A\prime ]. By symmetry, we deduce
B \in \scrA b[B,B\prime ].

It remains to prove that (A,A\prime ) and (B,B\prime ) are d-(R,R\prime )-compatible.
\bullet By construction, we have Xa \cup Xb = X \equiv Vx

d R. As A \equiv Va

d Xa and from Fact

3.1, we have A \cup Xb \equiv Vx

d R. Since B \equiv Vb

d Xb, we deduce that A \cup B \equiv Vx

d R.

\bullet By definition, we have A\prime \equiv Va

d Xb \cup R\prime . As B \equiv Vb

d Xb and by Fact 3.1, we

have A\prime \equiv Va

d B \cup R\prime . Symmetrically, we deduce that B\prime \equiv Vb

d R\prime \cup A.
Thus, (A,A\prime ) and (B,B\prime ) are d-(R,R\prime )-compatible.

Claim 5.6. For every Xa \in \scrA a[A,A\prime ] and Xb \in \scrA b[B,B\prime ] such that (A,A\prime ) and
(B,B\prime ) are d-(R,R\prime )-compatible, we have Xa \cup Xb \in \scrA x[R,R\prime ].

Proof. Since Xa \equiv Va

d A and Xb \equiv Vb

d B, by Fact 3.1, we deduce that Xa \cup Xb \equiv Vx

d

A \cup B. Thus, by the definition of d-(R,R\prime )-compatibility, we have Xa \cup Xb \equiv Vx

d R.

It remains to prove that Xa \cup Xb \cup R\prime (\sigma , \rho )-dominates Vx. Since Xb \equiv Vb

d B and

A\prime \equiv Va

d B \cup R\prime , we deduce from Fact 3.1 that Xb \cup R\prime \equiv Va

d A\prime . As Xa \in \scrA a[A,A\prime ],
we know that Xa \cup A\prime (\sigma , \rho )-dominates Va. Thus, from Lemma 5.2, we conclude that
Xa \cup Xb \cup R\prime (\sigma , \rho )-dominates Va. Symmetrically, we prove that Xa \cup Xb \cup R\prime (\sigma , \rho )-
dominates Vb. As Vx = Va \cup Vb, we deduce that Xa \cup Xb \cup R\prime (\sigma , \rho )-dominates Vx.
Hence, we have Xa \cup Xb \in \scrA x[R,R\prime ].

We are now ready to prove the main theorem of this section.

Theorem 5.7. There exists an algorithm that, given an n-vertex graph G and
a rooted layout (T, \delta ) of G, computes a maximum (or minimum) connected (\sigma , \rho )-
dominating set in time O(s-necd(T, \delta )

3 \cdot s-nec1(T, \delta )2(\omega +1) \cdot log(s-necd(T, \delta )) \cdot n3) with
d := max\{ 1, d(\sigma ), d(\rho )\} .

Proof. The algorithm is a usual bottom-up dynamic programming algorithm and
computes for each node x of T the table \scrD x.

The first step of our algorithm is to compute, for each x \in V (T ), the sets \scrR Vx

d ,

\scrR Vx

d and a data structure to compute repVx

d (X) and repVx

d (Y ), for any X \subseteq Vx and any
Y \subseteq Vx, in time O(log(s-necd(T, \delta ))\cdot n2). As T has 2n - 1 nodes, by Lemma 3.2, we can
compute these sets and data structures in time O(s-necd(T, \delta ) \cdot log(s-necd(T, \delta )) \cdot n3).

Let x be a leaf of T with Vx = \{ v\} . Observe that, for all (R,R\prime ) \in \scrR d
Vx

\times \scrR d
Vx
, we

have \scrA x[R,R\prime ] \subseteq 2Vx = \{ \emptyset , \{ v\} \} . Thus, our algorithm can directly compute \scrA x[R,R\prime ]
and set \scrD x[R,R\prime ] := \scrA x[R,R\prime ]. In this case, the invariant trivially holds.
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Now let x be an internal node with a and b as children such that the invariant
holds for a and b. For each (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , the algorithm computes \scrD x[R,R\prime ] :=
reduce(\scrB x[R,R\prime ]), where the set \scrB x[R,R\prime ] is defined as follows:

\scrB x[R,R\prime ] :=
\bigcup 

(A,A\prime ) and (B,B\prime ) are d-(R,R\prime )-compatible

\scrD a[A,A\prime ]\otimes \scrD b[B,B\prime ],

where the union is taken over all (A,A\prime ) \in \scrR Va

d \times \scrR Va

d , and (B,B\prime ) \in \scrR Vb

d \times \scrR Vb

d .

We claim that the invariant holds for x. Let (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d .
We start by proving that the set \scrB x[R,R\prime ] is an (x,R\prime )-representative set of

\scrA x[R,R\prime ]. By Lemma 4.8, for all d-(R,R\prime )-compatible pairs (A,A\prime ) and (B,B\prime ), we
have

\scrD a[A,A\prime ]\otimes \scrD b[B,B\prime ] (x,R\prime )-represents \scrA a[A,A\prime ]\otimes \scrA b[B,B\prime ].

By Lemma 5.4 and by construction of \scrD x[R,R\prime ] and from Fact 4.6, we conclude that
\scrB x[R,R\prime ] (x,R\prime )-represents \scrA x[R,R\prime ].

From the invariant, we have \scrD a[A,A\prime ] \subseteq \scrA a[A,A\prime ] and \scrD b[B,B\prime ] \subseteq \scrA b[B,B\prime ] for
all d-(R,R\prime )-compatible pairs (A,A\prime ) and (B,B\prime ). Thus, from Lemma 5.4, it is clear
that by construction, we have \scrB x[R,R\prime ] \subseteq \scrA x[R,R\prime ]. Hence, \scrB x[R,R\prime ] is a subset and
an (x,R\prime )-representative set of \scrA x[R,R\prime ].

Notice that, for each X \in \scrB x[R,R\prime ], we have X \equiv Vx

d R. Thus, we can apply
Theorem 4.3 and the function reduce on \scrB x[R,R\prime ]. By Theorem 4.3, \scrD x[R,R\prime ] is a
subset and an (x,R\prime )-representative set of \scrB x[R,R\prime ]. Thus \scrD x[R,R\prime ] is a subset of
\scrA x[R,R\prime ]. Notice that the (x,R\prime )-representativity is an equivalence relation and in
particular it is transitive. Consequently, \scrD x[R,R\prime ] (x,R\prime )-represents \scrA x[R,R\prime ]. From
Theorem 4.3, the size of \scrD x[R,R\prime ] is at most nec1(Vx)

2 and we have that \scrD x[R,R\prime ] \subseteq 
\scrB x[R,R\prime ]. As nec1(Vx) \leqslant s-nec1(T, \delta ) and \scrB x[R,R\prime ] \subseteq \scrA x[R,R\prime ], we conclude that
the invariant holds for x.

By induction, the invariant holds for all nodes of T . The correctness of the
algorithm follows from the fact that \scrD r[\emptyset , \emptyset ] (r, \emptyset )-represents \scrA r[\emptyset , \emptyset ].

Running time. Let x be a node of T . Suppose first that x is a leaf of T . Then

| \scrR Vx

d | \leqslant 2 and | \scrR Vx

d | \leqslant d. Thus, \scrD x can be computed in time O(d \cdot n).
Assume now that x is an internal node of T with a and b as children.
Notice that, by Definition 4.7, for every (A,B,R\prime ) \in \scrR Va

d \times \scrR Vb

d \times \scrR Vx

d , there

exists only one tuple (A\prime , B\prime , R) \in \scrR Va

d \times \scrR Vb

d \times \scrR Vx

d such that (A,A\prime ) and (B,B\prime )

are d-(R,R\prime )-compatible. More precisely, you have to take R = repVx

d (A \cup B), A\prime =

repVa

d (R\prime \cup B), and B\prime = repVb

d (R\prime \cup A). Thus, there are at most s-necd(T, \delta )
3 tuples

(A,A\prime , B,B\prime , R,R\prime ) such that (A,A\prime ) and (B,B\prime ) are d-(R,R\prime )-compatible. It follows
that we can compute the intermediary table \scrB x by doing the following;

\bullet Initialize each entry of \scrB x to \emptyset .
\bullet For each (A,B,R\prime ) \in \scrR Va

d \times \scrR Vb

d \times \scrR Vx

d , compute R\prime := repVx

d (A \cup B), A\prime =

repVa

d (R\prime \cup B), and B\prime = repVb

d (R\prime \cup A). Then, update \scrB x[R,R\prime ] := \scrB x[R,R\prime ]\cup 
(\scrD a[A,A\prime ]\otimes \scrD b[B,B\prime ]).

Each call to the functions repVx

d , repVa

d and repVb

d takes O(log(s-necd(T, \delta )) \cdot n2) time.
We deduce that the running time to compute the entries of \scrB x is

O

\left(   s-necd(T, \delta )
3 \cdot log(s-necd(T, \delta )) \cdot n2 +

\sum 
(R,R\prime )\in \scrR Vx

d \times \scrR Vx
d

| \scrB x[R,R\prime ]| \cdot n2

\right)   .
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Observe that, for each (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , by Theorem 4.3, the running time to
compute reduce(\scrB x[R,R\prime ]) from \scrB x[R,R\prime ] is O(| \scrB x[R,R\prime ]| \cdot s-nec1(T, \delta )2(\omega  - 1) \cdot n2).
Thus, the total running time to compute the table \scrD x from the table \scrB x is

O

\left(   \sum 
(R,R\prime )\in \scrR Vx

d \times \scrR Vx
d

| \scrB x[R,R\prime ]| \cdot log(s-necd(T, \delta )) \cdot s-nec1(T, \delta )2(\omega  - 1) \cdot n2

\right)   .(5.1)

For each (A,A\prime ) and (B,B\prime ), the size of \scrD a[A,A\prime ]\otimes \scrD b[B,B\prime ] is at most | \scrD a[A,A\prime ]| \cdot 
| \scrD b[B,B\prime ]| \leqslant s-nec1(T, \delta )

4. Since there are at most s-necd(T, \delta )
3 pairs that are d-

(R,R\prime )-compatible, we can conclude that\sum 
(R,R\prime )\in \scrR Vx

d \times \scrR Vx
d

| \scrB x[R,R\prime ]| \leqslant s-necd(T, \delta )
3 \cdot s-nec1(T, \delta )4.

From (5.1), we deduce that the entries of \scrD x are computable in time,

O(s-necd(T, \delta )
3 \cdot s-nec1(T, \delta )2(\omega +1) \cdot log(s-necd(T, \delta )) \cdot n2).

Since T has 2n  - 1 nodes, the running time of our algorithm is O(s-necd(T, \delta )
3 \cdot 

s-nec1(T, \delta )
2(\omega +1) \cdot log(s-necd(T, \delta )) \cdot n3).

As a corollary, we can solve in time s-nec1(T, \delta )
(2\omega +5) \cdot log(s-nec1(T, \delta )) \cdot n3 the

Node-Weighted Steiner Tree problem that asks, given a subset of vertices K \subseteq 
V (G) called terminals, a subset T of minimal weight such that K \subseteq T \subseteq V (G) and
G[T ] is connected.

Corollary 5.8. There exists an algorithm that, given an n-vertex graph G, a
subset K \subseteq V (G), and a rooted layout (T, \delta ) of G, computes a minimum node-weighted
Steiner tree for (G,K) in time O(s-nec1(T, \delta )

(2\omega +5) \cdot log(s-nec1(T, \delta )) \cdot n3).

Proof. Observe that a Steiner tree is a minimum connected (\BbbN ,\BbbN )-dominating set
of G that contains K. Thus, it is sufficient to change the definition of the table \scrA x

as follows. Let x \in V (T ). For all (R,R\prime ) \in \scrR Vx
1 \times \scrR Vx

1 , we define \scrA x[R,R\prime ] \subseteq Vx as
follows:

\scrA x[R,R\prime ] := \{ X \subseteq Vx : X \equiv Vx

d R, K \cap Vx \subseteq X and X \cup R\prime (\BbbN ,\BbbN )-dominates Vx\} .

Notice that this modification will just modify the way we compute the table \scrD x

when x is a leaf of T associated with a vertex in K. With this definition of \scrA x and
by Definition 4.1 of (x,R\prime )-representativity, if G contains an optimal solution, then
\scrD r[\emptyset , \emptyset ] contains an optimal solution of G. The running time comes from the running
time of Theorem 5.7 with d = 1.

Observe that Corollary 5.8 simplifies and generalizes the algorithm from [9] for the
Edge-Weighted Steiner Tree problem. Indeed, the incidence graph of a graph
of tree-width k has tree-width at most k + 1 and one can reduce the computation
of an edge-weighted Steiner tree on a graph to the computation of a node-weighted
Steiner tree on its incidence graph [24].

With few modifications, we can easily deduce an algorithm to compute a maxi-
mum (or minimum) connected Co-(\sigma , \rho )-dominating set.

