
CONSERVATION LAWS FOR FREE-BOUNDARY FLUID LAYERS∗

ED BUELER†

Abstract. Time-dependent models of fluid motion in thin layers, subject to signed source terms,
represent important sub-problems within climate dynamics. Examples include ice sheets, sea ice, and
even shallow oceans and lakes. We address these problems as discrete-time sequences of continuous-
space weak formulations, namely (monotone) variational inequalities or complementarity problems, in
which the conserved quantity is the layer thickness. Free boundaries wherein the thickness and mass
flux both go to zero at the margin of the fluid layer generically arise in such models. After showing
these problems are well-posed in several cases, we consider the limitations to discrete conservation
in numerical schemes. A free boundary in a region of negative source—an ablation-caused margin—
turns out to be a barrier to exact conservation in either a continuous- or discrete-space sense. We then
propose computable a posteriori quantities which allow conservation-error bounds in finite volume
and finite element schemes.

1. Introduction. Consider a thin layer of fluid which is free to move about
on a solid substrate. Suppose that, in addition, mass can be added (accumulation,
precipitation) or removed (ablation, evaporation) from the fluid layer by external
processes. Through flow and these addition/removal processes, the geometry of the
layer varies in time and space. We consider models of such fluid layers in which the
layer geometry is described by a nonnegative thickness function. In such models the
addition/removal processes can be combined into a signed source term in a two-spatial-
dimension mass conservation (or balance) equation. Note that the addition/removal
processes and the substrate topography are defined on a larger (fixed) region than the
fluid-covered area. Assuming the thickness function is continuous, the conservation
equation applies only in the open set where the thickness is positive. The problem
of simultaneously determining the fluid motion and the fluid-covered domain is of
free-boundary type.

The physics of such models couples the mass conservation equation to additional
momentum and energy conservation laws. The addition/removal processes, i.e. the
“climate” of the fluid layer, may also be coupled to the conservation equations, as when
glacier thickness affects surface elevation and thus the precipitation rate. Solving the
resulting model, combining conservation equations, addition/removal processes, and
additional closure relationships as needed, determines the nontrivial manner in which
the layer geometry evolves.

This paper contains a basic, necessarily incomplete, analysis of the mathemat-
ical well-posedness of such climate-driven fluid layer models. We start by extract-
ing the minimal mathematical form, namely a scalar conservation equation and the
nonnegative-thickness constraint. After considering well-posedness based on several
flux-form possibilities, we address tradeoffs and barriers inherent in the numerical
solutions of such models.

Problems of this type appear within models of glaciers and ice sheets [9, 12, 13,
14, 25, 26], surface and subsurface hydrology [3, 33], and sea ice [32, 41]. Generally,
multiphysics Earth system models often contain thin-layer, free-boundary sub-models
for various species (or phases) of fluids. For example, in comprehensive models of
glaciers and ice sheets there are submodels describing supra- and subglacial hydrology
of liquid water [5, 10, 40], floating ice shelves [1], and sediment transport [8].

In such geophysical and climate-modeling contexts, determining the fluid-covered
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area is a leading-order modeling goal. For example, snow and ice are much more
reflective than the substrate they cover (i.e. land or ocean), so deciding whether
grid cells are ice-covered or ice-free is a significant modeling purpose. A goal of
equal importance is the conservation of mass, including a precise accounting of mass
transfers to and from the modeled fluid phases.

The above geophysical applications drive the author’s interest, but the situation
is as familiar as the dynamics of rain droplets on a car windshield. Precipitation,
evaporation, gravity, wind stresses, and surface tension all combine to determine the
evolution of the geometry of the drops and rivulets, and of the wetted and dry domains.
Note that models of such thin fluid flows often have not included any source term [29,
for example], but those that include evaporation will require active enforcement of
nonnegative layer thickness.

If the fluid is modeled as having constant density then the (nonnegative) layer
thickness can be regarded as the conserved quantity, equivalent to mass per unit area.
In models for variable density fluids the vertical integral of density is the conserved
quantity (in the two-dimensional conservation equation) and this variable must also
be nonnegative. For simplicity we consider the constant-density case and we call the
conserved quantity “mass” and the corresponding nonnegative variable “thickness”.

Now, to be more precise let us suppose that Ω ⊂ Rd is a bounded open region
with regular (Lipschitz) boundary; note d = 1, 2 in cases of geophysical interest. The
layer thickness function u(x, t) is defined for x ∈ Ω and t ∈ [0, T ]. Where there is no
fluid we have u(x, t) = 0. The rate of flow is described by a vector flux q and the
climate (i.e. the addition/removal processes) by a scalar, signed source term f ; we
discuss parameterizations below.

The models we consider are usually stated in strong form. They include at least
a mass conservation equation and an obvious, though sometimes-unstated, inequality
constraint:

ut +∇ · q = f in Ω× (0, T ), where u > 0(1.1)

u ≥ 0 in Ω× [0, T ],(1.2)

along with an initial condition u(x, 0) = u0(x) ≥ 0 defined on Ω. We emphasize that
conservation equation (1.1) applies only where the fluid is present (u > 0), and not
in the remainder of Ω. The situation is pictured in Figure 1, where positive source
values (f > 0) are pictured as downward arrows (precipitation).

uq

f

Fig. 1. Schematic of a fluid layer with a thickness u ≥ 0.

Evidently, analyzing the well-posedness of any model including (1.1) and (1.2)
requires additional information about q and f , along with a specification of a space
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of admissible solutions u. In most of this article we suppose that the flux q is local,
but otherwise quite general:

(1.3) q = q(∇u(x, t), u(x, t), x, t).

However, Subsection 4.5 considers models where q depends non-locally on integrals
of u over Ω. In many realistic models, computing this non-local dependence involves
solving coupled differential equations.

In (1.3), dependence of the flux on thickness is to be expected—thicker layers move
more mass—as is dependence on x because of substrate variations [9, for example].
The flux may additionally depend on∇u in flows which are gravity-driven and viscous;
such flows are at least partly diffusive. In simple cases the flux might be written in
the form q = −D∇u + qa where D > 0 has various dependence on t, x, u, |∇u|—see
Subsections 4.2 and 4.3 below—with the advective flux qa perhaps independent of∇u.
In fact, equation (1.1) may be dominantly advective. In the simplest advective case
mass moves at some vertically-averaged velocity X = X(x, t) determined by external
factors, and we then have qa = Xu; see Subsection 4.4. In such cases we will add a
small diffusion term to establish well-posedness. Our results for such advective fluxes
will apply even if X comes from a (coupled) solution of a momentum conservation
system, for example, as long as it has the regularity needed to apply the theory
(Subsection 3.1).

In (1.1) the source function f is allowed to be nonlinear in u because feedback
between layer thickness u and the source f occurs in certain applications [27]. How-
ever, when proving well-posedness in Section 4 we simplify to the u-independent case
f = f(x, t); thus we do not address the impact of “reaction” type processes on well-
posedness.

Numerical simulations of these fluid layers necessarily discretize time in some
manner. Section 2 considers time semi-discretizations of the mass conservation equa-
tion by implicit one-step methods. (This is the method-of-lines in the orthogonal sense
from the usual.) In Section 3 we pose the continuous-space problem for a single time
step in weak variational form so each time-step requires the solution of a (continuous)
free-boundary problem in space.

An immediate question is:
(i) Is a single time-step free-boundary problem well-posed?

The answer to (i) depends on the form of the flux, but by examining a weak form and
using the theory of monotone variational inequalities [28] we can show that the answer
is often “yes” (Section 4). However, even implicit cases, our sufficient conditions
sometimes require a time-step restriction.

A second question is equally important in modeling practice:
(ii) Can the mass of the fluid layer be conserved exactly in the sense

that a computable space-time integral of the source term f is
equal to the change in mass during a time step?

(This question makes sense when the answer to (i) is “yes.”) By considering question
(ii) abstractly in Section 5 we conclude that the answer is often “no.” In general a
numerical model of a fluid layer governed by (1.1) and (1.2) cannot exactly conserve
mass when the free boundary moves during a time-step. Specifically, discrete-time
conservation fails when margin retreat occurs, as generated by a negative source term
(f < 0).

We may, however, bound and report the mass conservation error in a practical
manner. Quantification of conservation errors in free-boundary models is a major pur-
pose which guides the structure of this paper. Of course, exact discrete conservation
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within the fluid, i.e. away from any free boundaries, is a common goal, and property,
of numerical schemes [30, and references therein]. When we consider fully-discretized
models in Section 6 we will indeed assume such exact discrete conservation in the
interior of the fluid-covered domain. The discrete conservation barriers we identify
are thus entirely at the free boundary, and they are only active within negative source
term areas.

Theoretical guidance as to achievable discrete conservation is generally absent
in the literature of these free-boundary fluid problems. Reference [23] addresses a
related conservation challenge at the free surfaces of fluids but the problem is not
free-boundary in the same map-plane sense. In the context of glacier [24] and ice shelf
[1] modeling, schemes for improved discrete mass conservation at free boundaries are
proposed, but this small literature provides only ad hoc and fully-discretized solutions.

