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Abstract: Open biochemical systems of interacting molecules are ubiquitous in life-related pro-
cesses. However, established computational methodologies, like molecular dynamics, are still mostly
constrained to closed systems and timescales too small to be relevant for life processes. Alternatively,
particle-based reaction-diffusion models are currently the most accurate and computationally feasi-
ble approach at these scales. Their efficiency lies in modeling entire molecules as particles that can
diffuse and interact with each other. In this work, we develop modeling and numerical schemes for
particle-based reaction-diffusion in an open setting, where the reservoirs are mediated by reaction-
diffusion PDEs. We derive two important theoretical results. The first one is the mean-field for open
systems of diffusing particles; the second one is the mean-field for a particle-based reaction-diffusion
system with second-order reactions. We employ these two results to develop a numerical scheme
that consistently couples particle-based reaction-diffusion processes with reaction-diffusion PDEs.
This allows modeling open biochemical systems in contact with reservoirs that are time-dependent
and spatially inhomogeneous, as in many relevant real-world applications.
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I. INTRODUCTION

Complex systems of interacting particles/agents that
exchange energy and matter with a large reservoir are
extremely common, from a city exchanging infected cit-
izens at airports during a pandemic to a living cell ex-
changing chemicals with its environment. In the context
of molecular biology, most biochemical reaction systems,
either inside living cells or composed by them, interact
with some form of reservoir [1]. They also consume chem-
ical energy for their survival, produce waste and dissipate
heat; they operate in an open non-equilibrium setting. In
terms of physical chemistry, every living system must be
an open system —a closed system has no life [1]. It is
thus fundamental to develop models of biochemical reac-
tion systems capable of exchanging materials and energy
with their environment. Although this is the guiding mo-
tivation for this work, the results here presented can also
be applied in other areas such as agent-based modeling.

Molecular dynamics (MD) is theoretically capable of
modeling biochemical systems accurately at cellular and
sub-cellular scales. However, in timescales relevant to
life processes, even a system with one or two molecules is
already large enough to render any MD simulation com-
putationally unfeasible. Moreover, although there is on-
going research on open MD systems [2–4], established
computational protocols rely by design on the simulated
MD system being closed [3]. Consequently, the most ac-
curate and computationally reliable simulations for open
systems at these scales are based on stochastic particle-
based reaction-diffusion (PBRD) models. Novel methods
are emerging capable of coupling PBRD with MD, inte-

grating the accuracy of MD into efficient PBRD simula-
tions [5–7]. This, along with other recent research, points
out the need for hybrid reaction-diffusion methods that
are accurate, open and consistent across multiple scales.

In this paper, we concentrate on multiscale models
for PBRD simulations of open systems, where we focus
on coupling particle-based simulations to macroscopic
particle/chemical reservoirs. These reservoirs are given
by a mean concentration of chemical species that can
vary in time and space. We model these reservoirs as
reaction-diffusion partial differential equations (PDEs).
The goal of this work is to achieve a mathematically con-
sistent coupling between the PBRD simulations and the
reaction-diffusion PDEs. This entails two major chal-
lenges:

• Determine how to consistently couple a particle-
based simulation to a constant concentration chem-
ical reservoir. Note the particle-based simulation
will be in the grand canonical ensemble since the
number of particles is not constant. This will be
solved by calculating the mean-field for an open
system of diffusing particles.

• Calculate the relations between the reaction rates
and diffusion coefficients in the particle-based simu-
lation and the macroscopic reaction-diffusion PDE.
This can be especially cumbersome for second-order
reactions. We will solve this by calculating the
mean-field for reaction-diffusion systems with up
to second-order reactions.

Unlike the case of homogeneous reaction theory [8–
10], the connection between microscopic, mesoscopic and
macroscopic scales for reaction-diffusion phenomena is
still a matter of recent research [11–15]. One of the main
difficulties to establish this connection is to relate the
macro and microscopic rates for second-order reactions.
We will present results on the relation between these rates
at first order. The results for the most general case are
currently a work in progress [16].
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Other very relevant work in this area is [17], where the
authors introduce a method to couple Brownian dynam-
ics simulations with mean-field PDEs. However, they
do not implement their methods for the nontrivial case
of second-order reactions, and they conceptually do not
consider the PDE domain as a reservoir. The work [18]
builds and improves on these ideas. The authors include
a second-order reaction example. However, the relation
between the particle-based and PDE reaction rate does
not seem correct. It is based on [19], where the diffusion
is included in the rate relation, which is only correct if
diffusion is averaged out. In this work, we show that the
diffusion coefficient does not play a role in the relation
between the microscopic and the macroscopic reaction-
diffusion PDE reaction rates.

The theory and numerical implementation details are
explained in this paper; the code is available in GitHub
under an MIT license [20].

II. REACTION-DIFFUSION MODELS

Reaction-diffusion processes take different forms de-
pending on the number of particles involved and the
scale of interest (Fig. 1). When the number of par-
ticles is small, the stochastic fluctuations due to diffu-
sion and chancy reactions need to be taken into account
with a probabilistic particle-based approach. However, if
the number of particles is large, small fluctuations in the
number of particles become negligible, and deterministic
concentration dynamics in the form of reaction-diffusion
PDEs become a more suitable alternative.
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Figure 1. Some models of reaction-diffusion processes orga-
nized by their spatial scaling and the number of particles.
Only the most relevant models for this work are shown here.

In the case of well-mixed systems, the spatial com-
ponent of these models is averaged out yielding either
the well-known rate equations or the chemical master
equation, depending on the number of particles (Fig.
1). In this work, we concentrate on spatially inhomoge-
neous systems at different scales. We develop theoretical
and simulations techniques that bridge PBRD simula-
tions with reaction-diffusion PDEs, in particular in the

context of open systems. We give below a brief overview
of the two relevant reaction-diffusion models.

A. Particle-based reaction-diffusion

The particle-based approach to model reaction-
diffusion follows the approach used in the ReaDDy2 soft-
ware [21] (other well-known software packages are [22–
24]). It consists on simulating each molecule as an spher-
ical particle. The Brownian diffusion of each molecule is
modeled using overdamped Langevin dynamics,

dx(t) =
√

2Ddw(t), (1)

where x(t) is the position of the molecule at time t and
w(t) is a collection of independent Wiener processes (one
per coordinate). Reactions are modeled depending on
the type of reaction (Fig. 2):

• Zeroth order reactions, ∅ κ0−⇀ A: a new A molecule
is placed uniformly in the whole domain with rate
κ0.

• First order reactions, A
κab−−⇀ B: molecule A is

transformed into B with rate κab.

