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Treewidth is an important graph invariant, relevant for both structural and algo-
rithmic reasons. A necessary condition for a graph class to have bounded treewidth is
the absence of large cliques. We study graph classes closed under taking induced sub-
graphs in which this condition is also sufficient, which we call (tw, ω)-bounded. Such
graph classes are known to have useful algorithmic applications related to variants
of the clique and k-coloring problems. We consider six well-known graph contain-
ment relations: the minor, topological minor, subgraph, induced minor, induced
topological minor, and induced subgraph relations. For each of them, we give a
complete characterization of the graphs H for which the class of graphs excluding
H is (tw, ω)-bounded. Our results yield an infinite family of χ-bounded induced-
minor-closed graph classes and imply that the class of 1-perfectly orientable graphs
is (tw, ω)-bounded, leading to linear-time algorithms for k-coloring 1-perfectly ori-
entable graphs for every fixed k. This answers a question of Brešar, Hartinger, Kos,
and Milanič from 2018 and one of Beisegel, Chudnovsky, Gurvich, Milanič, and Ser-
vatius from 2019, respectively. We also reveal some further algorithmic implications
of (tw, ω)-boundedness related to list k-coloring and clique problems. In addition,
we propose a question about the complexity of the maximum weight independent set
problem in (tw, ω)-bounded graph classes and prove that the problem is polynomial-
time solvable in every class of graphs excluding a fixed star as an induced minor.

1 Introduction

1.1 Background and motivation

The treewidth of a graph measures, roughly speaking, how similar the graph is to a tree. This
invariant played a crucial role in the theory of graph minors due to Robertson and Seymour
(see, e.g., [64]), and many decision and optimization problems that are generally NP-hard are
solvable in linear time for graph classes of bounded treewidth [11, 16, 26]. A necessary condition
for bounded treewidth is the absence of large cliques. When is this condition also sufficient? We
say that a graph class G is (tw, ω)-bounded if there exists a function f : N → N such that for every

∗An extended abstract of this work appeared in the proceedings of the 46th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2020) [29].

†This research was funded in part by the Slovenian Research Agency (I0-0035, research program P1-0285,
research projects J1-9110, N1-0102, and N1-0160, and a Young Researchers Grant).
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C. Dallard, M. Milanič, K. Štorgel Treewidth versus clique number. I.

graph G ∈ G and every induced subgraph G′ of G, we have tw(G′) ≤ f(ω(G′)), where tw(G′)
and ω(G′) denote the treewidth and the clique number of G′, respectively. Such a function f
is called a (tw, ω)-binding function for the class G. Many graph classes studied in the literature
are known to be (tw, ω)-bounded. For every positive integer t, the class of intersection graphs
of connected subgraphs of graphs with treewidth at most t is (tw, ω)-bounded [10, 78]. This
includes the classes of chordal graphs and circular-arc graphs. Further examples include graph
classes of bounded treewidth, classes of graphs in which all minimal separators are of bounded
size [85], and, as a consequence of Ramsey’s theorem, classes of graphs of bounded independence
number.

There are multiple motivations for the study of (tw, ω)-bounded graph classes, from both
algorithmic and structural points of view. The k-Clique problem asks whether the input graph
contains a clique of size k; the problem is known to be W[1]-hard (see, e.g., [34]). Given a graph
G and a list of available colors from the set {1, . . . , k} for each vertex, the List k-Coloring

problem asks whether G can be properly vertex-colored by assigning to each vertex a color from
its list. This is a generalization of the classical k-coloring problem and is thus NP-hard for all
k ≥ 3 (see, e.g., [43, 73]). Chaplick and Zeman gave fixed-parameter tractable algorithms for
k-Clique and List k-Coloring in any (tw, ω)-bounded class of graphs with a computable
binding function f [21]. For a fixed value of k, their approach leads to a linear-time algorithm
for the k-Clique and List k-Coloring problems in any such graph class.1 From the structural
point of view, identifying new (tw, ω)-bounded graph classes directly addresses a recent question
of Weißauer [90] asking for which classes we can force large cliques by assuming large treewidth.
Weißauer distinguishes graph parameters as being either global or local (see [90] for precise
definitions). In this terminology, (tw, ω)-boundedness of a graph class is a sufficient condition
for treewidth to become a local parameter.

1.2 Our results

The main aim of this paper is to further the knowledge of (tw, ω)-bounded graph classes. We
consider six well-known graph containment relations and for each of them give a complete
characterization of the graphs H for which the class of graphs excluding H (with respect to
the relation) is (tw, ω)-bounded. These six relations are the minor relation, the topological
minor relation, the subgraph relation, and their induced variants, the induced minor relation,
the induced topological minor relation, and the induced subgraph relation. (Precise definitions
will be given in Section 2.) To explain our results, we need to introduce some notation. We
denote by ⊆is the induced subgraph relation. By Kp,q we denote the complete bipartite graph
with parts of size p and q; if p = q, then the complete bipartite graph is said to be balanced.
The claw is the complete bipartite graph K1,3. A subdivided claw is the graph obtained from
the claw by replacing each edge with a path of length at least one. We denote by S the class of
graphs in which every connected component is either a path or a subdivided claw. For q ≥ 1,
we denote by K+

2,q the graph obtained from K2,q by adding an additional edge between the two
vertices in the part of size 2. Similarly, we denote by K−

q the graph obtained from the complete
graph Kq by removing an edge. Note that the graph K−

4 is sometimes called the diamond. The
graph Cℓ is the cycle on ℓ vertices, and the 4-wheel, also denoted by W4, is the graph obtained
from the C4 by adding a new vertex adjacent to all vertices of the C4. A graph is subcubic if
every vertex is incident with at most three edges.

Our characterizations are summarized in Table 1 where each entry corresponds to one of the
six containment relations and contains a description of necessary and sufficient conditions for a
graph H such that the class of graphs excluding H with respect to the relation considered in the
entry is (tw, ω)-bounded. When forbidding H as a subgraph, a topological minor, or a minor,

1In fact, they consider a more general setting where the inequality tw(G) ≤ f(ω(G)), for a computable function f ,
is only required to hold for the input graph G and not necessarily for all its induced subgraphs.
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(tw, ω)-boundedness turns out to be equivalent to boundedness of the treewidth. However, this
is not the case for the induced variants.

General Induced

Subgraph H ∈ S H ⊆is P3 or H is edgeless

Topological minor
H is subcubic H ⊆is C3, H ⊆is C4,

and planar H ∼= K−
4 , or H is edgeless

Minor H is planar
H ⊆is W4, H ⊆is K

−
5 ,

H ⊆is K2,q, or H ⊆is K
+
2,q for some q ∈ N

Table 1: Summary of (tw, ω)-bounded graph classes excluding a fixed graph H for six graph
containment relations.

To the best of our knowledge, these six dichotomies represent the first set of results towards
a systematic study of the problem of classifying (tw, ω)-bounded graph classes.

One of the results from the table, namely, the (tw, ω)-boundedness of the class of K2,3-induced-
minor-free graphs, implies that the class of 1-perfectly orientable graphs is (tw, ω)-bounded. This
answers a question of Brešar et al. posed in [17]. Combining this result with an algorithmic result
of Chaplick and Zeman from [21] shows that for any fixed k, there exists a linear-time algorithm
for the k-coloring problem in the class of 1-perfectly orientable graphs. This answers a question
raised by Beisegel et al. in [5]. Moreover, our results for the induced minor relation lead to an
infinite family of χ-bounded graph classes that were not previously known to be χ-bounded: the
classes of H-induced-minor-free graphs whenever H is isomorphic to W4, K−

5 , K2,q for q ≥ 3, or
K+

2,q for q ≥ 3.
From the algorithmic point of view, we observe that for any fixed positive integer k, the

approach of Chaplick and Zeman from [21] can be adapted to obtain a robust polynomial-time
algorithm for List k-Coloring in any graph class with a computable (tw, ω)-binding function.
We also show how to approximate the clique number to within a factor of opt1−1/O(1) in graph
classes with a polynomially bounded (tw, ω)-binding function, where opt is the clique number
of the input graph.

Our techniques combine the development and applications of structural properties of graphs
in restricted classes, connections with Hadwiger number and with minimal separators, as well
as applications of Ramsey’s theorem and known results on treewidth and graph minors. Results
given by Table 1 are derived in Sections 3 to 5. The algorithmic results are presented in Section 6.
In Section 7, we show that there exists no polynomial that is a (tw, ω)-binding function for
all polynomially (tw, ω)-bounded graph classes. In Section 8, we consider the complexity of
the Maximum Weight Independent Set problem in (tw, ω)-bounded graph classes; in this
respect, we prove that the problem is polynomial-time solvable in every class of graphs excluding
a fixed star as an induced minor. We conclude the paper in Section 9 with several open questions
and research directions for further investigations of (tw, ω)-bounded graph classes.

1.3 Related work

The concept of a (tw, ω)-bounded graph class is part of the following more general framework.
An (integer) graph invariant is a mapping from the class of all graphs to the set of nonnegative
integers N that does not distinguish between isomorphic graphs. Given two graph invariants
ρ and σ and a graph class G, we say that G is (ρ, σ)-bounded if there exists a (ρ, σ)-binding
function for G, that is, a function f : N → N such that for every graph G ∈ G and every
induced subgraph G′ of G, we have ρ(G′) ≤ f(σ(G′)). Probably the most well-known and well-
studied case of (ρ, σ)-bounded graph classes corresponds to the pair (ρ, σ) = (χ, ω), where χ(G)

3
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denotes the chromatic number of G. Such graph classes are called simply χ-bounded. They were
introduced by Gyárfás in the late 1980s to generalize perfection [47] and studied extensively in
the literature (see [81] for a survey). Note that every graph G satisfies ω(G) ≤ χ(G) ≤ tw(G)+1
(see Theorem 2.2), where the first inequality holds with equality for all induced subgraphs of G
if and only if G is perfect, and both inequalities hold with equality for all induced subgraphs of
G if and only if G is chordal (see Theorem 2.1). Thus, similarly as χ-boundedness generalizes
perfection, (tw, ω)-boundedness generalizes chordality, and every (tw, ω)-bounded graph class is
also χ-bounded (but not vice versa).

In their book on graph coloring problems [55], Jensen and Toft referred to (β, χ)-bounded
graph families, where β denotes the coloring number of G, as color-bound. Gyárfás and Zaker
studied (δ, χ)-bounded graph classes [48], where δ denotes the minimum degree of the graph.
Hermelin, Mestre, and Rawitz showed in [53] that classes of intersection graphs of arithmetic
progressions with bounded jumps are (pw, ω)-bounded, where pw denotes the pathwidth of the
graph. Several other variants of (ρ, σ)-bounded graph classes were studied in the literature,
though not to the same extent as the χ-bounded ones (see, e.g., [14, 67, 93]).