The ideas and results in this paper are nontrivial if the source function f(u, x, t)
in (1.1) is sometimes negative. If f ≥ 0 holds everywhere then active enforcement of
constraint (1.2) may not be necessary because a maximum principle may imply the
nonnegativity of the solution. Indeed, we will see that there is no conservation error
at the free boundary, at least in the continuous-space theory, when using a backward
Euler temporal discretization, under the additional hypothesis that f ≥ 0 in (1.1).

Regarding the presence of a signed source term, the modeling goals of the debris
flow [20] and tsunami run-up [31] literature provide a useful contrast to our concerns.
These fluid-layer problems are of free-boundary type for a hyperbolic system of mass
and momentum conservation equations. The thickness u of the flow must be nonneg-
ative, and the discrete models allow wet (u > 0) and dry (u = 0) cells. However, the
time-scales are sufficiently short (seconds to hours) so that addition/removal sources
like precipitation, evaporation, or absorption into the ground are usually absent from
the conservation of mass equation; e.g. f = 0 in (1.1) in the models found in [20, 31].
Without such a source term the discrete-time sequence of free-boundary problems, if
the model is formulated that way, call for constancy of the total mass, despite the
moving boundary between wet and dry areas. In these models nonnegative fluid-layer
thickness can be preserved by maximum-principle or strong-stability properties of the
discrete scheme, and exact discrete conservation can apply automatically.

The mass-conservation considerations and free-boundary techniques of the current
paper could be applied to sea ice models, but subject to re-interpretation because of
the manner in which the mass distribution is described in such models. They typically
track a non-negative probability distribution function g(x, t, h), at each location x,
where h is the thickness dimension and

∫∞
0
g dh = 1 [41, for example]. Then h is

discretized into “categories” gk(x, t) = P{Hk−1 < h ≤ Hk} with g0 = P{h = 0}
denoting the ice-free category [32]. Our results are relevant to the continuous-space
equations which remain after discretization of t and h. In such models melting is
a negative source term in the evolution equation for the g1 category, thus (explicit)

updating of gn1 (x) ≈
∫H1

H0
g(x, tn, h) dh requires truncation (projection) to maintain

nonnegativity of gn1 . The inequality constraint gn1 ≥ 0 is a not-necessarily-stated, but
in fact important, part of such schemes.

2. Time semi-discretization. Let {tn}Nn=0 be a sequence of increasing times,
with t0 = 0 and tN = T , and set ∆tn = tn − tn−1 > 0. Corresponding to (1.1) and
(1.2), the (strong form) single time-step problem is

(2.1)
un − un−1

∆tn
+∇ ·Qn(∇un, un, x) = Fn(un, x) where un > 0 in Ω,
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and

(2.2) un ≥ 0 at all points in Ω.

We expect this problem to determine a new thickness function un(x) ≈ u(x, tn) given
un−1(x) ≈ u(x, tn−1), as shown in Figure 2. The weak form of the problem is given
in Section 3, but we state the strong form first because of the developed intuition of
most practitioners.

un

un 1

Fig. 2. The single time-step problem (2.1), (2.2) is a free boundary problem for the new
thickness un ≥ 0.

The semi-discretization procedure which generates equations (2.1) and (2.2)—we
give examples next—corresponds to a choice of functions

(2.3) Qn(X, v, x), Fn(v, x)

derived from q and f . Here X ∈ Rd, v ≥ 0, and x ∈ Ω. We will assume Qn is defined
for all x ∈ Ω, not just where v(x) > 0.

2.1. θ methods. Consider a θ-method discretization [35] of (1.1) with 0 ≤ θ ≤ 1:

un − un−1

∆tn
+ θ∇ · q(∇un, un, x, tn) + (1− θ)∇ · q(∇un−1, un−1, x, tn−1)(2.4)

= θf(un, x, tn) + (1− θ)f(un−1, x, tn−1).

Recall that the θ = 0 case is the forward Euler method, θ = 1/2 is trapezoid (Crank-
Nicolson), and θ = 1 is backward Euler. Equation (2.4) is of form (2.1) with

Qn(X, v, x) = θ q(X, v, x, tn),

Fn(v, x) = θf(v, x, tn) + (1− θ)f(un−1, x, tn−1)

− (1− θ)∇ · q(∇un−1, un−1, x, tn−1).

For any θ the source function Fn “absorbs” all the terms which do not involve the
flux q evaluated at time tn. We will see that implicitness (θ > 0) is helpful both for
the usual stability reasons [35] and to give the smoothness needed so that the weak
form of (2.1), (2.2) can be well-posed (Section 3). For the backward Euler scheme
with θ = 1 observe that Qn = q(X, v, x, tn) and Fn = f(v, x, tn), while if θ = 0 then
Qn = 0 (Subsection 4.6). Finally, such time-discretization need not be limited to
θ-methods; Appendix B considers certain Runge-Kutta schemes.

2.2. Associated set decomposition. To derive the weak form, let us suppose
(2.1) and (2.2) can be solved. A solution un then decomposes Ω into three disjoint
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regions:

Ωn =
{
x ∈ Ω

∣∣un(x) > 0
}
,

Ωrn =
{
x ∈ Ω

∣∣un(x) = 0 and un−1(x) > 0
}
,

Ω00
n =

{
x ∈ Ω

∣∣un(x) = 0 and un−1(x) = 0
}
,

so that

(2.5) Ω = Ωn ∪ Ωrn ∪ Ω00
n .

Here the superscript “r” stands for “retreat,” and we call Ωrn the retreat set. Figure
3 illustrates this decomposition. Note that if un and un−1 are continuous then Ωn is
open while Ω00

n is closed (in Ω).

00
n

r
n

n

Fig. 3. A solution to (2.1) and (2.2) decomposes Ω as described in (2.5).

One may of course rewrite (2.1) as

(2.6) un = un−1 + ∆tn Fn −∆tn∇ ·Qn.

The constraint un ≥ 0 implies that the terms on the right side of (2.6) must sum to
a nonnegative number. While equation (2.6) applies where un > 0, because un−1 ≥ 0
and ∆tn > 0 we expect that in the interior of Ωrn ∪ Ω00

n , where ∇ ·Qn = 0 (see (3.4)
below), an inequality instead holds:

(2.7) un−1 + ∆tn Fn ≤ 0.

Thus also Fn ≤ 0 on the same set. Inequality (2.7), used below in deriving the weak
form, says that the source term must be nonpositive in a zero-thickness location.

3. Weak formulation of the single time-step problem. The form of the
single time-step problem in (2.1), (2.2) is in fact not adequate for mathematical
progress. PDE (2.1) applies only where its solution un is positive, and inequality
(2.7) applies on the set where un = 0, so we have “posed” a problem in terms of its
solution. This form is also inadequate because the boundary conditions satisfied by
un along the free boundary ∂Ωn are not clear. By contrast, the weak form in this
section, a variational inequality [19, 28] on a convex set of admissible functions, refers
only to the set Ω and its boundary ∂Ω, and not to the sets in (2.5).
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3.1. Flux assumptions. We now state certain conditions on the discrete-time
flux Qn which are sufficient to allow construction of a variational inequality (Sub-
section 3.2), a smooth solution of which will also solve the strong-form problem in
Subsection 3.3. Let p ≥ 1. Recall that the Sobolev space W 1,p(Ω) [16] is the set of
v ∈ Lp(Ω) satisfying ∂1v, . . . , ∂dv ∈ Lp(Ω) and with norm

(3.1) ‖v‖1,p =

(
‖v‖pLp +

d∑
i=1

‖∂iv‖pLp

)1/p

.

If p > d then v ∈W 1,p(Ω) has a continuous representative [16, “Morrey’s inequality”],
but otherwise v may be discontinuous. Denote by W 1,p

0 (Ω) the closure of C∞c (Ω) in
W 1,p(Ω) and assume p−1 + q−1 = 1.

Definition 3.1. We say Qn satisfies the standard flux assumptions if
i) for each fixed x ∈ Ω,

(3.2) (X, z) 7→ Qn(X, z, x) is continuous on Rd × R,

ii) if v ∈W 1,p(Ω) then

(3.3) Qn(∇v, v, x) ∈ Lq(Ω),

iii) and

(3.4) Qn(∇v, v, x) = 0 a.e. on Ev =
{
x ∈ Ω

∣∣ v(x) = 0
}
.

The third assumption says that the mass flux in a zero-thickness fluid layer is zero.
Note that ∇v = 0 a.e. on Ev [28, lemma A.4 in chapter II].

Regarding the source term Fn we assume only that if v ∈W 1,p(Ω) then

(3.5) Fn(v, x) ∈ Lq(Ω).

3.2. A variational inequality weak formulation. To derive the weak form
we need an extra smoothness assumption on Qn: For all open S ⊂ Ω, if v ∈W 1,p(S)
then

(3.6)
∂

∂xi
Qn(∇v, v, x) ∈ Lq(S).

This assumption will not be needed in later analysis of well-posedness of the resulting
weak form (Section 4) or conservation errors (Sections 5–6).

