
CONDITIONAL GRADIENT METHODS FOR CONVEX OPTIMIZATION
WITH GENERAL AFFINE AND NONLINEAR CONSTRAINTS ∗

GUANGHUI LAN † , H. EDWIN ROMEIJN ‡ , AND ZHIQIANG ZHOU §

Abstract. Conditional gradient methods have attracted much attention in both machine learning and optimization commu-
nities recently. These simple methods can guarantee the generation of sparse solutions. In addition, without the computation of
full gradients, they can handle huge-scale problems sometimes even with an exponentially increasing number of decision variables.
This paper aims to significantly expand the application areas of these methods by presenting new conditional gradient methods
for solving convex optimization problems with general affine and nonlinear constraints. More specifically, we first present a new
constraint extrapolated condition gradient (CoexCG) method that can achieve an O(1/ε2) iteration complexity for both smooth
and structured nonsmooth function constrained convex optimization. We further develop novel variants of CoexCG, namely
constraint extrapolated and dual regularized conditional gradient (CoexDurCG) methods, that can achieve similar iteration
complexity to CoexCG but allow adaptive selection for algorithmic parameters. We illustrate the effectiveness of these methods
for solving an important class of radiation therapy treatment planning problems arising from healthcare industry. To the best
of our knowledge, all the algorithmic schemes and their complexity results are new in the area of projection-free methods.

1. Introduction. In this paper, we focus on the development of conditional gradient type methods for
solving the following convex optimization problem:

min f(x)

s.t. g(x) := Ax− b = 0,

hi(x) ≤ 0, i = 1, . . . , d,

x ∈ X.

(1.1)

Here X ⊆ Rn is a compact convex set, f : X → R and hi : X → R, i = 1, . . . , d, are proper lower
semicontinuous convex functions, A : Rn → Rm denotes a linear mapping, and b is a given vector in Rm.
We assume that X is relatively simple in the sense that one can minimize a linear function over X easily.
Throughout this paper we assume that an optimal solution x∗ of problem (1.1) exists. For notational
convenience, we often denote h(x) ≡ (h1(x); . . . , hd(x)).

The conditional gradient method, initially developed by Frank and Wolfe in 1956 [8], is one of the earliest
first-order methods for convex optimization. It has been widely used for solving problems with relatively
simple convex sets, i.e., when the constraints g(x) = 0 and hi(x) ≤ 0 do not appear in problem (1.1). Each
iteration of this method computes the gradient of f at the current search point xk, and then solves the
subproblem minx∈X〈∇f(xk), x〉 to update the solution. In comparison with most other first-order methods,
it does not require the projection over X, which in many cases could be computationally more expensive than
to minimize a linear function over X (e.g.. when X is a spectrahedron given by X := {X � 0 : Tr(X) = 1}).
These simple methods can also guarantee the generation of sparse solutions, e.g., when X is a simplex or
spectrahedron. In addition, without the computation of full gradients, they can handle huge-scale problems
sometimes even with an exponentially increasing number of decision variables.

Much recent research effort has been devoted to the complexity analysis of conditional gradient methods
over simple convex set X. It is well-known that if f is a smooth convex function, then this algorithm can
find an ε-solution (i.e., a point x̄ ∈ X s.t. f(x̄) − f∗ ≤ ε) in at most O(1/ε) iterations (see [16, 17, 20,
9, 14]). In fact, such a complexity result has been established for the conditional gradient method under
a stronger termination criterion called Wolfe Gap, based on the first-order optimality condition [16, 17,
20, 9, 14]. As shown in [16, 20, 12], this O(1/ε) iteration complexity bound is tight for smooth convex
optimization. In addition, if f is a nonsmooth function with a saddle point structure, one can not achieve an
iteration complexity better than O(1/ε2) [20], in terms of the number of times to solve the linear optimization
subproblem. One possible way to improve the complexity bounds is to use the conditional gradient sliding

∗ This research was partially supported by the ONR grant N00014-20-1-2089 and NSF grant CCF 1909298.
†H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 .

(email: george.lan@isye.gatech.edu).
‡H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 .

(email: edwin.romeijn@isye.gatech.edu).
§H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332.

(email: zzhoubrian@gatech.edu).

1

ar
X

iv
:2

00
7.

00
15

3v
3

 [
m

at
h.

O
C

]
 2

9
Ju

n
20

21

methods developed in [23] to reduce the number of gradient evaluations. Many other variants of conditional
gradient methods have also been proposed in the literature (see, e.g.,[1, 2, 3, 6, 9, 15, 14, 16, 17, 24, 35, 36,
18, 5, 11]) and Chapter 7 of [21] for an overview of these methods).

It should be noted, however, that none of the existing conditional gradient methods can be used to
efficiently solve the more general function constrained convex optimization problem in (1.1). With these
function constraints (g(x) = 0 and hi(x) ≤ 0), linear optimization over the feasible region of problem
(1.1) could become much more difficult. As an example, if X is the aforementioned spectrahedron and h
does not exist, the linear optimization problem over the feasible region {x � 0 : g(x) = 0,Tr(X) = 1}
becomes a general semidefinite programming problem. Adding nonlinear function constraints hi(x) ≤ 0
usually makes the subproblem even harder. In fact, our study has been directly motivated by a convex
optimization problem with nonlinear function constraints arising from radiation therapy treatment planning
(see [7, 25, 34, 10, 26, 27, 28] and Section 4 for more details). The objective function of this problem,
representing the quality of the treatment plan, is smooth and convex. Besides a simplex constraint, it consists
of two types of nonlinear function constraints, namely the group sparsity constraint to reduce radiation
exposure for the patients, and the risk averse constraints to avoid overdose (resp., underdose) to healthy
(resp., tumor) structures. This problem is highly challenging because the dimension of the decision variables
can increase exponentially with respect to the size of data, which prevents the computation of full gradients
as required by most existing optimization methods dealing with function constraints.

This paper aims to fill in the aforementioned gap in the literature by presenting a new class of conditional
gradient methods for solving problem (1.1). Our main contributions are briefly summarized as follows. Firstly,
inspired by the constraint-extrapolation (ConEx) method for function constrained convex optimization in [4],
we develop a novel constraint-extrapolated conditional gradient (CoexCG) method for solving problem (1.1).
While both methods are single-loop primal-dual type methods for solving convex optimization problems
with function constraints, CoexCG only requires us to minimize a linear function, rather than to perform
projection, over X. In the basic setting when both f and hi are smooth convex functions with Lipschitz
continuous gradients, we show that the total number of iterations performed by CoexCG before finding a
ε-solution of problem (1.1), i.e., a point x̄ ∈ X s.t. f(x̄) − f(x∗) ≤ ε and ‖g(x̄)‖2 + ‖[h(x̄)]+‖2 ≤ ε, can be
bounded by O(1/ε2). Here [·]+ := max{·, 0}.

Secondly, we consider more general function constrained optimization problems where either the objective
function f or some constraint functions hi are possibly nondifferentiable, but contains certain saddle point
structure. We extend the CoexCG method for solving these problems in combination with the well-known
Nesterov’s smoothing scheme [32]. In general, even equipped with such smoothing technique, nonsmooth
optimization is more difficult than smooth optimization, and its associated iteration complexity is worse
than that for smooth ones by orders of magnitude. However, we show that a similar O(1/ε2) complexity
bound can be achieved by CoexCG for solving these nonsmooth function constrained optimization problems.
This seemly surprising result can be attributed to an inherent acceleration scheme in CoexCG that can reduce
the impact of the Lipschitz constants induced by the smoothing scheme.