Cameron, Chaplick, and Hoàng [19] asked whether (tw, ω)-boundedness can be generalized
from the class of chordal graphs to the class of even-hole-free graphs. While the answer is
affirmative in the case of planar even-hole-free graphs [82], the question was recently resolved in
the negative by Sintiari and Trotignon [84].

Dichotomy studies similar to ours exist for many other properties of graph classes, including
(δ, χ)-boundedness [48], boundedness of the clique-width [27, 28], well-quasi-ordering [9, 31, 58],
and polynomial-time solvability of Graph Homomorphism [52], Graph Isomorphism [79],
Dominating Set [66], and various coloring and packing problems [18, 43, 63].

2 Preliminaries

We now define the six graph containment relations studied in this paper. If a graph H can be
obtained from a graph G by only deleting vertices, then H is an induced subgraph of G, and we
write H ⊆is G. If H is obtained from G by deleting vertices and edges, then H is a subgraph
of G, and we write H ⊆s G. Note that if H ⊆is G, then H ⊆s G. A subdivision of a graph H
is a graph obtained from H by a sequence of edge subdivisions. The subdivision of an edge uv
of a graph is the operation that removes the edge uv and adds two edges uw and wv, where w
is a new vertex. The graph H is said to be a topological minor (or topological subgraph) of a
graph G if G contains a subdivision of H as a subgraph, and we write H ⊆tm G. Similarly, H
is an induced topological minor of G if G contains a subdivision of H as an induced subgraph,
and we write H ⊆itm G. Again, if H ⊆itm G, then H ⊆tm G. An edge contraction is the
operation of deleting a pair of adjacent vertices and replacing them with a new vertex whose
neighborhood is the union of the neighborhoods of the two original vertices. We say that G
contains H as induced minor if H can be obtained from G by a sequence of vertex deletions and
edge contractions, and we write H ⊆im G. Finally, if H can be obtained from G by a sequence
of vertex deletions, edge deletions, and edge contractions, then H is said to be a minor of G,
and we write H ⊆m G. Here also, if H ⊆im G, then H ⊆m G. Besides the already observed
implications, one can notice that

H ⊆s G =⇒ H ⊆tm G =⇒ H ⊆m G and
H ⊆is G =⇒ H ⊆itm G =⇒ H ⊆im G .

If G does not contain an induced subgraph isomorphic to H, then we say that G is H-free.
Analogously, we may also say that G is H-subgraph-free, H-topological-minor-free, H-induced-
topological-minor-free, H-minor-free, or H-induced-minor-free, respectively, for the other five
relations. This terminology and notation is naturally extended to the case of finitely many
forbidden graphs with respect to any of the six graph containment relations. For example, a
graph G is said to be {H1, . . . ,Hp}-free if G is Hi-free for all i ∈ {1, . . . , p}.

4
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It is well known that G contains H as a minor if and only if there exists a minor model of H
in G, that is, a collection (Xu : u ∈ V (H)) of pairwise disjoint subsets of V (G) called bags such
that each Xu induces a connected subgraph of G and for every two adjacent vertices u, v ∈ V (H),
there is an edge in G between a vertex of Xu and a vertex of Xv . Similarly, G contains H as an
induced minor if and only if there exists an induced minor model of H in G, which is defined
similarly as a minor model, except that for every two distinct vertices u, v ∈ V (H), there is an
edge in G between a vertex of Xu and a vertex of Xv if and only if uv ∈ E(H).

Given a set S ⊆ V (G), we denote by G − S the graph obtained from G by removing all
vertices in S and by G[S] the subgraph of G induced by S, that is, the graph G− (V (G)\S). For
u ∈ V , N(u) = {v ∈ V : uv ∈ E} is the neighborhood of u and N [u] = N(u) ∪ {u} is the closed
neighborhood of u. The degree of u in G is denoted by dG(u) and defined as the cardinality of its
neighborhood. A clique in a graph G is a set of pairwise adjacent vertices, and an independent
set is a set of pairwise nonadjacent vertices. The clique number of a graph G, denoted by ω(G),
is the maximum size of a clique in G. The independence number of a graph G, denoted by α(G),
is the maximum size of an independent set in G.

A tree decomposition of a graph G is a pair (T, {Xt : t ∈ V (T )}), where T is a tree and each
t ∈ V (T ) is associated with a vertex subset Xt ⊆ V (G) such that

⋃

t∈V (T )Xt = V , for each edge
uv ∈ E(G) there exists some t ∈ V (T ) such that u, v ∈ Xt, and for every u ∈ V (G), the set
Tu = {t ∈ V (T ) : u ∈ Xt} induces a connected subtree of T . The width of a tree decomposition
equals maxt∈V (T ) |Xt| − 1, and the treewidth of a graph G, denoted by tw(G), is the minimum
possible width of a tree decomposition of G. A graph class G is said to be of bounded treewidth
(or to have bounded treewidth) if there exists a constant c such that tw(G) ≤ c for all G ∈ G;
otherwise, G is of unbounded treewidth (or has unbounded treewidth). A hole in a graph G is
an induced subgraph of G isomorphic to a cycle of length at least four. A graph is said to be
chordal if it does not contain any hole.

Treewidth can be defined in many equivalent ways. One of the characterizations states that
the treewidth of a graph G equals the minimum value of ω(G′)− 1 such that G is a subgraph of
G′ and G′ is chordal (see, e.g., [12]). In particular, this characterization implies the following.

Theorem 2.1. Every graph G satisfies tw(G) ≥ ω(G)−1 with equality for all induced subgraphs
if and only if G is chordal.

Since chordal graphs are perfect, their clique and chromatic numbers coincide, so an equivalent
characterization is that the treewidth of a graph G equals the minimum value of χ(G′) − 1
such that G is a subgraph of G′ and G′ is chordal. Fixing such a chordal graph G′ with
χ(G′)− 1 = tw(G) and using the fact that chromatic number is monotone under subgraphs, the
following strengthening of the inequality given by Theorem 2.1 holds.

Theorem 2.2. Every graph G satisfies tw(G) ≥ χ(G)− 1.

Let G be a (tw, ω)-bounded graph class with a binding function f . From Theorem 2.2, we
obtain that χ(G) − 1 ≤ tw(G) ≤ f(ω(G)) whenever G is an induced subgraph of a graph in G.
Hence, we obtain the following corollary.

Corollary 2.3. Every (tw, ω)-bounded graph class is χ-bounded.

The following observation is an immediate consequence of the definitions.

Observation 2.4. Let G be a graph. Then, the following conditions are equivalent:

1. G is chordal.

2. G is C4-induced-minor-free.

3. G is C4-induced-topological-minor-free.

5
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Some of our proofs will make use of the following classical result due to Ramsey [72].

Theorem 2.5 (Ramsey’s theorem). For every two positive integers k and ℓ, there exists a least
positive integer R(k, ℓ) such that every graph with at least R(k, ℓ) vertices contains either a clique
of size k or an independent set of size ℓ.

The standard proof of Ramsey’s theorem is based on the inequality R(k, ℓ) ≤ R(k − 1, ℓ) +
R(k, ℓ− 1) for all k, ℓ ≥ 2, which implies that R(k, ℓ) ≤

(k+ℓ−2
k−1

)

for all positive integers k and ℓ.
Using Ramsey’s theorem, we can already derive the following.

Lemma 2.6. Let H be an edgeless graph. Then the class of H-free graphs is (tw, ω)-bounded
with a binding function f(k) = R(k + 1, |V (H)|) − 2, which is bounded by a polynomial in k of
degree |V (H)| − 1.

Proof. Let k ∈ N and let G be an H-free graph such that ω(G) = k. Since H is edgeless, Ram-
sey’s theorem implies that the number of vertices in G is strictly smaller than R(k+ 1, |V (H)|).
In particular, the treewidth of G is at most |V (G)| − 1 ≤ R(k + 1, |V (H)|) − 2.

A graph class that is not (tw, ω)-bounded is said to be (tw, ω)-unbounded. Some specific
(tw, ω)-unbounded graph classes, which will play a crucial role in our proofs, are discussed in
Lemma 2.7. The line graph of a graph G, denoted by L(G), is the graph with vertex set E(G)
where two vertices are adjacent if and only if the corresponding edges intersect. For the definition
of an elementary wall, we refer to [23]. For a nonnegative integer q, we say that a graph is a
q-subdivided-wall if it can be obtained from an elementary wall by subdividing each edge q times.
See Fig. 2.1 for an illustration of an elementary wall, a 1-subdivided wall, and the line graph of
a 1-subdivided wall.

(a) (b) (c)

Figure 2.1: An example of an elementary wall (a), a 1-subdivided wall (b), and the line graph
of a 1-subdivided wall (c).

Lemma 2.7. The class of balanced complete bipartite graphs and, for all q ≥ 0, the class of
q-subdivided walls and the class of their line graphs, are (tw, ω)-unbounded.

Proof. It is well known that the minimum degree of a graph is a lower bound on its treewidth
(see, e.g., [13]). Hence, tw(Kn,n) ≥ n and clearly, since Kn,n is bipartite, we have ω(Kn,n) = 2.
We conclude that the class of balanced complete bipartite graphs is (tw, ω)-unbounded.

The class of elementary walls has unbounded treewidth (see, e.g., [23]), and, since the treewidth
of a graph G is at least as large as the treewidth of any of its minors (see, e.g., [12]), so is the class
of q-subdivided walls for any q ≥ 0. Furthermore, since tw(L(G)) ≥ 1

2(tw(G) + 1)− 1, as shown
by Harvey and Wood [51], the class of line graphs of q-subdivided walls also has unbounded
treewidth. The clique number of each graph in these classes is bounded by 3, and hence all
these classes are indeed (tw, ω)-unbounded.

Lemma 2.7 implies the following necessary conditions for (tw, ω)-boundedness of a graph class
excluding a single graph H with respect to some graph containment relation (in particular, with
respect to one of the six relations considered in this paper).

Corollary 2.8. Let ⊆ be any graph containment relation, and let H be a graph such that the
class of graphs excluding H with respect to relation ⊆ is (tw, ω)-bounded. Then H is in relation
⊆ with some balanced complete bipartite graph, with some q-subdivided wall for each q ≥ 0, and
with the line graph of some q′-subdivided wall for each q′ ≥ 0.