Theorem 3.2. Suppose un ∈ C(Ω) ∩W 1,p(Ω) is a nonnegative function which
solves (2.1) on Ωn and (2.7) on the interior of Ωrn ∪ Ω00

n . Assume the boundaries
of the sets Ωn and Ωrn ∪ Ω00

n in decomposition (2.5) are Lipschitz, and that Ωn ⊂ Ω.
Suppose Qn satisfies the standard flux assumptions and (3.6), Fn satisfies (3.5), and
Q = Qn(∇un, un, x) and F = Fn(un, x) are continuous. Then

(3.7) −
∫

Ω

Q · ∇(v − un) ≥
∫

Ω

(
F − un − un−1

∆tn

)
(v − un)

for any v ∈ C(Ω) ∩W 1,p(Ω) such that v ≥ 0.
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Proof. Let w = v − un. Using decomposition (2.5) and integration by parts,

−
∫

Ω

Q · ∇w =

∫
Ωn

(∇ ·Q)w −
∫
∂Ωn

(Q · n)w(3.8)

+

∫
Ωr

n∪Ω00
n

(∇ ·Q)w −
∫
∂(Ωr

n∪Ω00
n )

(Q · n)w.

(This needs assumption (3.6) on the sets S = Ωn and S = (Ωrn ∪ Ω00
n )◦.) Because un

is continuous it follows that un = 0 on ∂Ωn and on ∂(Ωrn ∪Ω00
n ). Thus by continuity,

(3.2), and (3.4) we see that Q = 0 on these boundaries, so the boundary integrals in
(3.8) are zero. Now, by (2.1) on Ωn, and by (3.4) and (3.6) we have ∇ ·Q = 0 a.e. on
Ωrn ∪ Ω00

n . Thus we get

(3.9) −
∫

Ω

Q · ∇w =

∫
Ωn

(
F − un − un−1

∆tn

)
w.

However, by (2.7), F ≤ 0 on Ωrn∪Ω00
n . Since also un = 0, un−1 ≥ 0, and w = v−un =

v ≥ 0 on Ωrn ∪ Ω00
n , we have

(3.10) 0 ≥
∫

Ωr
n∪Ω00

n

(
F − un − un−1

∆tn

)
w.

Adding (3.9) and (3.10) gives (3.7).

While this derivation of inequality (3.7) requires many hypotheses, it adequately
motivates a weak formulation, as follows. Fix p > 1 and denote X = W 1,p

0 (Ω), with
dual space X ′ and pairing 〈·, ·〉 : X ′ ×X → R.

Definition 3.3. The set of admissible layer thicknesses is the following closed
and convex subset of X :

(3.11) K =
{
v ∈ X

∣∣ v(x) ≥ 0 a.e. x ∈ Ω
}
.

Definition 3.4. Suppose un−1 ∈ K and ∆tn > 0. Assume that Qn satisfies the
standard flux assumptions and that Fn satisfies (3.5). Define An : K → X ′ by

(3.12) 〈An(v), φ〉 =

∫
Ω

(v −∆tn Fn(v, x)− un−1)φ−∆tn Qn(∇v, v, x) · ∇φ.

Definition 3.5. We say un ∈ K solves the (weak) time-step problem if

(3.13) 〈An(un), v − un〉 ≥ 0 for all v ∈ K.

Variational inequality (VI) (3.13) is the same as (3.7).

3.3. Interior condition. We now prove a converse of Theorem 3.2 which makes
no regularity assumptions on the set decomposition (2.5).

Theorem 3.6. Assume Fn satisfies (3.5) and Qn satisfies the standard flux as-
sumptions plus (3.6). Choose un−1 ∈ K, and suppose that un ∈ K solves (3.13).

(i) If S ⊂ Ωn is open, S ⊂ Ω, and un is continuous on S then (2.1) applies
a.e. on S.

(ii) If S ⊂ Ωrn ∪ Ω00
n is open then (2.7) applies a.e. on S.
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Proof. Let Q = Qn(∇un, un, x) and F = Fn(un, x). Supposing S ⊂ Ωn is open,
choose any φ ∈ C∞c (S) and extend it by zero to all of Ω; note that φ can have either
sign, but that φ = 0 on ∂Ω. Let v = un + εφ and note that v ∈ K as long as ε ∈ R is
sufficiently small in magnitude. (Specifically, if |ε| ≤ ε0 = minun(x)/max |φ(x)|, with
the minimum and maximum taken over the closure of the support of φ, then v ∈ K.)
It follows from (3.13) that

ε

∫
Ω

(un −∆tn F − un−1)φ−∆tn Q · ∇φ ≥ 0.

This is true for all sufficiently-small ε, of either sign, and thus the integral is zero.
Integration by parts, using assumption (3.6) and φ

∣∣
∂Ω

= 0, gives∫
Ω

[un −∆tn F − un−1 + ∆tn∇ ·Q]φ = 0.

Because φ ∈ C∞c (S) is arbitrary, the quantity in square brackets is zero a.e. on S,
i.e. (2.1), which proves (i).

Now suppose S ⊂ Ωrn ∪ Ω00
n . Choose any nonnegative φ ∈ C∞c (S), extend it by

zero, and let v = un + φ so v ∈ K. Note un = 0 on the support of φ. By assumptions
(3.2) and (3.4), Q = 0 on the support of φ. Thus by (3.13),

0 ≥
∫

Ω

(un−1 + ∆tn F )φ,

and it follows that (2.7) a.e. on S.

Thus, under a regularity assumption (3.6) on Qn, a solution of (3.13) solves PDE
(2.1) where it is positive, but where it is zero inequality (2.7) holds. From now on
we will use set decomposition (2.5) only when referring to a solution un of the weak
form (3.13), and we will not need assumption (3.6).

4. Well-posedness of the time-step problem. We show in this Section that
a variety of different fluxes Qn yield well-posed VI problems (3.13). Later, the a
posteriori analysis of conservation errors in Sections 5 and 6 will assume that (3.13)
is well-posed.

Techniques for proving well-posedness of VIs in Banach spaces are relatively well-
established for linear and some nonlinear elliptic problems, especially for monotone
operators [28], which we recall next. Thereby we prove existence and uniqueness of
the solution to (3.13) for certain flux cases in these Subsections:

4.2 p-Laplacian-type parabolic (diffusion) for 1 < p <∞,
4.3 doubly-nonlinear parabolic, including porous media,
4.4 linear advective, with small added diffusion term, and
4.5 linear and non-local, computed by integrals over Ω.

These subsections only use the backward Euler time-stepping discretization, but the
results can be extended to implicit θ-methods, for example. At the end, Subsection
4.6 shows that if time-stepping is explicit then regularity issues generally block these
time-step problems from being well-posed.

4.1. Monotone variational inequalities. Assume that K is any closed and
convex subset of a Banach space X . The following definitions can be found in [28]. A
mapping A : K → X ′ is monotone if, for all u, v ∈ K,

(4.1) 〈A(u)−A(v), u− v〉 ≥ 0.
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(This holds if A is linear and positive semi-definite.) It is strictly monotone if equality
in (4.1) implies u = v. Mapping A is coercive if there is φ ∈ K so that

(4.2) lim
‖u‖X→∞

〈A(u)−A(φ), u− φ〉
‖u− φ‖X

= +∞,

where the limit is taken over u ∈ K. Finally, a mapping A : K → X ′ is continuous
on finite-dimensional subspaces if for each finite-dimensional subspace M ⊂ X the
restriction A : K ∩ M → X ′ is weakly-continuous. The theory of monotone VIs
in Banach spaces [28, chapter III] shows that a solution to a VI like (3.13), namely
〈A(u), v − u〉 ≥ 0 for all v ∈ K, exists and is unique if A is strictly monotone, coercive,
and continuous on finite-dimensional subspaces.

Consider (3.13) with An defined by (3.12). It is easy to show the following lemma.

Lemma 4.1. Assume (3.2) for Qn and that Fn(v, x) ∈ Lq is continuous in v. The
map An is continuous on finite-dimensional subspaces.

Now we want to relate the properties of the flux Qn to the monotonicity and
coercivity of An. From (3.12) the following calculation applies when Fn = Fn(x),
i.e. when the source function is independent of the thickness v:

〈An(u)−An(v), u− v〉(4.3)

=

∫
Ω

(u− v)2 −∆tn [Qn(∇u, u, x)−Qn(∇v, v, x)] · ∇(u− v).

Observe that in cases where Qn(∇u, u, x) is proportional to ∇u we expect that, for
usable models, the flux Qn points generally in the direction of the negative of ∇u.
(Otherwise PDE (1.1) would behave as the ill-posed backward heat equation.)

The proof of the following lemma is an easy consequence of (4.3) (and is omitted).
Note that W 1,p(Ω) ⊂ L2(Ω) if either p > d or d ≤ 2 [16, theorems 5.6.2 and 5.6.5].

Lemma 4.2. Suppose W 1,p(Ω) ⊂ L2(Ω). Suppose (3.3) and that Fn = Fn(x) ∈
Lq(Ω). Then

(i) An is monotone if there is C ≤ 1 so that, for all u, v ∈ K,

(4.4)

∫
Ω

[Qn(∇u, u, x)−Qn(∇v, v, x)] · ∇(u− v) ≤ C

∆tn
‖u− v‖2L2 .

(ii) An is strictly-monotone if (4.4) holds with C < 1,
(iii) An is coercive if there is c > 0 and r > 1 so that, for all u, v ∈ K,

(4.5)

∫
Ω

[Qn(∇u, u, x)−Qn(∇v, v, x)] · ∇(u− v) ≤ −c‖u− v‖r1,p.