Thirdly, one possible shortcoming of CoexCG exists in that it requires the total number of iterations N
fixed a priori before we run the algorithm in order to achieve the best rate of convergence. Therefore it is
inconvenient to implement this algorithm when such an iteration limit is not available. In order to address this
issue, we propose a constraint-extrapolated and dual-regularized conditional gradient (CoexDurCG) method
by adding a diminishing regularization term for the dual updates. This modification allows us to design
a novel adaptive stepsize policy which does not require N given in advance. Moreover, we show that the
complexity of CoexDurCG is still in the same order of magnitude as CoexCG with a slightly larger constant
factor. We also extend CoexDurCG for solving the aforementioned structured nonsmooth problems, and
demonstrate that it is not necessary to explicitly define the smooth approximation problem. We note that
this technique of adding a diminishing regularization term can be applied for solving problems with either
unbounded primal feasible region (e.g., stochastic subgradient descent [30] and stochastic accelerated gradient
descent [19]), or unbounded dual feasible region (e.g., ConEx [4]), for which one often requires the number
of iterations fixed in advance.

Finally, we apply the developed algorithms for solving the radiation therapy treatment planning problem
on both randomly generated instances and a real data set. We show that CoexDurCG performs comparably
to CoexCG in terms of solution quality and computation time. We demonstrate that the incorporation of
function constraints helps us not only to find feasible treatment plans satisfying clinical criteria, but also

2

generate alternative treatment plans that can possibly reduce radiation exposure time for the patients.
To the best of our knowledge, all the algorithmic schemes as well as their complexity results are new in

the area of projection-free methods for convex optimization.
This paper is organized as follows. Section 2 is devoted to the CoexCG method. We first present the

CoexCG method for smooth function constrained convex optimization in Subsection 2.1 and extend it for
solving structured nonsmooth function constrained convex optimization in Subsection 2.2. We then discuss
the CoexDurCG method in Section 3, including its basic version for smooth function constrained convex
optimization in Subsection 3.1 and its extended version for directly solving structured nonsmooth function
constrained convex optimization problems in Subsection 3.2. We apply these methods for radiation therapy
treatment planning in Section 4, and conclude the paper with a brief summary in Section 5.

2. Constraint-extrapolated conditional gradient method. In this section, we present a basic ver-
sion of the constraint-extrapolated conditional gradient method for solving convex optimization problem (1.1).
Subsection 2.1 focuses on the case when f and hi are smooth convex functions, while subsection 2.2 extends
our discussion to the situation where f and hi are not necessarily differentiable.

2.1. Smooth functions. Throughout this subsection, we assume that f and hi are differential and
their gradients are Lipschitz continuous s.t.

‖∇f(x1)−∇f(x2)‖∗ ≤ Lf‖x1 − x2‖, ∀x1, x2 ∈ X, (2.1)

‖∇hi(x1)−∇hi(x2)‖∗ ≤ Lh,i‖x1 − x2‖,∀x1, x2 ∈ X, i = 1, . . . , d. (2.2)

Here ‖ · ‖ denotes an arbitrary norm which is not necessarily associated with the inner product 〈·, ·〉 (‖ · ‖∗
is the conjugate norm of ‖ · ‖). For notational convenience, we denote

Lh = (Lh,1; . . . ;Lh,d) and L̄h = ‖Lh‖2.

We need to use the Lipschitz continuity of the constraint function hi when developing conditional gradient
methods for function constrained problems. Clearly, under the boundedness assumption of X, the constraint
functions hi are Lipschitz continuous with constant Mh,i, i.e.,

‖∇hi(x)‖∗ ≤Mh,i, ∀x ∈ X. (2.3)

In particular, letting x∗ be an optimal solution of problem (1.1), we have Mh,i ≤ ∇f(x∗) + Lh,iDX , where
DX denotes the diameter of X given by

DX := max
x1,x2∈X

‖x1 − x2‖. (2.4)

Note that a different way to bound on Mh,i will be discussed for certain structured nonsmooth problems in
Subsection 2.2. For the sake of notational convenience, we also denote

M̄h =
√∑d

i=1M
2
h,i. (2.5)

Since we can only perform linear optimization over the feasible region X, one natural way to solve
problem (1.1) is to consider its saddle point reformulation

min
x∈X

max
y∈Rm,z∈Rd+

f(x) + 〈g(x), y〉+ 〈h(x), z〉. (2.6)

Throughout the paper, we assume that the standard Slater condition holds for problem (1.1) so that a pair
of optimal dual solutions (y∗, z∗) of problem (2.6) exists.

In [32], Nesterov proposed a novel smoothing scheme to solve a general bilinear saddle point problem
when the term 〈h(x), z〉 does not exist in (2.6). More specifically, he suggested to apply an accelerated
gradient method to solve a smooth approximation for this bilinear saddle point problem. Using this idea,
in [20] (see also Chapter 7 of [21]), Lan presented a smoothing conditional gradient method by appling the
conditional gradient algorithm for a properly smoothed version of the objective function of (2.6). However,
this scheme is not applicable for our setting due to the following reasons. Firstly, the smoothing conditional

3

gradient method only solves bilinear saddle point problems with linear coupling terms given by 〈g(x), y〉 and
cannot deal with the nonlinear coupling term 〈h(x), z〉. Secondly, even for the bilinear saddle point problems,
the smoothing conditional gradient method in [21, 20] requires the feasible set of y to be bounded, which
does not hold for problem (2.6).

Our development has been inspired the constraint extrapolation (ConEx) method recently introduced
by Boob, Deng and Lan [4] for solving problem (2.6). ConEx is an accelerated primal-dual type method
which updates both the primal variable x and dual variables (y, z) in each iteration. In comparison with
some previously developed accelerated primal-dual methods for solving saddle point problems with nonlinear
coupling terms [29, 13], one distinctive feature of ConEx is that it defines the acceleration (or momentum)
step by extrapolating the linear approximation of the nonlinear function h. As a consequence, it can deal with
unbounded feasible regions for the dual variable z (or y) and thus solve the function (or affine) constrained
convex optimization problems. However, each iteration of the ConEx method requires the projection onto
the feasible region X, and hence is not applicable to our problem setting.

In order to address the above issues for solving problem (1.1) (or (2.6)), we present a novel constraint-
extrapolated conditional gradient (CoexCG) method, which incorporates some basic ideas of the ConEx
method into the conditional gradient method. As shown in Algorithm 1, the CoexCG method first performs
in (2.9) an extrapolation step for the affine constraint g. Then in (2.10) it performs an extrapolation step
based on the linear approximation of the constraint function h given by

lhi(x̄, x) := hi(x̄) + 〈∇hi(x̄), x− x̄〉, (2.7)

lh(x̄, x) := (lh1
(x̄, x); . . . , lhd(x̄, x)). (2.8)

Utilizing the extrapolated constraint values g̃k and h̃k, it then updates the dual variables qk and rk associated
with the affine constraint g(x) = 0 and the nonlinear constraints h(x) ≤ 0 in (2.11) and (2.12), respectively.
With these updated dual variables and linear approximation lf (xk−1, x) and lh(xk−1, x), it solves a linear
optimization problem over X to update the primal variable pk ∈ X in (2.13). Finally, the output solution xk
is computed as a convex combination of xk−1 and pk in (2.14).