6
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3 Forbidding an induced subgraph or an induced topological minor

We first consider graph classes excluding a graph H as in induced subgraph or as an induced
topological minor. The following characterization of (tw, ω)-bounded graph classes excluding a
single forbidden induced subgraph is derived using Lemma 2.6 and Corollary 2.8.

Theorem 3.1. Let H a graph. Then, the class of H-free graphs is (tw, ω)-bounded if and only
if one of the following conditions holds.

1. H ⊆is P3 with a binding function f(k) = k − 1.

2. H is edgeless with a binding function f(k) = R(k + 1, |V (H)|) − 2.

Proof. If H is edgeless, then Lemma 2.6 applies. If H ⊆is P3, then every H-free graph G is
P3-free and G is a disjoint union of complete graphs. Thus, tw(G) = ω(G)− 1 in this case.

Suppose now that H is neither edgeless nor an induced subgraph of P3 and that the class of H-
free graphs is (tw, ω)-bounded. By Corollary 2.8, H is an induced subgraph of some complete
bipartite graph and also an induced subgraph of the line graph of some elementary wall. In
particular, H must be isomorphic to a complete bipartite graph Kp,q with 1 ≤ p ≤ q (note that
we must have p, q ≥ 1 since H is not edgeless). Furthermore, since line graphs of elementary
walls are {claw, C4}-free (or, equivalently, {K1,3,K2,2}-free), we infer that H must be isomorphic
to either K1,1 or K1,2. Thus, H is an induced subgraph of P3, a contradiction.

A cut-vertex in a connected graph G is a vertex whose removal disconnects the graph. A
block of a graph is a maximal connected subgraph without cut-vertices. A block-cactus graph is
a graph every block of which is a cycle or a complete graph. In her PhD thesis [49], Hartinger
proved that a graph is K−

4 -induced-minor-free if and only if G is a block-cactus graph. The
same approach actually shows that these properties are also equivalent to excluding K−

4 as an
induced topological minor.

Lemma 3.2. Let G be a graph. Then, the following conditions are equivalent:

1. G is K−
4 -induced-minor-free.

2. G is K−
4 -induced-topological-minor-free.

3. G is a block-cactus graph.

Proof. Since every induced topological minor in G is also an induced minor, G is K−
4 -induced-

topological-minor-free if it is K−
4 -induced-minor-free.

Suppose that G is K−
4 -induced-topological-minor-free and that G is not a block-cactus graph.

We first show that G contains a hole. Suppose not. Then G is a chordal K−
4 -free graph and thus

a block graph (see [59]), that is, a graph every block of which is a complete graph. But then,
G is a block-cactus graph, a contradiction. Hence, G must contain a hole C, and in particular
there exists some block B of G such that V (C) ⊆ V (B). Since B is connected but not a cycle,
there exists a vertex x ∈ V (B) \ V (C) with a neighbor in V (C). If |N(x) ∩ V (C)| ≥ 2, it is
easy to see that G contains a subdivision of K−

4 as an induced subgraph, a contradiction. Thus,
|N(x) ∩ V (C)| = 1 and every vertex in V (B) \ V (C) has at most one neighbor in C. Now, take
a vertex z ∈ V (B) \V (C) which has a neighbor v ∈ V (C) such that z minimizes the length of a
shortest path P between z and C not containing v. We know that P must exist since B has no
cut-vertex. Also, we may assume that v has no other neighbor in P ; otherwise we could replace
z with this vertex and get a shorter path. Let v′ ∈ V (C) be the vertex of P in V (C) \ {v} and
z′ be the neighbor of v′ in P . Recall that z′ has only one neighbor in V (C). Using a similar
argument as for v, we may assume that v′ has no other neighbor in P . The minimality of P
implies that the internal vertices of P do not have a neighbor in C. Hence, G[V (C) ∪ V (P )] is

7
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a subdivision of K−
4 , a contradiction. This shows that every K−

4 -induced-topological-minor-free
graph is a block-cactus graph.

Finally, let G be a block-cactus graph, and let H be an induced minor of G. It is not difficult
to see that the class of block-cactus graphs is closed under vertex deletions and edge contractions.
Therefore, H is also a block-cactus graph. Since K−

4 is not a block-cactus graph, H cannot be
isomorphic to K−

4 . Therefore, G is K−
4 -induced-minor-free.

Lemma 3.3. The class of block-cactus graphs is (tw, ω)-bounded with a binding function f(k) =
max{k − 1, 2}.

Proof. The treewidth of a graph G is the maximum treewidth of its blocks (see, e.g., [12]). Since
the treewidth of a complete graph of order k is k − 1 and the treewidth of a cycle is two, the
result follows.

Theorem 3.4. Let H be a graph. Then, the class of H-induced-topological-minor-free graphs is
(tw, ω)-bounded if and only if one of the following conditions holds.

1. H ⊆is C3 or H ⊆is C4, in which case a binding function is f(k) = k − 1.

2. H ∼= K−
4 , in which case a binding function is f(k) = max{k − 1, 2}.

3. H is edgeless, in which case a binding function is f(k) = R(k + 1, |V (H)|)− 2.

Proof. If H is edgeless, then Lemma 2.6 applies. If H ⊆is C3 or H ⊆is C4, then H ⊆itm C4.
Hence, by Observation 2.4, the class of H-induced-topological-minor-free graphs is a subclass
of the class of chordal graphs, and thus Theorem 2.1 applies. If H ∼= K−

4 , then according to
Lemma 3.2 the class of H-induced-topological-minor-free graphs is the class of block-cactus
graphs, and Lemma 3.3 applies.

For the converse direction, suppose that H *is C3, H *is C4, H ≇ K−
4 , H is not edgeless, and

that the class of H-induced-topological-minor-free graphs is (tw, ω)-bounded. By Corollary 2.8,
H is an induced topological minor of some complete bipartite graph and an induced topological
minor of the line graph of some 1-subdivided wall. Since the line graph of every 1-subdivided wall
is planar, subcubic, and claw-free, H must also be planar, subcubic, and claw-free. Furthermore,
since H is an induced topological minor of some complete bipartite graph, we must have H ⊆itm

K2,3, since otherwise either H would not be planar or it would not be subcubic. Finally, claw-
freeness implies that H ∈ {P2, P3, C3, C4,K

−
4 }, a contradiction.

4 Forbidding an induced minor

We now turn to graph classes excluding a single graph H as an induced minor. Given a graph
G, we denote by η(G) the Hadwiger number of G, defined as the largest value of p such that Kp

is a minor of G (see [60]). We first develop some sufficient conditions for when sufficiently large
Hadwiger number implies large clique number and then apply these results to characterize the
graphs H such that the class of H-induced-minor-free graphs is (tw, ω)-bounded.

4.1 A detour: Hadwiger number versus clique number

In Theorems 4.1 and 4.2 we show that excluding either a complete graph minus an edge or
a 4-wheel as an induced minor results in an (η, ω)-bounded graph class with a linear binding
function.

Theorem 4.1. For each p ≥ 2, the class of K−
p -induced-minor-free graphs is (η, ω)-bounded

with a binding function f(k) = max{2p − 4, k}.

8
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Proof. Fix p ≥ 2 and k ∈ N, and let G be a K−
p -induced-minor-free graph with ω(G) = k. Let

q = max{2p − 4, k} + 1. We want to show that G contains no Kq as a minor. Suppose for a
contradiction that G contains Kq as a minor. Fix a minor model M = (Xu : u ∈ V (Kq)) of
Kq in G such that the total number of vertices in the bags, that is, the sum

∑

u∈V (Kq)
|Xu|, is

minimized.
If for all u ∈ V (Kq) we have |Xu| = 1, then the set

⋃

u∈V (Kq)
Xu is a clique in G, implying

that ω(G) ≥ |V (Kq)| = q ≥ k + 1, a contradiction. Therefore, there exists some u ∈ V (Kq)
such that |Xu| ≥ 2. Furthermore, note that for every vertex y ∈ Xu there exists a vertex v(y)
of Kq − u such that y has no neighbors in Xv(y), since otherwise replacing the bag Xu with {y}
would result in a minor model of Kq smaller than M . Since |Xu| ≥ 2 and the subgraph of G
induced by Xu is connected, there exists a vertex x ∈ Xu such that the subgraph of G induced
by Xu \ {x} is connected. (For example, take x to be a leaf of a spanning tree of G[Xu].)

Let Z be the set of vertices z ∈ V (Kq) \ {u} such that x has a neighbor in Xz. Suppose
first that |Z| ≥ (q − 1)/2. Recall that Xv(x) is a bag in which x has no neighbor. In particular,
v(x) 6= u and v(x) 6∈ Z. Then, the bags from (Xz : z ∈ Z) along with {x} and Xv(x) form an
induced minor model of K−

|Z|+2. Since |Z|+ 2 ≥ (q − 1)/2 + 2 ≥ (2p − 4)/2 + 2 = p, we obtain
a contradiction with the fact that G is K−

p -induced-minor-free.
Finally, suppose that |Z| < (q − 1)/2. The minimality of M implies that Z is nonempty and

for some w ∈ Z we have
(
⋃

v∈Xw
N(v)

)

∩Xu = {x}. Let Z ′ = V (Kq) \ (Z ∪ {u}). Note that
for every vertex z ∈ Z ′ there exists an edge from Xz to Xu \ {x}. Since |Z|+ |Z ′| = q − 1 and
|Z| < (q − 1)/2, we have |Z ′| ≥ (q − 1)/2. Furthermore, w ∈ Z and hence w 6∈ Z ′. Thus, the
bags from (Xz : z ∈ Z ′) along with Xu \ {x} and Xw form an induced minor model of K−

|Z′|+2,
leading again to a contradiction with the fact that G is K−

p -induced-minor-free.

Similar but more involved arguments show that large Hadwiger number implies large clique
number also in the class of W4-induced-minor-free graphs. In the proof of the next theorem we
will need the following standard notion: A vertex u in a graph G is said to be universal if it is
adjacent to all other vertices of G, that is, dG(u) = |V (G)| − 1.

Theorem 4.2. The class of W4-induced-minor-free graphs is (η, ω)-bounded with a binding func-
tion f(k) = k + 5.

Proof. Fix a positive integer k, and let G be a W4-induced-minor-free graph with ω(G) = k.
Let q = k + 5 (note that q ≥ 6) and F be the graph K−

q . We claim that G does not contain F
as an induced minor. We denote by U ⊂ V (F ) the set of universal vertices in F . To derive a
contradiction, suppose that G contains F as an induced minor, and fix an induced minor model
M = (Xu : u ∈ V (F )) of F in G such that the size of

⋃

u∈U Xu is minimized. We will refer to this
condition as property (∗). We denote by x and y the two nonadjacent vertices in F . It is clear
that if for all u ∈ U we have |Xu| = 1, then the set

⋃

u∈U Xu is a clique in G, a contradiction
since |U | = q − 2 > k = ω(G). Hence, there exists a vertex u ∈ U such that |Xu| ≥ 2.