Corollary 5.9. There exists an algorithm that, given an n-vertex graph G and
a rooted layout (T, \delta ) of G, computes a maximum (or minimum) connected Co-(\sigma , \rho )-
dominating set in time O(s-necd(T, \delta )

3 \cdot s-nec1(T, \delta )(2\omega +5) \cdot log(s-necd(T, \delta )) \cdot n3) with
d := max\{ 1, d(\sigma ), d(\rho )\} .
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1903

Proof. To find a maximum (or minimum) Co-(\sigma , \rho )-dominating set, we need to
modify the definition of the table \scrA x, the invariant, and the computational steps of
the algorithm from Theorem 5.7. For each vertex x \in V (T ), we define the set of

indices of our table \scrD x as \BbbI x := \scrR Vx

d \times \scrR Vx

d \times \scrR Vx
1 \times \scrR Vx

1 .

For all (R,R\prime , R,R
\prime 
) \in \BbbI x, we define \scrA x[R,R\prime , R,R

\prime 
] \subseteq 2Vx as the following set:

\{ X \subseteq Vx : X \equiv Vx
1 R, (Vx \setminus X) \equiv Vx

d R and (Vx \setminus X) \cup R\prime (\sigma , \rho )-dominates Vx\} .

It is worth noticing that the definition of \scrA x does not depend on R
\prime 
; it is just more

convenient to write the proof this way in order to obtain an algorithm similar to the
one from Theorem 5.7.

Similarly to Theorem 5.7, for each node x of V (T ), our algorithm will compute a
table \scrD x that satisfies the following invariant.

Invariant. For every (R,R\prime , R,R
\prime 
) \in \BbbI x, the set \scrD x[R,R\prime , R,R

\prime 
] is a subset of

\scrA x[R,R\prime , R,R
\prime 
] of size at most s-nec1(T, \delta )

2 that (x,R
\prime 
)-represents \scrA x[R,R\prime , R,R

\prime 
].

Intuitively, we use R and R
\prime 
to deal with the connectivity constraint of the Co-

(\sigma , \rho )-dominating set and R and R\prime for the (\sigma , \rho )-domination.
The following claim adapts Lemma 5.4 to the Co-(\sigma , \rho )-dominating set case.

Claim 5.10. Let x be an internal node of T with a and b as children. For all

(R,R\prime , R,R
\prime 
) \in \BbbI x, we have

\scrA x[R,R\prime , R,R
\prime 
] :=

\bigcup 
(A,A\prime ) and (B,B\prime ) are d-(R,R\prime )-compatible

(A,A\prime ) and (B,B\prime ) are 1-(R,R
\prime 
)-compatible

\scrA a[A,A\prime , A,A\prime ]\otimes \scrA b[B,B\prime , A,A\prime ],

where the union is taken over all (A,A\prime , A,A
\prime 
) \in \BbbI a and (B,B\prime , B,B

\prime 
) \in \BbbI b.

The proof of this claim follows from the proof of Lemma 5.4. With these modifica-
tions, it is straightforward to check that the algorithm of Theorem 5.7 can be adapted
to compute a minimum or maximum connected Co-(\sigma , \rho )-dominating set of V (G).
With the same analysis as in Theorem 5.7, one easily deduces that the running time
of this modified algorithm is O(s-necd(T, \delta )

3 \cdot s-nec1(T, \delta )(2\omega +5) \cdot log(s-necd(T, \delta ))\cdot n3).

6. Acyclic variants of (Connected) (\bfitsigma , \bfitrho )-Dominating Set. We call AC-
(\sigma , \rho )-Dominating Set (resp., Acyclic (\sigma , \rho )-Dominating Set) the family of prob-
lems which consists in finding a subset X \subseteq V (G) of maximum (or minimum) weight
such that X is a (\sigma , \rho )-dominating set of G and G[X] is a tree (resp., a forest). Some
examples of famous problems which belong to these families of problems are presented
in Table 3.

In this section, we present an algorithm that solves any AC-(\sigma , \rho )-Dominating
Set problem. Unfortunately, we were not able to obtain an algorithm whose run-
ning time is polynomial in n and the d-neighbor-width of the given layout (for some
constant d). But, for the other parameters, by using their respective properties, we
get the running times presented in Table 4 which are roughly the same as those in
the previous section. Moreover, we show, via a polynomial reduction, that we can use
our algorithm for AC-(\sigma , \rho )-Dominating Set problems (with some modifications)
to solve any Acyclic (\sigma , \rho )-Dominating Set problem.

Let us first explain why we cannot use the same trick as in [9] on the algorithms of
section 5 to ensure the acyclicity, that is classifying the partial solutionsX---associated
with a node x \in V (T )---with respect to | X| and | E(G[X])| . Indeed, for two sets
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1904 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

Table 3
Examples of AC-(\sigma , \rho )-Dominating Set problems and Acyclic (\sigma , \rho )-Dominating Set prob-

lems. To solve these problems, we use the d-neighbor equivalence with d := max\{ 2, d(\sigma ), d(\rho )\} .
Column d shows the value of d for each problem.

\sigma \rho d Version Standard name

\BbbN \BbbN 2 AC Maximum Induced Tree

\BbbN \BbbN 2 Acyclic Maximum Induced Forest

\{ 1, 2\} \BbbN 3 AC Longest Induced Path

\{ 1, 2\} \BbbN 3 Acyclic Maximum Induced Linear Forest

Table 4
Upper bounds on the running times of our algorithm for AC-(\sigma , \rho )-Dominating Set problems

with \scrL = (T, \delta ) and d := max\{ 2, d(\sigma ), d(\rho )\} .

Parameter Running time

Module-width O((d+ 1)3mw(\scrL ) \cdot 2(2\omega +3)mw(\scrL ) \cdot \sansm \sansw (\scrL ) \cdot n4)

Rank-width O(2(2\omega +3d+4)rw(\scrL )2 \cdot \sansr \sansw (\scrL ) \cdot n4)

\BbbQ -rank-width O((d \cdot \sansr \sansw \BbbQ (\scrL ))(2\omega +5)rw\BbbQ (\scrL ) \cdot \sansr \sansw \BbbQ (\scrL ) \cdot n4)

Mim-width O(n(2\omega +3d+4)mim(\scrL )+4 \cdot \sansm \sansi \sansm (\scrL ))

X,W \subseteq Vx with | X| = | W | and | E(G[X])| = | E(G[W ])| , we have | E(G[X \cup Y ])| =
| E(G[W \cup Y ])| , for all Y \subseteq Vx, if and only if X \equiv Vx

n W . Hence, the trick used
in [9] would imply to classify the partial solutions with respect to their n-neighbor
equivalence class. But, the upper bounds we have on necn(Vx) with respect to module-
width, (\BbbQ -)rank-width would lead to an XP algorithm. In fact, for every k \in \BbbN 
and every n \geq 2k, one can construct an n-vertex bipartite graph Hk[A,A] where
mw(A) = k and necn(A) = (n/mw(A))mw(A) (see Figure 3 in Appendix A). Since
both rw(A) and rw\BbbQ (A) are upper bounded by mw(A), we deduce that using the trick
of [9] would give, for each f \in \{ mw, rw, rw\BbbQ \} , an n\Omega (f(T,\delta )) time algorithm.

In the following, we introduce some new concepts that extend the framework
designed in section 4 in order to manage acyclicity. All along, we give intuitions
on these concepts through a concrete example: Maximum Induced Tree. Finally,
we present the algorithms for the AC-(\sigma , \rho )-Dominating Set problems and the
algorithms for Acyclic (\sigma , \rho )-Dominating Set problems.

We start by defining a new notion of representativity to deal with the acyclicity
constraint. This new notion of representativity is defined w.r.t. the 2-neighbor equiv-
alence class of a set R\prime \subseteq Vx. We consider 2-neighbor equivalence classes instead of
1-neighbor equivalence classes in order to manage the acyclicity (see the following ex-
planations). Similarly to section 4, every concept introduced in this section is defined
with respect to a node x of T and a set R\prime \subseteq Vx. To simplify this section, we fix a

node x of T and R\prime \subseteq Vx. In our algorithm, R\prime will always belong to \scrR Vx

d for some
d \in \BbbN + with d \geq 2. For Maximum Induced Tree d = 2 is enough and, in general,
we use d := max\{ 2, d(\sigma ), d(\rho )\} .

The following definition extends Definition 4.1 of section 4 to deal with the acyclic-
ity. We let opt \in \{ min,max\} ; if we want to solve a maximization (or minimization)
problem, we use opt = max (or opt = min).
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1905

Definition 6.1 ((x,R\prime )acy-representativity). For every \scrA \subseteq 2V (G) and Y \subseteq 
V (G), we define

best(\scrA , Y )acy := opt\{ w(X) : X \in \scrA and G[X \cup Y ] is a tree\} .

Let \scrA ,\scrB \subseteq 2Vx . We say that \scrB (x,R\prime )acy-represents \scrA if, for every Y \subseteq Vx such

that Y \equiv Vx
2 R\prime , we have bestacy(\scrA , Y ) = bestacy(\scrB , Y ).

When \scrA = \emptyset or there is no X \in \scrA such that G[X \cup Y ] is a tree, we have
best(\scrA , Y ) = opt(\emptyset ) and this equals  - \infty when opt = max and +\infty when opt = min.

As for the (x,R\prime )-representativity, we need to prove that the operations we use in
our algorithm preserve the (x,R\prime )acy-representativity. The following fact follows from
Definition 6.1 of (x,R\prime )acy-representativity.

Fact 6.2. If \scrB and \scrD (x,R\prime )acy-represents, respectively, \scrA and \scrC , then \scrB \cup \scrD 
(x,R\prime )acy-represents \scrA \cup \scrC .

The following lemma is an adaptation of Lemma 4.8 to the notion of (x,R\prime )acy-
representativity. The proof is almost the same as the one of Lemma 4.8. We refer to
Definition 4.7 for the notion of d-(R,R\prime )-compatibility.

Lemma 6.3. Let d \in \BbbN + such that d \geq 2. Suppose that x is an internal node of

T with a and b as children. Let R \in \scrR Vx

d . Let (A,A\prime ) \in \scrR Va

d \times \scrR Va

d and (B,B\prime ) \in 
\scrR Vb

d \times \scrR Vb

d that are d-(R,R\prime )-compatible. Let \scrA \subseteq 2Va such that, for all X \in \scrA , we

have X \equiv Va

d A and let \scrB \subseteq 2Vb such that, for all W \in \scrB , we have W \equiv Vb

d B.
If \scrA \prime \subseteq \scrA (a,A\prime )acy-represents \scrA and \scrB \prime \subseteq \scrB (b, B\prime )acy-represents \scrB , then

\scrA \prime \otimes \scrB \prime (x,R\prime )acy-represents \scrA \otimes \scrB .

Proof. Suppose that \scrA \prime \subseteq \scrA (a,A\prime )acy-represents \scrA and \scrB \prime \subseteq \scrB (b, B\prime )acy-
represents \scrB .

In order to prove this lemma, it is sufficient to prove that, for each Y \equiv Vx
2 R\prime , we

have bestacy(\scrA \prime \otimes \scrB \prime , Y ) = bestacy(\scrA \otimes \scrB , Y ).

Let Y \subseteq Vx such that Y \equiv Vx
2 R\prime . We claim the following facts: (a) for every

W \in \scrB , we have W \cup Y \equiv Va
2 A\prime , and (b) for every X \in \scrA , we have X \cup Y \equiv Vb

2 B\prime .

Let W \in \scrB . By Fact 3.1, we have that W \equiv Va

d B because Vb \subseteq Va and W \equiv Vb

d B.

Since d \geq 2, we have W \equiv Va
2 B. By Fact 3.1, we deduce also that Y \equiv Va

2 R\prime . Since

(A,A\prime ) and (B,B\prime ) are d-(R,R\prime )-compatible, we have A\prime \equiv Va

d R\prime \cup B. In particular,

we have A\prime \equiv Va
2 R\prime \cup B because d \geq 2. We can conclude that W \cup Y \equiv Va

2 A\prime for every
W \in \scrB . The proof for fact (b) is symmetric.

Now observe that, by the definitions of bestacy and of the merging operator \otimes , we
have

\sansb \sanse \sanss \sanst acy
\bigl( 
\scrA \otimes \scrB , Y

\bigr) 
= \sanso \sansp \sanst \{ \sansw (X) + \sansw (W ) : X \in \scrA \wedge W \in \scrB \wedge G[X \cup W \cup Y ] is a tree\} .

Since bestacy(\scrA ,W \cup Y ) = opt\{ w(X) : X \in \scrA \wedge G[X \cup W \cup Y ] is a tree\} , we deduce
that

bestacy
\bigl( 
\scrA \otimes \scrB , Y

\bigr) 
= opt\{ bestacy(\scrA ,W \cup Y ) + w(W ) : W \in \scrB \} .

Since \scrA \prime (a,A\prime )-represents \scrA and by fact (a), we have

bestacy
\bigl( 
\scrA \otimes \scrB , Y

\bigr) 
= opt\{ bestacy(\scrA \prime ,W \cup Y ) + w(W ) : W \in \scrB \} 
= bestacy

\bigl( 
\scrA \prime \otimes \scrB , Y

\bigr) 
.
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1906 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

Symmetrically, we deduce from fact (b) that bestacy
\bigl( 
\scrA \prime \otimes \scrB , Y

\bigr) 
= bestacy

\bigl( 
\scrA \prime \otimes \scrB \prime , Y

\bigr) 
.