Algorithm 1 Constraint-extrapolated Conditional Gradient (CoexCG)

Let the initial points p0 = p−1 ∈ X, x0 = x−1 = x−2 ∈ X, q0 ∈ Rm and r0 ∈ Rd+ be given. Also let the
stepsize parameters λk ≥ 0, τk ≥ 0 and αk ∈ [0, 1] be given.
for k = 1 to N do

g̃k = g(pk−1) + λk[g(pk−1)− g(pk−2)], (2.9)

h̃k = lh(xk−2, pk−1) + λk[lh(xk−2, pk−1)− lh(xk−3, pk−2)], (2.10)

qk = argminy∈Rm{〈−g̃k, y〉+ τk
2 ‖y − qk−1‖22}, (2.11)

rk = argminz∈Rd+{〈−h̃k, z〉+ τk
2 ‖z − rk−1‖22}, (2.12)

pk = argminx∈X{lf (xk−1, x) + 〈g(x), qk〉+ 〈lh(xk−1, x), rk〉}, (2.13)

xk = (1− αk)xk−1 + αkpk. (2.14)

end for

Similar to the game interpretation developed in [22, 21] for Nesterov’s accelerated gradient method [31],
the CoexCG method can be viewed as an iterative game performed by the primal and dual players to achieve
an equilibrium of (2.6). The extrapolation steps in (2.9)-(2.10) are used to predict the possible action (or
its consequences) of the primal player in each iteration. Based on the prediction (g̃k, h̃k), the dual player
updates the decision qk (resp., rk) in order to maximize the profit 〈g̃k, y〉 (resp., 〈h̃k, z〉), but not to move
too far away from the previous decision qk−1 (resp., rk−1) by using the regularization τk

2 ‖y − qk−1‖22 (resp.,
τk
2 ‖z− rk−1‖22). After observing the dual player’s decisions (qk, rk), the primal player first determines pk in a

greedy manner by minimizing the cost lf (xk−1, x) + 〈g(x), qk〉+ 〈lh(xk−1, x), rk〉, and then takes a correction
step in (2.14) so that its decision xk is not dramatically different from the previous decision xk−1. Similar
to Nesterov’s method as interpreted in [22, 21], CoexCG employs an intelligent dual player who predicts the

4

other player’s decision before taking actions. However, the primal updates in (2.13) and (2.14) for CoexCG
are different from those in [22, 21] since no projection is allowed, even though the spirit of not moving too
far away from the previous decision xk−1 remains the same. An interesting observation to us is that, due to
the lack of the projection for the primal player, the incorporation of the extrapolation (or prediction) steps
of the dual player appears to be important to guarantee the convergence of the algorithm (see the discussion
after Proposition 2.3 for more details).

It is interesting to build some connections between the CoexCG method and the ConEx method in [4].
In particular, by replacing the relations in (2.13) and (2.14) with

pk = argminx∈X{lf (pk−1, x) + 〈g(x), qk〉+ 〈lh(pk−1, x), rk〉+ ηk
2 ‖x− pk−1‖22},

then we essentially obtain the ConEx method. Comparing these relations, we observe that the CoexCG
method differs from the ConEx method in the following few aspects. Firstly, pt in CoexCG is computed by
solving a linear optimization problem, while the one in the ConEx method is computed by using a projection.
The use of linear optimization enables the CoexCG method to generate sparse solutions in feasible sets X
with a huge large number of extreme points (see Section 4). Secondly, the linear approximation models lf
and lh in the ConEx method is built on the search point pk−1, while the one in the CoexCG method is built
on xk−1, or equivalently, the convex combination of all previous search points pi, i = 1, . . . , k − 1. Using
lf (xk−1, x) and lh(xk−1, x) in CoexCG instead of lf (pk−1, x) and lh(pk−1, x) as in ConEx also seems to be
critical to guarantee the convergence of the CoexCG algorithm.

We need to add a few more remarks about the CoexCG method. Firstly, by (2.11) and (2.12), we can
define qk and rk equivalently as

qk = qk−1 + 1
τk
g̃k and rk = max{rk−1 + 1

τk
h̃k, 0}.

It is also worth noting that we can generalize the CoexCG method to deal with conic inequality constraint
h(x) ∈ K, by simply replacing the constraint z ∈ Rd+ in (2.12) with z ∈ −K∗. Here K ⊂ Rl is a given closed
convex cone and K∗ denotes its the dual cone.

Secondly, in addition to the primal output solution xk in (2.14), we can also define the dual output
solutions yk and zk as

yk = (1− αk)yk−1 + αkqk, (2.15)

zk = (1− αk)zk−1 + αkrk. (2.16)

Different from xk, these dual variables yk and zk do not participate in the updating of any other search
points. However, both of them will be used intensively in the convergence analysis of the CoexCG method.

Thirdly, even though we do not need to select the parameter ηk when defining pk as in the ConEx method,
we do need to specify the stepsize parameter τk to update the dual variables qk and rk. We also need to
determine the parameters λk and αk, respectively, to define the extrapolation steps and the output solution
xk. We will discuss the selection of these algorithmic parameters after establishing some general convergence
properties of the CoexCG method.

Our goal in the remaining part of this subsection is to establish the convergence of the CoexCG method.
Let xk, yk, and zk be defined in (2.14), (2.15), and (2.16). Throughout this section, we denote wk ≡ (xk, yk, zk)
and w ≡ (x, y, z), and define the gap function Q(wk, w) as

Q(wk, w) := f(xk)− f(x) + 〈g(xk), y〉 − 〈g(x), yk〉+ 〈h(xk), z〉 − 〈h(x), zk〉. (2.17)

We start by stating some well-known technical results that have been used in the convergence analysis
of many first-order methods. The first result, often referred to “three-point lemma” (see, e.g., Lemma 3.1 of
[21]), characterizes the optimality conditions of (2.11) and (2.12).

Lemma 2.1. Let qk and rk be defined in (2.11) and (2.12), respectively. Then,

〈−g̃k, qk − y〉+ τk
2 ‖qk − qk−1‖22 ≤ τk

2 ‖y − qk−1‖22 − τk
2 ‖y − qk‖

2
2,∀y ∈ Rm, (2.18)

〈−h̃k, rk − z〉+ τk
2 ‖rk − rk−1‖22 ≤ τk

2 ‖z − rk−1‖22 − τk
2 ‖z − rk‖

2
2,∀z ∈ Rd+. (2.19)

5

The following result helps us to take telescoping sums (see Lemma 3.17 of [21]).
Lemma 2.2. Let αk ∈ (0, 1], k = 0, 1, 2, . . ., be given and denote

Γk =

{
1, if k = 1;
(1− αk)Γk−1, if k > 1.

(2.20)

If {∆k} satisfies ∆k+1 ≤ (1− αk)∆k +Bk,∀k ≥ 1, then we have ∆k+1

Γk
≤ (1− α1)∆1 +

∑k
i=1

Bi
Γi
.

We now establish an important recursion of the CoexCG method.
Proposition 2.3. For any k > 1, we have

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2 +
αkλ

2
k(9M̄2

h+‖A‖2)D2
X

2τk

+ αk[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]
+ αk[〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉 − λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉]
+ αkτk

2 [‖y − qk−1‖22 − ‖y − qk‖22 + ‖z − rk−1‖22 − ‖z − rk‖22], ∀w ∈ X × Rm × Rd+,

where DX is defined in (2.4).
Proof. It follows from the smoothness of f and h (e.g., Lemma 3.2 of [21]) and the definition of xk in

(2.14) that

f(xk) ≤ lf (xk−1, xk) +
Lf
2 ‖xk − xk−1‖2

= (1− αk)lf (xk−1, xk−1) + αklf (xk−1, pk) +
Lfα

2
k

2 ‖pk − xk−1‖2

= (1− αk)f(xk−1) + αklf (xk−1, pk) +
Lfα

2
k

2 ‖pk − xk−1‖2.

hi(xk) ≤ (1− αk)hi(xk−1) + αklhi(xk−1, pk) +
Lh,iα

2
k

2 ‖pk − xk−1‖2.