Partition the bag Xu arbitrarily into two nonempty bags Xu1
and Xu2

, both inducing a
connected subgraph in G. (For example, we can take ℓ to be a leaf of a spanning tree of G[Xu]
and set Xu1

= {ℓ} and Xu2
= Xu \ {ℓ}.) Let M ′ be the collection of bags obtained from M by

removing the bag Xu and adding the bags Xu1
and Xu2

. Let F ′ be the graph obtained from the
subgraph of G induced by the union of bags in M ′ by contracting each of the bags in M ′ into a
single vertex. Note that the vertex set of F ′ is (V (F )\{u})∪{u1, u2} and that M ′ is an induced
minor model of F ′ in G. In particular, F ′ is an induced minor of G. Notice that u1 and u2 are
adjacent in F ′. Let U ′ = U \{u} and observe that U ′ ⊆ V (F ′). Note that dF ′(u1) ≥ 2; otherwise
u1 would only be adjacent to u2, and thus we could replace Xu with Xu2

in M to obtain an
induced minor model of F in G that would contradict the fact that M satisfies property (∗). For
the same reason, dF ′(u2) ≥ 2.

9
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Suppose first that dF ′(u1) = 2. Let v be the neighbor of u1 different from u2. If v = x, then
we could redefine Xu = Xu2

and Xx = Xx∪Xu1
in M to obtain an induced minor model of F in

G showing that M does not respect property (∗). Thus, v 6= x. Similarly, v 6= y. Consequently,
v ∈ U ′. The fact that M satisfies property (∗) also implies that v is not adjacent to u2. Since
|U ′| = |U | − 1 = q − 3 > 2, there is a vertex w ∈ U ′ \ {v}. Note that w is not adjacent
to u1 and hence must be adjacent to u2. We obtain that {x, u2, y, v} induces a C4 in F ′ and
{x, u2, y, v} ⊆ N(w). Therefore, G contains W4 as an induced minor, a contradiction. Thus, we
have dF ′(u1) ≥ 3. By symmetry, we also have dF ′(u2) ≥ 3.

For i ∈ {1, 2}, let Ai be the set of vertices in U ′ adjacent to ui. By symmetry, it suffices to
consider the following two cases depending on A1 and A2.

Case 1: A1 * A2 and A2 * A1.
Let v ∈ A1 \ A2 and w ∈ A2 \ A1. Notice that v and w are adjacent, and therefore
{v, u1, u2, w} induces a C4 in F ′. Suppose first that u1 is adjacent to neither x nor y.
Then u2 is adjacent to both x and y. Furthermore, since dF ′(u1) ≥ 3, vertex u1 must
have a neighbor z ∈ U ′ \ {v,w}. Hence, every vertex in {v, u1, u2, w} has a neighbor
in the set {x, y, z}. Since {x, y, z} induces a connected subgraph of F ′, we infer that
W4 is an induced minor of F ′ and thus of G, a contradiction. A similar conclusion is
obtained if u2 is adjacent to neither x nor y. We may thus assume that u1 is adjacent
to either x or y, and the same for u2. Since |U ′| = |U | − 1 = q− 3 ≥ 3, there is a vertex
z ∈ U ′ \ {v,w}. Again, since {x, y, z} induces a connected subgraph of F ′, we conclude
that W4 is an induced minor of F and thus of G, a contradiction. See Fig. 4.1(a) for an
illustration.

x u1 u2 y

v w

z

(a) A1 * A2 and A2 * A1.

x u1 u2 y

v w

z

(b) A1 ( A2.

x u1 u2 y

v w

z

(c) A1 = A2 = U .

Figure 4.1: Representation of the different cases considered in the proof of Theorem 4.2. The
induced minor contains all plain edges and is a subgraph of the graph induced by
plain and dotted edges. Black squared vertices induce a C4 and black round vertices
are merged into a single vertex.

Case 2: A1 ⊆ A2.
Necessarily, A2 = U ′, and hence u2 cannot be adjacent to both x and y, otherwise
M would not satisfy property (∗). Without loss of generality, assume that u2 is not
adjacent to x. Then u1 is adjacent to x.

Suppose first that A1 is a proper subset of A2. Then there exists a vertex w ∈ A2 \A1.
Note that the vertices {x, u1, u2, w} induce a C4 in F ′. We claim that A1 = ∅. Indeed,
suppose for a contradiction that there exists a vertex v ∈ A1. Then v 6= w and v is
universal in F ′. Therefore, F ′ contains an induced copy of W4 in F ′ with vertex set
{x, u1, u2, w, v}; in particular, W4 is an induced minor of G, a contradiction. Thus,
A1 = ∅, as claimed. This means that u1 does not have any neighbors in U ′, and hence
using the inequality dF ′(u1) ≥ 3 we infer that NF ′(u1) = {u2, x, y}. Recall that |U ′| ≥ 3.
Choose any vertex z ∈ U ′\{w}. Note that every vertex in F ′ is adjacent to either y or z.
In particular, since {y, z} ∩ {x, u1, u2, w} = ∅ and {y, z} induces a connected subgraph

10
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of F ′, we conclude that W4 is an induced minor of F , and thus of G, a contradiction.
See Fig. 4.1(b) for an illustration.

We may thus assume that A1 = A2. The fact that M satisfies property (∗) implies
that u1 cannot be adjacent to both x and y. Thus, since u1 is adjacent to x, it is not
adjacent to y. Consequently, u2 is adjacent to y. Now, observe that the graph obtained
by contracting the edge {u2, y} in F ′ is isomorphic to F . Hence, we can modify M by
redefining Xu = Xu1

and Xy := Xy ∪Xu2
and get a minor model of F . However, this

implies that M does not respect property (∗), a contradiction. See Fig. 4.1(c) for an
illustration.

We conclude that G is K−
q -induced-minor-free, and following Theorem 4.1 we obtain that η(G) ≤

max{2q − 5, k} = 2k + 1.

4.2 Back to treewidth

As explained by Belmonte, Otachi, and Schweitzer [7] (and observed also in [17]), the following
fact can be derived from the proof of Theorem 9 in [89].

Theorem 4.3. For every graph F and every planar graph H, the class of graphs that are both
F -minor-free and H-induced-minor-free has bounded treewidth.

Since excluding a complete graph as a minor is the same as excluding it as an induced minor,
Theorem 4.3 implies the following.

Corollary 4.4. For every positive integer p and every planar graph H, the class of {Kp,H}-
induced-minor-free graphs has bounded treewidth.

Observe that no graph G contains Kη(G)+1 as a minor (or, equivalently, as an induced minor).

Corollary 4.5. Let H be a planar graph. The class of H-induced-minor-free graphs is (η, ω)-
bounded if and only if it is (tw, ω)-bounded.

Proof. Suppose that the class of H-induced-minor-free graphs is (η, ω)-bounded, and let f be a
(η, ω)-binding function for the class. Let k ∈ N, and let G be an H-induced-minor-free graph
with ω(G) = k. Then η(G) ≤ f(k), that is, G is Kf(k)+1-induced-minor-free. By Corollary 4.4,
the treewidth of G can be bounded from above by some constant g(k) depending only on k.
Thus, g is a (tw, ω)-binding function for the class.

From Theorem 4.1 we obtain that the class of K−
5 -induced-minor-free graphs is (η, ω)-bounded.

Since K−
5 is planar, a direct application of Corollary 4.5 implies the following result.

Corollary 4.6. The class of K−
5 -induced-minor-free graphs is (tw, ω)-bounded.

Similarly, since W4 is planar, we can directly apply Theorem 4.2 and Corollary 4.5 and obtain
the following result.

Corollary 4.7. The class of W4-induced-minor-free graphs is (tw, ω)-bounded.

Our next result makes use of minimal separators. Given two nonadjacent vertices u and v in a
graph G, a u,v-separator in G is a set S of vertices such that u and v are in different connected
components of G−S. A u,v-separator is minimal if it does not contain any other u,v-separator.
A minimal separator in a graph G is a minimal u,v-separator for some nonadjacent vertex pair
u, v. Given a graph G and a set S ⊆ V (G), an S-full component of G − S is a component
C of the graph G − S such that every vertex in S has a neighbor in C. The following lemma
characterizing minimal separators is well known (see, e.g., [45]).

11
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Lemma 4.8. A set S of vertices in a graph G is a minimal separator if and only if the graph
G− S has at least two S-full components.

Theorem 4.9 (Skodinis [85]). Let s be a positive integer, and let G be the class of graphs in
which all minimal separators have size at most s. Then, G is (tw, ω)-bounded with a binding
function f(k) = max{k, 2s} − 1.

Using Theorem 4.9, we infer our next result.

Lemma 4.10. For every q ∈ N, the class of K2,q-induced-minor-free graphs is (tw, ω)-bounded
with a binding function f(k) = max{k, 2R(k + 1, q)− 2} − 1.

Proof. Fix two positive integers q and k, and let G be a K2,q-induced-minor-free graph with
ω(G) = k. We claim that every minimal separator in G has size at most R(k + 1, q) − 1.
Suppose this is not the case, and let u and v be two nonadjacent vertices in G such that
|S| ≥ R(k + 1, q) for some minimal u,v-separator S in G. Since |S| ≥ R(k + 1, q), Ramsey’s
theorem implies that G[S] contains either a clique of size k + 1 or an independent set of size
q. Since ω(G[S]) ≤ ω(G) = k, we infer that G[S] contains an independent set I of size q. Let
Cu and Cv denote the connected components of G− S containing u and v, respectively. By the
minimality of S, every vertex in S has a neighbor in Cu and a neighbor in Cv (see, e.g., [45]).
But now, the sets V (Cu), V (Cv), and {x} for all x ∈ I form the bags of an induced minor
model of K2,q in G, a contradiction. Therefore, every minimal separator in G has size at most
R(k + 1, q) − 1. Using Theorem 4.9, we obtain that tw(G) ≤ max{k, 2R(k + 1, q) − 2} − 1.