• Second order reactions, A+B
κ−⇀ C: if the relative

distance between A and B is less than the reac-
tion radius σ, the particles react with rate α. The
new molecule C is placed in an averaged position
between A and B.

Figure 2. Illustration of some of the possible reactions in
a particle-based reaction-diffusion simulation. a. Diagram
of the Doi model for bimolecular reactions. When the two
particles are closer than a distance of σ, they react with rate
α. Note it is not the same as the macroscopic rate κ. b.
An example of a unimolecular reaction (first-order) reaction,
where A simply transforms into B. c. The backward reaction
of the binding given by the Doi model. The products should
be placed uniformly at a distance δr such that δr ≤ σ to
satisfy detailed balance [25].

The mathematical model for zeroth and first-order reac-
tions is the same as in the well-mixed case, where there
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is no spatial dependence. Higher-order reactions can be
decomposed into several second-order reactions, so the
theory for second-order reactions results the most rele-
vant. The mathematical theory we use to model second-
order reactions is based on diffusion-influenced reactions,
specifically in the Doi volume reactivity model (Fig. 2a)
[26, 27].

The Doi model consists of an isolated pair of molecules
A and B, where A is fixed at the origin, B is a distance
r from A, and it undergoes Brownian diffusion (Eq. (1))
with diffusion coefficient D. Further, B can only react
with A with rate α if within the reaction radius r ≤
σ. The probability of finding B at distance r at time t,
providing it started at a distance r0, is f(r, t|r0), which
obeys the following Fokker-Planck equation

∂tf(r, t|r0) = D∇2f(r, t|r0)− χr≤σ(r)f(r, t|r0),

where χr≤σ(r) is the indicator function (1 if r < σ and 0
otherwise). Note as the steady state is reached (t→∞),
f(r, t|r0) goes to zero since the particle B will react
with probability 1. Following generalizations of diffusion-
influenced reactions to reversible reactions [25, 28–35],
we can also model the reversible reaction C −⇀ A + B,
by placing the reactants uniformly within a distance σ
of each other. This choice ensures detailed balance is
satisfied. Alternative solutions exists when there is an
interaction potential involved [25] or when numerical ef-
ficiency is a priority [36].

Note the parameters required for a particle-based
reaction-diffusion simulation are the microscopic rates
and the reaction radius for second-order reactions.

B. Reaction diffusion PDEs

When a systems has a very large number of particles,
its chemical kinetics are better described by deterministic
concentration-based approach. Consider c(t) the vector
of concentrations of N chemical species, which are in-
volved in M different reactions. The kinetics are given
in terms of the following PDE,

∂tc = D∇2c+R(c),

where here D is a diagonal matrix with the diffusion coef-
ficient of each species and R(c) encapsulates all the M re-
actions. This equation without the diffusion term would
be of the form of the well-known law of mass action [37].
As an example, consider the predator-prey dynamics

A
κ1−⇀ 2A, A+B

κ2−⇀ B, B
κ3−⇀ ∅, (2)

where A represent the preys and B the predators. The
concentration dynamics are given by the Lotka-Volterra
equations

∂tcA = DA∇2cA + κ1cA − κ2cAcB ,

∂tcB = DB∇2cB + κ2cAcB − κ3cB ,

where cA and cB represent the concentration of predators
and preys, respectively. Naturally, initial and boundary
conditions need to be provided to close the system.

Reaction-diffusion PDEs, like the one just presented,
can be solved using standard numerical methods, like
finite difference schemes, finite elements and spectral
methods. In this work, we use finite differences [38–40]
since they are simple and fit the purpose of this work. We
mainly use the Crank-Nicolson method combined with an
operator splitting approach if necessary, see Appendix A
for brief implementation details.

III. COUPLING PARTICLE-BASED MODELS
TO CHEMICAL RESERVOIRS

In this section, we derive two results that are funda-
mental to couple PBRD simulations with reservoirs me-
diated by reaction-diffusion PDEs. These results address
the two main challenges mentioned in the introduction,
and they are summarized in Fig. 4.

The first result determines how to consistently cou-
ple a particle-based model to a constant concentration
reservoir. It does so by matching the mean-field limit
of a particle-based diffusion process to its correspond-
ing macroscopic PDE description. In this setting, the
particle-based model is in contact with a chemical reser-
voir, so we call it a grand canonical diffusion process. In
a simulation context, this result can be easily extended
to reservoirs with spatially and time-dependent concen-
trations given by a reaction-diffusion PDE.

The second result shows how reaction-diffusion PDEs
can be recovered as the mean-field of particle-based
reaction-diffusion processes. This is essential to develop
consistent coupling numerical schemes since it determines
the relation between the microscopic and macroscopic pa-
rameters.

A. Mean-field of grand canonical diffusion
processes

We want to consistently couple PBRD simulations to
PDE mediated chemical reservoirs. To parametrize the
coupling, we need to match the mean-field dynamics of
particle-based models with its corresponding macroscopic
PDE behavior.

We begin with a one-dimensional system with an arbi-
trary number of noninteracting diffusing particles and a
coupling to a constant concentration reservoir on one end;
this is a grand canonical diffusion process. In the macro-
scopic setting, this corresponds to the diffusion PDE

∂tc(x, t) = D∇2c(x, t), (3)

∂xc(x, t)|x=0 = 0 c(R, t) = cR,

with cR a constant. The boundary condition at x = 0
is not really relevant for our purpose, but we assume
Neumann for simplicity.
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In the particle-based setting, this corresponds to parti-
cles diffusing independently following standard Brownian
motion. The reservoir on one end can absorb and intro-
duce new particles into the system with a certain rate.
To obtain the mean-field of the particle-based system, it
will be convenient to discretize the domain [0, R] into N
cells of size δx. The number of particles in the ith cell
is denoted by ni. The state of the systems is given by
P (n1, . . . , nN , t), which corresponds to the probability of
having {n1, . . . , nN} particles in the cells {1 . . . , N} at
time t. We further assume cell N is in contact with a
reservoir in cell N + 1 of volume VR with a constant con-
centration of particles cR at all times (Fig. 3b.). As the
particles diffuse independently, the jump rates of each
particle from cell i to neighboring cell j are simply the
diffusion jump rates [41],

qi,j =
D

δx2
, i 6= j. (4)

We can now write a master equation for the dynamics of
P (n1, . . . , nN , t) [41],

dP (n1, . . . , nN , t)

dt
= −P (n1, . . . , nN , t)

N∑
i=1

[qi,i+1 + qi,i−1]ni

+

N−1∑
i=1

[
P (ni + 1, ni+1 − 1)qi,i+1(ni + 1)+ (5)