Using the above two relations in the definition of Q(wk, w) in (2.17), we have for any w ≡ (x, y, z) ∈
X × Rm × Rd+,

Q(wk, w) = f(xk)− f(x) + 〈g(xk), y〉 − 〈g(x), yk〉+ 〈h(xk), z〉 − 〈h(x), zk〉
≤ (1− αk)f(xk−1) + αklf (xk−1, pk)− f(x) + 〈g(xk), y〉 − 〈g(x), yk〉

+ 〈(1− αk)h(xk−1) + αklh(xk−1, pk)), z〉 − 〈h(x), zk〉

+
(Lf+zTLh)α2

k

2 ‖pk − xk−1‖2

= (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

k

2 ‖pk − xk−1‖2

+ αk[lf (xk−1, pk)− f(x) + 〈g(pk), y〉 − 〈g(x), qk〉+ 〈lh(xk−1, pk), z〉 − 〈h(x), rk〉].

Moreover, by the definition of xk in (2.14) and the convexity of f and hi, we have

lf (xk−1, pk) + 〈g(pk), qk〉+ 〈lh(xk−1, pk), rk〉
≤ lf (xk−1, x) + 〈g(x), qk〉+ 〈lh(xk−1, x), rk〉
≤ f(x) + 〈g(x), qk〉+ 〈h(x), rk〉, ∀x ∈ X.

Combining the above two relations, we obtain

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

k

2 ‖pk − xk−1‖2

+ αk[〈g(pk), y − qk〉+ 〈lh(xk−1, pk), z − rk〉]

≤ 1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2

+ αk[〈g(pk), y − qk〉+ 〈lh(xk−1, pk), z − rk〉], ∀w ∈ X × Rm × Rd+. (2.21)

Multiplying both sides of (2.18) and (2.19) by αk and summing them up with the above inequality, we have

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2

+ αk〈g(pk)− g̃k), y − qk〉+ αk〈lh(xk−1, pk)− h̃k, z − rk〉
+ αkτk

2 [‖y − qk−1‖22 − ‖y − qk‖22 − ‖qk − qk−1‖22]

+ αkτk
2 [‖z − rk−1‖22 − ‖z − rk‖22 − ‖rk − rk−1‖22], ∀w ∈ X × Rm × Rd+. (2.22)

6

Now observe that by the definition of g̃k in (2.9) and the fact that g(x) = Ax− b, we have

〈g(pk)− g̃k), y − qk〉 − τk
2 ‖qk − qk−1‖22

= 〈A[(pk − pk−1)− λk(pk−1 − pk−2)], y − qk〉 − τk
2 ‖qk − qk−1‖22

= 〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉
+ λk〈A(pk−1 − pk−2), qk − qk−1〉 − τk

2 ‖qk − qk−1‖22
≤ 〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉

+
λ2
k

2τk
‖A‖2‖pk − pk−1‖22

≤ 〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉+
λ2
k

2τk
‖A‖2D2

X , (2.23)

where the first inequality follows from Young’s inequality and the last one follows from the definition of DX

in (2.4). In addition, by the definition of h̃k in (2.10), we have

〈lh(xk−1, pk)− h̃k, z − rk〉 − τk
2 ‖rk − rk−1‖22

≤ 〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉 − λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉
+ λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), rk − rk−1〉 − τk

2 ‖rk − rk−1‖22
≤ 〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉

− λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉+
9λ2
kM̄

2
hD

2
X

2τk
, (2.24)

where the last inequality follows from

λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), rk − rk−1〉 − τk
2 ‖rk − rk−1‖22

≤ λ2
k

2τk

∑d
i=1[lhi(xk−2, pk−1)− lhi(xk−3, pk−2)]2

=
λ2
k

2τk

∑d
i=1[hi(xk−2)− hi(xk−3) + 〈∇hi(xk−2), pk−1 − xk−2〉+ 〈∇hi(xk−3), pk−2 − xk−3〉]2

≤ 9λ2
kD

2
X

2τk

∑d
i=1M

2
h,i =

9λ2
kM̄

2
hD

2
X

2τk
. (2.25)

The result then follows by plugging relations (2.23) and (2.24) into (2.22).

We add some comments about the importance of the extrapolation steps in the proposed CoexCG method.
Without these steps (i.e., λk = 0 in (2.9) and (2.10)), probably we can not even guarantee the convergence
of the CoexCG algorithm. As we can see from the proof of Proposition 2.3, if λk = 0, it is not clear how to
take care of the inner product terms 〈A(pk − pk−1, y − qk〉 and 〈lh(xk−1, pk) − lh(xk−2, pk−1), z − rk〉. The
error caused by these terms may accumulate.

We are now ready to establish the main convergence properties for the CoexCG method.
Theorem 2.4. Let Γk be defined in (2.20) and assume that the algorithmic parameters αk, τk and λk in

the CoexCG method satisfy

α1 = 1, λkαk
Γk

= αk−1

Γk−1
and αkτk

Γk
≤ αk−1τk−1

Γk−1
,∀k ≥ 2. (2.26)

Then we have

Q(wN , w) ≤ ΓN
∑N
k=1

[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN
+ τ1ΓN

2 ‖y − q0‖22 + τ1ΓN
2 ‖z − r0‖22, ∀w ∈ X × Rm × Rd+,

(2.27)

where DX is defined in (2.4). As a consequence, we have

f(xN)− f(x∗) ≤ ΓN
∑N
k=1

[
Lfα

2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN
+ τ1ΓN

2 (‖q0‖22 + ‖r0‖22) (2.28)

7

and

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ ΓN
∑N
k=1

[
[Lf+(‖z∗‖2+1)L̄h]α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN

+ τ1ΓN [(‖y∗‖2 + 1)2 + ‖q0‖22 + (‖z∗‖2 + 1)2 + ‖r0‖22], (2.29)

where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (2.6).
Proof. It follows from Lemma 2.2 and Proposition 2.3 that

Q(wN ,w)
ΓN

≤(1− α1)Q(w0, w) +
∑N
k=1[

(Lf+zTLh)α2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+
∑N
k=1

αk
Γk

[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]

+
∑N
k=1

αk
Γk

[〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉
− λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉]

+
∑N
k=1

αkτk
2Γk

[‖y − qk−1‖22 − ‖y − qk‖22 + ‖z − rk−1‖22 − ‖z − rk‖22],

which, in view of (2.26), then implies that

Q(wN , w) ≤ ΓN
∑N
k=1[

(Lf+zTLh)α2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+ αN 〈A(pN − pN−1), y − qN 〉 − αNτN
2 ‖y − qN‖22

+ αN 〈lh(xN−1, pN)− lh(xN−2, pN−1), z − rN 〉 − αNτN
2 ‖z − rN‖22

+ α1τ1ΓN
2 [‖y − q0‖22 + ‖z − r0‖22]

≤ ΓN
∑N
k=1[

(Lf+zTLh)α2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+ αN
2τN
‖A‖2‖pN − pN−1‖22 +

9M̄2
hαND

2
X

2τN

+ α1τ1ΓN
2 [‖y − q0‖22 + ‖z − r0‖22],

where the last relation follows from Young’s inequality and a result similar to (2.25). The result in (2.27)
then immediately follows from the above inequality.