Remark 4.11. The binding function given by Lemma 4.10 cannot be improved by means of
improving the Ramsey number when restricted to the class of K2,q-induced-minor-free graphs.
Indeed, for every two positive integers k and q, the least positive integer N such that every
K2,q-induced-minor-free graph with at least N vertices contains either a clique of size k or an
independent set of size q equals the Ramsey number R(k, q). This follows from [6, Theorem 2];
the key observation is that there is a graph with R(k, q) − 1 vertices having no clique of size k
and no independent set of size q, and every such graph is K2,q-induced-minor-free.

A graph G is said to be 1-perfectly orientable if it has an orientation D such that for every
vertex v ∈ V (G), the out-neighborhood of v in D is a clique in G. The class of 1-perfectly
orientable graphs is a common generalization of the classes of chordal graphs and circular-arc
graphs. While 1-perfectly orientable graphs were studied in several papers (see, e.g., [4, 17, 50]),
their structure remains poorly understood. Brešar et al. showed in [17] that the treewidth of
every 1-perfectly orientable planar graph is at most 21 and asked whether the class of 1-perfectly
orientable graphs is (tw, ω)-bounded. Since every 1-perfectly orientable graph excludes K2,3 as
an induced minor (see [50]), Lemma 4.10 answers their question in the affirmative.

Corollary 4.12. The class of 1-perfectly orientable graphs is (tw, ω)-bounded with a binding
function f(k) = max{k, 2R(k + 1, 3) − 2} − 1.

Lemma 2.7 and Corollaries 4.6 and 4.7 lead to the following characterization.

Theorem 4.13. Let H be a graph. Then, the class of H-induced-minor-free graphs is (tw, ω)-
bounded if and only if one of the following conditions holds: H ⊆is W4, H ⊆is K

−
5 , H ⊆is K2,q

for some q ∈ N, or H ⊆is K
+
2,q for some q ∈ N.

Proof. Suppose that the class of H-induced-minor-free graphs is (tw, ω)-bounded. Since, by
Lemma 2.7, the class of balanced complete bipartite graphs is (tw, ω)-unbounded, H must be
an induced minor of some complete bipartite graph Kn,n. Let M = (Xu : u ∈ H) be an induced
minor model of H in Kn,n. We define two types of bags in M : the tiny bags containing a single
vertex and the large bags containing at least 2 vertices. It is clear that the set of large bags

12
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corresponds to a clique in H, while the union of the tiny bags induces a complete bipartite
subgraph of Kn,n. Hence, H ∼= Kp,q ∗ Kr for some p, q, r ≥ 0, where ∗ represents the join of
the two graphs, that is, the addition of all possible edges between vertices in Kp,q and vertices
in Kr. Without loss of generality, we assume that p ≤ q. Observe that H needs to be planar;
otherwise the class of H-induced-minor-free graphs would contain the class of elementary walls,
which by Lemma 2.7 is (tw, ω)-unbounded. Hence, we can analyze the possible values for p, q,
and r that allow H to be planar. Let us first notice that p ≤ 2, as otherwise H would contain
K3,3 as a subgraph and would thus be planar. Similarly, r ≤ 4 since otherwise H would contain
K5 as a subgraph. Also, it is easily observed that if p = 1, then H ∼= K0,q ∗Kr+1, and similarly
if q = 1, then H ∼= Kp,0 ∗Kr+1. Hence, we may assume that p ∈ {0, 2} and q 6= 1. Consider the
following cases:

• Case r = 4: Then p = q = 0, otherwise K5 ⊆s H. Hence, H ∼= K4.

• Case r = 3: Then p = 0, otherwise K3,3 ⊆s H. If q ≥ 3, then K3,3 ⊆s H, and thus q ≤ 2.
If q = 0, then H ∼= K3, and if q = 2, then H ∼= K−

5 .

• Case r = 2: Then p = 0, otherwise K3,3 ⊆s H. This implies that H ∼= K+
2,q.

• Case r = 1: If p = 2, then q = 2 (since otherwise K3,3 ⊆s H) and H ∼= W4. If p = 0, then
H ∼= K1,q.

• Case r = 0: Then H is edgeless or H ∼= K2,q.

Thus, H ⊆is W4, H ⊆is K
−
5 , H ⊆is K2,q, or H ⊆is K

+
2,q for some q ∈ N, as desired.

For the converse, suppose first that H ⊆is K2,q or H ⊆is K
+
2,q for some q ∈ N. It is not difficult

to notice that K+
2,q is an induced minor of K2,q+1, obtained by contracting one edge. From

Lemma 4.10 it then follows that the class of H-induced-minor-free graphs is (tw, ω)-bounded. If
H ⊆is W4 or H ⊆is K

−
5 , then Corollaries 4.6 and 4.7 apply.

Theorem 4.13 and Corollary 2.3 have the following consequence.

Corollary 4.14. Let H be a graph such that H ⊆is W4, H ⊆is K
−
5 , H ⊆is K2,q for some q ∈ N,

or H ⊆is K
+
2,q for some q ∈ N. Then the class of H-induced-minor-free graphs is χ-bounded.

To the best of our knowledge, χ-boundedness of the classes of H-induced-minor-free graphs
whenever H is isomorphic to W4, K−

5 , K2,q for some q ≥ 3, or K+
2,q for some q ≥ 3, was not

known prior to our work.

Remark 4.15. If H is an induced subgraph of any of the above listed graphs but not isomorphic
to any of them, then χ-boundedness of the class of H-induced-minor-free graphs follows from
results in the literature. Indeed, in this case, H is either an induced subgraph of K1,q for some
q ≥ 3 or an induced subgraph of C4, K

−
4 , or K4. If H is an induced subgraph of K1,q for some

q ≥ 3, then χ-boundedness of the class of H-induced-minor-free graphs follows, for example,
from an easy application of Ramsey’s theorem to the class of K1,q-free graphs. The cases when
H is an induced subgraph of C4 and K−

4 correspond, respectively, to the classes of chordal and
block-cactus graphs (by Observation 2.4 and Lemma 3.2). In the former case, χ-boundedness
follows from the fact that chordal graphs are perfect. In the latter case, we can use the fact
that block-cactus graphs have bounded clique-width [57], which is a sufficient condition for χ-
boundedness [15, 35]. The case when H is an induced subgraph of K4 corresponds to the class of
K4-topological-minor-free graphs, and all such graphs are 3-colorable [32]. The above arguments
do not apply if H is isomorphic to any of W4, K

−
5 , K2,3, or K+

2,3, as none of the resulting classes
is contained in the class of perfect graphs or in any graph class of bounded chromatic number or
bounded clique-width. (This can be seen using the results of [7], the fact that complete graphs are
H-induced-minor-free, and that odd cycles of length at least 5 are H-induced-minor-free but not
perfect.)
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5 Forbidding a subgraph, a topological minor, or a minor

We now complete our six dichotomy theorems by showing that known results on treewidth
and graph minors imply characterizations of (tw, ω)-bounded graph classes excluding a single
graph as either a subgraph, a topological minor, or a minor. We start with a simple but useful
observation.

Lemma 5.1. Let H be a graph, and let G be a graph class contained in the class of H-subgraph-
free graphs. Then G is (tw, ω)-bounded if and only if G has bounded treewidth.

Proof. Any graph class having bounded treewidth is (tw, ω)-bounded. For the converse direction,
assume that G is (tw, ω)-bounded with a binding function f . Note that no graph G ∈ G can
have a clique of size |V (H)|, since otherwise G would not be H-subgraph-free. Hence, every
graph G ∈ G satisfies ω(G) ∈ {1, . . . , k}, where k = |V (H)| − 1, and thus the treewidth of G is
at most max{f(1), . . . , f(k)}.

Theorem 5.2 (Robertson and Seymour [74]). For every planar graph H, the class of H-minor-
free graphs has bounded treewidth.

Recall that S is the class of graphs in which every connected component is either a path or a
subdivided claw.

Lemma 5.3 (Golovach, Paulusma, and Ries [44]). For every H ∈ S, a graph G is H-subgraph-
free if and only if it is H-minor-free.

Theorem 5.4. For every graph H, the following conditions are equivalent.

1. The class of H-subgraph-free graphs is (tw, ω)-bounded.

2. The class of H-subgraph-free graphs has bounded treewidth.

3. H ∈ S.

Proof. Equivalence between Conditions 1 and 2 follows from Lemma 5.1.
Suppose now that the class of H-subgraph-free graphs has bounded treewidth. Since the

class of elementary walls has unbounded treewidth, H must be a subgraph of some elementary
wall. This implies that H is subcubic. Suppose next that H contains a connected component
with two vertices u and v of degree 3, and let ℓ be the distance between u and v. Then the
class of ℓ-subdivided walls is a subclass of the class of H-subgraph-free graphs, and the class
of H-subgraph-free graphs has unbounded treewidth, a contradiction. Thus, every connected
component of H has at most one vertex of degree 3. Using a similar reasoning, we can conclude
that H is acyclic, and thus H ∈ S.

Finally, suppose that H ∈ S. Then following Lemma 5.3 every H-subgraph-free graph is
also H-minor-free. Hence, by Theorem 5.2, the class of H-subgraph-free graphs has bounded
treewidth.

A similar approach can be used to prove Theorems 5.6 and 5.7. We will need the following
result.

Lemma 5.5 (see, e.g., Diestel [30]). A subcubic graph H is a minor of a graph G if and only if
H is a topological minor of G.

Theorem 5.6. For every graph H, the following conditions are equivalent.

1. The class of H-topological-minor-free graphs is (tw, ω)-bounded.

2. The class of H-topological-minor-free graphs has bounded treewidth.
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3. H is subcubic and planar.

Proof. Since every H-topological-minor-free graph is also H-subgraph-free, Lemma 5.1 implies
equivalence between Conditions 1 and 2.

Suppose that the class of H-topological-minor-free graphs has bounded treewidth. Since the
class of elementary walls has unbounded treewidth, H is a topological minor of some elementary
wall. Thus, since every elementary wall is both subcubic and planar, H must also be subcubic
and planar.

Finally, suppose that H is subcubic and planar. Since H is subcubic, by Lemma 5.5 we
obtain that every H-topological-minor-free graphs is also H-minor-free. Since H is planar, by
Theorem 5.2, the class of H-topological-minor-free graphs has bounded treewidth.

Theorem 5.7. For every graph H, the following conditions are equivalent.

1. The class of H-minor-free graphs is (tw, ω)-bounded.

2. The class of H-minor-free graphs has bounded treewidth.

3. H is planar.

Proof. Since every H-minor-free graph is also H-subgraph-free, we can again invoke Lemma 5.1
to infer that Conditions 1 and 2 are equivalent.

Suppose that the class of H-minor-free graphs has bounded treewidth. Since the class of
elementary walls has unbounded treewidth, H is a minor of some elementary wall. Thus, H is
planar.