P (ni − 1, ni+1 + 1)qi+1,i(ni+1 + 1)

]
+

P (. . . , nN + 1)qN,N+1(nN + 1) + P (. . . , nN − 1)qN+1,NnR,

where we used P (ni+ 1, ni+1−1) = P (. . . , ni+ 1, ni+1−
1 . . . ) to simplify notation. We refer to this equation as
the grand canonical master equation since it describes an
open system that can exchange particles with its environ-
ment. The terms in the first sum of Eq. (5) correspond to
transitions that leave the current state; the second sum
corresponds to transitions into the current state; and the
last two terms corresponds to the transitions into the cur-
rent state due to interactions with the reservoir. In order
to recover the Neumann boundary condition at x = 0,
we set q1,0 = 0, see Fig. 3 and Eq. (5) for reference.
Note the jump rate of particles from the reservoir into
the system γ = qN+1,N is not yet known. We will refer
to γ as the injection rate.

We will next study the continuous limit of the mean-
field of Eq. (5) and obtain the value of the injection rate
γ. The mean-field of the Eq. (5) is given by∑

{n̄}

ni
dP (n1, ..., nN , t)

dt
:=

d 〈ni〉
dt

, (6)

where 〈ni〉 is the expected number of particles at cell
i. After some algebra, we obtain the following equation
[41, 42]

d 〈ni〉
dt

= 〈ni+1〉 qi+1,i − 〈ni〉 [qi,i+1 + qi,i−1] + 〈ni−1〉 qi−1,i.

(7)

1
1

Figure 3. Diagram of the grand canonical master equation for
an open system. It allows for an arbitrary number of diffusing
particles, and it is coupled to a material reservoir. This is
the result of discretizing the one-dimensional particle-based
diffusion processes in contact with a constant concentration
reservoir.

Writing everything in terms of concentrations ci =
〈ni〉 /δx and substituting the rates, we can take the limit
δx → 0. Note that the concentration remains bounded
because 〈ni〉 goes to zero at the same rate as the volume
shrinks. This yields [41]

∂tc(x, t) = D∇2c(x, t), (8)

which is not surprisingly the diffusion equation for the
concentration c(x, t). It is also straightforward to check,
we recover the Neumann boundary condition at x = 0
by using a ghost cell approach [38]. However we need
to be careful at the boundary in contact with the reser-
voir. We denote Fi := 〈ni〉 /δx the mean concentration
at cell i. We write Eq. 7 for i = N and substitute the
corresponding rates

dFN
dt

= qN+1,NcR +
D

δx2
(−2FN + FN−1).

We add a ghost cell N + 1 that represents the reservoir.
As the concentration in the material bath is constant, we
set cR = FN+1 and rewrite this equation as

dFi
dt

=
D

δx2
(FN+1 − 2FN + FN−1)+

qN+1,NcR −
D

δx2
FN+1.

The first term corresponds to the discretized diffusion
equation (Eq. 3) that we want to recover in the continu-
ous limit. Therefore, the additional terms must be zero.
As cR = FN+1, this implies that the injection rate is

γ = qN+1,N =
D

δx2
. (9)

This is the jump rate of particles from the reservoir into
the system, such that the macroscopic Eq. (3) with
its boundary conditions are recovered in the continuous
mean field limit. Not surprisingly, it matches the diffu-
sion jump rate.

This result establishes the connection between the
particle-based and the concentration-based approach for
open systems. It can be used to implement particle-based
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a.

b.

Figure 4. Diagram summarizing the two main results of Sec-
tion III. a. Mean field limit of the particle-based diffusion
open system. If the injection rate of particles from the reser-
voir is set to γ = D/δx2 in the master equation, the mean
field yields a constant concentration boundary condition. b.
Mean field limit of PBRD. It relates the miscroscopic parame-
ters of the Doi model, α and σ, with the macroscopic reaction
rate κ.

simulations in contact with material reservoirs with con-
stant concentrations, see Section IV. It is also straight-
forward to extend it to more complicated systems, such
as time and space-dependent reservoirs.

Note we assumed that the concentration cR remains
constant, even when extracting particles from the sys-
tem. This is only possible if we make the number of par-
ticles in the reservoir and its volume both infinite while
keeping the concentration constant. We implicitly make
this assumption when taking the continuous limit.

To implement a simulation of this process, we can dis-
cretize time at first order, so the jump rates of each parti-
cle (Eq. (4)) become jump probabilities pi,j = ∆tD/δx2,
i 6= j [32]. We can then use these, along with the jump
probabilities of reservoir particles, to implement the sim-
ulation. However, as the probability of one particle jump-
ing either left or right is at most one, then 2∆tD/δx2 ≤ 1,
which constrains the simulation time step ∆t to,

∆t ≤ δx2/(2D). (10)

This will be important for the implemenation of the Hy-
brid scheme in Section IV.

The results of this section are based on [41], and they
can also be obtained using the law of large numbers. We
advise the reader to consult [41] for additional details.

B. Mean-field of particle-based reaction-diffusion
processes

In this section, we obtain the mean-field dynamics of
particle-based reaction-diffusion processes. This result
provides a mathematical bridge between the microscopic
particle-based approach and the macroscopic determin-
istic approach for reaction-diffusion processes. It estab-
lishes the relation between the microscopic and macro-
scopic parameters. The diffusion coefficients and the re-
action rates for up to first order reactions remain the

same for particle-based models and macroscopic models
[41]. However, this is not the case for second-order reac-
tions (bimolecular reactions). We thus focus on deriving
this result for bimolecular reactions,

A+B → C. (11)

We denote α as the microscopic reaction rate based on
the Doi model (Section II A). We want to determine the
relation between the particle-based simulations of this re-
action with the corresponding macroscopic deterministic
reaction-diffusion PDE

∂tcA = DA∇2cA − κcAcB , (12)

∂tcB = DB∇2cB − κcAcB ,

where cA and cB denote the deterministic concentrations
of A and B, and κ is the macroscopic reaction rate. This
will naturally provide a connection between α and κ. We
obtain this result for two dimensions, but it extends nat-
urally to higher dimensions.