Inequality (4.5) implies (4.4) with C = 0, so (4.5) also implies strict-monotonicity
for An independently of ∆tn. In fact (4.4) is necessary and sufficient for monotonicity
of An, while (4.5) is only sufficient for coercivity. (For example, if the right side of
(4.5) were −c‖u− v‖ log ‖u− v‖ then An would be coercive.) Corollary III.1.8 of [28]
now gives the following theorem.

Theorem 4.3. Suppose W 1,p(Ω) ⊂ L2(Ω), Qn satisfies the standard flux assump-
tions, and Fn = Fn(x) ∈ Lq(Ω). If (4.5) then the single time-step problem (3.13) has
a unique nonnegative solution u ∈ K ⊂ X = W 1,p

0 (Ω).
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4.2. p-Laplacian fluxes. We can apply Theorem 4.3 to show well-posedness in
certain linear and non-linear parabolic cases. First consider the p-Laplacian [16] flux

(4.6) Qn(∇u) = −k|∇u|p−2∇u

with k > 0 and 1 < p < ∞, so that Qn satisfies the standard flux assumptions.
Formula (4.6) includes the linear (Fourier/Fick’s law) flux as the p = 2 case. For
the proofs in this subsection we assume Fn = Fn(x) is independent of u, and we use
inequalities from Appendix A. In the next four subsections we denote ‖ · ‖ for ‖ · ‖1,p.

Theorem 4.4. If Ω ⊂ Rd is bounded, 1 < p <∞, Fn = Fn(x) is independent of
u, and Qn is given by (4.6) with k > 0, then for any ∆tn > 0, (3.13) has a unique
solution u ∈ K.

Proof. If p ≥ 2 then by (A.1) and (A.4) there is C = C(Ω, p) so that∫
Ω

(Qn(∇u)−Qn(∇v)) · (∇u−∇v) ≤ − k

2p−2

∫
Ω

|∇u−∇v|p ≤ − k

C2p−2
‖u− v‖p

and thus (4.5) holds with r = p. However, if 1 < p < 2 then we have to work harder.
Coercivity can be shown, but not via (4.5). Using (A.2), (A.3), and (A.4) gives

〈An(u)−An(v), u− v〉 ≥ ‖u− v‖2L2 + ∆tn k(p− 1)

∫
Ω

|∇u−∇v|2

(|∇u|+ |∇v|)2−p

≥ ‖u− v‖2L2 + ∆tn k(p− 1)
‖∇u−∇v‖2Lp∥∥|∇u|+ |∇v|∥∥2−p

Lp

≥ ‖u− v‖2L2 +B
‖u− v‖2∥∥|∇u|+ |∇v|∥∥2−p

Lp

where B = ∆tn k(p − 1)C(Ω, p)−2/p > 0. This shows 〈An(u)−An(v), u− v〉 ≥ ‖u−
v‖2L2(Ω), thus An is strictly-monotone. Fixing v such that ‖∇v‖Lp > 0, we have

〈An(u)−An(v), u− v〉
‖u− v‖

≥ B ‖u− v‖∥∥|∇u|+ |∇v|∥∥2−p
Lp

→∞

as ‖u‖ → ∞, because 0 < 2− p < 1, and thus An is coercive.

4.3. Doubly-nonlinear fluxes. Now consider the flux formula

(4.7) Qn(∇u, u) = −kur|∇u|p−2∇u

where k > 0, r ≥ 0, and 1 < p <∞. This includes, as the r = 0 case, the p-Laplacian
(4.6), but it also includes the porous medium equation [43], where p = 2, r = γ − 1,
and thus Qn = −kγ∇(uγ). The flux for the diffusive shallow water equations [3],
which has nontrivial powers 1 < r < 2 and 1 < p ≤ 2, is also included, and the
flat-bed shallow ice approximation [12] flux with r = n+ 2 and p = n+ 1 for n > 1.

Leaving the function space undetermined for a moment, we apply a power trans-
formation u = wm where m = (p − 1)/(r + p − 1) [38] so that 0 < m ≤ 1. Straight-
forward calculation turns (4.7) into

(4.8) Qn = −K|∇w|p−2∇w,
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with K = kmp−1 > 0, giving the p-Laplacian flux (4.6). This transformation converts
PDE (2.1) into a p-Laplacian equation, but with additional zeroth-order terms,

(4.9) −∇ ·
(
K|∇w|p−2∇w

)
+G(w, x) = 0

where G(w, x) = wm−∆tn Fn(wm, x)−un−1. In the porous media p = 2 case equation
(4.9) is semilinear.

Define X = W 1,p
0 (Ω) and K = {u ≥ 0} ⊂ X as before. Define An : K → X ′ by

(4.10) 〈An(w), φ〉 =

∫
Ω

∆tnK|∇w|p−2∇w · ∇φ+G(w, x)φ.

The weak formulation of (4.9) is VI (3.13) but with (4.10) defining An. The following
Theorem uses the argument in subsection III.3 of [28].

Theorem 4.5. Let 1 < p < ∞, r ≥ 0, and define m = (p − 1)/(r + p − 1).
Suppose G(w, x) = wm −∆tn Fn(wm, x)− un−1 is in X ′ for all w ∈ K, and that G is
nondecreasing in w. Then An in (4.10) is strictly monotone and coercive, and thus
(3.13) has a unique solution u ∈ K.

Proof. Suppose p ≥ 2. If w, v ∈ X then by (A.1) and Poincare inequality (A.4),

〈An(w)−An(v), w − v〉 =

∫
Ω

∆tnK
(
|∇w|p−2∇w − |∇v|p−2∇v

)
· ∇(w − v)

+ (G(w, x)−G(v, x)) (w − v)

≥ ∆tnK

2p−2

∫
Ω

|∇(w − v)|p + 0 ≥ ∆tnK

2p−2 C(Ω, p)
‖w − v‖p.

The case 1 < p < 2 follows by modification of the argument in Theorem 4.4.

4.4. Advection by a differentiable velocity field. The flux in certain ap-
plications (ice shelves, sea ice) is understood to be dominantly advective. In fact the
velocity arises from solving a coupled momentum balance, but here we simply assume
the layer is transported by a differentiable velocity field X ∈W 1,∞(Ω;Rd),

(4.11) Qn(u, x) = X(x)u.

If 1 < p <∞ then Qn satisfies the standard flux assumptions on W 1,p(Ω).
Suppose u, v ∈ K. Noting u = v = 0 on ∂Ω, integration-by-parts shows∫

Ω

[Qn(u, x)−Qn(v, x)] · ∇(u− v) =

∫
Ω

X(u− v) · ∇(u− v)(4.12)

=
1

2

∫
Ω

X · ∇
[
(u− v)2

]
= −1

2

∫
Ω

(∇ ·X) (u− v)2.

Equation (4.12) can be exploited in a couple of ways. If the vector field is divergent
∇ ·X ≥ 0 then (4.4) applies with C = 0 and so An is strictly monotone. Otherwise,
(4.4) applies with C = 1

2∆tn ‖(∇ · X)−‖L∞(Ω), and then An is monotone if C ≤ 1
(strictly if C < 1).

Consider the operator An defined by (3.12) using flux (4.11). Unfortunately, there
is no reason to suppose this operator is coercive, so we add a bit of diffusion in the
form of a p-Laplacian leading-order term with coefficient ε > 0, namely

(4.13) Qn(∇u, u, x) = −ε|∇u|p−2∇u+ X(x)u.
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Theorem 4.6. Suppose Qn is given by (4.13) with ε > 0 and p ≥ 2. If X ∈
W 1,∞(Ω;Rd) and Fn = Fn(x) is independent of u then (3.13) has a unique solution
u ∈ K if either ∇ ·X ≥ 0 or

(4.14) ∆tn ≤
2

‖(∇ ·X)−‖L∞
.

Proof. Recalling the proof of Theorem 4.4, equation (4.12) gives∫
Ω

[Qn(u, x)−Qn(v, x)] · ∇(u− v) ≤ −εc0‖u− v‖p −
1

2

∫
Ω

(∇ ·X)(u− v)2

where c0 = 22−p/C(Ω, p) > 0. If c1 = εc0∆tn then

〈An(u)−An(v), u− v〉 ≥ c1 ‖u− v‖p +
∆tn

2

∫
Ω

(∇ ·X)(u− v)2 + ‖u− v‖2L2

≥ c1 ‖u− v‖p +

(
1− ∆tn

2
‖(∇ ·X)−‖L∞

)
‖u− v‖2L2 ,

thus An is coercive under either hypothesis.

Condition (4.14) is independent of ε > 0, suggesting that the pure advection
problem (ε = 0) may also be well-behaved, but our monotone VI technique in K ⊂
W 1,p does not establish it. Note that bound (4.14) might be regarded as a CFL-type
condition [30], but it measures the convergence of the velocity field, not its magnitude.
If ‖(∇ ·X)−‖L∞ is small then large time steps are well-posed.

4.5. Non-local dependence through an integral kernel. The examples so
far compute the flux Qn at x ∈ Ω using only the values u(x) and ∇u(x). However,
the flux in realistic models often comes from solving coupled differential equations,
generally including momentum conservation. In that context the flux is non-locally
determined from the layer thickness u and its spatial derivatives.