Note that by the definition of Q(wk, w) in (2.17), and the facts that g(x∗) = 0 and h(x∗) ≤ 0, we have
f(xN)−f(x∗) ≤ Q(wN , (x

∗, 0, 0)). Using this observation and fixing x = x∗, y = 0, z = 0 in (2.27), we obtain
(2.28). Now let us denote

ŷN := (‖y∗‖2 + 1) g(xN)
‖g(xN)‖2 , (2.30)

ẑN := (‖z∗‖2 + 1) [h(xN)]+
‖[h(xN)]+‖2 , (2.31)

ŵ∗N := (x∗, ŷN , ẑN). (2.32)

Note that by the optimality condition of (2.6), we have

0 ≤ Q(wN , w
∗) = f(xN)− f(x∗) + 〈g(xN), y∗〉+ 〈h(xN), z∗〉
≤ f(xN)− f(x∗) + ‖g(xN)‖2 · ‖y∗‖2 + ‖[h(xN)]+‖2 · ‖z∗‖2.

In addition, using the fact that g(x∗) = 0 and 〈h(x∗), ẑN 〉 ≤ 0, we have

Q(wN , ŵ
∗
N) ≥ f(xN)− f(x∗) + 〈g(xN), ŷN 〉+ 〈h(xN), ẑN 〉

= f(xN)− f(x∗) + ‖g(xN)‖2(‖y∗‖2 + 1) + ‖[h(xN)]+‖2(‖z∗‖2 + 1).

Combining the previous two observations, we conclude that

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ Q(wN , ŵ
∗
N). (2.33)

The previous conclusion, together with (2.27) and the facts that

‖ŷN − q0‖22 ≤ 2[‖ŷN‖22 + ‖q0‖22] = 2[(‖y∗‖2 + 1)2 + ‖q0‖22], (2.34)

‖ẑN − r0‖22 ≤ 2[ẑN‖22 + ‖r0‖22] = 2[(‖z∗‖2 + 1)2 + ‖r0‖22], (2.35)

ẑTNLh ≤ ‖ẑTN‖2‖Lh‖2 = (‖z∗‖2 + 1)L̄h, (2.36)

8

then imply that

‖g(xN)‖2 + ‖[h(xN)]+‖2

≤ ΓN
∑N
k=1

[
(Lf+ẑTNLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN
+ τ1ΓN

2 ‖ŷN − q0‖22 + τ1ΓN
2 ‖ẑN − r0‖22

≤ ΓN
∑N
k=1

[
[Lf+(‖z∗‖2+1)L̄h]α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN
+ τ1ΓN [(‖y∗‖2 + 1)2 + ‖q0‖22 + (‖z∗‖2 + 1)2 + ‖r0‖22].

Below we provide a specific selection of the algorithmic parameters αk, λk and τk and establish the
associated rate of convergence for the CoexCG method.

Corollary 2.5. If the number of iterations N is fixed a priori, and

αk = 2
k+1 , λk = k−1

k , τk = N3/2

k DX

√
9‖Mh‖2 + ‖A‖2, k = 1, . . . , N, (2.37)

then we have

Q(wN , w) ≤ 2(Lf+zTLh)D2
X

N+1 +
DX
√

9M̄2
h+‖A‖2

√
N

(
‖y − q0‖22 + ‖z − r0‖22 + 1

)
,

∀w ∈ X × Rm × Rd+, (2.38)

f(xN)− f(x∗) ≤ 2LfD
2
X

N+1 +
DX
√

9M̄2
h+‖A‖2

√
N

(‖(q0; r0)‖22 + 1), (2.39)

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ 2[Lf+(‖z∗‖2+1)L̄h]D2
X

N+1

+
2DX
√

9M̄2
h+‖A‖2

√
N

[2‖(y∗; z∗)‖22 + ‖(q0; r0)‖22 + 5]. (2.40)

Proof. By (2.20) and the definition of αk in (2.37), we have Γk = 2/[k(k + 1)] and αk/Γk = k. We can
easily see from these identities and (2.37) that the conditions in (2.26) hold. It is also easy to verify that

∑N
k=1

α2
k

Γk
= 2

∑N
k=1

k
k+1 ≤ 2N,∑N

k=1
αkλ

2
k

τkΓk
=

∑N
k=1(k − 1)2

2N3/2DX
√

9‖Mh‖2+‖A‖2
≤ N3/2

6DX
√

9‖Mh‖2+‖A‖2
.

Using these relations in (2.27), (2.28) and (2.29), we conclude that

Q(wN , w) ≤ 2(Lf+zTLh)D2
X

N+1 +
√
NDX

√
9M̄2

h+‖A‖2
6(N+1)

+
DX
√

9M̄2
h+‖A‖2

(N+1)
√
N

+
√
NDX

√
9M̄2

h+‖A‖2
N+1 (‖y − q0‖22 + ‖z − r0‖22)

=
2(Lf+zTLh)D2

X

N+1 +
[√

N
6(N+1) + 1

(N+1)
√
N

+
√
N

N+1 (‖y − q0‖22 + ‖z − r0‖22)
]
DX

√
9M̄2

h + ‖A‖2

≤ 2(Lf+zTLh)D2
X

N+1 +
DX
√

9M̄2
h+‖A‖2

√
N

(
‖y − q0‖22 + ‖z − r0‖22 + 1

)
,

f(xN)− f(x∗) ≤ 2LfD
2
X

N+1 +
DX
√

9M̄2
h+‖A‖2

√
N

(‖q0‖22 + ‖r0‖22 + 1),

9

and

‖g(xN)‖2 + ‖[h(xN)]+‖2

≤ 2[Lf+(‖z∗‖2+1)L̄h]D2
X

N+1 +
√
NDX

√
9M̄2

h+‖A‖2
6(N+1) +

DX
√

9M̄2
h+‖A‖2

(N+1)
√
N

+
2
√
NDX

√
9M̄2

h+‖A‖2
N+1 [(‖y∗‖2 + 1)2 + ‖q0‖22 + (‖z∗‖2 + 1)2 + ‖r0‖22]

≤ 2[Lf+(‖z∗‖2+1)L̄h]D2
X

N+1 +
DX
√

9M̄2
h+‖A‖2

√
N

[1 + 2(‖y∗‖2 + 1)2 + 2‖q0‖22 + 2(‖z∗‖2 + 1)2 + 2‖r0‖22]

≤ 2[Lf+(‖z∗‖2+1)L̄h]D2
X

N+1 +
2DX
√

9M̄2
h+‖A‖2

√
N

[2(‖y∗‖22 + ‖z∗‖22) + ‖q0‖22 + ‖r0‖22 + 5].

A few remarks about the results obtained in Theorem 2.4 and Corollary 2.5 are in place. Firstly, in view
of (2.38), the gap function Q(wN , w) converges to 0 with the rate of convergence given by O(1/

√
N). This

bound has been shown to be not improvable in [20] for general saddle point problems in terms of the number
of calls to linear optimization oracles (see also Chapter 7 of [21]), even though such a lower complexity
bound cannot be directly applied to our setting since we are dealing with a specific saddle point problem
with unbounded dual variables. Secondly, in view of (2.39) and (2.40), the number of iterations required
by the CoexCG method to find a ε-solution of problem (1.1), i.e., a point x̄ ∈ X s.t. f(x̄) − f(x∗) ≤ ε
and ‖g(x̄)‖2 + ‖[h(x̄)]+‖2 ≤ ε, is bounded by O(1/ε2). Thirdly, it is interesting to observe that in both
(2.39) and (2.40), the Lipschitz constants Lf and L̄h do not impact too much the rate of convergence of the
CoexCG method, since both of them appear only in the non-dominant terms. We will explore further this
property of the CoexCG method in order to solve problems with certain nonsmooth objective and constraint
functions. Finally, it is worth noting that in the parameter setting (2.37), we need to fix the total number
of iterations N in advance. This is not desirable for the implementation of the CoexCG method, especially
for the situation when one has finished the scheduled N iterations, but then realizes that a more accurate
solution is needed. In this case, one has to completely restart the CoexCG method with a different parameter
setting that depends on the modified iteration limit. We will discuss how to address this issue in Section 3.