We begin with the particle-based description. Once
again, it is convenient to discretize the two dimensional
domain, Ω, in n square cells denoted by V1, V2, ...., Vn
of length and height h. Denote by XA

i (t) and XB
i (t) the

number of A and B particles in cell i at time t. Following
the Doi model for particle-based reactions [21, 26], we
assume A,B react with rate α if they are are closer than a
distance σ. Using the reaction diffusion master equation
formalism [15], the change in number of A particles in
cell i can be written using the Kurtz representation [8]

XA
i (t) =XA

i (0)−
n∑
j=1

Uj

(∫ t

0

αφijX
A
i (s)XB

j (s)ds

)
+Dti(XA), (13)

where XA = {XA
1 , . . . X

A
N} and the term Dti denotes the

discrete change of number of particles at cell i due to
diffusion after a time t. This operator can be explicitly
written in terms of the discrete Laplace operator and
the elapsed time t. Each Uj denotes a unit rate Poisson

process, where the rate function
∫ t

0
λ(s)ds depends on

the propensity λ(s) = αφijX
A
i (s)XB

j (s) of the reaction.

We can analogously formulate an equation for XB
i and

do the same process as below.
Note the reaction propensity not only depends on the

microscopic rate α but also on the quantity φij . This
will help us quantify how likely the reaction is to happen,
given that the A particles are in cell Vi and B particles
are in cell Vj . This is defined as

φij =
|R ∩ Vij |
|Vij |

, (14)

where R is the reactive region in the 4-dimensional space
defined by positions x and y such that |x− y| ≤ σ, Vij is
the hypercube formed by Vi×Vj with volume h4 and the
bars denote we are taking the volume of these regions.
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This quantity is simply the ratio between the reactive
volume contained within Vij and the total volume of Vij .
If A particles are well-mixed in Vi and B particles are
well-mixed in Vj , it gives the probability of A and B
particles being close enough to react, see [15] for more
details on this quantity.

Rewriting Eq. (13) in terms of concentrations, we ob-
tain

CAi (t) =CAi (0)− 1

|Vi|

n∑
j=1

Uj

(∫ t

0

αφij |Vij |CAi (s)CBj (s)ds

)
+Dti(CA), (15)

where we used the linearity of the diffusion operator.
Note the rate of the unit Poisson process depends on the
concentrations, which are random variables themselves.
These are therefore doubly-stochastic processes, and they
are called mixed Poisson processes or more generally Cox
processes [43, 44]. The expected value of a mixed Poisson
process corresponds to the expected value of the random
rate function [43]. Therefore the expected value of each
of the Poisson processes Uj from Eq. (15) is∫ t

0

αφij |Vij |〈CAi (s)CBj (s)〉ds.

In general, 〈CAi CBj 〉 = 〈CAi 〉〈CBj 〉 + Cov(CAi , C
B
j ) since

they are not independent. Assuming the number of par-
ticles is large enough, as the particles are only correlated
through reactions limited to a small reaction volume, the
covariance is negligible in comparison to the product of
the means. We can use these results to calculate the
expected value of equation (15)

〈CAi (t)〉 =〈CAi (0)〉 −
n∑
j=1

|Vj |
∫ t

0

αφij〈CAi (s)〉〈CBj (s)〉ds

+Dti(〈CA〉), (16)

where we used the linearity of the discrete diffusion op-
erator to pass the expectation into the argument. We
further derive with respect to t both sides of the equa-
tion, yielding

d〈CAi 〉
dt

= Di(〈CA〉)−
n∑
j=1

αφij |Vj |〈CAi 〉〈CBj 〉, (17)

where Di is now the time-continuous diffusion operator
in terms of rates instead of jump probabilities.

Equation (17) is still discrete in space; we now take
the continuous limit h → 0. In this limit, the first term
converges to the continuous diffusion operator D, see [41,
45] for details. The limiting behavior of the second term
is not trivial, since we need to solve

lim
h→0

 n∑
j=1

αφij |Vj |〈CAi 〉〈CBj 〉

 , (18)

where φij , as defined in Eq. (14), can be expressed as
the following integral

φij =
1

|Vij |

∫
Vi

∫
Vj

χ|x−y|<σdydx, (19)

where χ is the indicator function. If our domain is a
two-dimensional cube, then x and y, each correspond to
2-dimensional vectors, and we have an integral over a
hypercube. Substituting Eq. (19) into Eq. (18), we
obtain

lim
h→0

 α

h2
〈CAi 〉

n∑
j=1

〈CBj 〉
∫
Vi

∫
Vj

χ|x−y|<σdydx

 ,

where we used that |Vi| = h2 =, |Vij | = h4. Rearranging
the terms, we obtain

= lim
h→0

 α

h2
〈CAi 〉

∫
Vi

n∑
j=1

〈CBj 〉
∫
Vj

χ|x−y|<σdydx

 ,

As σ is small, we can assume the value 〈CBj 〉 does not
change much in the domain of interest, |x − y| < σ,
around cell i. We thus approximate it by its central
value 〈CBi 〉. Using this approximation, we can combine
the sum over j and the integral over Vj into one integral
over the whole domain Ω, yielding

= lim
h→0

(
α

h2
〈CAi 〉〈CBi 〉

∫
Vi

∫
Ω

χ|x−y|<σdydx

)
.

We further approximate the integral of the indicator
function over Ω by an integral on the whole 2-dimensional
space. This approximation is exact everywhere except in
a small region close to the boundaries of Ω. Thus, it
yields the area of a circle of radius σ.

= lim
h→0

(
α

h2
〈CAi 〉〈CBi 〉πσ2

∫
Vi

dx

)
,

The remaining integral is simply h2, so

= lim
h→0

(
απσ2〈CAi 〉〈CBi 〉

)
= απσ2cA(xi)cB(xi),

where cA = 〈CA〉 and cB = 〈CB〉 are continuous func-
tions in space and time. We need to be careful with this
limit since the indexing can change as h →. Here we
assumed the mean concentrations 〈CAi 〉 and 〈CBi 〉 are al-
ways centered in a fixed value xi as h → 0. Note this
result is only an approximation, albeit a very accurate
one for σ � Ω. With this result, the continuous space
limit of Eq. (17) is then the familiar reaction diffusion
PDE

∂cA
∂t

= D(cA)− απσ2cAcB .

Note the same equation can be obtained for the kinet-
ics of cB . The operator D corresponds to the well-known
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diffusion operator and comparing to Eq. (12), the macro-
scopic rate κ is simply

κ = απσ2. (20)

This relation holds for two dimensions, and it is of the
form κ = αVreact, where Vreact is the volume of the re-
active volume. In three dimensions, we can analogously
show this relation has the same form with the correspond-
ing reactive volume

κ = α4πσ3/3.