This stands for every Y \subseteq Vx such that Y \equiv Vx
2 R\prime . Thus, we conclude that \scrA \prime \otimes \scrB \prime 

(x,R\prime )acy-represents \scrA \otimes \scrB .

In order to compute a maximum induced tree, we design an algorithm similar

to those of section 5. That is, for each (R,R\prime ) \in \scrR Vx
2 \times \scrR Vx

2 , our algorithm will
compute a set \scrD x[R,R\prime ] \subseteq 2Vx that is an (x,R\prime )acy-representative set of small size
of the set \scrA x[R] := \{ X \subseteq Vx such that X \equiv Vx

2 R\} . This is sufficient to compute
a maximum induced tree of G since we have \scrA r[\emptyset ] = 2V (G) with r the root of T .
Thus, by Definition 6.1, any (r, \emptyset )acy-representative set of \scrA r[\emptyset ] contains a maximum
induced tree.

The key to compute the tables of our algorithm is a function that, given \scrA \subseteq 2Vx ,
computes a small subset of \scrA that (x,R\prime )acy-represents \scrA . This function starts by

removing from \scrA some sets that will never give a tree with a set Y \equiv Vx
2 R\prime . For

doing so, we characterize the sets X \in \scrA such that G[X \cup Y ] is a tree for some

Y \equiv Vx
2 R\prime . We call these sets R\prime -important. The following gives a formal definition of

these important and unimportant partial solutions.

Definition 6.4 (R\prime -important). We say that X \subseteq Vx is R\prime -important if there

exists Y \subseteq Vx such that Y \equiv Vx
2 R\prime and G[X \cup Y ] is a tree; otherwise, we say that X

is R\prime -unimportant.

By definition, any set obtained from a set \scrA by removing R\prime -unimportant sets
is an (x,R\prime )acy-representative set of \scrA . The following lemma gives some necessary
conditions on R\prime -important sets. It follows that any set which does not respect one
of these conditions can safely be removed from \scrA . These conditions are the key to
obtain the running times of Table 4.

At this point, we need to introduce the following notations. For every X \subseteq Vx,
we define X0 := \{ v \in X : N(v) \cap R\prime = \emptyset \} , X1 := \{ v \in X : | N(v) \cap R\prime | = 1\} and
X2+ := \{ v \in X : | N(v)\cap R\prime | \geq 2\} . From the definition of the 2-neighbor equivalence,
we have the following property, which is the key to manage acyclicity.

Observation 6.5. For every X \subseteq Vx and Y \subseteq Vx such that Y \equiv Vx
2 R\prime , the

vertices in X0 have no neighbor in Y , those in X1 have exactly one neighbor in Y ,
and those in X2+ have at least 2 neighbors in Y .

Lemma 6.6. If X \subseteq Vx is R\prime -important, then G[X] is a forest and the following
properties are satisfied:

1. for every pair of distinct vertices a and b in X2+, we have N(a) \cap Vx \not =
N(b) \cap Vx,

2. | X2+| is upper bounded by 2mim(Vx), 2rw(Vx), 2rw\BbbQ (Vx), and 2 log2(nec1(Vx)).

Proof. Obviously, any R\prime -important set must induce a forest. Let X \subseteq Vx be an

R\prime -important set. Since X is R\prime -important, there exists Y \subseteq Vx such that Y \equiv Vx
2 R\prime 

and G[X \cup Y ] is a tree.
Assume toward a contradiction that there exist two distinct vertices a and b in

X2+ such that N(a) \cap Vx = N(b) \cap Vx. Since a and b belong to X2+ and Y \equiv Vx
2 R\prime ,

both a and b have at least two neighbors in Y according to Observation 6.5. Thus, a
and b have at least two common neighbors in Y . We conclude that G[X \cup Y ] admits
a cycle of length four, yielding a contradiction. We conclude that property 1 holds
for every R\prime -important set.
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1907

Now, we prove that property 2 holds forX. Observe that, by Lemma 2.4, mim(Vx)
is upper bounded by rw(Vx), rw\BbbQ (Vx), and log2(nec1(Vx)). Thus, in order to prove
property 2, it is sufficient to prove that | X2+| \leqslant 2mim(Vx).

We claim that | X2+| \leqslant 2k where k is the size of a maximum induced matching of
F := G[X2+, Y ]. Since F is an induced subgraph of G[Vx, Vx], we have k \leqslant mim(Vx)
and this is enough to prove property 2. Notice that F is a forest because F is a
subgraph of G[X \cup Y ], which is a tree.

In the following, we prove that F admits a good bipartition, that is, a bipartition
\{ X1, X2\} of X2+ \cap V (F ) such that, for each i \in \{ 1, 2\} and for each v \in Xi, there
exists yv \in Y \cap V (F ) such that NF (yv) \cap Xi = \{ v\} . Observe that this is enough to
prove property 2 since if F admits a good bipartition \{ X1, X2\} , then | X1| \leqslant k and
| X2| \leqslant k. Indeed, if F admits a good bipartition \{ X1, X2\} , then, for each i \in \{ 1, 2\} ,
the set of edges Mi = \{ vyv : v \in Xi\} is an induced matching of F . In order to
prove that F admits a good bipartition it is sufficient to prove that each connected
component of F admits a good bipartition.

Let C \in cc(F ) and u \in C\cap X2+. As F is a forest, F [C] is a tree. Observe that the
distance in F between each vertex v \in C\cap X2+ and u is even because F := G[X2+, Y ].
Let C1 (resp., C2) be the set of all vertices v \in C \cap X2+ such that there exists an odd
(resp., even) integer \ell \in \BbbN so that the distance between v and u in F is 2\ell . We claim
that \{ C1, C2\} is a good bipartition of F [C].

Let i \in \{ 1, 2\} , v \in Ci, and \ell \in \BbbN such that the distance between v and u in F is
2\ell . Let P be the set of vertices in V (F )\setminus \{ v\} that share a common neighbor with v in
F . We want to prove that there exists y \in Y such that NF (y) \cap Ci = \{ v\} . For doing
so, it is sufficient to prove that NF (v) \setminus NF (Ci \setminus \{ v\} ) = NF (v) \setminus NF (P \cap Ci) \not = \emptyset .
Observe that, for every v\prime \in P , the distance between v\prime and u in F is either 2\ell  - 2,
2\ell or 2\ell + 2 because F [C] is a tree and the distance between v and u is 2\ell . By
construction of \{ C1, C2\} , every vertex at distance 2\ell  - 2 and 2\ell + 2 from u must
belong to C3 - i. Thus, every vertex in P \cap Ci is at distance 2\ell from u. If \ell = 0, then
we are done because v = u and P \cap Ci = \emptyset . Assume that \ell \not = 0. As F [C] is a tree, v
has only one neighbor w at distance 2\ell  - 1 from u in F . Because F [C] is a tree, we
deduce that NF (v)\cap NF (P \cap Ci) = \{ w\} . Since v \in X2+, v has at least two neighbors

in F = G[X2+, Y ] (because Y \equiv Vx
2 R\prime ), we conclude that NF (v) \setminus NF (P \cap Ci) \not = \emptyset .

Hence, we deduce that \{ C1, C2\} is a good bipartition of F [C].
We deduce that every connected component of F admits a good bipartition and

thus F admits a good bipartition. Thus, | X2+| \leqslant 2mim(Vx).

These vertices in X2+ play a major role in the acyclicity and the computation of
representatives in the following sense. By removing from\scrA the sets that do not respect
the two above properties, we are able to decompose \scrA into a small number of sets
\scrA 1, . . . ,\scrA t such that an (x,R\prime )-representative set of \scrA i is an (x,R\prime )acy-representative
set of \scrA i for each i \in \{ 1, . . . , t\} . We find an (x,R\prime )acy-representative set of \scrA by
computing an (x,R\prime )-representative set \scrB i for each \scrA i with the function reduce. This
is sufficient because \scrB 1\cup \cdot \cdot \cdot \cup \scrB t is an (x,R\prime )acy-representative set of \scrA thanks to Fact
6.2.

The following definition characterizes the sets \scrA \subseteq 2Vx for which an (x,R\prime )-
representative set is also an (x,R\prime )acy-representative set.

Definition 6.7. We say that \scrA \subseteq 2Vx is R\prime -consistent if, for each Y \subseteq Vx such

that Y \equiv Vx
2 R\prime and there is W \in \scrA with G[W \cup Y ] a tree, we have

\{ X \in \scrA : G[X \cup Y ] is connected\} = \{ X \in \scrA : G[X \cup Y ] is a tree\} .
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1908 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

The following lemma proves that an (x,R\prime )-representative set of an R\prime -consistent
set \scrA is also an (x,R\prime )acy-representative set of \scrA .

Lemma 6.8. Let \scrA \subseteq 2Vx . For all \scrD \subseteq \scrA , if \scrA is R\prime -consistent and \scrD (x,R\prime )-
represents \scrA , then \scrD (x,R\prime )acy-represents \scrA .

Proof. We assume that opt = max, the proof for opt = min is similar. Let

Y \equiv Vx
2 R\prime . If bestacy(\scrA , Y ) =  - \infty , then we also have bestacy(\scrD , Y ) =  - \infty because

\scrD \subseteq \scrA .
Assume now that bestacy(\scrA , Y ) \not =  - \infty . Thus, there exists W \in \scrA such that

G[W \cup Y ] is a tree. Since \scrA is R\prime -consistent, for all X \in \scrA , either the graph G[X \cup Y ]
is a tree or it is not connected. Thus, by Definition 4.1 of best, we have bestacy(\scrA , Y ) =
best(\scrA , Y ). As \scrD \subseteq \scrA , we have also bestacy(\scrD , Y ) = best(\scrD , Y ). We conclude by
observing that if \scrD (x,R\prime )-represents \scrA , then bestacy(\scrD , Y ) = bestacy(\scrA , Y ).

The next lemma proves that, for each f \in \{ mw, rw, rw\BbbQ ,mim\} , we can decompose a
set \scrA \subseteq 2Vx into a small collection \{ \scrA 1, . . . ,\scrA t\} of pairwise disjoint subsets of \scrA such
that each \scrA i is R

\prime -consistent. Even though some parts of the proof are specific to each
parameter, the ideas are roughly the same. First, we remove the sets X in \scrA that do
not induce a forest. If f = mw, we remove the sets in \scrA that do not respect condition
1 of Lemma 6.6; otherwise, we remove the sets that do not respect the upper bound
associated with f from condition 2 of Lemma 6.6. These sets can be safely removed
as, by Lemma 6.6, they are R\prime -unimportant. After removing these sets, we obtain the
decomposition of \scrA by taking the equivalence classes of some equivalence relation that
is roughly the n-neighbor equivalence relation. Owing to the set of R\prime -unimportant
sets we have removed from \scrA , we prove that the number of equivalence classes of
this latter equivalence relation respects the upper bound associated with f that is
described in Table 5.

Lemma 6.9. Let \scrA \subseteq 2Vx . For each f \in \{ mw, rw, rw\BbbQ ,mim\} , there exist pairwise
disjoint subsets \scrA 1, . . . ,\scrA t of \scrA computable in time O(| \scrA | \cdot \scrN f(T, \delta ) \cdot n2) such that

\bullet \scrA 1 \cup \cdot \cdot \cdot \cup \scrA t (x,R
\prime )acy-represents \scrA ,

\bullet \scrA i is R\prime -consistent for each i \in \{ 1, . . . , t\} , and
\bullet t \leqslant \scrN f(T, \delta ),

where \scrN f(T, \delta ) is the term defined in Table 5.

Proof. We define the equivalence relation \sim on 2Vx such that X \sim W if we have
X2+ \equiv Vx

n W 2+ and | E(G[X])|  - | X \setminus X1| = | E(G[W ])|  - | W \setminus W 1| .
The following claim proves that an equivalence class of \sim is an R\prime -consistent set.

Intuitively, we use the property of the n-neighbor equivalence to prove that, for every

X,W \subseteq Vx such thatX \sim W and for all Y \equiv Vx
2 R\prime , we have | E(G[X\cup Y ])| = | X\cup Y |  - 1

if and only if | E(G[W \cup Y ])| = | W \cup Y |  - 1. Consequently, if X \sim W and both sets
induce with Y a connected graph, then both sets induce with Y a tree (because a
graph F is a tree if and only if F is connected and | E(F )| = | V (F )|  - 1). We conclude
from these observations the following claim.

Table 5
Upper bounds \scrN f(T, \delta ) on the size of the decomposition of Lemma 6.9 for each f \in 

\{ mw, rw, rw\BbbQ ,mim\} .

f mw rw\BbbQ rw mim

\scrN f(T, \delta ) 2mw(T,\delta ) \cdot 2n (2rw\BbbQ (T, \delta ) + 1)rw\BbbQ (T,\delta ) \cdot 2n 22rw(T,\delta )2 \cdot 2n 2n2mim(T,\delta )+1
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1909

Claim 6.10. Let \scrB \subseteq \scrA . If, for all X,W \in \scrB , we have X \sim W , then \scrB is
R\prime -consistent.