Finally, suppose that H is planar. Then Theorem 5.2 implies that the class of H-minor-free
graphs has bounded treewidth.

6 Algorithmic implications of (tw, ω)-boundedness

As explained in the introduction, the (tw, ω)-bounded classes having a computable binding func-
tion f possess some algorithmically useful properties for variants of the clique and coloring
problems. All the (tw, ω)-bounded graph classes identified in this work have a computable bind-
ing function. The (tw, ω)-boundedness of graph classes discussed in Sections 3 and 4 is derived
using either the structure of graphs in the resulting class (Theorem 3.1 and Lemma 3.3), Ram-
sey’s theorem (Theorem 3.1 and Lemma 4.10), or graph minors theory (Corollaries 4.6 and 4.7).
In the former two cases, there exist binding functions that are explicit polynomials. In the case
of applications of graph minors theory, the key result to deriving those bounds is Theorem 4.3,
the proof of which relies on results of Fomin, Golovach, and Thilikos [40]. As explained in [42,
Section 9], recent developments in the area of graph minors imply that these bounds are com-
putable, too. For the (tw, ω)-bounded graph classes discussed in Section 5, a result of Chuzhoy
and Tan applies stating that if G excludes a planar graph H as a minor, then the treewidth of G
is O(|V (H)|9 poly log |V (H)|) [24]. An explicit upper bound tw(G) ≤ 215|V (H)|+8|V (H)| log(|V (H)|)

was also shown in [61]. For later use, we record this observation in the form of a theorem.
Let us denote by Σ the family of (tw, ω)-bounded graph classes excluding a fixed graph H

as a subgraph, a topological minor, or a minor (cf. the middle column of Table 1). Similarly,
we denote by Σi the family of (tw, ω)-bounded graph classes excluding a fixed graph H as an
induced subgraph, an induced topological minor, or an induced minor (cf. the right column of
Table 1).

Theorem 6.1. Each graph class G ∈ Σ ∪ Σi has a computable (tw, ω)-binding function, which
is constant if G ∈ Σ.
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As already mentioned in the introduction, Chaplick and Zeman showed in [21] that for every
positive integer k, there exists a linear-time algorithm for the k-Clique and List k-Coloring

problems in any (tw, ω)-bounded graph class having a computable binding function. Combining
this result with Theorem 6.1 yields the following.

Corollary 6.2. For every positive integer k, there exists a linear-time algorithm for the k-
Clique and List k-Coloring problems in each graph class G ∈ Σ ∪ Σi. In particular, this
holds when G is either the class of block-cactus graphs or the class of H-induced-minor-free graphs
for some H ∈ {W4,K

−
5 } ∪ {K2,q | q ∈ N}.

Beisegel et al. gave in [5] a polynomial-time algorithm for the Maximum Weight Clique

problem in a class of graphs generalizing the class of 1-perfectly orientable graphs. They asked
about the complexity of the Maximum Independent Set and k-Coloring problems in the
class of 1-perfectly orientable graphs. Since every 1-perfectly orientable graph is K2,3-induced-
minor-free, Corollary 6.2 answers, in a much greater generality, the question by Beisegel et al.
on the complexity of k-coloring 1-perfectly orientable graphs.

Given the useful algorithmic properties of (tw, ω)-bounded graph classes, it would be good
to have a polynomial-time recognition algorithm for graphs in any such class. Graphs G ex-
cluding a fixed graph H either as a minor or as a topological minor can be recognized in time
O(|V (G)|3) [46, 75]. Clearly, graphs excluding a fixed graph H as a subgraph or an induced sub-
graph can be recognized in polynomial time, simply by checking all the O(|V (G)||V (H)|) subsets
of vertices of size |V (H)|. The situation is less clear for graphs excluding a single induced minor
or induced topological minor, as there exist graphs H such that it is co-NP-complete to recognize
H-induced-minor-free graphs or H-induced-topological-minor-free graphs [39, 62]. Nevertheless,
for all the (tw, ω)-bounded classes of H-induced-topological-minor-free graphs (characterized by
Theorem 3.4), the recognition problem is easily observed to be polynomial-time solvable due to
the special structure of these graph classes. They are the classes of chordal graphs (if H ∼= C4),
of block-cactus graphs (if H ∼= K−

4 ), of P3-free graphs (if H ∼= P3), of acyclic graphs (if H ∼= C3),
of edgeless graphs (if H ∼= P2), and of graphs of bounded independence number (if H is edge-
less). Furthermore, it can be seen that a graph G has K1,q as an induced minor if and only
if G has an independent set S of size q such that for some connected component C of G − S,
every vertex in S has a neighbor in C. This implies that the recognition problem for the class of
K1,q-induced-minor-free graphs is polynomial-time solvable. Among the (tw, ω)-bounded classes
of H-induced-minor-free graphs (cf. Theorem 4.13), the cases when H ∈ {C4,K

−
4 , C3, P3, P2} or

H is edgeless are the same as above and hence recognizable in polynomial time. The complexity
of recognition remains open for H ∼= W4, H ∼= K−

5 , or H ∼= K2,q or H ∼= K+
2,q for some q ≥ 3.

As we explain next, this is not necessarily a problem.
As shown by Chaplick and Zeman, for every (tw, ω)-bounded class G with a computable

binding function and for every fixed k, List k-Coloring is solvable in linear time for graphs in
G [21]. If we are satisfied with polynomial running time, we can extend their approach to obtain
an algorithm for List k-Coloring that is robust in the sense of Raghavan and Spinrad [71]: it
either solves the problem or determines that the input graph is not in G.

Theorem 6.3. Let G be a (tw, ω)-bounded graph class having a computable (tw, ω)-binding func-
tion f . Then, for every positive integer k there exists a robust polynomial-time algorithm for the
List k-coloring problem on graphs in G.

Proof. The algorithm is as follows. First, we test whether the input graph G contains a clique
of size k + 1 in time O(|V (G)|k+1). If it does, then G is not k-colorable. Suppose it does not.
Then ω(G) ≤ k. In particular, this means that if G ∈ G, then tw(G) ≤ f(ω(G)) ≤ ck, where
ck = max{f(1), . . . , f(k)}. Using the linear-time algorithm of Bodlaender [11], we test whether
tw(G) ≤ ck. If tw(G) > ck, then G 6∈ G and the algorithm returns the message “G 6∈ G.” If
tw(G) ≤ ck, then the algorithm of Bodlaender actually computes a tree decomposition of G of
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width at most ck. Using this tree decomposition, we can now invoke a result of Jansen and
Scheffler [54] to test in linear time whether G is k-colorable with respect to the given lists of
available colors for each vertex.

The correctness of the algorithm is obvious. The running time of the algorithms by Bodlaen-
der and by Jansen and Scheffler is O(g(ck)(|V (G)| + |E(G)|)) and O(h(ck)(|V (G)| + |E(G)|)),
respectively, for some functions g and h depending only on ck (and thus only on k). Thus, the
total running time of the algorithm is O(|V (G)|k+1 + (g(ck) + h(ck))(|V (G)| + |E(G)|)), which
is polynomial in the input size for every fixed value of k.

We next discuss some possible implications of (tw, ω)-boundedness for improved approxima-
tions for the Maximum Clique problem: given a graph G, find a maximum clique in G. For
general graphs, this problem is notoriously difficult to approximate: for every ε > 0, there is
no polynomial-time algorithm for approximating the maximum clique in an n-vertex graph to
within a factor of n1−ε unless P = NP [94]. An approximation algorithm for an optimization
problem is typically required to compute a feasible solution to the problem. As we explain next,
for (tw, ω)-bounded graph classes with a polynomial binding function, known approximation
algorithms for treewidth (see, e.g., [38]) lead to an improved approximability bound, provided
that we allow the algorithm to output only a number approximating the value of the optimal
solution and not the approximate solution itself. We denote by opt the optimal solution value
of the maximum clique problem on the input graph G, that is, ω(G).

Theorem 6.4. Let G be a graph class having a computable polynomial (tw, ω)-binding function
f(k) = O(kc) for some constant c. Then, for all ε > 0 the clique number can be approximated
for graphs in G in polynomial time to within a factor of opt1−1/(c+ε).

Proof. Fix an ε > 0 and let G ∈ G. Using the algorithm of Feige, Hajiaghayi, and Lee [38], we
can compute in polynomial time a tree decomposition of G of width

t = O(tw(G)
√

log tw(G)) .

Since G ∈ G, the assumption on G implies that tw(G) = O(ω(G)c). Consequently,

t+ 1 = O(ω(G)c
√

log(ω(G)c)) = O(ω(G)c(log(ω(G)))1/2) .

This implies that t + 1 ≤ ω(G)c+ε as soon as ω(G) ≥ k0 for a suitable constant k0 depending
only on ε, c, and the constants hidden in the O notation of the approximation ratio of the
algorithm of Feige, Hajiaghayi, and Lee and of the binding function. Note that the assumption
ω(G) ≥ k0 is without loss of generality since otherwise we can compute ω(G) in polynomial
time. We thus have ω(G) ≥ (t+1)1/(c+ε), and this lower bound can be computed in polynomial
time. Since ω(G) − 1 ≤ tw(G) ≤ t, we have (t + 1)1/(c+ε) ≥ ω(G)1/(c+ε). This means that the
lower bound (t+ 1)1/(c+ε) approximates the value of the clique number ω(G) to within a factor
of ω(G)1−1/(c+ε), as claimed.

Note that unless P = NP, the result of Theorem 6.4 cannot be improved by means of using a
polynomial-time algorithm for computing the treewidth in (tw, ω)-bounded graph classes (which
would allow taking ε = 0), since there exist graph classes with a linear (tw, ω)-binding function
in which the treewidth is NP-hard to compute. In fact, the original NP-hardness proof for
computing the treewidth due to Arnborg, Corneil, and Proskurowski [2] produces co-bipartite
graphs, and since the vertex set of every co-bipartite graph G can be covered by two cliques, we
have tw(G) ≤ |V (G)| − 1 ≤ 2ω(G) − 1.

Corollary 6.5. Let G be a graph class having a computable linear (tw, ω)-binding function. Then,
for all ε > 0 the clique number can be approximated for graphs in G in polynomial time to within
a factor of optε.
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Note that the result of Corollary 6.5 cannot be improved to a polynomial-time approximation
scheme for the maximum clique problem, unless P = NP, as there exist graph classes with a
linear (tw, ω)-binding function in which the clique number is APX-hard to compute; see [21].

For exponential binding functions, the same approach leads to an improvement over the trivial
opt-approximation to the maximum clique (return any vertex), as follows.