The result we just derived shows the reaction-diffusion
PDE is the mean-field of the particle-based simulation
based on the Doi model, assuming the number of par-
ticles is sufficiently large (otherwise covariances need to
be taken into account). It also provides a connection be-
tween the microscopic bimolecular reaction rate α and
the reaction radius σ with the macroscopic reaction rate
κ. As a side note, it is interesting that the same result is
obtained when σ � h. Also note the diffusion coefficient
does not play a role in this relation.

We completely neglected the covariances when taking
the expectation of the mixed Poisson process from Eq.
(15). Taking into account the covariances would yield a
modified mean-field behavior valid at mesoscopic scales.
The authors are currently working on a formal and more
general version of this result that takes covariances into
account [16].

IV. HYBRID SCHEME

In this section, we use the results from Section III
to derive a hybrid scheme to couple particle-based sim-
ulations with reservoirs mediated by reaction-diffusion
PDEs.

The essence of the algorithm is illustrated in Fig. 5.
The domain is split into the particle domain and the con-
centration domain. The dynamics on the concentration
domain, which functions as the reservoir, are modeled
by a reaction-diffusion PDE, which is solved either ana-
lytically or with standard finite difference methods. As
this is well documented in the literature [38, 40] (see Ap-
pendix A), we concentrate on the particle domain where
the dynamics are governed by three processes: injection,
reaction and diffusion. We describe next these processes
and show how they are combined into one algorithm.

A. Injection

We use the result from Section III A, mainly Eq. (9),
to obtain a consistent scheme to inject particles from the
reservoir into the particle system. Along the edge be-
tween the particle and the concentration domain, we cre-
ate squared boundary cells of edge length δx (Fig. 5a).
Every time iteration and for every boundary cell i in the

concentration domain, we calculate the average concen-
tration ci within the boundary cell and convert it into
number of particles Ni (multiplying by cell volume Vi).
The resulting values will be in general non-integers. The
integer part corresponds to the number of virtual par-
ticles, and the fractional part to one fractional virtual
particle. We call them virtual particles because they do
not belong to the particle domain. Given this informa-
tion, the injection of particles for a time-step ∆t follows
the following procedure.

Injection procedure When called for a time interval
τ , this procedure follows these steps:

1. Let each virtual particle jump into the correspond-
ing neighboring boundary cell in the particle do-
main with the injection rate γ (Eq. (9)). This cor-
responds to jumping with probability 1−exp(−γτ).

2. Let the fractional virtual particles jump in the same
way with a rate γ scaled by the corresponding frac-
tion value. For example, if Ni = 15.87, then the
rate for the fractional virtual particle is 0.87γ.

3. For every successful jump event, place a new par-
ticle uniformly in the corresponding boundary cell
of the particle domain.

B. Reaction

Most reactions are or can be decomposed into uni-
molecular or bimolecular reactions, so we only focus on
these types of reactions. We employ the methodology in-
troduced in Section II A to implement the particle-based
simulation in the particle domain. We further use the
result from Section III B to establish a relation between
the parameters of the PBRD simulation and the param-
eters of the reaction-diffusion PDE. The diffusion coeffi-
cients and unimolecular reaction rates remain the same
on both models, while the bimolecular reaction rate from
the PDE can be obtained from PBRD parameters follow-
ing Eq. (20).

Zeroth and first-order reactions These reactions
depend uniquely on zero or one particle, e.g. creation of
particles and conformational changes, respectively. The
diffusion coefficients of zeroth and first-order reaction
rates are the same in the PBRD simulation as in the
PDE. Given a reaction rate k, on the particle-based sim-
ulation, the probability of a reaction to happen within a
time interval ∆t is given by

1− exp(−k∆t). (21)

The boundary coupling remains the same as in the injec-
tion process, as shown in Fig. 5a.

Second order reactions These reactions depend on
two particles, so they are also called bimolecular reac-
tions. Given a microscopic bimolecular reaction rate α,
we calculate analogously the probability of a reaction
within a time interval ∆t as 1− exp(−α∆t), but we only
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a. b.

Figure 5. Illustrations of the boundary coupling in the hybrid scheme. The domain is divided by an interface into the particle
and the concentration domain. a. Boundary coupling for one diffusing species. In the particle domain, particles diffuse freely
following Brownian motion. If a particle diffuses into the concentration domain (the reservoir), it is eliminated. Along the
boundary cells in the concentration domain, we convert the concentration into particle number, generally a non-integer value.
The integer part is the number of virtual particles, each can jump with rate γ into the boundary cells in the particle domain.
The fractional part corresponds to a fractional virtual particle, whose jump rate is scaled by this fraction. Note virtual particles
are only drawn for illustration purposes, and they do not have a specific position within the boundary cell. The same procedure
applies for multiple species with up to unimolecular reactions. b. Boundary coupling for a system with three species (A,B,C)
involving a bimolecular reaction A + B → C. The coupling is analogous to the one in Fig. 5a and follows the particle-based
dynamics described in Section II A. If a red particle (A) is close enough to a blue one (B), they can react, and the product
(C) is placed in the average position between the two particles. Unlike the coupling from Fig. 5a, the positions of the virtual
particles are sampled uniformly within the boundary cell. This allows for bimolecular reactions to occur within all boundary
cells across the coupling boundary, which makes the coupling accurate and robust. If the position of the reaction product is
within the concentration domain, it is eliminated. This coupling can be applied to a general system with an arbitrary number
of species with up to second-order reactions.

do so if the reactants are within a distance σ of each
other. The microscopic bimolecular reaction rate needs
to be consistent with the PDE reaction rate κ. Following
Eq. (20), the relation should be κ = απσ2.

In order to incorporate bimolecular reactions, we need
to modify the boundary coupling (Fig. 5b). Considering
a reactant in the particle domain can react with another
reactant in the concentration domain, we risk losing ac-
curacy in the boundary region if we do not allow for these
reactions to happen. We can solve this by applying the
following steps at a given time step (Fig. 5b):

1. Uniformly sample the positions of the virtual parti-
cles within the boundary cells in the concentration
domain. The fractional virtual particle is placed
with a probability equal to the fraction value.

2. Allow the particles in the particle domain, along
with the particles and virtual particles in all the
boundary cells to react.

3. If a reaction happens, sample the location of the
product, usually given by the average position of
the reactants. If the product location is in the
particle domain, place the new particle, otherwise
eliminate it from the simulation.

Note the number and position of virtual particles are
resampled at the beginning of each time step.

Order of reactions There are several possible ways
to deal with the order of reactions at a given time step.
One possibility is to choose the reaction event by draw-
ing the next reaction event uniformly from all possible

events while avoiding conflicting events to happen simul-
taneously. In this work, we apply this approach in con-
junction with a Strang splitting [46], which leads to the
reaction procedure. An alternative approach is to weight
the probability of possible reaction events with their re-
spective reaction probability, as done in ReaDDy 2 [21].