Proof. Suppose that X \sim W for all X,W \in \scrB . In order to prove that \scrB is R\prime -

consistent, it is enough to prove that, for each X,W \in \scrB and Y \equiv Vx
2 R\prime , if G[X \cup Y ]

is a tree and G[W \cup Y ] is connected, then G[W \cup Y ] is a tree.

Let Y \equiv Vx
2 R\prime and X,W \in \scrB . Assume that G[X \cup Y ] is a tree and that G[W \cup Y ]

is connected. We want to prove that G[W \cup Y ] is a tree.
Since G[X \cup Y ] is a tree, we have | E(G[X \cup Y ])| = | X \cup Y |  - 1. Since the vertices

in X0 have no neighbors in Y , we can decompose | E(G[X \cup Y ])| = | X \cup Y |  - 1 to
obtain the following equality:

| E(G[Y ])| + | E(X2+, Y )| + | E(X1, Y )| + | E(G[X])| = | X \cup Y |  - 1.(6.1)

Since every vertex in X1 has exactly one neighbor in Y (because Y \equiv Vx
2 R\prime ), we

deduce that | E(X1, Y )| = | X1| . Thus, (6.1) is equivalent to

| E(G[Y ])| + | E(X2+, Y )| + | E(G[X])| = | X \setminus X1| + | Y |  - 1.(6.2)

Since X \sim W , we have | E(G[X])|  - | X \setminus X1| = | E(G[W ])|  - | W \setminus W 1| . Moreover, due

to X
2+ \equiv Vx

n W 2+ and Lemma 3.5, we have | E(G(X2+, Y ))| = | E(G(W 2+, Y ))| . We
conclude that (6.2) is equivalent to

| E(G[Y ])| + | E(W 2+, Y )| + | E(G[W ])| = | W \setminus W 1| + | Y |  - 1.(6.3)

With the same arguments to prove that (6.3) is equivalent to | E(G[X \cup Y ])| = | X \cup 
Y |  - 1, we can show that (6.3) is equivalent to | E(G(W \cup Y ))| = | W \cup Y |  - 1. By
assumption, G[W \cup Y ] is connected and thus we conclude that G[W \cup Y ] is a tree.

We are now ready to decompose \scrA . We start by removing from \scrA all the sets
that do not induce a forest. Trivially, this can be done in time O(| \scrA | \cdot n). Moreover,
these sets are R\prime -unimportant and thus we keep an (x,R\prime )acy-representative set of
\scrA . Before explaining how we proceed separately for each parameter, we need the
following observation, which follows from the removal of all the sets in \scrA that do not
induce a forest.

Observation 6.11. For all X \in \scrA , we have | E(G[X])|  - | X \setminus X1| \in \{  - n, . . . , n\} .

Concerning module-width. We remove all the sets X in \scrA that do not respect
condition 1 of Lemma 6.6. By Lemma 6.6, these sets are R\prime -unimportant and thus we
keep an (x,R\prime )acy-representative set of \scrA . After removing these sets, for each X \in \scrA ,
every pair (a, b) of distinct vertices in X2+ have a different neighborhood in Vx. By
definition of module-width, we have mw(Vx) = | \{ N(v) \cap Vx : v \in Vx\} | . Moreover,
observe that, for everyX,W \in \scrA , if \{ N(v)\cap Vx : v \in X2+\} = \{ N(v)\cap Vx : v \in W 2+\} ,
then X2+ \equiv Vx

n W 2+.
We deduce that the number of n-neighbor equivalence classes over the set \{ X2+ :

X \in \scrA \} is at most 2mw(Vx). Thus, the number of equivalence classes of \sim over \scrA is
at most 2mw(Vx) \cdot 2n \leqslant \scrN mw(T, \delta ). The factor 2n comes from Observation 6.11 and
appears also in all subsequent upper bounds.

Concerning mim-width. We remove from \scrA all the sets X such that | X2+| >
2mim(Vx). By Lemma 6.6, these sets are R\prime -unimportant and thus we keep an
(x,R\prime )acy-representative set of\scrA . Observe that this can be done in timeO(nmim(Vx)+1+
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1910 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

| \scrA | \cdot n2) because mim(Vx) can be computed in time O(nmim(Vx) + 1). Since | X2+| \leqslant 
2mim(Vx) for every X \in \scrA , we deduce that the number of equivalence classes of \sim 
over \scrA is at most 2n2mim(Vx)+1 \leqslant \scrN mim(T, \delta ).

Concerning rank-width. We remove from \scrA all the sets X such that | X2+| >
2rw(Vx) because they are R\prime -unimportant by Lemma 6.6. By Lemma 3.6, we know

that nec
\leqslant 2rw(Vx)
n (Vx) is upper bounded by 22rw(Vx)

2

. We can therefore conclude that

the number of equivalence classes of \sim over \scrA is at most 22rw(Vx)
2 \cdot 2n \leqslant \scrN rw(T, \delta ).

Concerning \BbbQ -rank-width. We remove all the sets X \in \scrA such that | X2+| >
2rw\BbbQ (Vx). By Lemma 6.6, we keep an (x,R\prime )acy-representative set of \scrA . By Lemma

3.6, we know that nec
\leqslant 2rw\BbbQ (Vx)
n (Vx) is upper bounded by (2rw\BbbQ (Vx) + 1)rw\BbbQ (Vx). We

conclude that the number of equivalence classes of \sim over \scrA is at most (2rw\BbbQ (Vx) +
1)rw\BbbQ (Vx) \cdot 2n \leqslant \scrN rw\BbbQ (T, \delta ).

It remains to prove the running time. Observe that, for module-width and
(\BbbQ -)rank-width, the removal of R\prime -unimportant sets can be done in time O(| \scrA | \cdot n2).
Indeed, mw(Vx), rw(Vx), and rw\BbbQ (Vx) can be computed in time O(n2). For 1-neighbor-
width, we can assume that the size of nec1(Vx) is given because the first step of our
algorithm for AC-(\sigma , \rho )-Dominating Set problems is to compute \scrR Vx

d for some

d \in \BbbN + and one can easily compute nec1(Vx) while computing \scrR Vx

d . Notice that we
can decide whetherX \sim W in time O(n2). Therefore, for each f \in \{ mw, rw, rw\BbbQ ,mim\} ,
we can compute the equivalence classes of \scrA in time O(| \scrA | \cdot \scrN f(T, \delta ) \cdot n2).

We are now ready to give an analogue of Theorem 4.3 for the (x,R\prime )acy-
representativity.

Theorem 6.12. Let R \in \scrR Vx
2 . For each f \in \{ mw, rw, rw\BbbQ ,mim\} , there exists an

algorithm reduceacyf that, given a set \scrA \subseteq 2Vx such that X \equiv Vx
2 R for every X \in \scrA ,

outputs in time O(| \scrA | \cdot (nec1(Vx)
2(\omega  - 1) +\scrN f(T, \delta )) \cdot n2), a subset \scrB \subseteq \scrA such that \scrB 

(x,R\prime )acy-represents \scrA and | \scrB | \leqslant \scrN f(T, \delta ) \cdot nec1(Vx)
2.

Proof. Let f \in \{ mw, rw, rw\BbbQ ,mim\} . By Lemma 6.9, we can compute in time
O(| \scrA | \cdot \scrN f(T, \delta ) \cdot n2) a collection \{ \scrA 1, . . . ,\scrA t\} of pairwise disjoint subsets of \scrA such
that

\bullet \scrA 1 \cup \cdot \cdot \cdot \cup \scrA t (x,R
\prime )acy-represents \scrA ,

\bullet \scrA i is R
\prime -consistent for each i \in \{ 1, . . . , t\} ,

\bullet t \leqslant \scrN f(T, \delta ).
For each X \in \scrA , we have X \equiv Vx

1 R because X \equiv Vx
2 R. Since \scrA 1, . . . ,\scrA t \subseteq 

\scrA , we can apply Theorem 4.3 to compute, for each i \in \{ 1, . . . , t\} , the set \scrB i :=
reduce(\scrA i). By Theorem 4.3, for each i \in \{ 1, . . . , t\} , the set \scrB i is a subset and an
(x,R\prime )-representative set of \scrA i whose size is bounded by nec1(Vx)

2. Moreover, as \scrA i

is R\prime -consistent, we have \scrB i (x,R
\prime )acy-represents \scrA i by Lemma 6.8.

Let \scrB := \scrB 1\cup \cdot \cdot \cdot \cup \scrB t. Since \scrA 1\cup \cdot \cdot \cdot \cup \scrA t (x,R
\prime )acy-represents \scrA , we deduce from

Fact 6.2 that \scrB (x,R\prime )acy-represents\scrA . Furthermore, we have | \scrB | \leqslant \scrN f(T, \delta )\cdot nec1(Vx)
2

owing to t \leqslant \scrN f(T, \delta ) and | \scrB i| \leqslant nec1(Vx)
2 for all i \in \{ 1, . . . , t\} .

It remains to prove the running time. By Theorem 4.3, we can compute \scrB 1, . . . ,\scrB t

in time O(| \scrA 1 \cup \cdot \cdot \cdot \cup \scrA t| \cdot nec1(Vx)
2(\omega  - 1) \cdot n2). Since the sets \scrA 1, . . . ,\scrA t are subsets

of \scrA and pairwise disjoint, we have | \scrA 1 \cup \cdot \cdot \cdot \cup \scrA t| \leqslant | \scrA | . That proves the running
time and concludes the theorem.

We are now ready to present an algorithm that solves any AC-(\sigma , \rho )-Dominating
Set problem. This algorithm follows the same ideas as the algorithm from Theorem
5.7, except that we use reduceacyf instead of reduce.
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Theorem 6.13. For each f \in \{ mw, rw, rw\BbbQ ,mim\} , there exists an algorithm that,
given an n-vertex graph G and a rooted layout (T, \delta ) of G, solves any AC-(\sigma , \rho )-
Dominating Set problem, in time

O(s-necd(T, \delta )
3 \cdot s-nec1(T, \delta )2(\omega +1) \cdot \scrN f(T, \delta )

2 \cdot log(s-necd(T, \delta )) \cdot n3),

with d := max\{ 2, d(\sigma ), d(\rho )\} .
Proof. Let f \in \{ mw, rw, rw\BbbQ ,mim\} . If we want to compute a solution of maximum

(resp., minimum) weight, then we use the framework of section 4 with opt = max
(resp., opt = min).

The first step of our algorithm is to compute, for each x \in V (T ), the sets \scrR Vx

d ,

\scrR Vx

d and a data structure to compute repVx

d (X) and repVx

d (Y ), for any X \subseteq Vx and any
Y \subseteq Vx, in time O(log(s-necd(T, \delta ))\cdot n2). As T has 2n - 1 nodes, by Lemma 3.2, we can
compute these sets and data structures in time O(s-necd(T, \delta ) \cdot log(s-necd(T, \delta )) \cdot n3).

For each node x \in T and, for each (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , we define \scrA x[R,R\prime ] \subseteq 2Vx

as follows:

\scrA x[R,R\prime ] := \{ X \subseteq Vx : X \equiv Vx

d R and X \cup R\prime (\sigma , \rho )-dominates Vx\} .

We deduce the following claim from the proof of Claim 5.4.

Claim 6.14. For every internal node x \in V (T ) with a and b as children and

(R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , we have

\scrA x[R,R\prime ] =
\bigcup 

(A,A\prime ) and (B,B\prime ) are d-(R,R\prime )-compatible

\scrA a[A,A\prime ]\otimes \scrA b[B,B\prime ],

where the union is taken over all (A,A\prime ) \in \scrR Va

d \times \scrR Va

d and (B,B\prime ) \in \scrR Vb

d \times \scrR Vb

d .

For each node x of V (T ), our algorithm will compute a table \scrD x that satisfies the
following invariant.

Invariant. For every (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , the set \scrD x[R,R\prime ] is a subset of
\scrA x[R,R\prime ] of size at most \scrN f(T, \delta ) \cdot nec1(Vx)

2 that (x,R\prime )acy-represents \scrA x[R,R\prime ].
Notice that by Definition of (x,R\prime )acy-representativity, if the invariant holds for

r, then \scrD r[\emptyset , \emptyset ] contains a set X of maximum (or minimum) weight such that X is a
(\sigma , \rho )-dominating set of G and G[X] is a tree.

The algorithm is a usual bottom-up dynamic programming algorithm and com-
putes for each node x of T the table \scrD x.

Let x be a leaf of T with Vx = \{ v\} . Observe that \scrA x[R,R\prime ] \subseteq 2Vx = \{ \emptyset , \{ v\} \} .
Thus, our algorithm can directly compute \scrA x[R,R\prime ] and set \scrD x[R,R\prime ] := \scrA x[R,R\prime ].
In this case, the invariant trivially holds.