2.2. Structured nonsmooth functions. In this subsection, we still consider problem (1.1), but the
objective function f and constraint functions hi are not necessarily differentiable. More specifically, we
assume that f(·) and hi(·) are given in the following form:

f(x) = max
q∈Q
{〈Bx, q〉 − f̂(q)},

hi(x) = max
s∈Si
{〈Cix, s〉 − ĥi(s)}, i = 1, . . . , d,

(2.41)

where Q ⊆ Rm0 and S ⊆ Rmi are closed convex sets, and f̂ and ĥi are simple convex functions. Many
nonsmooth functions can be represented in this form (see [32]). In this paper, we assume that f̂ and ĥi are
possibly strongly convex w.r.t. the given norms in the respective spaces, i.e..

f̂(q1)− f̂(q2)− 〈f̂ ′(q2), q1 − q2〉 ≥ µ0

2 ‖q1 − q2‖2,∀q1, q2 ∈ Q (2.42)

ĥi(s1)− ĥi(s2)− 〈ĥ′i(s2), s1 − s2〉 ≥ µi
2 ‖s1 − s2‖2,∀s1, s2 ∈ Si, i = 1, . . . , d, (2.43)

for some µi ≥ 0. If µ0 > 0 (resp., µi > 0), then f (resp., hi) must be differentiable with Lipschitz continuous
gradients. Therefore, our nonsmooth formulation in (2.41) allows either the objective and/or some constraint
functions to be smooth.

Our goal in this subsection is to generalize the CoexCG method to solve these structured nonsmooth
convex optimization problems. In fact, we show that that the number of CoexCG iterations required to solve
these problems is in the same order of magnitude as if f and hi’s are smooth convex functions.

Since f and hi are possibly not differentiable, we cannot directly apply the CoexCG algorithm to solve
problem (1.1). However, as pointed out by Nesterov [32], these nonsmooth functions can be closely approx-
imated by smooth convex ones. Let us first consider the objective function f . Assume that u : Q → R is a
given strongly convex function with modulus 1 w.r.t. a given norm ‖ · ‖ in Rm0 , i.e.,

u(q1) ≥ u(q2) + 〈u′(q2), q1 − q2〉+ 1
2‖q1 − q2‖2,∀q1, q2 ∈ Q.

10

Let us denote cu := argminq∈Qu(y), U(q) := u(q)− u(cu)− 〈∇u(cu), q − cu〉 and

DU := [max
q∈Q

U(y)]1/2, (2.44)

and define

fη0(x) := max
q∈Q
{〈Bx, q〉 − f̂(q)− η0U(q)]} (2.45)

for some η0 ≥ 0. Then, we can show that fη0 is differentiable and its gradients satisfy (see [32])

‖∇fη0(x1)−∇fη0(x2)‖∗ ≤ Lf,η‖x1 − x2‖, ∀x1, x2 ∈ X with Lf,η := ‖B‖2
µ0+η0

. (2.46)

In addition, we have

fη0(x) ≤ f(x) ≤ fη0(x) + η0D
2
U , ∀x ∈ X. (2.47)

In our algorithmic scheme, we will set η0 = 0 whenever f̂ is strongly convex, i.e., µ0 > 0.
Similarly, let us assume that vi : Si → R are strongly convex with modulus 1 w.r.t. a given norm ‖ · ‖ in

Rmi , i = 1, . . . , d. Also let us denote cvi := argmins∈Sivi(s), Vi(s) := vi(s)− vi(cvi)− 〈∇vi(cvi), s− cvi〉 and

DVi := [max
s∈Si

Vi(s)]
1/2, (2.48)

and define

hi,ηi(x) = max
s∈Si
{〈Cix, s〉 − ĥi(s)− ηiVi(s)} (2.49)

for some ηi ≥ 0. We can show that for all i = 1, . . . , d,

‖∇hi,ηi(x1)−∇hi,ηi(x2)‖∗ ≤ ‖Ci‖
2

µi+ηi
‖x1 − x2‖, ∀x1, x2 ∈ X, (2.50)

hi,ηi(x) ≤ hi(x) ≤ hi,ηi(x) + ηiD
2
Vi , ∀x ∈ X. (2.51)

In our algorithmic scheme, we will set ηi = 0 whenever ĥi is strongly convex, i.e., µi > 0. For notational
convenience, we denote

hη(x) := (h1,η1(x); . . . ;hd,ηd(x)), Lh,η := (‖C1‖2
µĥ1

+η1
; . . . ; ‖Cd‖

2

µĥd
+ηd

) and L̄h,η := ‖Lh,η‖2. (2.52)

Different from the objective function, we need to show that the gradient of the hi,ηi is bounded. Note
that the boundedness of the gradients for smooth constraint functions (with µi > 0 and hence ηi = 0) follows
from the boundedness of X (see Section 2.1). For those nonsmooth constraint functions hi (with µi = 0), we
need to assume that Si’s are compact. For a given x ∈ X, let s∗(x) be the optimal solution of (2.49). Then

‖∇hi,ηi(x)‖∗ = ‖CTi · s∗(x)‖∗ ≤ ‖Ci‖‖s∗(x)‖
≤ ‖Ci‖(‖cvi‖+ ‖s∗(x)− cvi‖)

≤ ‖Ci‖(‖cvi‖+
√

2DVi) =: MCi,Vi , i = 1, . . . , d. (2.53)

For notational convenience, we also denote

M̄C,V :=
√∑d

i=1M
2
Ci,Vi

. (2.54)

Observe that the Lipschitz constants MCi,Vi defined in (2.53) do not depend on the smoothing parameters
ηi, i = 1, . . . , d. This fact will be important for us to derive the complexity bound of the CoexCG method
for solving convex optimization problems with nonsmooth function constraints.

11

Instead of solving the original problem (1.1), we suggest to apply the CoexCG method to the smooth
approximation problem

min fη0(x)

s.t. g(x) = 0,

hi,ηi(x) ≤ 0,∀i = 1, . . . , d,

x ∈ X.

(2.55)

More specifically, we replace the linear approximation functions lh and lf used in (2.10) and (2.13) by lhi,ηi
and lfηo , respectively. However, we will establish the convergence of this method in terms of the solution
of the original problem in (1.1) rather than the approximation problem in (2.55). Our convergence analysis
below exploits the smoothness of fη0 (resp., hi,ηi), the closeness between f and fη0 (resp., hi and hi,ηi), and
also importantly, the fact that hi,ηi(x) underestimates hi(x) for all x ∈ X.