Reaction procedure When called for a time interval
τ , this procedure follows these steps:

1. Sample all possible zeroth and first-order reactions
happening within τ/2. Select uniformly which re-
action happens and apply them while avoiding con-
flicting events.

2. Sample all possible second-order reactions happen-
ing within τ . Select uniformly which reaction hap-
pens and apply them while avoiding conflicting
events.

3. Sample, select and apply again zeroth and first-
order reactions happening within τ/2.

If there are no second-order reactions, there is no need
to do the Strang splitting, and we can simply sample
and apply all possible zeroth and first-order reactions for
a time τ . We’ve found this approach the most stable at
the coupling boundary.

C. Diffusion

All the particles in the particle domain, including the
added ones during the injection and reaction steps, dif-



9

fuse following standard Brownian motion. This can be
simulated by applying the Euler-Maruyama scheme [47]
to the dynamics of each molecule (Eq. (1)),

xn+1 = xn +
√

2D∆tξn, (22)

where xn is the position of one molecule at the nth time
iteration. The time is t = n∆t and ξn is a vector with
each entry sampled at every time step from a normal dis-
tribution with mean zero and variance one. The diffusion
coefficient D will be different for every chemical species.
The dimensions of ξ corresponds to the dimensionality of
the problem (one, two or three).

If a particle diffuses from the particle domain into the
concentration domain, it must be removed from the sim-
ulation. The desired boundary conditions along the other
boundaries of the particle domain should be set.

D. Algorithm

The process we are modeling is composed of several
coupled processes: injection, reaction and diffusion, each
of which can follow a different timescale. From a numer-
ical standpoint, it is more stable, robust and accurate
to integrate them using a Strang splitting [41, 46]. In
one time step τ , the Strang splitting integration could
be as follows: integrate injection and reactions for τ/2,
integrate diffusion for τ and integrate again injection and
reactions for τ/2. Unlike a straightforward integration,
the Strang splitting allows for some newly created parti-
cles, due to injection or reactions, to diffuse and maybe
even react again within the same time step, improving
the modeling accuracy of the coupling between the pro-
cesses within one time step.

In this algorithm, we implement two Strang splittings.
The main Strang splitting integrates the injection, reac-
tion and diffusion processes. The secondary one is imple-
mented within the reaction procedure to smoothly inte-
grate zeroth and first-order reactions with second-order
reactions. The scheme is as follows:

Main input variables: time iterations N , time step size
∆t, boundary cell width δx, diffusion coefficients of all
species involved and reaction parameters for all reactions
considered.

For every time step t ∈ {0,∆t, ..., N∆t}:

1. For every species X and every boundary cell i in the
concentration domain, calculate its average concen-
tration cXi and convert it into number of particles
NX
i = cXi Vi. Then, get the corresponding number

of virtual and fractional virtual particles at each
boundary cell.

2. For the species involving bimolecular reactions,
sample uniformly the locations of the virtual par-
ticles within the boundary cells.

3. Inject particles from the concentration domain into
the particle domain for half a time step, ∆t/2, fol-
lowing the injection procedure. Note that the in-
jection rate depends on the diffusion coefficient, so
it will be different for different chemical species.

4. Determine and apply reactions in the particle do-
main occurring within half a time step, ∆t/2, fol-
lowing the reaction procedure. This consists of a
secondary Strang splitting, where zeroth and first-
order reactions are applied for ∆t/4, second-order
reactions for ∆t/2 and again first and zeroth or-
der reactions for ∆t/4. Note that for bimolecular
reactions, the particles can react with the virtual
particles in the boundary cells. If there are only ze-
roth and first-order reactions, the secondary Strang
splitting is not necessary.

5. Diffuse all particles in the particle domain for a full
time step ∆t using the Euler-Maruyama scheme of
Eq. (22). Note the diffusion coefficient is different
for different species.

6. Determine and apply reactions for another half a
time step, ∆t/2, in the same way as in step 4.

7. Inject particles for another half a time step, ∆t/2,
in the same way as in step 3.

8. Apply boundary conditions to particles. If any par-
ticle crossed into the concentration domain, elimi-
nate it.

There is still some freedom in the implementation of
small but relevant details in the Strang splitting. We
treated the injection and reaction processes as one step
in the main Strang splitting, i.e. injection/reactions for
half a time step (steps 3 and 4); diffusion for a full time
step (step 5); and injection/reactions for half a time step
(steps 6 and 7). This implies the following rules:

• Particles that are injected in step 3 cannot be used
for reactions in step 4. However, they can be used
for reactions in step 6.

• Particles that reacted in step 4 or were generated
during a reaction in step 4, cannot react again in
another reaction in step 4. However, they can be
used for reactions in step 6.

• Particles that reacted in step 6 or were generated
during a reaction in step 6, cannot react again in
another reaction in step 6. They can only be used
for reactions in the next time step.

Following Eq. (10), we further recommend to choose
the time step ∆t and boundary cell width δx to satisfy
the relation ∆t = δx2/(2D). This maximizes the discrete
jumping probabilities [32, 41], and it is the most accurate
if new particles are placed uniformly on the boundary
cells of the particle domain. In general, ∆t ≤ δx2/(2D)
must be satisfied. Note we can choose several values of
δx, one per species with a different diffusion coefficient.
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V. NUMERICAL RESULTS

In this section, we show the numerical results for four
examples. The first example is a test case for diffu-
sion processes to verify the coupling with a time- and
spatially-dependent reservoir. The second example ver-
ifies the hybrid scheme by implementing a system with
first-order reactions. The third example implements the
hybrid scheme for the Lotka-Volterra system, which in-
cludes second-order reactions. This verifies the coupling
for a more realistic and complex reaction system with bi-
molecular reactions. The last example couples a particle-
based Lotka-Volterra system, where the reservoir is not
modeled by a PDE but by a simple constant function.
This illustrates that the coupling scheme works for cases
beyond reservoirs mediated by reaction-diffusion PDEs.

A. Diffusion of one species

Consider the diffusion PDE with open boundaries for
the concentration c of a chemical species, ∂tc(x, t) =
D∇2c(x, t) with initial condition c(x, 0) = c0δ(x − x0)
and x0 = 2, 0. The solution of this equation in d dimen-
sions is a Gaussian

c(x, t) = c0
e−|x−2|2/4Dt

(4πDt)d/2
. (23)

We apply the scheme from Section IV to this problem
in one and two dimensions d = 1, 2, and show its solution
in Fig. 6. We define the particle domain by x ∈ (∞, 0]
and the concentration domain by x ∈ (0,∞), and we
choose δx = 0.05. We use the average values of c(x, t)
in the boundary cell/cells delimited by x = (0, δx] as
the concentration values for the particle-based simulation
reservoir at each time step. The results show a compari-
son between the reference analytic result and the average
concentration obtained from several particle-based simu-
lations. We can observe an excellent match, illustrating
a successful coupling of a particle-based simulation to a
material bath mediated by a PDE.