Now, take x an internal node of T with a and b as children such that the invariant

holds for a and b. For each (R,R\prime ) \in \scrR Vx

d \times \scrR Vx

d , the algorithm computes \scrD x[R,R\prime ] :=
reduceacyf (\scrB x[R,R\prime ]), where the set \scrB x[R,R\prime ] is defined as follows:

\scrB x[R,R\prime ] :=
\bigcup 

(A,A\prime ) and (B,B\prime ) are d-(R,R\prime )-compatible

\scrD a[A,A\prime ]\otimes \scrD b[B,B\prime ],

where the union is taken over all (A,A\prime ) \in \scrR Va

d \times \scrR Va

d and (B,B\prime ) \in \scrR Vb

d \times \scrR Vb

d .
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1912 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

Similarly to the proof of Theorem 5.7, we deduce from Fact 6.2, Lemma 6.3, Claim
6.14, and Theorem 6.12 that \scrD x[R,R\prime ] is a subset and an (x,R\prime )acy-representative set
of \scrA x[R,R\prime ]. By Theorem 6.12, we have | \scrD x[R,R\prime ]| \leqslant \scrN f(T, \delta ) \cdot s-nec1(T, \delta )2.

Consequently, the invariant holds for x, and by induction, it holds for all the
nodes of T . The correctness of the algorithm follows.

Running time. The running time of our algorithm is almost the same as the
running time given in Theorem 6.13. The only difference is the factor \scrN f(T, \delta )

2 which
is due to the following fact: by the invariant condition, for each (A,A\prime ) and (B,B\prime ),
the size of \scrD a[A,A\prime ]\otimes \scrD b[B,B\prime ] is at most \scrN f(T, \delta )

2 \cdot s-nec1(T, \delta )4.
By constructing for any graph G a graph G \star such that the width measure of G \star 

is linear in the width measure of G and any optimum acyclic (\sigma , \rho )-dominating set
of G corresponds to an optimum AC-(\sigma , \rho )-dominating set of G \star and vice versa, we
obtain the following which allows us, for instance, to compute a feedback vertex set
in time nO(c), c the mim-width.

Theorem 6.15. For each f \in \{ mw, rw, rw\BbbQ ,mim\} , there exists an algorithm that,
given an n-vertex graph G and a rooted layout (T, \delta ) of G, solves any Acyclic (\sigma , \rho )-
Dominating Set problem in time

O(s-necd(T, \delta )
3 \cdot s-nec1(T, \delta )2(\omega +1) \cdot \scrN f(T, \delta )

O(1) \cdot n3)

with d := max\{ 2, d(\sigma ), d(\rho )\} .
Proof. Let f \in \{ mw, rw, rw\BbbQ ,mim\} . Suppose that we want to compute a maximum

acyclic (\sigma , \rho )-dominating set. The proof for computing a minimum acyclic (\sigma , \rho )-
dominating set is symmetric.

The first step of this proof is to construct a 2n + 1-vertex graph G \star from G
and a layout (T  \star , \delta  \star ) of G \star from (T, \delta ) in time O(n2) such that (T  \star , \delta  \star ) respects the
following inequalities:

1. for every d \in \BbbN +, s-necd(T
 \star , \delta  \star ) \leqslant (d+ 1) \cdot s-necd(T, \delta ),

2. for every f \in \{ mim,mw, rw, rw\BbbQ \} , f(T  \star , \delta  \star ) \leqslant f(T, \delta ) + 1.
The second step of this proof consists in showing how the algorithm of Theorem

6.13 can be modified to find a maximum acyclic (\sigma , \rho )-dominating set of G by running
this modified algorithm on G \star and (T  \star , \delta  \star ).

We construct G \star as follows. Let \beta be a bijection from V (G) to a set V + disjoint
from V (G). The vertex set of G \star is V (G) \cup V + \cup \{ v0\} with v0 a vertex distinct
from those in V (G) \cup V +. We extend the weight function w of G to G \star such that
the vertices of V (G) have the same weight as in G and the weight of the vertices in
V + \cup \{ v0\} is 0. Finally, the edge set of G \star is defined as follows:

E(G \star ) := E(G) \cup \{ \{ v, \beta (v)\} , \{ v0, \beta (v)\} : v \in V (G)\} .

We now construct L = (T  \star , \delta  \star ) from \scrL := (T, \delta ). We obtain T  \star and \delta  \star by doing
the following transformations on T and \delta :

\bullet For each leaf \ell of T with \delta (\ell ) = \{ v\} , we transform \ell into an internal node
by adding two new nodes a\ell and b\ell as its children such that \delta  \star (a\ell ) = v and
\delta  \star (b\ell ) = \beta (v).

\bullet The root of T  \star is a new node r whose children are the root of T and a new
node ar with \delta  \star (ar) = v0.

In order to simplify the proof, we use the following notations.
For each node x \in V (T  \star ), we let V L

x := V (G \star )\setminus V L
x , and for each node x \in V (T ),

we let V \scrL 
x := V (G) \setminus V \scrL 

x .
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1913

Now, we prove that (T  \star , \delta  \star ) respects inequalities 1 and 2. Let x be a node of
T  \star . Observe that if x \in V (T  \star ) \setminus V (T ), then the set V L

x either contains one vertex
or equals V (G \star ). Hence, in this case, the inequalities hold because necd(V

L
x ) \leqslant d for

each d \in \BbbN + and f(V L
x ) \leqslant 1 for each f \in \{ mim,mw, rw, rw\BbbQ \} .

Now, assume that x is also a node of T . Hence, by construction, we have

V L
x = V \scrL 

x \cup \{ \beta (v) : v \in V \scrL 
x \} ,

V L
x = V \scrL 

x \cup \{ \beta (v) : v \in V \scrL 
x \} \cup \{ v0\} .

Now, we prove inequality 1. Let d \in \BbbN +. By construction of G \star and L , for each
vertex v \in V \scrL 

x , we have \beta (v) \in V L
x and

NG \star (v) \cap V L
x = NG(v) \cap V \scrL 

x ,(6.4)

NG \star (\beta (v)) \cap V L
x = \{ v0\} .(6.5)

We deduce that, for every X,Y \subseteq V L
x , we have X \equiv V L

x

d Y if and only

\bullet X \cap V (G) \equiv V \scrL 
x

d Y \cap V (G) and
\bullet min(d, | N(v0) \cap X| ) = min(d, | N(v0) \cap Y | ).

Similarly, we deduce that, for every X,Y \subseteq V L
x , we have X \equiv V L

x

d Y if and only if

\bullet X \cap V (G) \equiv V \scrL 
x

d Y \cap V (G) and
\bullet X \cap \{ v0\} = Y \cap \{ v0\} .

Thus, we can conclude that s-necd(V
L
x ) \leqslant (d+1) \cdot s-necd(V \scrL 

x ). Consequently, inequal-
ity 1 holds.

We deduce inequality 2 from Figure 2 describing the adjacency matrix between
V L
x and V L

x .
Now, we explain how we modify the algorithm of Theorem 6.13 in order to find a

maximum acyclic (\sigma , \rho )-dominating set of G by calling this algorithm onG \star . For doing
so, we modify the definition of the table \scrA x, the invariant, and the computational
steps of the algorithm of Theorem 6.13. The purpose of these modifications is to
restrict the (\sigma , \rho )-domination to the vertices of V (G). For doing so, we consider the
set of nodes S := V (T ) \cup \{ r, ar\} . Observe that, for every node x in S, there are no

edges in G[V L
x , V L

x ] between a vertex in V (G) and a vertex in V (G \star )\setminus V (G). This is
not true for the nodes of V (T  \star ) \setminus S. For this reason, our algorithm ignores the nodes
in V (T  \star ) \setminus S and computes a table only for the nodes in S.

M
V L
x ,V L

x 0

1 00

V L
x

v0 V + ∩ V L
x

V + ∩ V L
x

V L
x

V L
x

V L
x

Fig. 2. The adjacency matrix between V L
x and V L

x .
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1914 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

For every x \in S and every (R,R\prime ) \in \scrR V L
x

d \times \scrR V L
x

d we define \scrA x[R,R\prime ] \subseteq 2V
L
x as

follows:

\scrA x[R,R\prime ] := \{ X \subseteq V L
x : X \equiv V L

x

d R and (X \cup R\prime )

\cap V (G) (\sigma , \rho )-dominates V L
x \cap V (G)\} .

We claim that if G admits an acyclic (\sigma , \rho )-dominating set D, then there exists
D\prime \in \scrA r[\emptyset , \emptyset ] such that D\prime \cap V (G) = D and G \star [D\prime ] is a tree. Let D be an acyclic
(\sigma , \rho )-dominating set of G with cc(G[D]) = \{ C1, . . . , Ct\} . For each i \in \{ 1, . . . , t\} , let
vi be a vertex in Ci. One easily checks that G \star [D \cup \{ \beta (vi) : 1 \leqslant i \leqslant t\} \cup v0] is a
tree. Moreover, by definition of \scrA r[\emptyset , \emptyset ], for every X \in \scrA r[\emptyset , \emptyset ], if G[X] is a tree,
then X \cap V (G) is an acyclic (\sigma , \rho )-dominating set of G. Hence, if G admits an acyclic
(\sigma , \rho )-dominating set, any (r, \emptyset )acy-representative set of \scrA r[\emptyset , \emptyset ] contains a set X such
that X \cap V (G) is a maximum acyclic (\sigma , \rho )-dominating set of G.

For every node x \in S, we compute a table \scrD x satisfying the following invariant.

Invariant. For each node x \in S and each (R,R\prime ) \in \scrR V L
x

d \times \scrR V L
x

d , the set
\scrD x[R,R\prime ] is a subset of \scrA x[R,R\prime ] of size at most \scrN f(T

 \star , \delta  \star )\cdot nec1(V L
x )2 that (x,R\prime )acy-

represents \scrA x[R,R\prime ].
Before we explain how to compute the table \scrD x, for each x \in S, we need the

following fact and claim. We deduce the following fact from Lemma 5.2 and the fact
that, for every node x in S, there are no edges in G[V L

x , V L
x ] between a vertex in

V (G) and a vertex in V (G \star ) \setminus V (G).

Fact 6.16. Let x \in S. Let X \subseteq V L
x and Y,R\prime \subseteq V L

x such that Y \equiv V L
x

d R\prime .
Then (X \cup R\prime ) \cap V (G) (\sigma , \rho )-dominates V L

x \cap V (G) if and only if (X \cup Y ) \cap V (G)
(\sigma , \rho )-dominates V L

x \cap V (G).

We deduce the following claim from Fact 6.16 and Lemma 5.4.

Claim 6.17. Let x \in S \setminus \{ ar\} such that x is not a leaf in T . Let a and b be the

children of x in T  \star . For every (R,R\prime ) \in \scrR V L
x

d \times \scrR V L
x

d , we have

\scrA x[R,R\prime ] =
\bigcup 

(A,A\prime ) and (B,B\prime )d-(R,R\prime )-compatible

\scrA a[A,A\prime ]\otimes \scrA b[B,B\prime ],

where the union is taken over all (A,A\prime ) \in \scrR V L
a

d \times \scrR V L
a

d and (B,B\prime ) \in \scrR V L
b

d \times \scrR V L
b

d .

The algorithm starts by computing the table \scrD x for each node x \in S such that
x = ar or x is a leaf of T . Since | V L

x | \leqslant 2, our algorithm directly computes \scrA x[R,R\prime ]

and sets \scrD x[R,R\prime ] := \scrA x[R,R\prime ] for every (R,R\prime ) \in \scrR V L
x

d \times \scrR V L
x

d .
For the other nodes our algorithm computes the table \scrD x exactly as the algorithm

of Theorem 6.13.
The correctness of this algorithm follows from Theorem 6.13 and Claim 6.17. By

Theorem 6.13, the running time of this algorithm is

O(s-nec2(L )3 \cdot s-nec1(L )2(\omega +1) \cdot \scrN f(L )2 \cdot n3).

We deduce the running time in function of \scrL from inequalities 1 and 2.

7. Max Cut. Prior to this work, the d-neighbor-equivalence relation was used
only for problems with a locally checkable property like Dominating Set [12, 23, 33].
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1915

We prove in this paper that the d-neighbor-equivalence relation can also be useful for
problems with a connectivity constraint and an acyclicity constraint. Is this notion
also useful for other kinds of problems? Can we use it as a parameter to propose fast
algorithms for problems which are W [1]-hard parameterized by clique-width, \BbbQ -rank-
width, and rank-width such as Hamiltonian Cycle, Edge Dominating Set, and
Max Cut? The complexity of these problems parameterized by clique-width is well-
known. Indeed, for each of these problems, we have an ad hoc nO(k) time algorithm
with k the clique-width of a given k-expression [7, 19]. On the other hand, little
is known concerning rank-width and \BbbQ -rank-width. For mim-width, we know that
Hamiltonian Cycle is para-NP-hard parameterized by the mim-width of a given
rooted layout [27]. As these problems are W[1]-hard parameterized by clique-width,
we cannot expect to rely only on the d-neighbor equivalence relation for d a constant.