Theorem 2.6. Consider the CoexCG method applied to the smooth approximation problem (2.55).
Assume that the number of iterations N is fixed a priori, and that the parameters {αk}, {τk} and {λk} are
set to (2.37) with M̄h replaced by M̄C,V in (2.54). Then we have

f(xN)− f(x∗) ≤ 2Lf,ηD
2
X

N+1 +
DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖q0‖22 + ‖r0‖22 + 1

)
+ η0D

2
U , (2.56)

‖[h(xN)]+‖+ ‖AxN‖ ≤ 2[Lf,η+(‖z∗‖2+1)L̄h,η])D2
X

N+1 +
2DX
√

9M̄2
C,V +‖A‖2
√
N

(
2‖(y∗; z∗)‖22 + ‖(q0; r0)‖22 + 5

)
+ η0D

2
U + (‖z∗‖2 + 1)(

∑d
i=1(ηiD

2
Vi

)2)1/2, (2.57)

where (x∗, y∗, z∗) is a triple of optimal solutions for problem (2.6), Lf,η and L̄h,η are defined in (2.46) and
(2.52), respectively, and DX , DU and DVi are defined in (2.4), (2.44) and (2.48), respectively.

Proof. Denote Qη(wN , w) := fη0(xN)− fη0(x) + 〈g(xN), y〉 − 〈g(x), yN 〉+ 〈hη(xN), z〉 − 〈hη(x), zN 〉. In
view of Corollary 2.5, we have

Qη(wN , w) ≤ (Lf,η+zTLh,η)D2
X

N+1 +
DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖y − q0‖22 + ‖z − r0‖22 + 1

)
(2.58)

for any w ∈ X × Rm × Rd+. Using the relations in (2.47) and (2.51), and the fact that z, zN ∈ Rd+, we can
see that

Q(wN , w) ≤ Qη(wN , w) + η0D
2
U +

∑d
i=1(ηiziD

2
Vi

)

≤ Qη(wN , w) + η0D
2
U + ‖z‖2(

∑d
i=1(ηiD

2
Vi

)2)1/2, ∀w ∈ X × Rm × Rd+. (2.59)

By letting x = x∗, y = 0 and z = 0, we have

f(xN)− f(x∗) ≤ Q(wN , z) ≤ Qη(zN , z) + η0D
2
U ,

which, in view of (2.58), then implies (2.56). Now let ŵ∗N be defined in (2.32). By (2.33), (2.58) and (2.59),
we have

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ Q(wN , ŵ
∗
N)

≤ Qη(wN , ŵ
∗
N) + η0D

2
U + ‖ẑN‖2(

∑d
i=1(ηiD

2
Vi

)2)1/2

≤ (Lf,η+ẑTNLh,η)D2
X

N+1 +
DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖ŷN − q0‖22 + ‖ẑN − r0‖22 + 1

)
+ η0D

2
U + ‖ẑN‖2(

∑d
i=1(ηiD

2
Vi

)2)1/2

≤ [Lf,η+(‖z∗‖2+1)L̄h,η])D2
X

N+1 +
2DX
√

9M̄2
C,V +‖A‖2
√
N

(
2‖(y∗; z∗)‖22 + ‖(q0; r0)‖22 + 5

)
+ η0D

2
U + (‖z∗‖2 + 1)(

∑d
i=1(ηiD

2
Vi

)2)1/2,

12

where the last inequality follows from the bounds in (2.34) and (2.35), and the facts that ‖ẑN‖2 ≤ ‖z∗‖2 + 1
and ẑTNLh,η ≤ ‖ẑTN‖2‖Lh,η‖2 = (‖z∗‖2 + 1)L̄h,η.

We now specify the selection of the smoothing parameters ηi, i = 0, . . . , d. We consider only the most
challenging case when the objective and all constraint functions are nonsmooth and establish the rate of
convergence of the aforementioned CoexCG method for nonsmooth convex optimization.

Corollary 2.7. Suppose that the smoothing parameters in problem (2.55) are set to

η0 = ‖B‖DX
DU
√
N

and ηi = ‖Ci‖DX
DVi
√
N
, i = 1, . . . , d. (2.60)

Then under the same premise of Theorem 2.6, we have

f(xN)− f(x∗) ≤ 3DXDU‖B‖√
N

+
DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖q0‖22 + ‖r0‖22 + 1

)
, (2.61)

‖[h(xN)]+‖+ ‖AxN‖ ≤ 3DXDU‖B‖√
N

+
2(‖z∗‖2+1)DX

√∑d
i=1(DVi‖Ci‖)2

√
N

+
2DX
√

9M̄2
C,V +‖A‖2
√
N

(
2‖(y∗; z∗)‖22 + ‖(q0; r0)‖22 + 5

)
. (2.62)

Proof. It follows from (2.46), (2.52) and (2.60) that Lf,η = ‖B‖2
η0

= DU‖B‖
√
N

DX
and that

L̄h,η =

√∑d
i=1

(
‖Ci‖2
ηi

)2

=

√∑d
i=1

(
DVi‖Ci‖

√
N

DX

)2

=

√
N

√∑d
i=1(DVi‖Ci‖)2

DX
.

Also notice that η0D
2
U = DXDU‖B‖√

N
and that

(
∑d
i=1(ηiD

2
Vi

)2)1/2 =

(∑d
i=1

‖Ci‖2D2
XD

2
Vi

N

)1/2

=
DX

√∑d
i=1(DVi‖Ci‖)2

√
N

.

Using these identities and the assumptions in (2.56) and (2.57), we have

f(xN)− f(x∗) ≤ 2DXDU‖B‖√
N+1

+
DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖q0‖22 + ‖r0‖22 + 1

)
+ DXDU‖B‖√

N

≤ 3DXDU‖B‖√
N

+
DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖q0‖22 + ‖r0‖22 + 1

)
,

‖[h(xN)]+‖+ ‖AxN‖ ≤ 2DXDU‖B‖√
N+1

+
(‖z∗‖2+1)DX

√∑d
i=1(DVi‖Ci‖)2

√
N+1

+
2DX
√

9M̄2
C,V +‖A‖2
√
N

(
2‖(y∗; z∗)‖22 + ‖(q0; r0)‖22 + 5

)
+ DXDU‖B‖√

N
+

(‖z∗‖2+1)DX

√∑d
i=1(DVi‖Ci‖)2

√
N

≤ 3DXDU‖B‖√
N

+
2(‖z∗‖2+1)DX

√∑d
i=1(DVi‖Ci‖)2

√
N

+
2DX
√

9M̄2
C,V +‖A‖2
√
N

(
2‖(y∗; z∗)‖22 + ‖(q0; r0)‖22 + 5

)
.

We add a few remarks about the results obtained in Theorem 2.6 and Corollary 2.7. Firstly, in view
of Corollary 2.7, even if f and hi are nonsmooth functions, the number of CoexCG iterations required
to find an ε-solution of problem (1.1) is still bounded by O(1/ε2). Therefore, by utilizing the structural
information of f and hi, the CoexCG can solve this type of nonsmooth problem efficiently as if they are
smooth functions. Secondly, if either the objective function or some constraint functions are smooth, we can
set the corresponding smoothing parameter to be zero and obtain slightly improved complexity bounds than
those in Corollary 2.7. Thirdly, similar to the CoexCG method applied for solving problem (1.1) with smooth
objective and constraint functions, we need to fix the number of iterations N in advance when specifying the
algorithmic parameters and smoothing parameters. We will address this issue in the next section.

13

3. Constraint-extrapolated and dual-regularized conditional gradient method. One critical
shortcoming associated with the basic version of the CoexCG method is that we need to fix the number
of iterations N a priori. Our goal in this section is to develop a variant of CoexCG which does not have
this requirement. We consider the case when f and hi are smooth and structured nonsmooth functions,
respectively, in Subsections 3.1 and 3.2.

3.1. Smooth functions. In order to remove the assumption of fixing N a priori, we suggest to modify
the dual projection steps (2.11) and (2.12) in the CoexCG method. More specifically, we add an additional
regularization term with diminishing weights into these steps. This variant of CoexCG is formally described
in Algorithm 2.