In the pure diffusion case, we obtain very good results
even when averaging over a relatively small number of
simulations. In more complex cases, we will average over
a larger number of simulations, and we will verify the
scheme using the Jensen-Shannon (JS) divergence.

B. Proliferation of one species (first-order)

In this example, we model the diffusion of one species
A, along with the first-order reaction

A −⇀ 2A.

The corresponding reaction diffusion PDE is

∂tc = D∇2c+ κ1c, (24)

a.

Particle 
domain

Concentration      
     domain

b.

Figure 6. Diffusion coupling results in one and two dimen-
sions. a. Diffusion coupling results in one dimension at four
different times. The analytic solution of the diffusion PDE
with D = 1 is shown in orange (Eq. (23) with n = 1). The
average concentration of 200 particle-based simulations in the
particle domain is shown as a blue histogram. The parameters
used were δx = 0.05 and ∆t = δx2/(2D). b. Coupling results
for the two dimensional extension with the same parameters,
and the colorbar values denoting concentration. The solution
is showed at two times. The top row shows the analytic solu-
tion (Eq. (23) with n = 2). The bottom row shows the hybrid
simulation with the interface at x = 0. In the particle domain
(left half), it shows a histogram of the average concentration
of 200 particle-based simulations. In the concentration do-
main (right half), it shows the reservoir, which corresponds
to the reference value given by the PDE.

with c(x, t) the concentration of A. We use a diffusion
coefficient of D = 0.5 and a proliferation reaction rate of
κ1 = 0.1. In Fig. 7a, we solve this equation using a finite
difference scheme on the domain x ∈ [0, 12]× [0, 12] with
an indicator function as initial condition and Neumann
boundary conditions. The indicator function consists of
a concentration of 50 in a 2×2 square centered at (7.5, 6)
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Figure 7. Coupling results for diffusion with a proliferation first-order reaction at three different times t = 4, 7, 9. The color
bar indicates the value of the concentration. a. Reference solution using the finite difference scheme in a domain of 12 × 12,
a grid cell size of 0.12 × 0.12 and a time step of 0.01. b. Solution of the hybrid system with the interface at x = 6. The left
half corresponds to the particle domain, and it shows the average over 3000 particle-based simulations, each using a time step
of ∆t = 0.01. The boundary cell width δx is chosen to satisfy ∆t = δx2/(2D). The right half is the same as in the reference
solution, and it serves as the material reservoir for the particle-based simulations following the scheme from Section IV. c. JS
divergence between the reference concentration and the averaged concentration of the hybrid simulations at the same three
times. The x-axis is the number of averaged hybrid simulations. Each point is calculated using 500 bootstrapped samples.

and 0 elsewhere. This is be our reference solution. Figure
7b shows the solution using the hybrid scheme from Sec-
tion IV. In the particle-based simulation, particles that
proliferate are placed in the same location as the source
particle.

In Fig. 7c., we verify the scheme using the JS di-
vergence, which is a measure of the difference between
distributions or histograms. We compare the reference
solution against averages of the hybrid simulation. As
the number of hybrid simulations used to produce the
average grows, the JS divergence becomes closer to zero,
showing the expected convergence.

C. Lotka-Volterra dynamics

The Lotka-Volterra dynamics are a chemical kinetics
system, which can be understood in terms of preys A and
predators B. If a predator meets one prey, the prey can
be eaten and the predator multiplies. Moreover, the prey
can multiply and predators can die, both independently.
This is an important system since it captures the complex
dynamics that could appear in most relevant reaction-
diffusion applications. For instance, the models used in
epidemiology for the spread of infectious diseases, such
as the SIR model, follow similar dynamics.

The kinetics are condensed in the following reactions

A −⇀ 2A

A+B −⇀ 2B (25)

B −⇀ ∅

If the system is not well-mixed and the numbers of preda-
tors and preys is large, the macroscopic dynamics can be
described by the PDE

∂tcA = DA∇2cA + κ1cA − κ2cAcB ,

∂tcB = DB∇2cB + κ2cAcB − κ3cB , (26)

where the macroscopic rates, κ1, κ2 and κ3, correspond to
the proliferation rate of preys, the rate at which preys are
eaten and the rate at which predators die, respectively.

The domain is x ∈ [0, 10]×[0, 10]. The initial condition
for the preys is a concentration of 100 in a 2 × 2 square
centered at (6, 5) and 0 elsewhere. For the predators, it
consists of a concentration of 10 in a 1×1 square centered
at (6, 5). The preys proliferate with a rate of κ1 = 0.15;
the predators die with a rate of κ3 = 0.1 and, if they are
closer than a distance σ = 0.01, they react with α = 0.05.
The macroscopic bimolecular reaction rate is κ2 = απσ2,
following Eq. (20). The preys diffuse with DA = 0.3
and the predators with DB = 0.1. We use Neumann
(reflective) boundary conditions in all the boundaries.
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Figure 8. Solutions for the Lotka-Volterra dynamics with diffusion at three different times t = 4, 7, 9 in a 10× 10 domain. The
color bar indicates the value of the concentration. a. Reference solution of the preys using a finite difference scheme with a
time step of 0.002 and grid size of 0.1. b. Solution of the preys in the hybrid simulation with the interface at x = 5. The
left half of the domain consists of the average over 3000 particle-based simulation using a time step of ∆t = 0.002. We use
two boundary cell widths, one for the preys (δxA) and one for the predators (δxB), each satisfies the relation ∆t = δx2k/(2Dk)
with k = A or B. The right half is the same as the reference solution, and it is used as the reservoir for the particle-based
simulation. The coupling used is the one described in Section IV. c. Reference solution of the predators (B) corresponding to
the same simulation as in Fig. 8a. d. Solution of the hybrid simulation for the predators corresponding to the same simulation
as in Fig. 8b. e. & f. JS divergence, for preys and predators respectively, calculated between the reference concentration and
the averaged concentration of the hybrid simulations at the three times. The x-axis is the number of hybrid simulations used
to calculate the average, and each point is calculated using 500 bootstrapped samples.