Let X = W 1,2
0 (Ω), a Hilbert space, and K = {u ∈ X |u ≥ 0}. Suppose G1(x, y),

. . . , Gd(x, y) and K(x, y) are scalar, real-valued kernel functions in L2(Ω×Ω). Define

(4.15) Qn[∇u, u](x) =

∫
Ω

G(x, y)u(y) dy −
∫

Ω

K(x, y)∇u(y) dy,

where G(x, y) = (G1(x, y), . . . , Gd(x, y)) is Rd-valued. With flux (4.15), equation
(2.1) is no longer a PDE, but rather a linear integro-differential equation [37].

Let An : K → X ′ = X be defined by (3.12), with Qn from (4.15), that is

〈An(v), φ〉 =

∫
Ω

[
(v −∆tn Fn − un−1)φ−∆tn

(∫
Ω

G(·, y)v(y) dy

)
· ∇φ(4.16)

+ ∆tn

(∫
Ω

K(·, y)∇v(y) dy

)
· ∇φ

]
.

Theorem 4.7. Suppose Fn = Fn(x) ∈ L2(Ω) is independent of u. Assume Gi ∈
L2(Ω× Ω) for i = 1, . . . , d. Suppose K ∈ L2(Ω× Ω) is positive and bounded below in
the sense that there is δ > 0 so that

(4.17)

∫
Ω

∫
Ω

K(x, y)φ(x)φ(y) dx dy ≥ δ‖φ‖2L2 for all φ ∈ L2(Ω).
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If either G = 0 or

(4.18) ∆tn <
δ

C(Ω, p) ‖G‖L2

,

where C(Ω, p) is from the Poincaré (A.4), then An defined by (4.16) is coercive and
strictly monotone, and thus (3.13) has a unique solution u ∈ K.

Proof. Let φ = u− v for u, v ∈ K. Two applications of Cauchy-Schwarz yield

(4.19)

∣∣∣∣∫
Ω

∫
Ω

G(x, y) · ∇φ(x)φ(y) dx dy

∣∣∣∣ ≤ ‖G‖L2‖φ‖2,

By (4.19), (4.17), and (A.4),

〈An(u)−An(v), φ〉 ≥ ‖φ‖2L2 −∆tn

∫
Ω

∫
Ω

G(x, y) · ∇φ(x)φ(y) dx dy

+ ∆tn

∫
Ω

∫
Ω

K(x, y)∇φ(x) · ∇φ(y) dx dy

≥ ‖φ‖2L2 −∆tn ‖G‖L2‖φ‖2 + δ‖∇φ‖2L2

≥ ‖φ‖2L2 +

(
δ

C(Ω, p)
−∆tn ‖G‖L2

)
‖φ‖2.

The result follows from condition (4.18) and the definition of coercivity.

Theorems 4.6 and 4.7 take different approaches to coercivity. The former assumes
the velocity X is differentiable so integration-by-parts gives a time-step criterion based
on derivatives of X. Theorem 4.7 instead assumes only that G is integrable, no
integration-by-parts is attempted, and ∆tn is bounded using the norm of G itself.

4.6. Explicit time-steps. Suppose q is any flux such that, when using the θ-
method (2.4) in an implicit case (i.e. with θ > 0), problem (3.13) is well-posed in
X = W 1,p

0 (Ω). (For example, consider the fluxes in Subsections 4.2 or 4.3.) Compare
the explicit problem, namely a forward Euler step with θ = 0, thus Qn = 0 and

(4.20) Fn = −∇ · q(∇un−1, un−1, x) + f(un−1, x).

Problem (3.13) now seeks u ∈ K so that

(4.21) 〈An(u), φ〉 =

∫
Ω

(u−∆tn Fn − un−1)φ ≥ 0 for all φ ∈ K.

For (4.21) to be well-posed the previous state un−1 must be regular enough so that
Fn in (4.20) is well defined, that is, ∇ · q(∇un−1, un−1, x) ∈ X ′ and thus Fn ∈ X ′.
However, even if this holds, VI (4.21) is not coercive on X = W 1,p

0 (Ω).
On the other hand, (4.21) is well-posed in {un ≥ 0

∣∣un ∈ L2(Ω)}. The solution is
by truncation [28, page 27]:

(4.22) un = max{0, un−1 + ∆tn Fn} ∈ L2(Ω).

This addresses one time step, but unfortunately un ∈ L2(Ω) is not regular enough
so that the next timestep has a well-defined weak form. That is, generally ∇ ·
q(∇un−1, un−1, x) need not be in L2(Ω).
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In summary, for explicit time steps the solution to a single weakly-posed time step
is straightforward truncation (4.22), but the result is generally not regular enough to
yield a well-posed problem at future steps, at least in our discrete-time, continuous-
space formulation. Nonetheless most existing numerical models [44, for example]
proceed by explicit time steps for the fully-discretized problem, followed by truncation
where the computed thicknesses come out negative.

5. Mass conservation and the retreat set. From now on we assume that
the weak problem (3.13) for a single time-step is well-posed, and that the solutions
un ∈ K are sufficiently-regular so that strong form statements (2.1) and (2.7) also
hold as described in Theorem 3.6. Define

(5.1) Mn =

∫
Ω

un(x) dx ≥ 0,

the (total) mass at time tn. Recalling set decomposition (2.5), define the climate
input at time step n as

(5.2) Cn = ∆tn

∫
Ωn

Fn(un, x)

Note that we sum values of the source term Fn(un, x) only over locations where
the fluid is present at t = tn; this is the climate input into the fluid layer. In the
complement Ω \Ωn = Ωrn ∪Ω00

n the (nonpositive) climate Fn is not removing fluid at
time tn, though the fluid in Ωrn was completely removed during the time step [tn−1, tn].

Practical models will compute approximations to time-series Mn and Cn, or simi-
lar, as model outputs, in order to audit mass transfers to and from the fluid layer. For
fixed -boundary fluid-layer problems exact discrete mass conservation can be achieved
in the sense that

(5.3) Mn = Mn−1 + Cn if Ωn = Ω,

to within rounding error at each time tn. For example, if Ωn = Ω then one can easily
show (5.3) holds under a Neumann condition Qn = 0 on ∂Ω (see below). However, a
balance like (5.3) does not follow when there is a nontrivial free boundary such that
Ω \ Ωn has positive measure.

Let us define the retreat loss during the nth time step:

(5.4) Rn =

∫
Ωr

n

un−1.

By (2.1) on Ωn,

Mn −Mn−1 =

∫
Ωn

(un − un−1)−
∫

Ωr
n

un−1 = ∆tn

∫
Ωn

(−∇ ·Qn + Fn) −Rn.

Because Qn = 0 along ∂Ωn by (3.2) and (3.4), and assuming ∂Ωn is Lipschitz,

(5.5) Mn = Mn−1 + Cn −Rn.

A posteriori statement (5.5), replacing (5.3), suggests what degree of conservation
is achievable in time-stepping numerical free-boundary models. Computing the retreat
loss Rn quantifies the conservation error caused by the constraint un ≥ 0. Consistency
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suggests Rn should vanish in the ∆tn → 0 limit, and in fact the retreat loss Rn can
be bounded a priori as follows. Recalling inequality (2.7), we have 0 ≤ un−1 ≤
−∆tn Fn(un, x) = −∆tn Fn(0, x) on Ωrn and thus

(5.6) Rn ≤ ∆tn

∫
Ω

max{0,−Fn(0, x)}.

In words, the retreat loss is bounded by the maximum amount of ablation which the
climate can apply to a bare substrate during the time step. Given a conservation
error tolerance, estimate (5.6) can be used to put an upper bound on ∆tn.

6. Fully-discrete models. So far we have treated fluid-layer mass conservation
models in semi-discretized form, as a sequence of continuous-space free-boundary
problems. We now add spatial discretization, first an unstructured finite volume
(FV) method [30], and later adding a finite element (FE) space of admissible thickness
functions, and we reconsider mass conservation in these fully-discretized settings.

6.1. Unstructured finite volumes. To set notation for spatially-discretized
schemes, assume Ω ⊂ Rd is polygonal. (We will use language suitable for the R2 case,
“polygon,” “edge,” and etc.) Let us assume that Ω is tiled by open polygonal cells
ωj , indexed by j ∈ J with |J | < ∞, with area |ωj |, so that ωj ∩ ωk = ∅ for j 6= k,
Ω̄ =

⋃
j∈J ω̄j , and |Ω| =

∑
j∈J |ωj |. We say that an edge, denoted by the ordered pair

(j, k), exists between cell j and cell k if ω̄j ∩ ω̄k has positive (d− 1)-measure (length)
`(j,k) > 0. The set of edges for cell ωj is denoted Ej = {k

∣∣edge (j, k) exists}. Note
that cells may be non-convex, the number of edges per cell may vary, and hanging
nodes are allowed.

Suppose now that the strong form (2.1) is discretized using the following generic
FV scheme. The discrete thickness ujn in cell j is interpreted as an average [30], and
similarly F jn denotes the average source term for the cell:

(6.1) ujn ≈
1

|ωj |

∫
ωj

un(x), F jn ≈
1

|ωj |

∫
ωj

Fn(un, x).