In this section, we prove that, given an n-vertex graph and a rooted layout
\scrL , we can use the n-neighbor equivalence to solve the Max Cut problem in time
s-necn(\scrL )O(1) \cdot nO(1). The Max Cut problem asks, given a graph G, for the maxi-
mum w \in \BbbN such that there exists a subset X \subseteq V (G) with w = | E(X,X)| .

We also prove that we can solve a connectivity variant of Max Cut called Maxi-
mum Minimal Cut (a.k.a. Largest Bond) in time s-necn(\scrL )O(1) \cdot nO(1). A minimal
cut of a graph G is a subset of vertices X such that G[X] and G[X] are connected.
The problem Maximum Minimal Cut asks, given a graph G, for the computation
of a minimal cut X \subseteq V (G) such that | E(X,X)| is maximum. The parameterized
complexity of this problem was studied recently in [17, 18], and in both papers, the
authors proved that Maximum Minimal Cut is solvable in time nO(cw) with cw the
clique-width of a given decomposition.

It is worth mentioning that to deal with the two connectivity constraints of Maxi-
mum Minimal Cut, we modify the framework developed in section 4 and in particular
the notion of representative set and the way we compute one. For doing so, we use
a nontrivial trick which could be easily generalized to deal with any fixed number of
connectivity constraints.

By Corollary 3.9, our results imply that Max Cut and Maximum Minimal Cut

are solvable in time nO(mw(G)), nO(rw\BbbQ (G)), and n2O(rw(G))

.
Let us give some explanations. Let G be an n-vertex graph and (T, \delta ) a rooted

layout of G. Suppose that we want to solve Max Cut. Let x be a node of T and
X,W \subseteq Vx such that X \equiv Vx

n W . From Lemma 7.1, we can show that if the number
of edges between X and Vx \setminus X is bigger than the number of edges between W and
Vx \setminus W , then X is a better partial solution than W . That is, for every Y \subseteq Vx, the set
X \cup Y is a better solution than W \cup Y . This follows from the fact that the number
of edges of E(Vx, Vx) between X \cup Y and X \cup Y is the same as the number of edges
of E(Vx, Vx) between W \cup Y and W \cup Y .

It follows that it is enough to compute, for each node x and each R \in \scrR Vx
n , the

maximum k \in \BbbN such that k = | E(X,Vx \setminus X)| for some X \equiv Vx
n R. The integer k

computed for the root of T and R = \emptyset corresponds to the solution of Max Cut.
Before we present this algorithm, we need the following lemma, which we use to

compute the tables associated with an internal node.

Lemma 7.1. Let a and b be the children of some internal node of T . Let A \in \scrR Va
n

and B \in \scrR Vb
n . For every X \subseteq Va and W \subseteq Vb such that A \equiv Va

n X and B \equiv Vb
n W , the

number of edges between X \cup W and Vx \setminus (X \cup W ) equals

| E(X,Va \setminus X)| + | E(W,Vb \setminus W )| + | E(A, Vb \setminus B)| + | E(B, Va \setminus A)| .
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1916 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

Proof. Let X \subseteq Va and W \subseteq Vb such that A \equiv Va
n X and B \equiv Vb

n W . First, observe
that the number of edges between X \cup W and Vx \setminus (X \cup W ) equals

| E(X,Va \setminus X)| + | E(W,Vb \setminus W )| + | E(X,Vb \setminus W )| + | E(W,Va \setminus X)| .

So, we only need to prove that | E(X,Vb \setminus W )| = | E(A, Vb \setminus B)| and | E(W,Va \setminus X)| =
| E(B, Va \setminus A)| . As it is symmetrical, it is sufficient to prove the first equality.

Since B \equiv Vb
n W , by Fact 3.7, we have Vb \setminus B \equiv Vb

n Vb \setminus W . Thus, by Lemma 3.5,
we have | E(X,Vb \setminus W )| = | E(X,Vb \setminus B)| . Moreover, as A \equiv Va

n X by applying Lemma
3.5 again, we deduce that | E(X,Vb \setminus W )| = | E(X,Vb \setminus B)| = | E(A, Vb \setminus B)| .

Theorem 7.2. There exists an algorithm that, given an n-vertex graph G and a
rooted layout (T, \delta ), solves Max Cut in time O(s-necn(T, \delta )

2 \cdot log(s-necn(T, \delta )) \cdot n3).

Proof. The first step of our algorithm is to compute, for each x \in V (T ) and X \subseteq 
Vx, the sets\scrR Vx

n and a data structure to compute repVx
n (X) in timeO(log(s-necn(T, \delta ))\cdot 

n2). As T has 2n  - 1 nodes, by Lemma 3.2, we can compute these sets and data
structures in time O(s-necn(T, \delta ) \cdot log(s-necn(T, \delta )) \cdot n3).

For every node x \in V (T ) and every R \in \scrR Vx
n , we define \scrT x[R] as follows:

\scrT x[R] := max\{ | E(X,Vx \setminus X)| : X \subseteq Vx and X \equiv Vx
n R\} .

Observe that, for r the root of T , the entry of \scrT r[\emptyset ] is the size of a maximum cut of
G.

The algorithm is a usual bottom-up dynamic programming algorithm and com-
putes for each node x of T the table \scrT x. For the leaves x of T , we simply set \scrT x[R] := 0
for every R \in \scrR Vx

n . This is correct because the graph G[Vx] contains only one vertex.
Let x be an internal node of T with a and b as children. To compute the tables

for the internal nodes we need the following claim.

Claim 7.3. For every R \in \scrR Vx
n , we have \scrT x[R] equals

max\{ \scrT a[A] + \scrT b[B] + | E(A, Vb \setminus B)|  - | E(B, Va \setminus A)| : (A,B)\in \scrR Va
n \times \scrR Vb

n

and A \cup B \equiv Vx
n R\} .

Claim 7.3 is implied by the two following facts.

Fact 7.4. Let R \in \scrR Vx
n . For every (A,B) \in \scrR Va

n \times \scrR Vb
n such that A \cup B \equiv Vx

n R,
we have

\scrT x[R] \geq \scrT a[A] + \scrT b[B] + | E(A, Vb \setminus B)| + | E(B, Va \setminus A)| .

Proof. Let (A,B) \in \scrR Va
n \times \scrR Vb

n such that A \cup B \equiv Vx
n R. By definition of \scrT a[A],

there existsXa \subseteq Va such thatX \equiv Va
n A and \scrT a[A] = | E(Xa, Va\setminus Xa)| . Symmetrically,

there exists Xb \subseteq Vb such that Xb \equiv Vb
n B and \scrT b[B] = | E(Xb, Vb \setminus Xb)| .

From Lemma 7.1, the number of edges between Xa \cup Xb and Vx \setminus (Xa \cup Xb)
equals \scrT a[A] + \scrT b[B] + | E(A, Vb \setminus B)| + | E(B, Va \setminus A)| . By Fact 3.1, we deduce that
Xa \cup Xb \equiv Vx

n A \cup B. Thus, Xa \cup Xb \equiv Vx
n R, and by definition, \scrT x[R] is bigger than

the number of edges between Xa \cup Xb and Vx \setminus (Xa \cup Xb). This proves the fact.

Fact 7.5. For every R \in \scrR Vx
n , there exists (A,B) \in \scrR Va

n \times \scrR Vb
n such that A \cup 

B \equiv Vx
n R and

\scrT x[R] = \scrT a[A] + \scrT b[B] + | E(A, Vb \setminus B)| + | E(B, Va \setminus A)| .
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Proof. By definition of \scrT x[R], there exists a set X \subseteq Vx such that X \equiv Vx
n R and

\scrT x[R] = | E(X,Vx \setminus Vx)| . For every i \in \{ a, b\} , let Xi = X \cap Vi.
Let A := repVa

n (Xa) and let B := repVb
n (Xb). By definition, we have X \equiv Vx

n A\cup B,
and by Claim 7.4, we have

\scrT x[R] \geq \scrT a[A] + \scrT b[B] + | E(A, Vb \setminus B)| + | E(B, Va \setminus A)| .(7.1)

Moreover, as \scrT x[R] = | E(X,Vx \setminus Vx)| and from Lemma 7.1, we deduce that

\scrT x[R] =| E(Xa, Va \setminus Xa)| + | E(Xb, Vb \setminus Xb)| + | E(A, Vb \setminus B)| + | E(B, Va \setminus A)| .(7.2)

By definition of \scrT a[A], we know that \scrT a[A] \geq | E(Xa, Va \setminus Xa)| . Symmetrically, we
have \scrT b[B] \geq | E(Xb, Vb \setminus Xb)| . Hence, we conclude from inequality (7.1) and (7.2)
that \scrT x[R] = \scrT a[A] + \scrT b[B] + | E(Va, Vb)|  - | E(A,B)| .

We deduce that we can compute the entries of \scrT x by doing the following:
\bullet For every R \in \scrR Vx

n , initialize some temporary variable wR to 0.
\bullet For every (A,B) \in \scrR Va

n \times \scrR Vb
n , compute R = repVx

n (A\cup B) and update wR as
follows:

wR := max\{ wR, \scrT a[A] + \scrT b[B] + | E(A, Vb \setminus B)| + | E(B, Va \setminus A)| \} .

From Claim 7.3, at the end of this subroutine, we have correctly updated \scrT x[R]
which is precisely equal to wR. Recall that each call to the functions repVx

n takes
log(s-necn(T, \delta )) \cdot n2) time. Thus, the running time to compute the entries of \scrT x is
O(s-necn(T, \delta )

2 \cdot log(s-necn(T, \delta ))\cdot n2). The total running time of our algorithm follows
from the fact that T has 2n - 1 nodes.

Theorem 7.6. There exists an algorithm that, given an n-vertex graph G and
a rooted layout (T, \delta ), solves Maximum Minimal Cut in time O(s-necn(T, \delta )

2 \cdot 
s-nec1(T, \delta )

4(\omega +1.5) \cdot n3).

Proof. As we have two connectivity constraints, i.e., we ask both the solution
and its complement to induce connected graphs, we have to modify our notion of
representative set and how we compute one. Let x \in V (T ). For \scrA \subseteq 2Vx and Y \subseteq Vx,
we define

best \star (\scrA , Y ) := max\{ | E(X,Vx \setminus X)| : X \in \scrA and X \cup Y is a minimal cut\} .

For RY , RY \in \scrR Vx
1 , and \scrA ,\scrB \subseteq 2Vx , we say that \scrB (x,RY , RY )-represents \scrA if

for every Y \subseteq Vx such that RY \equiv Vx
1 Y and RY \equiv Vx

1 Vx \setminus Y , we have best \star (\scrB , Y ) =
best \star (\scrA , Y ).

Observe that, when \scrA = \emptyset or there is no X in \scrA such that X \cup Y is a minimal
cut, then best \star (\scrA , Y ) =  - \infty .

For all x \in V (T ), we define \BbbI x := \scrR Vx
n \times \scrR Vx

1 \times \scrR Vx
1 . Moreover, for each R \in \scrR Vx

n ,
we define \scrA x[R] := \{ X \subseteq Vx : X \equiv Vx

n R\} . For every node x \in V (T ), our algorithm
will compute a table \scrT x satisfying the following invariant.

Invariant. For every (R,RY , RY ) \in \BbbI x, the entry \scrT x[R,RY , RY ] is a subset of
\scrA x[R] of size at most s-nec1(T, \delta )

4 that (x,RY , RY )-represents \scrA x[R].
The following claim proves that we can compute a small representative set for

this new notion of representativity.
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1918 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

Claim 7.7. Let x \in V (T ) and (R,RY , RY ) \in \BbbI x. There exists an algorithm
reduce \star that, given \scrA \subseteq 2Vx such that, for all X \in \scrA , we have X \equiv Vx

n R, outputs in
time O(| \scrA | \cdot s-nec1(Vx)

4(\omega  - 1) \cdot n2) a subset \scrB \subseteq \scrA such that \scrB (x,RY , RY )-represents
\scrA and | \scrB | \leqslant s-nec1(Vx)

4.

Proof. Let \scrD be the set that contains all Y \subseteq Vx such that Y \equiv Vx
1 RY and

Vx \setminus Y \equiv Vx
1 RY .

First assume that RY = \emptyset or RY = \emptyset . We distinguish the following cases:

\bullet Suppose that RY = \emptyset and RY \equiv Vx
1 Vx. If Y = \emptyset , then best \star (\scrA , \emptyset ) is the

maximum | E(X,X)| over of the sets X \in \scrA which are minimal cuts, and
if no X \in \scrA is a minimal cut, then best(\scrA , \emptyset ) =  - \infty . On the other hand,
when Y \not = \emptyset , we have best \star (\scrA , Y ) = 0 if \emptyset \in \scrA and Y is a minimal cut or
 - \infty otherwise. Hence, it is sufficient to return a set \scrB constructed as follows:
if \scrA contains a minimal cut, we add to \scrB a minimal cut X in \scrA such that
| E(X,X)| is maximum and if \emptyset \in \scrA , we add the empty set to \scrB .