Theorem 6.6. Let G be a graph class having a computable exponential (tw, ω)-binding function
f , say f(k) = O(ck) for some constant c > 1. Then, the clique number can be approximated for
graphs in G in polynomial time to within a factor of O(opt/ log opt).

Proof. Let G ∈ G. Using the algorithm of Feige, Hajiaghayi, and Lee [38], we can compute in
polynomial time a tree decomposition of G of width t = O(tw(G)

√

log tw(G)). Since G ∈ G, we
have tw(G) = O(cω(G)). Consequently,

t = O

(

cω(G)
√

log(cω(G))

)

= O(cω(G)
√

ω(G)) .

It follows that in polynomial time we can compute a lower bound on the clique number ω(G)
of the form Ω(log t). Since ω(G)− 1 ≤ tw(G) ≤ t, this lower bound is of the order Ω(log ω(G)).
This means that it approximates the value of the clique number ω(G) to within a factor of
O(ω(G)/ log ω(G)).

Remark 6.7. The proofs of Theorems 6.3, 6.4, and 6.6 remain valid as soon as the inequality
tw(G) ≤ f(ω(G)) holds for all graphs G ∈ G, and not necessarily for all induced subgraphs of
graphs in G. Thus, all these results, along with Corollary 6.5, also hold for such more general
graph classes, which need not be closed under induced subgraphs.

7 Remarks on (tw, ω)-binding functions of graphs of bounded independence

number

We now derive bounds on the degrees of the (tw, ω)-binding polynomials for classes of graphs
of bounded independence number. First, note that Theorem 3.1 implies that for all positive
integers q, the class of graphs with independence number less than q is (tw, ω)-bounded with
a polynomial binding function f(k) = O(kq−1). As observed by Trotignon and Pham [88] (see
also [37, 81]), classes of graphs of bounded independence number form a family of polynomially χ-
bounded graph classes that require χ-binding polynomials of arbitrarily large degrees. Note that
for every (tw, ω)-binding function f(k) for some graph class, the function f(k)+1 is a χ-binding
function for the same class. Therefore, classes of graphs of bounded independence number also
require (tw, ω)-binding polynomials of arbitrarily large degrees. For the sake of completeness,
we include the proof with slightly better bounds than the ones that follow from [88].

The proof of the lower bound is based on the following lower bounds on the Ramsey numbers
proved by Spencer [86].

Theorem 7.1. For every integer q ≥ 3 there exists a constant cq > 0 and a positive integer kq
such that for all k ≥ kq we have

R(k, q) ≥ cq

(

k

log k

)(q+1)/2

.

Theorem 7.2. For every integer q ≥ 3, let Gq denote the class of graphs G with α(G) < q (that
is, the class of qK1-free graphs). Then, Gq is a (tw, ω)-bounded graph class such that

• Gq has a (tw, ω)-binding function that is a polynomial of degree q − 1;
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• for every c > 0 and every ǫ > 0, the function

f(k) = ck(q+1)/2−ǫ

is not a (tw, ω)-binding function for Gq.

Proof. Fix an integer q ≥ 3, and let cq and kq be the corresponding constants given by
Theorem 7.1. The class Gq is (tw, ω)-bounded, since if k is a positive integer and G ∈ Gq

has clique number k, then tw(G) ≤ |V (G)| − 1 < R(k + 1, q)− 1 = O(kq−1).
Suppose for a contradiction that for some c > 0 and some ǫ > 0, we have

tw(G) ≤ c(ω(G))(q+1)/2−ǫ (1)

for all G ∈ Gq.
For each integer k ≥ kq, let nk be the largest integer such that

nk < cq

(

k

log k

)(q+1)/2

.

Then Theorem 7.1 implies that nk < R(q, k). By the definition of the Ramsey number R(q, k),
there exists a graph Gk with exactly nk vertices that has no independent set of size q and no
clique of size k. Since α(Gk) < q, we have Gk ∈ Gq. Furthermore, since |V (Gk)| ≤ α(Gk) ·χ(Gk)
and χ(Gk) ≤ tw(Gk) + 1 (see Theorem 2.2), Eq. (1) implies

nk = |V (Gk)|

≤ α(Gk) · χ(Gk)

< q · (tw(Gk) + 1)

≤ q · (c(ω(Gk))
(q+1)/2−ǫ + 1)

< q(ck(q+1)/2−ǫ + 1) .

By the definition of nk, we have nk ≥ cq

(

k
log k

)(q+1)/2
− 1. Comparing this lower bound on nk

with the above upper bound for nk, we derive

cq

(

k

log k

)(q+1)/2

− 1 < q(ck(q+1)/2−ǫ + 1) . (2)

Since q, cq, c, and ǫ are fixed constants independent of k, Eq. (2) will be violated for all sufficiently
large k, a contradiction.

Theorem 7.2 implies the following.

Corollary 7.3. There exists no polynomial that is a (tw, ω)-binding function for all polynomially
(tw, ω)-bounded graph classes.

8 Remarks on the Maximum Weight Independent Set problem

The Maximum Weight Independent Set (MWIS) problem takes as input a graph G and a
weight function w : V (G) → Q+, and the task is to find an independent set I in G of maximum
possible weight w(I), where w(I) =

∑

x∈I w(x). The computational complexity of the MWIS
problem for the (tw, ω)-bounded graph classes listed in Table 1 can be summarized as follows.
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1. As shown in Section 5, (tw, ω)-boundedness is equivalent to bounded treewidth when H
is forbidden as a subgraph, topological minor, or minor. Furthermore, the upper bound
on the treewidth is a computable constant (cf. Theorem 6.1). Thus, in all these cases, the
MWIS problem can be solved in linear time. Indeed, using the linear-time algorithm of
Bodlaender [11] we can compute a tree decomposition of the input graph G of constant
width and then use it to compute a maximum weight independent set in linear time,
following, e.g., the approach of Arnborg, Lagergren, and Seese [3].

2. When H is forbidden as an induced subgraph, following Theorem 3.1, the resulting graph
class is (tw, ω)-bounded if and only if H is either an induced subgraph of P3 or an edgeless
graph. When H ⊆is P3, every H-free graph is a disjoint union of complete graphs; thus
computing a maximum weight independent set for any H-free graph is equivalent to finding
a vertex of maximum weight in each clique, which can be done in linear time. If H is
edgeless, then every H-free graph contains only independent sets of size at most |V (H)|−1.
Thus, we can enumerate all independent sets of G and compute one of maximum weight
in time O(|V (G)||V (H)|−1).

3. When H is forbidden as an induced topological minor, following Theorem 3.4, the resulting
graph class is (tw, ω)-bounded if and only if H is either an induced subgraph of K−

4 , of
C4, or an edgeless graph.

When H ⊆is C4, the class of H-induced-topological-minor free graphs is a subclass of
the class of chordal graphs for which a linear-time algorithm for the MWIS problem is
known [41].

When H is edgeless, every H-induced-topological-minor-free graph is also H-free, and
hence a maximum weight independent set in G can be computed in time O(|V (G)||V (H)|−1),
as above.

If H ⊆is K
−
4 , then by Lemma 3.2, every H-induced-topological-minor-free graph is a block-

cactus graph, and a polynomial-time solvability for the MWIS problem follows from the
fact that the clique-width of every block-cactus graphs is at most 6 [57] and the algorithm
given by a metatheorem of Courcelle, Makowsky, and Rotics [25].

4. Finally, when H is forbidden as an induced minor, following Theorem 4.13, the resulting
graph class is (tw, ω)-bounded if and only if H is either an induced subgraph of W4, of K−

5 ,
of K2,q, or of K+

2,q for some q ∈ N. The computational complexity of the MWIS problem
is open for the class of H-induced-minor-free graphs whenever H is isomorphic to W4, to
K−

5 , to K2,q, or to K+
2,q for some q ≥ 3. However, as we show next, the problem is solvable

in polynomial time in the class of K1,q-induced-minor-free graphs for every positive integer
q.

Theorem 8.1. For every positive integer q, there is a polynomial-time algorithm for the Max-

imum Weight Independent Set problem in the class of K1,q-induced-minor-free graphs.

Proof. Fix a positive integer q, and let G be the class of K1,q-induced-minor-free graphs. Consider
a graph G ∈ G equipped with a weight function w : V (G) → Q+. We may assume without loss
of generality that G is connected, since otherwise we can solve the problem separately for each
connected component and combine the solutions.

Fix a vertex v ∈ V (G), and run breadth-first search from v to compute the distance levels
from v, that is, the sets Ni for all i ≥ 0, where Ni is the set of vertices in G that are at distance
i from v. In particular, N0 = {v}. We denote by ℓ the eccentricity of v, that is, the maximum
i ≥ 0 such that Ni 6= ∅.

The algorithm will be based on the observation that, for each i ∈ {1, . . . , ℓ}, the subgraph of
G induced by Ni has independence number less than q. Indeed, if G contains an independent
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set I such that |I| ≥ q and I ⊆ Ni for some i ∈ {1, . . . , ℓ}, then the set ∪j<iNj (which induces
a connected subgraph of G) along with the singletons {x}, x ∈ I, form an induced minor model
of K1,q in G, a contradiction.

The algorithm uses a dynamic programming approach. It processes the distance levels from v
one at a time, trying all possibilities of which vertices from the current distance level will appear
in an independent set that is a partial solution for the subgraph of G induced by the distance
levels considered so far. Since we cannot include more than q−1 vertices from any distance level
Ni for i ≥ 1, we only need a polynomial number of guesses for each distance level. Formally, the
algorithm computes the following values: for each i ∈ {0, 1, . . . , ℓ} and each independent sets
S such that S ⊆ Ni, the value α[i, S], defined as the maximum weight of an independent set
I in G such that I ⊆ ∪j≤iNj and I ∩ Ni = S. Knowing all these values α[i, S], we can then
compute the maximum weight of an independent set in G as the maximum value of α[ℓ, S] over
all independent sets S ⊆ Nℓ. Indeed, if I∗ is an arbitrary maximum weight independent set in
G and S∗ = I∗ ∩Nℓ, then α[ℓ, S∗] ≥ w(I∗), while, clearly, for any independent set S ⊆ Nℓ, we
have α[ℓ, S] ≤ w(I∗).

Let us describe the recurrence relation for the values of α[i, S] forming the dynamic program-
ming table. For all i ∈ {0, 1, . . . , ℓ} and all independent sets S ⊆ Ni, we have

α[i, S] =







w(S) if i = 0
w(S) + max{α[i− 1, T ] | T ⊆ Ni−1 and

S ∪ T is independent in G} otherwise.