(One may suppose F jn is computed by a quadrature scheme, but such details will not
matter.) The scheme includes some method for calculating discrete (scalar) normal
flux across each edge (j, k):

(6.2) Q(j,k)
n ≈ 1

`(j,k)

∫
(j,k)

Qn(∇un, un, x) · n(j,k).

Here n(j,k) denotes the unit normal vector to edge (j, k) directed outward from ωj ;

thus n(k,j) = −n(j,k). Presumably the fluxes Q
(j,k)
n are approximated using values

{uln}, though again the details are not important.
We now require the scheme to satisfy interior conservation. That is, we require

that between any two adjacent fluid-filled cells we have flux balance across the edge:

(6.3) ujnu
k
n > 0 =⇒ Q(k,j)

n = −Q(j,k)
n .

The hypothesis in (6.3) is important. We do not expect discrete conservation at the
free boundary, because a flux scheme applied at the edge of a fluid-free (dry) cell,
facing a fluid-filled (wet) cell, cannot be expected to compute a flux which balances
the nonzero flux generated by the geometry (and stress state, etc.) of the wet cell.
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Indeed, advance of the fluid layer into a dry cell requires flux imbalance at such edges,
and likewise for a retreat which leaves behind a dry cell.

Finally we require that if ujn > 0 then the scheme approximates (2.1) using the
obvious FV formula based on the fluxes:

(6.4)
ujn − u

j
n−1

∆tn
+

1

|ωj |
∑
k∈Ej

Q(j,k)
n `(j,k) = F jn.

(Notationally, equation (6.4) appears to be the backward Euler scheme, but in fact
the time-stepping is quite general; see Section 2 and Appendix B.) However, (6.4)
only applies when the cell is wet at the end of the time step (ujn > 0). For dry cells
we do not, for now, state any equation other than ujn = 0, but see Subsection 6.3.

Many schemes can be given interpretations (6.1)–(6.4), including FV methods
for hyperbolic problems [30], and more-general schemes for diffusive problems [9, 34].
They will differ in how the equations are solved, how the free-boundary conditions
are applied, and what are the consequent stability and convergence properties. In-
deed (6.1)–(6.4) may not suffice to give a unique scheme even when formulas for the

edge fluxes Q
(j,k)
n are added, but these axioms suffice to allow the conservation error

quantification given next.

6.2. The discrete-space “boundary leak”. For schemes satisfying (6.1)–
(6.4) we now define a posteriori computable time series for conservation of mass.
The following discrete formulas, with superscript “h”, have analogs in Section 5:

(6.5) Mh
n =

∑
j

ujn|ωj |, Chn = ∆tn
∑
uj
n>0

F jn|ωj |, Rhn =
∑
uj
n=0

ujn−1|ωj |.

Now (6.4) implies

Mh
n −Mh

n−1 =
∑
uj
n>0

(ujn − u
j
n−1)|ωj | −

∑
uj
n=0

ujn−1|ωj |

= −∆tn
∑
uj
n>0

∑
k∈Ej

Q(j,k)
n `(j,k) + Chn −Rhn.(6.6)

Interior conservation (6.3) reduces the remaining sum to one over edges between wet
and dry cells. We call this residual sum the boundary leak (Figure 4):

(6.7) Bhn = ∆tn
∑

uj
n>0,uk

n=0,k∈Ej

Q(j,k)
n `(j,k).

This is the net amount of unbalanced flux along the discrete free boundary.
These time series allow us to replace (5.5) with a fully-discrete balance:

(6.8) Mh
n = Mh

n−1 + Chn −Rhn −Bhn.

Note that the masses Mh
n and the retreat losses Rhn are nonnegative while the climate

inputs Chn and the boundary leaks Bhn can be of either sign.
The boundary leak is a numerical error caused by the spatial discretization. That

is, the continuous-space flux along the free-boundary is zero because of the regularity
of the solution (un ∈ W 1,p

0 (Ω)) and by flux conditions (3.2) and (3.4). Note that
if the free boundary is well-behaved, which is beyond our scope to show even under
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strong assumptions on the data, and which is nontrivially related to the substrate
topography [9], then we expect Bhn → 0 as h → 0. Contrast the retreat loss Rhn;
it is also a numerical error but it appears in time semi-discretization and it should
stabilize at nonzero values under spatial refinement.

u > 0

u > 0

u > 0

u > 0
0

0

0

0

0

0

0

0

00

Fig. 4. The “boundary leak” Bh
n is computed along those edges where wet and dry cells meet.

In summary, in a free-boundary FV computation we may report computable time
series {Mh

n , C
h
n , R

h
n, B

h
n} which balance as in (6.8) (up to rounding error). Time series

Rhn and Bhn are conservation errors intrinsic to free-boundary fluid layer models.

6.3. Complementarity and cell-wise conservation. The continuous-space,
discrete-time weak formulation in Sections 3 and 4, using variational inequalities (VIs)
(3.13), would often be solved using finite element (FE) discretization [12, 25, 26,
for example], but we have just applied the FV language of discrete conservation.
These views can be harmonized by observing that a VI is equivalent to a nonlinear
complementarity problem (NCP) [18, 28], and both practical solver algorithms and
clearer intuition result from this observation. The dual-mesh schemes described next
are both conforming and implementable using finite-dimensional NCP solvers. The
shallow ice sheet solver described in [9] serves as an example of the combined FV, FE,
and VI/NCP techniques described here.

Suppose we discretize using an FE subspace Sh ⊂ X = W 1,p
0 (Ω), with a nodal

basis of m hat functions {ψi}, based on a triangulation (or other mesh) of Ω with
resolution h. Consider problem (3.13) on this space, namely

(6.9)
〈
An(uhn), vh − uhn

〉
≥ 0 for all v ∈ K ∩ Sh,

where An is given by (3.12) and (as usual) K = {u ∈ X
∣∣u ≥ 0}. Under the same

Section 4 hypotheses considered for (3.13), we assume problem (6.9) is well-posed for
uhn ∈ K∩Sh. Next we suppose the nodal basis is admissible so that ψi(x) ≥ 0 on Ω and
v(x) =

∑m
i=1 v(xi)ψi(x) for the nodes xi. (For example, the usual hat-function bases

for P1 and Q1 elements would satisfy this hypothesis, but not the nodal P2 basis [15].)
Then we can represent the FE solution uhn by a vector ũ ∈ Rm+ , i.e. ũi = uhn(xi) ≥ 0.

Up to isomorphism the nonlinear operator in FE formulation (6.9) is a map Ã :
Rm+ → Rm with entries Ã(ũ)i =

〈
An(uhn), ψi

〉
∈ R. The finite-dimensional VI (6.9) is

equivalent to the nonlinear complementarity problem (NCP)

(6.10) ũi ≥ 0, Ã(ũ)i ≥ 0, ũiÃ(ũ)i = 0
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[28, Theorem I.5.5]; see also [18]. (By nonnegativity of the factors the complementarity
condition can be regarded either entrywise or as an inner-product.) NCP (6.10) is
nonlinear even if the operator An is linear, and thus iteration is expected in any
numerical solution. Scalable Newton schemes for NCP problems are described in [7];
relevant applications appear in [8, 9].

In our fluid-layer context the intuition behind NCP (6.10) is straightforward.
Namely, at convergence of the numerical solver:

ũi ≥ 0 : the layer thickness at each node xi is nonnegative,
Ã(ũ)i ≥ 0 : the balance between flow and climate inputs, represented by the resid-

ual of the operator An in the direction of test function ψi, never
removes more mass than was already present, and

ũiÃ(ũ)i = 0 : at each location xi either the thickness is zero or the flow and climate
are in exact balance.

When a value Ã(ũ)i is zero then mass conservation (balance) equation (2.1) holds
at node xi, but only in an FE sense. That is, a weighted-average of the integrand
in (3.12), over the support of ψi(x), is zero. Tradition and climate-modeling practice
regards such an averaged sense of discrete balance as inferior to exact local balance
(6.3). However, we may adapt (6.10) to an FV view by assuming that for each FE node
xi there is a unique corresponding FV cell ωi (Subsection 6.1). Schemes satisfying
this condition, such as [9, 17, 39], have a “dual mesh,” namely cells for conservation
plus a mesh for representing the solution. Note we will need no detailed assumptions
about the mesh correspondence in the following computations.

Now we compute the residual for the characteristic function 1ωi
of an FV cell:

Â(ũ)i =
〈
An(uhn),1ωi

〉
(6.11)

=

∫
ωi

(
uhn −∆tnF

h
n − uhn−1

)
+ ∆tn

∑
k∈Ei

∫
(i,k)

Qh
n · n(i,k).

where Fhn (x) = Fn(uhn, x), Qh
n(x) = Qn(∇uhn, uhn, x), and i ∈ {1, . . . ,m}. Regarding

the flux integral on the right we again assume interior balance (6.3). The integral〈
An(uhn),1ωi

〉
must be understood in a distributional sense, for instance as a limit

using mollification of 1ωi .
The NCP corresponding to the VI for (6.11), namely

(6.12) ũi ≥ 0, Â(ũ)i ≥ 0, ũiÂ(ũ)i = 0

in Rm, has an interpretation as before even though it mixes FE and FV aspects.
For each cell ωi the nodal thickness ũi is nonnegative, the flow and climate will not
remove more mass than was already present in the cell (Â(ũ)i ≥ 0), and either the
nodal thickness is zero or conservation (balance) is exact in a cell-wise sense. Note
that 1ωi

/∈ X , so this is a Petrov-Galerkin formulation, but the scheme is conforming
in the sense that uhn ∈ K ∩ Sh is admissible [15]. Such a combined “finite volume
element” viewpoint is not new as it applies to PDE problems [11, 17, for example],
but it seems not to have been used for VIs except in [9].