\bullet If RY \equiv Vx
1 Vx and RY = \emptyset , then return \scrB that contains---if there exists

one---a set X \in \scrA such that X \cup Vx is a minimal cut and | E(Vx \setminus X,Vx \setminus X)| 
is maximum and the empty set if \emptyset \in \scrA . This case is symmetrical to the
previous one.

\bullet Otherwise, we return \emptyset . This is correct because in this case \scrD = \emptyset . Indeed,

for every W \subseteq Vx, if W \equiv Vx
1 \emptyset , then Vx \setminus W \equiv Vx

1 Vx.
Assume from now on that RY \not = \emptyset and RY \not = \emptyset . We start by removing from \scrA 

the sets X that satisfy at least one of the following properties:
\bullet there exists C \in cc(G[X]) such that N(C) \cap RY = \emptyset , or
\bullet there exists C \in cc(G[Vx \setminus X]) such that N(C) \cap RY = \emptyset .

As explained in the proof of Theorem 4.3, we can safely remove all such sets as they
never form a minimal cut with a set Y \in \scrD . Moreover, we remove from \scrD the sets Y
that satisfy at least one of the following properties:

\bullet there exists C \in cc(G[Y ]) such that N(C) \cap R = \emptyset , or
\bullet there exists C \in cc(G[Vx \setminus Y ]) with N(C) \cap (Vx \setminus R) = \emptyset .

One can check that, for all sets Y removed from \scrD and all X \in \scrA , we have best \star (\scrA , Y )
=  - \infty . In particular, if a set Y satisfies the second property, then for every X \in \scrA ,
the graph G[X \cup Y ] is not connected. Indeed, by Fact 3.7, we have Vx \setminus X \equiv Vx

n Vx \setminus R
for every X \in \scrA , so the second property implies that a connected component of Vx\setminus Y
has no neighbor in Vx \setminus X.

For every Y \in \scrD , we let vY be one fixed vertex of Y . For every R1, R2 \in \scrR Vx
1 ,

X \subseteq Vx, and Y \subseteq Vx, we define the following predicates:

\scrC (X, (R1, R2))

:=

\Biggl\{ 
1 if \exists (X1, X2) \in ccut(X) such that N(X1) \cap R2 = \emptyset and N(X2) \cap R1 = \emptyset ,
0 otherwise.

\scrC ((R1, R2), Y )

:=

\Biggl\{ 
1 if \exists (Y1, Y2) \in ccut(Y ) such that vY \in Y1, Y1 \equiv Vx

1 R1, and Y2 \equiv Vx
1 R2,

0 otherwise.

These predicates are similar to the eponymous matrices in the proof of Theorem 4.3.

In the following, we denote by R the set of all quadruples of elements in \scrR Vx
1 . Let \scrM  \star ,
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MORE APPLICATIONS OF THE d-NEIGHBOR EQUIVALENCE 1919

\scrC  \star , and \scrC  \star 
be, respectively, an (\scrA ,\scrD )-matrix, an (\scrA ,R)-matrix, and an (R,\scrD )-matrix

such that

\scrM  \star [X,Y ] :=

\Biggl\{ 
1 if X \cup Y is a minimal cut,

0 otherwise,

\scrC  \star [X, (R1
Y , R

2
Y , R

1
Y
, R2

Y
)] :=

\Biggl\{ 
1 if \scrC (X, (R1

Y , R
2
Y )) and \scrC (Vx \setminus X, (R1

Y
, R2

Y
)) hold,

0 otherwise,

\scrC  \star 
[(R1

Y , R
2
Y , R

1
Y
, R2

Y
), Y ] :=

\Biggl\{ 
1 if \scrC ((R1

Y , R
2
Y ), Y ) and \scrC ((R1

Y
, R2

Y
), Vx \setminus Y ) hold,

0 otherwise.

With the same arguments used in the proofs of Theorems 4.3 and 7.2, one can easily
prove the following:

\bullet For every X \in \scrA and Y \in \scrD , we have

(\scrC  \star \cdot \scrC  \star 
)[X,Y ] = 2| cc(G[X\cup Y ])|  - 1 \cdot 2| cc(G[X\cup Y ])|  - 1.

Consequently, (\scrC  \star \cdot \scrC  \star 
)[X,Y ] is odd if and only if X \cup Y is a minimal cut.

Hence, \scrM  \star =2 \scrC  \star \cdot \scrC  \star 
, where =2 denotes the equality in GF (2).

\bullet The matrix \scrC  \star can be computed in time O(| \scrA | \cdot s-nec1(Vx)
4 \cdot n2).

\bullet Let \scrB \subseteq \scrA be a basis of maximum weight of the row space of \scrC  \star w.r.t. to the
weight function w(X) := | E(X,Vx \setminus X)| . Then, one can prove with the same
arguments as in Theorem 4.3 that \scrB (x,RY , RY )-represents \scrA and such a set
can be computed in time O(| \scrA | \cdot s-nec1(Vx)

4(\omega  - 1) \cdot n2).

As for the other algorithms of this paper, the computation of \scrT x[R,RY , RY ] is
trivial for the leaves x of T . Take x an internal node of T with a and b as children
such that the invariant holds for a and b. For (R,RY , RY ) \in \BbbI x, (A,AY , AY ) \in \BbbI a,
and (B,BY , BY ) \in \BbbI b, we say that (A,AY , AY ) and (B,BY , BY ) are (R,RY , RY )-
compatible if the following conditions are satisfied:

\bullet A \cup B \equiv Vx
n R,

\bullet A \cup RY \equiv Vb
1 BY and B \cup RY \equiv Va

1 AY ,

\bullet (Va \setminus A) \cup RY \equiv Vb
1 BY and (Vb \setminus B) \cup RY \equiv Va

1 AY .
For each (R,RY , RY ) \in \BbbI x, the algorithm computes the entry \scrT x[R,RY , RY ] :=
reduce \star (\scrB x[R,RY , RY ]) where \scrB x[R,RY , RY ] is the set

\scrB x[R,RY , RY ] :=
\bigcup 

(A,AY ,A
Y

) and (B,BY ,B
Y

) are (R,RY ,R
Y

)-compatible

\scrT a[A,AY , AY ]\otimes \scrT b[B,BY , BY ],

where the union is taken over all (A,AY , AY ) \in \BbbI a and (B,BY , BY ) \in \BbbI b. Observe
that \scrB [R,RY , RY ] is a valid input for reduce \star because, for all X \in \scrB [R,RY , RY ], we
have X \equiv Vx

n R. Thus, the conditions of Claim 7.7 on the input of reduce \star are satisfied.
Finally, with the same arguments used to prove Theorem 5.7, one can easily prove

that the invariant holds for x and the table \scrT x can be computed in time

O(s-necn(Vx)
2 \cdot s-nec1(Vx)

4(\omega +1.5) \cdot n2).

The total running time follows from the fact that T has 2n - 1 nodes.

8. (\bfitA ,\bfitC )-\bfitM -partition problem. In this section, we explain how the methods
used here can be adapted to solve any locally checkable partitioning problem with
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1920 BENJAMIN BERGOUGNOUX AND MAMADOU M. KANT\'E

connectivity and/or acyclicity constraints. Given a (q\times q)-matrixM with entries being
finite or co-finite subsets of \BbbN , an M -partition of a graph G is a partition \{ V1, . . . , Vq\} 
of V (G) such that for each 1 \leqslant i \leqslant q and each v \in Vi we have | N(v) \cap Vj | \in M [i, j]
for each 1 \leqslant j \leqslant q.

The M-partition problem asks, for a given graph G, whether G admits an M -
partition. NP-hard problems fitting into this framework include some homomorphism
problems [12, Table 2] and the question of deciding whether an input graph has a
partition into q (\sigma , \rho )-dominating sets, which is in most cases NP-complete for small
values of q [12, Table 1]. It is proved in [12] that the M-partition problem can
be solved in time O(s-necd(T, \delta )

3q \cdot q \cdot n4), with d := max1\leqslant i,j\leqslant q(d(M [i, j])), for any
graph G given with a rooted layout (T, \delta ). The algorithm is of the same flavor as
for computing a (\sigma , \rho )-dominating set, except that, for each x \in V (T ), the table \scrT x
associated with x is indexed by (\scrR Vx

d )q \times (\scrR Vx

d )q where \scrT x[(R1, . . . , Rq), (R
\prime 
1, . . . , R

\prime 
q)]

is set to true if there is a partition (S1, . . . , Sq) of Vx such that for each 1 \leqslant i, j \leqslant q,

Si \equiv Vx

d Ri and Si \cup R\prime 
i M [i, j]-dominates Sj .

Let (A,C)-M-partition be the problem that asks, given a graph G and two
collections A,C of subsets of \{ 1, . . . , q\} , whetherG admits anM -partition \{ V1, . . . , Vq\} 
such that, for every \{ i1, . . . , it\} \in A, the graph G[Vi1 \cup \cdot \cdot \cdot \cup Vit ] is a forest and, for
every \{ i1, . . . , it\} \in C, the graph G[Vi1 \cup \cdot \cdot \cdot \cup Vit ] is connected. It is a routine
verification to check that our framework can be extended to deal with (A,C)-M-
partition problems:

\bullet The trick used in our algorithm forMaximum Minimal Cut to deal with two
connectivity constraints can be generalized to solve any (\emptyset , C)-M-partition.

\bullet We can generalize the concepts used in section 6 and in particular the de-
composition into R\prime -consistent sets to solve any (A,C)-M-partition with
A \subseteq C.

\bullet We can use the idea of the reduction for the Acyclic (\sigma , \rho )-Dominating
Set problems to solve any (A,C)-M-partition problem with the algorithm
solving the special case when A \subseteq C.

We can therefore state the following without proof.

Theorem 8.1. For a (q\times q)-matrix M with entries being finite or co-finite subsets
of \BbbN , let d(M) := max1\leqslant i,j\leqslant q(d(M [i, j])).

1. There exists an algorithm that, given an n-vertex graph G with a rooted layout
(T, \delta ) of G, solves any (\emptyset , C)-M-partition problem in time O(s-necd(M)

(T, \delta )3q \cdot s-nec1(T, \delta )2(\omega +1)\cdot \ell \cdot q \cdot nO(1)) with \ell = | C| .
2. For each f \in \{ mw, rw, rw\BbbQ ,mim\} , there exists an algorithm that, given an

n-vertex graph G and a rooted layout (T, \delta ) of G, solves any (A,C)-M-
partition problem, in time O(s-necd(M)(T, \delta )

3q \cdot s-nec1(T, \delta )O(\ell )\cdot \scrN f(T, \delta )
O(\ell )\cdot 

nO(1)) with \ell = | A| + | C| .

Observe that (A,C)-M-partition subsumes the problem \scrF -partition of par-
titioning V (G) into q sets inducing graphs that belong to a given graph class \scrF ,
for several graph classes \scrF such as trees, forests, paths, and cycles. For these four
graph classes, Theorem 8.1 provides an algorithm that, given a rooted layout \scrL ,
solves \scrF -partition and whose running time is upper bounded by 2O(cw(\scrL )q) \cdot nO(1),
2rw\BbbQ (\scrL ) log(rw\BbbQ (\scrL )q) \cdot nO(1), 2rw(\scrL )2q \cdot nO(1), and nO(mim(\scrL )q).

For instance, with A = \{ \{ 1\} , . . . , \{ q\} \} , C = \emptyset , and M the matrix with all entries
being \BbbN , a solution of (A,C)-M-partition is a partition of a graph into q induced
forests. Such a partition problem is known as the tree-q-coloring problem [30]. Li
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and Zhang investigated the problem of finding the minimum q such that the input
graph has a tree-q-coloring and have proved in [30] that this problem is FPT, pa-
rameterized by the tree-width of the input graph. It would be interesting to study
the parameterized complexity of this optimization problem with other width mea-
sures. For instance, finding the minimum q such that the input n-vertex graph has
a tree-q-coloring can be solved in time nf(k) for some function f , k the clique-width
of the input [37, Theorem 9]. The problem seems to be W [1]-hard, parameterized by
clique-width, what is the optimal time complexity, under say (S)ETH?

With A = C = \{ \{ 1\} , . . . , \{ q\} \} and the same matrix M , a solution is a partition
of a graph into q induced trees. The minimum number of induced trees covering the
vertices of the graph is known as the tree cover number from the algebra commu-
nity [3]. To the best of our knowledge, the computation of the tree cover number has
not been studied.

Finally, observe that Theorem 8.1 holds for the following variants of (A,C)-M-
partition:

\bullet The optimization variant asking for a solution that maximizes any function
f(X1, . . . , Xq) such that for every X1, . . . , Xq \subseteq V (G), we have

f(X1, . . . , Xq) =
\sum 

v\in V (G)

f(X1 \cap \{ v\} , . . . , Xq \cap \{ v\} ).

This property guarantees that the best partial solutions associated with \scrA 
are those that can maximize f . Consequently, when we compute the basis
of the matrix to obtain a representative,4 it is enough to take a basis of
maximum weight, where the weight of a row (X1, . . . , Xq), representing one
partial solution, is f(X1, . . . , Xq). In particular, this property is satisfied by
every function f such that f(X1, . . . , Xq) = w1(X1) +w2(X2) + \cdot \cdot \cdot +wq(Xq)
with w1, . . . ,wq : V (G) \rightarrow \BbbQ being q node-weight functions given in the input.