In Fig. 8, we show the reference simulation and
the averaged hybrid simulation solution results for both
prey and predators. The coupling produces an excel-
lent match. We further verify the results using the JS
divergence, which shows convergence as the number of
averaged simulations is increased.

D. Reservoirs constant in time

We focus again on the Lotka-Volterra dynamics de-
scribed by Eq. (25). However, instead of coupling the
particle-based simulation to a material reservoir medi-
ated by a PDE, we couple it to a reservoir with a constant
concentration in time (not in space). This is helpful when
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Figure 9. Coupling results for a Lotka-Volterra system coupled to a constant in time prey reservoir at three different times
t = 4, 7, 9. The color bar indicates the value of the concentration. a. Reference solution of preys using a finite difference scheme
with 60 × 30 grid cells and a time step of 0.001. b. Solution of preys in the hybrid simulation, consisting of the average over
3000 particle-based simulation. Each particle-based simulations used a time step of ∆t = 0.01 and was coupled to the reservoir
following the scheme from Section IV. We use two boundary cell widths, one for the preys (δxA) and one for the predators
(δxB), each satisfies the relation ∆t = δx2k/(2Dk) with k = A or B. c. Reference solution of the predators corresponding to the
same simulation as in Fig. 9a. d. Solution of the hybrid simulation for the predators corresponding to the same simulation as
in Fig. 9b. e. and f. JS divergence, for preys and predators respectively, calculated between the reference concentration and
the averaged concentration of the hybrid simulations at the three plotted times. The x-axis is the number of averaged hybrid
simulations, and each point is calculated using 500 bootstrapped samples.

modeling a reservoir with a specific spatial distribution.

The domain is x ∈ [0, 10] × [0, 5], and we use the
same parameters as in Section V C, except for σ = 0.02,
κ3 = 0.2, κ2 = απσ2 and ∆t = 0.01. The initial condi-
tion is zero preys and an indicator function with a con-

centration of predators of 30 in a rectangle of 2× 1 cen-
tered at (5, 2). The system is in contact with a constant
in time reservoir of prey in the bottom boundary, where
the reservoir concentration is modeled by 7 sin(πx/10).

Figure 9 shows and compares the results. We observe
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again an excellent match between the average of hybrid
simulations and the reference solution. We verify the
results with the JS divergence. Differences in the JS di-
vergence at different times are because the number of
particles changes in time, changing the convergence rate.

VI. DISCUSSION

The main goal of this work was to improve current
modeling techniques for biochemical open systems, as
they are extremely relevant to model life-related pro-
cesses. In this paper, we contributed to this goal by
developing models and numerical schemes, which are
capable of consistently coupling particle-based reaction-
diffusion processes with reservoirs mediated by reaction-
diffusion PDEs, i.e. with time-dependent and spatially
non-homogeneous reservoirs.

The coupling was rendered possible by the two theo-
retical results from Section III. The first result derived
the mean-field of a particle-based diffusion model in con-
tact with a constant concentration reservoir. This re-
sulted in a diffusion PDE with a constant concentration
boundary condition and elucidated the relation between
the reservoir dynamics in the two models. The second
result derived the mean-field limit of reaction-diffusion
processes with a bimolecular reaction. We recovered the
corresponding reaction-diffusion PDE, and we obtained a
precise connection between the microscopic and macro-
scopic parameters, specifically the bimolecular reaction

rates and the reaction radius. Section IV further employs
these two theoretical results to build the coupling numer-
ical scheme, which can be used in any reaction-diffusion
system with up to second-order reactions.

In Section V, we implement the coupling scheme
for four representative examples: pure diffusion of one
species, proliferation of one species, Lotka-Volterra dy-
namics and Lotka-Volterra dynamics coupled to a reser-
voir constant in time. In order to verify the scheme, we
compare the average of several particle-based simulations
with the theoretical mean-field given by the reaction-
diffusion PDE. The difference between the averaged and
the reference solution is quantified with the JS diver-
gence. We obtain excellent results for all the examples.

We finally point out the result from Section III B ne-
glected the covariances when taking the expectation of
the mixed Poisson process. This is a valid approxima-
tion if there is a very large number of particles. How-
ever, for mesoscopic scales in the number of particles, the
covariances would yield a non-negligible modified mean-
field behavior, which would possibly yield alternative al-
gorithms. The authors are currently researching these
topics [16].
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Appendix A: Finite difference solution of the
reaction-diffusion PDE

We will show how to solve numerically the Poisson
equation

D∇2u = f,

with D the diffusion constant, f an arbitrary function
and homogeneous Neumann boundary conditions

du

dη
= 0

https://github.com/MargKos/multiscaleRD
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on a two dimensional finite domain (this corresponds to
a reflecting boundary in a PBS) with a Finite Difference
scheme [48].

As the name already suggests we discretize the domain
in cells of length and wide h, such that we can set up a
linear system

Au = f (A.1)

by using the five-point stencil. This gives us the solu-
tion of u for each cell. Matrix A is the so called discrete
Laplace operator that depends on the boundary condi-
tions. In our case, we will use homogeneous Neumann
boundary conditions, so it is defined by

A := −D
h2


B −2I 0 · · · 0

−I
. . . −I

...
... −I

. . . −I
0 · · · −2I B

 ,

where I is the corresponding identity matrix and

B =


4 −2 0 · · ·

−1
. . . −1

· · · −1
. . . −1

· · · 0 −2 4


and h is the length of the grid cell. The solution is ob-
tained by inverting the matrix A in Eq. (A.1).

It is possible to extend the Finite-Difference scheme to
solve the time dependent Heat-equation

∂tu = D∇2u. (A.2)

To do so, we can combine the Finite-Difference scheme
with the Euler method. Let un denote the solution at dis-
crete time tn. Then we can discretize in time the equation
(A.2) for every time step n and small ∆t to obtain

un+1 = un + ∆tAun = [I + ∆tA]un. (A.3)

If we use the implicit Euler scheme, we obtain

un+1 = un + ∆tAun+1

⇒ [I−∆tA]un+1 = un,

If we combine half a time step with Euler method and half
a time step with the implicit Euler method, we obtain
a very numerically robust method that is second order
accurate in both space and time. It is called the Crank-
Nicolson method [38, 49],[

I− 1

2
∆tA

]
un+1 =

[
I +

1

2
∆tA

]
un

⇒ un+1 =

[
I− 1

2
∆tA

]−1 [
I +

1

2
∆tA

]
un.

We use this method throughout this work to solve the re-
quired PDE’s. For the additional reaction terms, we cou-
ple this method to an operator splitting approach (Strang
splitting).
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