However, solution of (6.12) implies revised mass accounting relative to Subsection
6.2. We redefine

(6.13) M̂h
n =

∫
Ω

uhn, Ĉhn = ∆tn
∑
ũi>0

∫
ωi

Fhn , R̂hn =
∑
ũi=0

∫
ωi

uhn−1,
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to replace (6.5), and

(6.14) B̂hn = ∆tn
∑

ũi>0,ũk=0,k∈Ej

∫
(i,k)

Qh
n · n(i,k)

to replace (6.7). Noting that uhn may be nonzero on a cell ωi corresponding to a zero
nodal thickness ũi = 0, the following calculation applies if ũ solves NCP (6.12):

M̂h
n − M̂h

n−1 =
∑
ũi>0

∫
ωi

uhn − uhn−1 +
∑
ũi=0

∫
ωi

uhn − uhn−1(6.15)

= Ĉhn −∆tn
∑
ũi>0

∑
k∈Ei

∫
(i,k)

Qh
n · n(i,k) +

∑
ũi=0

∫
ωi

uhn − R̂hn

The flux sum again simplifies through cancellation by interior conservation (6.3), but
now we must add a new time series, which we call the cell slop, because the support
of uhn generally extends outside of the wet cells:

(6.16) Ŝhn =
∑
ũi=0

∫
ωi

uhn.

With the revised definitions, by (6.15) the following balance holds,

(6.17) M̂h
n = M̂h

n−1 + Ĉhn − R̂hn − B̂hn + Ŝhn,

now replacing both (5.5) and (6.8). Time series (6.13), (6.14), and (6.16) are com-
putable a posteriori although quadrature may be needed depending on the form of
functions Fn and Qn.

To summarize, (6.17) identifies three conservation errors for free-boundary prob-
lems which are not present in the fixed-boundary case. The retreat loss Rhn goes to
zero under temporal refinement (Section 5), the boundary leak Bhn goes to zero under
spatial refinement (Subsection 6.2), and the cell slop Ŝhn is identically zero in a pure
FV formulation.

7. Conclusion. Global-scale fluid models sometimes claim exact discrete conser-
vation as a goal [39, 42], but these claims are apparently made in a fixed-boundary con-
text, while climate models increasingly incorporate free-boundary submodels. Such
multiphysics Earth system models need to conserve masses of the phases of water sep-
arately as they have different physical properties relevant to climate dynamics. (For
example, snow and ice have higher albedo and lower density than the liquid ocean.)
Within such models it is common for one or more fluids or phases to form a thin
layer with a moving (free) lateral boundary, a description which applies to ice sheets,
glaciers, ice shelves, sub-glacial liquid water, sea ice, and evaporable seas and lakes,
among others. Existing models sometimes include ad hoc redistribution schemes,
which globally balance the mass-conservation books, but we assert that discrete mass
conservation cannot otherwise occur in such free-boundary subsystems, though con-
servation is recoverable in the temporal and spatial refinement limit. Conscientious
numerical model design therefore suggests quantification of conservation errors, not
sweeping them under the refinement-limit (or other) rugs.

We have addressed the modeling of thin fluid layers through semidiscretization
in time (Section 2), and then weak formulation as a sequence of continuous-space VIs
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(Sections 3–5), always based on the fundamental nonnegative thickness condition. On
the other hand, spatial discretization must also be applied, so we interpret discrete
mass conservation errors first through an FV framework (Section 6), then reconciling
this viewpoint to FE solution of the VIs (Subsection 6.3). The essential intent of
Section 6 is, in fact, to recommend that modelers do conservation arithmetic on the
finite-dimensional NCP or VI form of the problem solved at each time step.

For numerical models we have identified the per time-step retreat set Ωrn (Subsec-
tion 2.2) and retreat mass loss Rn (Section 5) as most fundamental. Here Ωrn is the
(continuous-space) region where the fluid layer thickness is positive at the beginning
of the time step, and, through flow and (climatic) source terms, becomes zero at the
end of the step. By definition, fluid is completely removed from the retreat set at
some time during the time step, and, intuitively, the numerical model has no access
to the (substep) time and manner in which this occurs, other than in the inequality
sense that the climate was sufficiently ablative so as to eliminate that fluid. Note that
the retreat area |Ωrn| can be arbitrarily large even for short time steps. For example,
in an ablating climate a large area of thin ice sheet or sea ice can melt, or a large area
of water can evaporate and expose bare ground, in a short time. The retreat loss Rn,
a mass, can be bounded a priori (Section 5), but still it cannot be exactly-balanced
by a computable integral of the climatic source term during the time step.

These conclusions about retreat, which apply in the semi-discretized and continuous-
space case, are independent of any particular spatial discretization scheme. However,
in Section 6 we define conservation error quantities at the discretized free boundary.
With these computable time series in hand a numerical model can balance the books
up to rounding error in a manner which properly reflects the free-boundary character
of the model. Even without a priori control of the free boundary, a user can assess
whether a posteriori conservation errors are acceptably small, and shorten time steps
or refine meshes if not. Climate models, in particular, can thereby control some of
the uncertainty in mass transfers between component fluids of the Earth system.
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[26] G. Jouvet, E. Bueler, C. Gräser, and R. Kornhuber, A nonsmooth Newton multigrid
method for a hybrid, shallow model of marine ice sheets, in Recent Advances in Scientific
Computing and Applications, vol. 586 of Contemporary Mathematics, American Mathe-
matical Society, 2013, pp. 197–205.

[27] G. Jouvet, J. Rappaz, E. Bueler, and H. Blatter, Existence and stability of steady state
solutions of the shallow ice sheet equation by an energy minimization approach, J. Glaciol.,
57 (2011), pp. 345–354.

[28] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their
Applications, Pure and Applied Mathematics, Academic Press, 1980.

[29] L. Kondic, Instabilities in gravity driven flow of thin fluid films, SIAM Rev., 45 (2003), pp. 95–
115 (electronic).

[30] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied
Mathematics, Cambridge University Press, 2002.

[31] R. J. LeVeque, D. L. George, and M. J. Berger, Tsunami modelling with adaptively refined
finite volume methods, Acta Numerica, 20 (2011), pp. 211–289.

[32] W. H. Lipscomb and E. C. Hunke, Modeling sea ice transport using incremental remapping,
Mon. Wea. Rev., 132 (2004), pp. 1341–1354.

[33] R. M. Maxwell, L. E. Condon, and S. J. Kollet, A high-resolution simulation of ground-
water and surface water over most of the continental US with the integrated hydrologic
model ParFlow v3, Geoscientific Model Development, 8 (2015), pp. 923–937.

[34] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, CRC Press, 2018.
reprint of the 1996 edition.

[35] K. W. Morton and D. F. Mayers, Numerical Solutions of Partial Differential Equations:
An Introduction, Cambridge University Press, 2nd ed., 2005.

[36] I. Peral, Multiplicity of solutions for the p-Laplacian. Notes of the Second International School
in Functional Analysis and Applications to Differential Equations, ICTP-Trieste, 1997.

[37] D. Porter and D. Stirling, Integral Equations: A Practical Treatment, from Spectral Theory
to Applications, Cambridge University Press, 1990.

[38] P. A. Raviart, Sur la résolution de certaines equations paraboliques non linéaires, J. Func-
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Appendix A. Inequalities for p-norms. Versions of the inequalities in
the next two Lemmas appear in the literature, at least as early as [22], but here
the results apply in Rd—contrast [6] for the R2 case—and have complete proofs and
explicit constants. The first two proofs follow [36, Appendix A].

Lemma A.1. If p ≥ 2 and x, y ∈ Rd then

(A.1)
(
|x|p−2x− |y|p−2y

)
· (x− y) ≥ 22−p|x− y|p.

The constant is sharp; consider y = −x.

Proof. The case where x = 0 or y = 0 is trivial, so assume, by swapping x and
y as necessary, that 0 < |y| ≤ |x|. Define t = |y|/|x| and s = (x · y)/(|x||y|) so that
0 < t ≤ 1 and |s| ≤ 1. Expand (A.1) and divide it by |x|p, to get the equivalent
statement

1− (tp−1 + t)s+ tp ≥ 22−p (1− 2st+ t2
)p/2

.

It is easy to check that this holds when s = 1, so now we will prove that 22−p is a
lower bound for

f(t, s) =
1− (tp−1 + t)s+ tp

(1− 2st+ t2)
p/2

.

on (t, s) ∈ R = [0, 1] × [−1, 1). Note 1 − 2st + t2 > 0 on R, so f(t, s) is well-defined
and differentiable on R.