\bullet The variant where the constraint ``(X1, . . . , Xq) is a partition of V (G)"" is
replaced by a collection of constraints A \bullet B with \bullet \in \{ \subseteq ,=\} and A,B are
two expressions based on the set operators \cup ,\cap , set variables X1, . . . , Xq,
and constant sets S1, . . . , St given in the input. All the constraints in the
collection must be satisfied by a solution. For any such constraint \varphi , one can
prove that \varphi (X1, . . . , Xq, S1, . . . , St) is true if and only if \varphi (X1\cap \{ v\} , . . . , Xq\cap 
\{ v\} , S1 \cap \{ v\} , . . . , St \cap \{ v\} ) is true for every v \in V (G). Thus, to handle these
constraints, we just need to modify how the table is computed at the leaves
of the decomposition, such as what we did for Node-Weighted Steiner
Tree in Corollary 5.8. That is, for every leaf of a decomposition associated
with a vertex v \in V (G), it is enough to consider only the partial solutions
(X1, . . . , Xq) \in \{ \emptyset , \{ v\} \} q that satisfy all the constraints in the given collection.
Many natural constraints can be expressed with this variant. For example,
with the constraint X1 \cup \cdot \cdot \cdot \cup Xq = Si and Si = V (G), we require that
(X1, . . . , Xq) covers every vertex. We can also require that some pairs of Xi's
are disjoint with the constraint Xi \cap Xj = Si and given Si = \emptyset (notice that
we can require that (X1, . . . , Xq) is partition with this variant).

We can combine the two variants to deal with some red-blue variants of problems such
as Connected Red-Blue Dominating Set that asks, given a graph G, R,B \subseteq 
V (G), for a subset X \subseteq B of minimum size such that R \subseteq N(X) and G[X] is

4The matrix that represents the join of partial solutions; see, for instance, Theorem 4.3 and
Claim 7.7.
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connected. This problem was studied in [1] and corresponds to the variant of (A,C)-
M-Partition with q = 2, with the constraints X1 \subseteq B and X2 = R, A = \emptyset ,
C = \{ \{ 1\} \} , M the matrix where M [2, 1] = \BbbN + (so that X2 \subseteq N(X1) for every
solution (X1, X2)) and the other entries are \BbbN . For the optimization, we require that
a solution maximizes f(X1, X2) =  - | X1| .

9. Conclusion. This paper highlights the importance of the d-neighbor-
equivalence relation in the design of algorithms parameterized by clique-width,
(\BbbQ -)rank-width, and mim-width. We prove that, surprisingly, this notion is help-
ful for problems with global constraints and also Max Cut: a W[1]-hard problem
parameterized by clique-width. Can we use it for other W[1]-hard problems parame-
terized by clique-width such as Hamiltonian Cycle, Edge Dominating Set, and
Graph Coloring?

Recently, the d-neighbor-equivalence relation was used by the first author and
collaborators in order to give a meta-algorithm for solving the Subset Feedback
Vertex Set problem and theNode Multiway Cut problem, both problems in time
2O(rw\BbbQ (G)2\cdot log(rw\BbbQ (G))) \cdot n4, 2O(rw(G)3) \cdot n4, and nO(mim(\scrL )2) with G the input graph and
\scrL a given decomposition [8]. It would be interesting to see whether the d-neighbor-
equivalence relation can be helpful to deal with other kinds of constraints such as
2-connectivity and other generalizations of Feedback Vertex Set such as the ones
studied in [10].

Concerning mim-width, it is known that Hamiltonian Cycle is NP-complete
on graphs of mim-width 1, even when a rooted layout is provided [27]. Graph
Coloring is NP-complete on graphs of mim-width 2 because this latter is known
to be NP-complete on circular arc graphs [22]. Recently, Max Cut has been shown
to be NP-complete on interval graphs [2]. Consequently, Max Cut in NP-hard on
graphs of mim-width 1, even when a rooted layout is provided.

As explained in the introduction, the 2O(mw(\scrL )) \cdot nO(1) time algorithms we obtain
for clique-width are asymptotically optimal under ETH. This is also the case of our
algorithms for Max Cut parameterized by clique-width and \BbbQ -rank-width. Indeed,
Fomin et al. [19] proved that there is no no(k) \cdot f(k) time algorithm, k being the
clique-width of a given decomposition, for Max Cut unless ETH fails. Since the
clique-width of a graph is always bigger than its \BbbQ -rank-width [33], this lower bound
holds also for \BbbQ -rank-width.

However, for the other algorithmic results obtained in this paper, it is not known
whether they are optimal under ETH. It would be particularly interesting to have tight
upper bounds for rank-width since we know how to compute efficiently this parameter.
To the best of our knowledge, there is no algorithm parameterized by rank-width that
is known to be optimal under ETH. Even for ``basic"" problems such asVertex Cover
or Dominating Set, the best algorithms [12] run in time 2O(k2) \cdot nO(1), k being the
rank-width of the graph. On the other hand, the best lower bounds state that, unless
ETH fails, there is no 2o(k) \cdot nO(1) time algorithm parameterized by rank-width for
Vertex Cover (or Dominating Set) and no no(k) \cdot f(k) time algorithm for Max
Cut [19].

Fomin et al. [20] have shown that we can use fast computation of representative
sets in matroids5 to obtain deterministic 2O(tw(G)) \cdot nO(1) time algorithms parameter-
ized by tree-width for many connectivity problems. Is this approach also generalizable

5A matroid is a structure that abstracts and generalizes the notion of linear independence in
vector spaces; see the book [35] for more information on matroids.
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with d-neighbor-width? Can it be of any help for obtaining 2o(rw(G)2) \cdot nO(1) time al-
gorithms for problems like Vertex Cover or Dominating Set?

Appendix A. Lower bounds on the \bfitn -neighbor equivalence. The follow-
ing theorem proves that the upper bounds of Lemma 3.8 on necn(A) are essentially
tight. In this theorem, we use a graph closely related to the one used in [11, Theorem
4] to prove that, for any k \in \BbbN , there exists a graph G and A \subseteq V (G) such that

rw(A) = k and nec1(A) \in 2\Theta (k2).

Theorem A.1. For every k \in \BbbN , there exist an n-vertex graph Gk and A \subseteq V (G)

such that rw(A) = k + 1, rw\BbbQ (A) = mw(A) = 2k, and necn(A) = (n/2k  - 1)2
k

.

Proof. In the following, we will manipulate multiple graphs that have some ver-
tices in common. To avoid any confusion, for every f \in \{ mw, rw, rw\BbbQ , necn\} , graph G,
and A \subseteq V (G), we will denote the value of f(A) in G by fG(A). For every k \in \BbbN ,
we define the sets Ak := \{ aS : S \subseteq [k]\} , Bk := \{ bS : S \subseteq [k]\} and the graph
Hk := (Ak \cup Bk, \{ \{ aS , bT \} : | S\cap T | is even\} ). For instance, Figure 3 shows the graph
H2.

For a matrix M , let us denote by rw(M) and rw\BbbQ (M) the rank of M over GF (2)
and \BbbQ , respectively. For every k \in \BbbN , we denote by Mk the adjacency matrix MAk,Bk

.

Notice that rwHk(Ak) = rw(Mk) and rwHk

\BbbQ (Ak) = rw\BbbQ (Mk). We also consider the

matrix Mk where for every S, T \subseteq [k], we have M [aS , bT ] = 1 if | S \cap T | is odd and 0
otherwise. Figure 3 shows the matrices M1 and M1.

We want to prove by recurrence on k that rw(Mk) = k+1 and rw\BbbQ (Mk) = 2k for
every k \in \BbbN . This is true for k = 0 as we have rw(M0) = rw\BbbQ (M0) = 1.

Let < be the total order on the subsets of \BbbN + where S < T if max(S\bigtriangleup T ) \in T .
For example, we have \emptyset < \{ 1\} < \{ 2\} < \{ 1, 2\} < \{ 3\} < \{ 1, 3\} < \{ 2, 3\} < \{ 1, 2, 3\} .
For every k \in \BbbN , we assume that the ith row (resp., column) of Mk and Mk are
associated, respectively, with aS (resp., bS) where S is the ith smallest subset of [k]
w.r.t. <. This way, for every k \in \BbbN , the first | Ak+1| /2 = 2k rows (resp., columns)
of Mk+1 and Mk+1 are associated with the vertices aS (resp., bS) that belong to Ak

(resp., Bk), i.e., we have S \subseteq [k]. On the other hand, the last 2k rows (resp., columns)
of Mk and Mk are associated with the vertices aS (resp., bS) with S = T \cup \{ k + 1\} 
with T \subseteq [k]. By definition, we deduce that, for every k \in \BbbN , we have

(A.1) Mk+1 =

\left(  Mk Mk

Mk Mk

\right)  and Mk+1 =

\left(  Mk Mk

Mk Mk

\right)  .

Since row and column additions do not change the rank of a matrix and from the
definition of Mk and Mk, we deduce that, for every rank function f \in \{ rw, rw\BbbQ \} , we
have

a∅ a{1}a{1,2} a{2}

b∅ b{1}b{1,2} b{2} ( b∅ b{1}
a∅ 0 0
a{1} 0 1

)( b∅ b{1}
a∅ 1 1
a{1} 1 0

)

(a) The graph H2 (b) The matrix M1 (c) The matrix M1

Fig. 3. Graph Hk with k = 2 and the matrices M1 and M1.
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f(Mk+1) = f

\left(  Mk Mk

0 Mk  - Mk

\right)  = f

\left(  Mk 0

0 Mk  - Mk

\right)  = f(Mk) + f(Mk  - Mk).

In GF (2), the matrix Mk  - Mk is an all-1's matrix, we deduce that rw(Mk+1) =
rw(Mk)+1 for every k \in \BbbN . As rw(M0) = 1, by recurrence, this implies that rw(Mk) =
rwHk(Ak) = k + 1.

Now, let us prove that rw\BbbQ (Mk) = 2k. From (A.1), for every k \in \BbbN , we deduce
that

Mk+1  - Mk+1 =

\left(  Mk  - Mk Mk  - Mk

Mk  - Mk Mk  - Mk

\right)  .

Hence, the rank over \BbbQ of the matrix Mk+1  - Mk+1 equals

rw\BbbQ 

\left(  Mk  - Mk Mk  - Mk

0 2(Mk  - Mk)

\right)  = rw\BbbQ 

\left(  Mk  - Mk 0

0 Mk  - Mk

\right)  (A.2)

= 2rw\BbbQ (Mk  - Mk).

As rw\BbbQ (M0) = rw\BbbQ (M0  - M0) = 1, by recurrence, we deduce that rw\BbbQ (Mk+1  - 
Mk+1) = 2k and thus rw\BbbQ (Mk+1) = 2k. We conclude that rwHk

\BbbQ (Ak) = 2k. As

rwHk

\BbbQ (Ak) \leqslant mwHk(Ak) \leqslant | Ak| = 2k, we deduce that mwHk(Ak) = 2k.
Let k, t \in \BbbN and Gk be the graph obtained from Hk by cloning t times each vertex

in Ak. That is, V (Gk) = V (Hk)\cup \{ a2S , . . . , atS : S \subseteq [k]\} , and for every i \in \{ 2, . . . , t\} 
and S \subseteq [k], we have N(aiS) = N(aS).

Let A \star 
k := Ak \cup \{ a2S , . . . , atS : S \subseteq [k]\} . Obviously, we have rwHk(A \star 

k) = k + 1,

rwHk

\BbbQ (A \star 
k) = mwHk(A \star 

k) = 2k because the adjacency matrix between A \star 
k and Bk can

be obtained from Mk by adding t - 1 copies of each row.

Let n be the number of vertices of G. We claim that necHk
n (A \star 

k) = (n/2k  - 1)2
k

.
For every X \subseteq A \star 

k, we define the column vector vX = (x\emptyset , x\{ 1\} , x\{ 2\} , x\{ 1,2\} , . . . , x[k])
such that, for every S \subseteq [k], we have xS = | X \cap \{ aS , a2S , a3S , . . . , atS\} | . Observe that
Mk \cdot vX = (y\emptyset , y\{ 1\} , . . . , y[k]) where, for every S \subseteq [k], we have yS = | N(bS) \cap X| .

Thus, for every X,W \subseteq A \star 
Hk

, we have X \equiv 
A \star 

Hk
n W if and only if Mk \cdot vX = Mk \cdot vW .

As rw\BbbQ (Mk) = 2k, by the rank-nullity problem, we deduce that the linear application
associated with Mk (over \BbbQ ) is a bijection. We conclude that, for every X,W \subseteq A \star 

Hk
,

we have X \equiv 
A \star 

Hk
n W if and only if vX = vW . Thus, necHk

n (A \star 
k) = t2

k

. By construction,

we have n = 2k(t+ 1). Consequently, t = n/2k  - 1 and necHk
n (A \star 

k) = (n/2k  - 1)2
k

.
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