The validity of the above recurrence relation can be easily verified. Thus, the algorithm is
correct.

It remains to analyze the time complexity of the algorithm. Observe that there are at most
|V (G)| distance levels. For each distance level Ni, i ∈ {0, . . . , ℓ}, the algorithm enumerates all
independent sets S ⊆ Ni. For the distance level N0, we only have two choices for S (either S = ∅

or S = {v}). For distance levels Ni, i ∈ {1, . . . , ℓ}, there are
∑

0≤k≤q−1

(|Ni|
k

)

= O(|Ni|
q−1) =

O(|V (G)|q−1) choices for the set S. Assuming that the graph G is given by the adjacency matrix
representation, we can check in constant time O(q2) whether a set of at most q − 1 vertices is
independent. Thus, all these independent sets can be enumerated in total time O(|V (G)|q). For
each distance level Ni with i ≥ 1, we iterate over all O(|V (G)|q−1) independent sets S ⊆ Ni

and, for each such set S, over all independent sets T ⊆ Ni−1. For such a pair (S, T ) we can
check in (constant) time O(q2) whether S ∪ T is independent, and if so, we record the value
of α[i − 1, T ]. Thus, for a fixed independent set S ⊆ Ni, we can compute the value of α[i, S]
in constant time if i = 1 and in time O(|V (G)|q−1) if i ≥ 2. It follows that all the values of
α[i, S] can be computed in time O(|V (G)|2q−1). Finally, the maximum weight of an independent
set in G can be computed in time O(|V (G)|q−1) by computing the maximum value of α[ℓ, S]
over all independent sets S ⊆ Nℓ. The overall worst-case time complexity of the algorithm is
O(|V (G)|2q−1). An optimal solution can also be computed if every time we compute the value
of α[i, S], we also compute an independent set I achieving the maximum in the definition of
α[i, S].

Let us note that the result of Theorem 8.1 contrasts with the fact that if K1,q is only excluded
as induced subgraph, then the MWIS problem

• can be solved optimally in polynomial time for q ≤ 3 (see [68, 69]),

• can be approximated in polynomial time to within a factor of q/2 for all q (see [8]),

• remains APX-hard for all q ≥ 4 already for unit weight functions (see [1]).
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9 Discussion

We obtained a first set of results aimed towards classifying (tw, ω)-bounded graph classes by
considering six well-known graph containment relations and, for each of them, characterizing
the graphs H for which the class of graphs excluding H is (tw, ω)-bounded. We conclude the
paper by mentioning some open questions and research directions for further investigations of
(tw, ω)-bounded graph classes.

9.1 Larger sets of forbidden structures

A natural question motivated by the results of this paper is

Question 9.1. Which graph classes defined by larger finite sets of forbidden structures (with
respect to various graph containment relations) are (tw, ω)-bounded?

For the subgraph, topological minor, and minor relations, the answers to this question are
similar to the results for a single forbidden structure developed in Section 5, as we explain next.

• Robertson and Seymour showed that every minor-closed graph class that does not equal
the class of all graphs can be characterized by a finite set of forbidden minors (see, e.g., [30]).
The same approach as that used to prove Theorem 5.7 shows that a proper minor-closed
graph class is (tw, ω)-bounded if and only if it excludes some planar graph.

• The proof of Theorem 5.6 can also be easily generalized to show that a graph class defined
by excluding finitely many topological minors is (tw, ω)-bounded if and only if it excludes
at least one graph that is subcubic and planar.

• The case of subgraphs is only slightly more complicated, but again the proof of Theorem 5.4
can be adapted to show that a graph class defined by excluding finitely many subgraphs
is (tw, ω)-bounded if and only if it excludes at least one graph from the class S.

In all the above cases, the resulting graph class is (tw, ω)-bounded if and only if it has bounded
treewidth.

For the induced subgraph relation, the answer to Question 9.1 is a direct consequence of the
following recent characterization of graph classes of bounded treewidth defined by finitely many
forbidden induced subgraphs.

Theorem 9.2 (Lozin and Razgon [65]). For any graphs H1, . . . ,Hp, the class of {H1, . . . ,Hp}-
free graphs has bounded treewidth if and only if the set {H1, . . . ,Hp} contains a complete graph,
a complete bipartite graph, a graph from S, and the line graph of a graph from S.

Corollary 9.3. For any graphs H1, . . . ,Hp, the following conditions are equivalent.

1. The class of {H1, . . . ,Hp}-free graphs is (tw, ω)-bounded.

2. The class of {K4,H1, . . . ,Hp}-free graphs has bounded treewidth.

3. The set {H1, . . . ,Hp} contains a complete bipartite graph, a graph from S, and the line
graph of a graph from S.

Proof. If the class of {H1, . . . ,Hp}-free graphs has a (tw, ω)-binding function f , then the treewidth
of any {K4,H1, . . . ,Hp}-free graph is at most f(3). Thus, Condition 1 implies Condition 2.
By Theorem 9.2, Condition 2 implies Condition 3. Finally, if the set {H1, . . . ,Hp} contains
a complete bipartite graph, a graph from S, and the line graph of a graph from S, then
by Theorem 9.2 for every positive integer k there exists a constant f(k) such that every {Kk+1,H1, . . . ,Hp}-
free graph has treewidth at most f(k). Thus, the class of {H1, . . . ,Hp}-free graphs is (tw, ω)-
bounded and Condition 3 implies Condition 1.

For the induced topological minor and induced minor relations, Question 9.1 remains open.
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9.2 Binding functions

All the (tw, ω)-bounded graph classes identified in this paper have a polynomial (tw, ω)-binding
function. The arguments presented in this paper establish this claim for all cases, except possibly
for the classes of H-induced-minor-free graphs with H ∈ {W4,K

−
5 }, where the proof depends on

the constant involved in the excluded minor theorem of Robertson and Seymour [76]. Polynomial
(tw, ω)-binding functions for these two cases will be established in a future publication. A natural
question arises.

Question 9.4. Does every (tw, ω)-bounded graph class have a polynomial (tw, ω)-binding func-
tion?

A positive answer to this question would answer the analogous question of Esperet (see [37])
on χ-boundedness for the case of (tw, ω)-bounded graph classes.

For every positive integer t, the class of intersection graphs of connected subgraphs of graphs
with treewidth at most t has a linear (tw, ω)-binding function (see [78]). For t ∈ {1, 2}, the
corresponding graph classes contain the well-known graph classes of chordal and circular-arc
graphs. More generally, it is an interesting question to determine necessary and/or sufficient
conditions for the existence of a linear (tw, ω)-binding function.

Question 9.5. Which graph classes have a linear (tw, ω)-binding function?

9.3 Algorithmic implications

We already discussed in Section 6 some algorithmic implications of (tw, ω)-boundedness for
variants of the clique and coloring problems. In particular, Theorem 6.4 and Corollary 6.5
give approximation algorithms for the clique number in graph classes having a polynomial,
respectively, linear (tw, ω)-binding function. In order to strengthen these results to obtain
improved approximation algorithms for the Maximum Clique problem that would actually
compute an approximate solution and not only an approximate value, we would need to know
something more about the (tw, ω)-bounded graph class G.

Question 9.6. Which graph classes G having a polynomial (tw, ω)-binding function f admit
a polynomial-time algorithm that, given a tree decomposition of width t for a graph G ∈ G,
computes a clique C in G such that t = O(f(|C|))?

It is a well-known open problem whether treewidth can be approximated within a constant
factor (see, e.g., [38, 92]). Perhaps the following special case could be easier.

Question 9.7. Can the treewidth be approximated within a constant factor on (tw, ω)-bounded
classes?

The question is also open if an additional constraint is imposed on the binding function,
for example, that it is polynomial or linear. Note that for graph classes with a linear (tw, ω)-
binding function, a constant factor approximation for treewidth would also imply a constant
factor approximation for the clique number.

Finally, it would be interesting to see whether (tw, ω)-boundedness has any further algorith-
mic implications, for example, for problems related to independent sets. The computational
complexity of the MWIS problem in (tw, ω)-bounded graph classes is not yet well understood.
Nonetheless, partial results exist for (tw, ω)-bounded graph classes forbidding a unique graph
H with respect to one of our six graph containment relations, as discussed in Section 8. To the
best of our knowledge, the following question is open.

Question 9.8. Is there a (tw, ω)-bounded graph class in which the MWIS problem is NP-hard?
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9.4 Chromatic number versus clique number and other invariant pairs

A similar study as the one performed in this work could, at least in principle, be attempted
for (ρ, σ)-bounded graph classes for other choices of pairs of invariants ρ and σ. Such questions
were partially already considered in the literature, for example, for the pair (ρ, σ) = (δ, χ) [48]
and, most notably, for the pair (ρ, σ) = (χ, ω), that is, for the case of χ-bounded graph classes
(see [81]). Dirac [33] and Jung [56] proved that excluding any complete graph H as a topological
minor leads to a class of graphs with bounded chromatic number, and consequently the same is
true if any graph H is excluded as a topological minor or as a minor. Furthermore, it follows
from [36] and [91, Exercise 5.2.43] that the class of H-subgraph-free graphs is χ-bounded if and
only if H is acyclic (in which case the chromatic number is bounded). For the induced variants
of these relations, the situation is less clear. While the class of H-free graphs is not χ-bounded
whenever H contains a cycle [36], a famous and still open conjecture, proposed independently
by Gyárfás [47] and Sumner [87], states that for every tree H, every class of H-free graphs
is χ-bounded. Furthermore, Scott proved in [80] that for any tree H, the class of H-induced-
topological-minor-free graphs is χ-bounded and conjectured that the same is true for any graph
H. While Scott’s conjecture has been disproved (see, e.g., [20]) and several special cases were
proved, for example, the case when H is cycle [22] (settling yet another conjecture of Gyárfás),
we are still far from a complete characterization of graphs H such that the class of H-induced-
topological-minor-free graphs is χ-bounded. Finally, it seems that the induced minor relation
has been studied the least with respect to χ-boundedness. In view of this and the fact that
Corollary 4.14 identifies an infinite family of graphs H such that the class of H-induced-minor-
free graphs is χ-bounded, we thus propose the following.

Question 9.9. For which graphs H is the class of H-induced-minor-free graphs χ-bounded?

Note that there are graphs H such that the class of H-induced-minor-free graphs is not χ-
bounded. For example, if H is the graph obtained from the complete graph K5 by subdividing
each edge, then the class of H-induced-minor-free graphs contains the class of string graphs [77,
83], which is not χ-bounded [70].
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