Now, f(t,−1) =
(
1 + tp−1

)
/ (1 + t)

p−1
on t ∈ [0, 1]. Because h(t) = tp−1 is

convex for p ≥ 2,

1

2p−1
(1 + t)p−1 = h( 1

21 + 1
2 t) ≤

1
2h(1) + 1

2h(t) = 1
2 (1 + tp−1),

and thus f(t,−1) ≥ 22−p. On the other hand, a quick calculation shows

∂f

∂s
=

t

(1− 2st+ t2)
(p+2)/2

g(t, s)

where
g(t, s) = s(2− p)t(tp−2 + 1) + (p− 1)(tp + 1)− tp−2 − t2

is continuous on the closed rectangle R̄ = [0, 1]× [−1, 1]. We will show g(t, s) ≥ 0 on
R̄, thus that ∂f/∂s ≥ 0 on R, and thus that f(t, s) ≥ f(t,−1) ≥ 22−p on R.

Now,
∂g

∂s
= (2− p)t(tp−2 + 1) ≤ 0

on R̄. Define G(t) = g(t, 1). We will show G(t) ≥ 0 on [0, 1], thus that g(t, s) ≥
g(t, 1) ≥ 0 on R̄. But G(t) ≥ 0 is equivalent to (p−1)(t−1)(tp−1−1) ≥ (tp−2−t)(1−t)
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which is in turn equivalent to (p− 1)(1− tp−1) ≥ tp−2− t. Note (p− 1)(1− tp−1) ≥ 0.
If p ≥ 3 then tp−2 − t ≤ 0 so G(t) ≥ 0 in that case. On the other hand, if 2 ≤ p < 3
then

tp−2 − t
1− tp−1

= tp−2 1− t3−p

1− tp−1
≤ tp−2 ≤ 1 ≤ p− 1

on t ∈ [0, 1), because tp−1 ≤ t3−p and thus 1 − tp−1 ≥ 1 − t3−p. But also G(1) = 0,
so G(t) ≥ 0 on [0, 1].

Lemma A.2. If 1 < p ≤ 2 and x, y ∈ Rn then

(A.2)
(
|x|p−2x− |y|p−2y

)
· (x− y) ≥ (p− 1) |x− y|2 (|x|+ |y|)p−2

.

Proof. Assuming x, y are not both zero, by symmetry (swapping x and y) and
homogeneity (replacing x, y with λx, λy) we can assume |x| = 1 ≥ |y|. Furthermore,
by choosing a basis of Rd we can have x = (1, 0, . . . , 0) and y = (y1, y2, 0, . . . , 0) where
y2

1 + y2
2 ≤ 1. In these terms, the inequality we seek to prove is(

1− (y2
1 + y2

2)
p−2
2 y1

)
(1− y1) + (y2

1 + y2
2)

p−2
2 y2

2

≥ (p− 1)
(
(1− y1)2 + y2

2

)(
1 +

√
y2

1 + y2
2

)p−2

.

(Compare equation (A.4) in [36].) But

1− (y2
1 + y2

2)
p−2
2 y1 ≥

{
1− y1, y1 ≤ 0,

1− yp−1
1 , 0 ≤ y1 ≤ 1

}
≥ (p− 1)(1− y1).

(The lower case in the last inequality is easy to prove by the mean-value-theorem
applied to ϕ(t) = tp−1, for which ϕ′(1) = p−1 is the minimum value of the derivative

on t ∈ [0, 1].) Also noting (y2
1 + y2

2)
p−2
2 ≥ 1 and

(
1 +

√
y2

1 + y2
2

)2−p
≥ 1, because

|y| ≤ 1 and p− 2 ≤ 0, thus(
1− (y2

1 + y2
2)

p−2
2 y1

)
(1− y1) + (y2

1 + y2
2)

p−2
2 y2

2

((1− y1)2 + y2
2)
(

1 +
√
y2

1 + y2
2

)p−2

≥ (p− 1)(1− y1)2 + y2
2

(1− y1)2 + y2
2

(
1 +

√
y2

1 + y2
2

)2−p

≥ (p− 1)(1− y1)2 + (p− 1)y2
2

(1− y1)2 + y2
2

= p− 1.

This proves (A.2).

We will also need the following result of combining point-wise Lemma A.2 with
integration over a set Ω.

Lemma A.3. Suppose 1 < p ≤ 2. If Ω ⊂ Rd is measurable and if u,v ∈ Lp(Ω;Rk)
for k ≥ 1, then

(A.3)

∫
Ω

|u− v|p

(|u|+ |v|)2−p ≥
‖u− v‖2Lp∥∥|u|+ |v|∥∥2−p

Lp

.
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Proof. By Hölder inequality with r = 2/p and s = 2/(2− p), so r−1 + s−1 = 1,∫
Ω

|u− v|p =

∫
Ω

|u− v|p

(|u|+ |v|)p(2−p)/2
(|u|+ |v|)p(2−p)/2

≤

(∫
Ω

|u− v|2

(|u|+ |v|)2−p

)p/2(∫
Ω

(|u|+ |v|)p
)(2−p)/2

,

thus (A.3).

Finally we recall the Poincaré inequality on the Sobolev space W 1,p
0 (Ω). This

form, with an explicit but not optimal constant, is from [21, section 7.8].

Lemma A.4. If Ω ⊂ Rd is a bounded domain with volume |Ω|, and if 1 ≤ p <∞
then for all u ∈W 1,p

0 (Ω),

(A.4) ‖u‖pW 1,p(Ω) ≤ C(Ω, p)

∫
Ω

|∇u|p,

where C(Ω, p) = 1 + (|Ω|/ωd)p/d and ωd = (2πd/2)/(dΓ(d/2)) is the volume of the
unit ball in Rd.

Appendix B. Second-order Runge-Kutta time-discretization. Section 2
describes the time semi-discretization of the continuum strong form (1.1)–(1.2) using
the θ method. Such a one-stage method generates particular forms for the functions
Qn(X, v, z) and Fn(v, z) in equations (2.1)–(2.2), and these functions then define weak
formulation (VI) (3.13). Here we illustrate how the corresponding functions Qn and
Fn can be generated for second-order Runge-Kutta (RK) schemes.

For the m-dimensional ODE system y′ = g(t,y) an s-stage RK scheme [4] with
time-step h = ∆t is given by constants aij , bi, τi and the equations

yn,i = yn−1 + h

s∑
j=1

aijg(tn−1 + τjh,yn,j), i = 1, . . . , s(B.1)

yn = yn−1 + h

s∑
i=1

big(tn−1 + τih,yn,i).

Explicit methods have aij = 0 for j ≥ i, i.e. zeros on and above the diagonal in
the Butcher tableau [4], while semi-implicit methods have zeros above the diago-
nal. Whereas general implicit RK schemes generate larger (nonlinear) systems, semi-
implicit methods have the computational advantage that each stage generates an
m-equation system. Note that one must solve (3.13) s times to compute a time step
using an s-stage explicit or semi-implicit RK scheme.

Diagonally-implicit RK (DIRK) methods are semi-implicit methods for which the
diagonal entries aii are independent of i. The accuracy of s-stage DIRK methods is
limited to order p = s + 1, and there exist strongly S-stable and stiffly-accurate [4]
DIRKs with order p = s for s = 1, 2, 3 [2]. (“Strongly S-stable” is also called “stiff
decay” [4].) The stability properties of these DIRK methods are helpful for mass
conservation problems considered in the text, especially cases where q has a leading-
order diffusion term so that the m-dimensional method-of-lines ODE system is stiff.
In DIRK methods the linear system matrix can potentially be re-used at each stage.
(This matrix is A = I − haiiJ where the Jacobian J is evaluated at the start of the
time step, J = ∂g

∂y (tn−1,yn−1).)
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Now, as an illustration, we compute functions Qn and Fn for two DIRK schemes.

(a) The implicit midpoint rule is a (s, p) = (2, 2) A-stable DIRK scheme. It uses
a half backward Euler step followed by an explicit step:

ỹ = yn−1 + 1
2hg(tn−1 + 1

2h, ỹ),

yn = yn−1 + hg(tn−1 + 1
2h, ỹ).

Let tn−1/2 = tn−1 + 1
2∆t. Functions (2.3) for the first stage are

Q̃(X, v, x) = 1
2q(X, v, x, tn−1/2) and F̃ (v, x) = 1

2f(v, x, tn−1/2).

Now let ũ denote the weak solution to the first stage VI problem. The func-
tions for the explicit second stage are then Qn(X, v, x) = 0 and

Fn(v, x) = f(ũ, x, tn−1/2)−∇ · q(∇ũ, ũ, x, tn−1/2).

(b) The (unique) strongly S-stable (s, p) = (2, 2) scheme for which 0 ≤ τi ≤ 1 [4]
has equations

ỹ = yn−1 + αhg(t̃, ỹ),

yn = yn−1 + (1− α)hg(t̃, ỹ) + αhg(tn,yn).

where α = 1−
√

2
2 and t̃ = tn−1 + αh. Functions for the first stage are

Q̃(X, v, x) = αq(X, v, x, t̃) and F̃ (v, x) = αf(v, x, t̃).

If ũ denotes the solution to the first stage VI then the functions for the second
stage are Qn(X, v, x) = αq(X, v, x, tn) and

Fn(v, x) = (1− α)f(ũ, x, t̃) + αf(v, x, tn)− (1− α)∇ · q(∇ũ, ũ, x, t̃).
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