Algorithm 2 Constraint-extrapolated and Dual-regularized Conditional Gradient (CoexDurCG)

The algorithm is the same as CoexCG except that (2.11) and (2.12) are replaced by

qk = argminy∈Rm{〈−g̃k, y〉+ τk
2 ‖y − qk−1‖22 + γk

2 ‖y − q0‖22}, (3.1)

rk = argminz∈Rd+{〈−h̃k, z〉+ τk
2 ‖z − rk−1‖22 + γk

2 ‖z − r0‖22}, (3.2)

for some γk ≥ 0.

Clearly, we can write qk and rk in (3.1) and (3.2) equivalently as

qk = 1
τk+γk

(τkqk−1 + γkq0 + g̃k) and rk = max
{

1
τk+γk

(τkrk−1 + γkr0 + h̃k), 0
}
.

Similar to the CoexCG method, it is also possible to generalize CoexDurCG for solving problems with conic
inequality constraints. The following result, whose proof can be found in Lemma 3.5 of [21], characterizes
the optimality conditions for (3.1) and (3.2).

Lemma 3.1. Let qk and rk be defined in (3.1) and (3.2), respectively. Then,

〈−g̃k, qk − y〉+ τk
2 ‖qk − qk−1‖22 + γk

2 ‖qk − q0‖22
≤ τk

2 ‖y − qk−1‖22 −
τk+γk

2 ‖y − qk‖22 + γk
2 ‖y − q0‖22, ∀y ∈ Rm, (3.3)

〈−h̃k, rk − z〉+ τk
2 ‖rk − rk−1‖22 + γk

2 ‖rk − r0‖22
≤ τk

2 ‖z − rk−1‖22 −
τk+γk

2 ‖z − rk‖22 + γk
2 ‖y − r0‖22, ∀z ∈ Rd+. (3.4)

We now establish an important recursion about the CoexDurCG method, which can be viewed as a
counterpart of Proposition 2.3 for the CoexCG method.

Proposition 3.2. For any k > 1, we have

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2 +
αkλ

2
k(9M̄2

h+‖A‖2)D2
X

2τk

+ αk[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]
+ αk[〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉 − λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉]

+ αkτk
2 (‖y − qk−1‖22 + ‖z − rk−1‖22)− αk(τk+γk)

2 (‖y − qk‖22 + ‖z − rk‖22)

+ αkγk
2 [‖y − q0‖22 + ‖z − r0‖22], ∀w ∈ X × Rm × Rd+,

where DX is defined in (2.4).

Proof. Multiplying both sides of (3.3) and (3.4) by αk and summing them up with the inequality in

14

(2.21), we have

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2

+ αk〈g(pk)− g̃k), y − qk〉+ αk〈lh(xk−1, pk)− h̃k, z − rk〉

+ αkτk
2 [‖y − qk−1‖22 − ‖qk − qk−1‖22]− αk(τk+γk)

2 ‖y − qk‖22
+ αkτk

2 [‖z − rk−1‖22 − ‖rk − rk−1‖22]− αk(τk+γk)
2 ‖z − rk‖22

+ αkγk
2 [‖y − q0‖2 − ‖qk − q0‖2] + αkγk

2 [‖z − r0‖2 − ‖zk − r0‖2]

≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2

+ αk〈g(pk)− g̃k), y − qk〉+ αk〈lh(xk−1, pk)− h̃k, z − rk〉

+ αkτk
2 [‖y − qk−1‖22 − ‖qk − qk−1‖22]− αk(τk+γk)

2 ‖y − qk‖22
+ αkτk

2 [‖z − rk−1‖22 − ‖rk − rk−1‖22]− αk(τk+γk)
2 ‖z − rk‖22

+ αkγk
2 [‖y − q0‖22 + ‖z − r0‖22], ∀w ∈ X × Rm × Rd+. (3.5)

The result then follows by plugging relations (2.23) and (2.24) into (3.5).

We are now ready to establish the main convergence properties of the CoexDurCG method.
Theorem 3.3. Let Γk be defined in (2.20) and assume that the algorithmic parameters αk, τk and λk in

the CoexDurCG method satisfy

α1 = 1, λkαk
Γk

= αk−1

Γk−1
and αkτk

Γk
≤ αk−1(τk−1+γk−1)

Γk−1
∀k ≥ 2. (3.6)

Then we have

Q(wN , w) ≤ ΓN
∑N
k=1

[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2(τN+γN)

+ ΓN

(
τ1
2 +

∑N
k=1

αkγk
2Γk

)
(‖y − q0‖22 + ‖z − r0‖22), ∀w ∈ X × Rm × Rd+,

(3.7)

where DX is defined in (2.4). As a consequence, we have

f(xN)− f(x∗) ≤ ΓN
∑N
k=1

[
Lfα

2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2(τN+γN)

+ ΓN

(
τ1
2 +

∑N
k=1

αkγk
2Γk

)
(‖q0‖22 + ‖r0‖22), (3.8)

and

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ ΓN
∑N
k=1

[
[Lf+(‖z∗‖2+1)L̄h]α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2(τN+γN)

+ ΓN

(
τ1
2 +

∑N
k=1

αkγk
2Γk

)
[(‖y∗‖2 + 1)2 + ‖q0‖22 + (‖z∗‖2 + 1)2 + ‖r0‖22], (3.9)

where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (2.6).
Proof. It follows from Lemma 2.2 and Proposition 3.2 that

Q(wN ,w)
ΓN

≤(1− α1)Q(w0, w) +
∑N
k=1[

(Lf+zTLh)α2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+
∑N
k=1

αk
Γk

[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]

+
∑N
k=1

αk
Γk

[〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉
− λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉]

+
∑N
k=1

[
αkτk
2Γk

(‖y − qk−1‖22 + ‖z − rk−1‖22)− αk(τk+γk)
2Γk

(‖y − qk‖22 + ‖z − rk‖22)
]

+
∑N
k=1

αkγk
2Γk

[‖y − q0‖22 + ‖z − r0‖22],

15

which, in view of (3.6), then implies that

Q(wN , w) ≤ ΓN
∑N
k=1[

(Lf+zTLh)α2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+ αN 〈A(pN − pN−1), y − qN 〉 − αN (τN+γN)
2 ‖y − qN‖22

+ αN 〈lh(xN−1, pN)− lh(xN−2, pN−1), z − rN 〉 − αN (τN+γN)
2 ‖z − rN‖22

+ α1τ1ΓN
2 [‖y − q0‖22 + ‖z − r0‖22]

+ ΓN
∑N
k=1

αkγk
2Γk

[‖y − q0‖2 + ‖z − r0‖2]

≤ ΓN
∑N
k=1[

(Lf+zTLh)α2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+ αN
2(τN+γN)‖A‖

2‖pN − pN−1‖22 +
9M̄2

hαND
2
X

2(τN+γN)

+ α1τ1ΓN
2 [‖y − q0‖22 + ‖z − r0‖22]

+ ΓN
∑N
k=1

αkγk
2Γk

[‖y − q0‖22 + ‖z − r0‖22],

where the last relation follows from Young’s inequality and a result similar to (2.25). The result in (2.27)
then immediately follows from the above inequality. We can show (3.8) and (3.9) similarly to (2.28) and
(2.29), and hence the details are skipped.

Corollary 3.4 below shows how to specify the algorithmic parameters, including the regularization weight
γk, for the CoexDurCG method. In particular, the selection of τk was inspired by the one used in (2.37), and
γk was chosen so that the last relation in (3.6) is satisfied.

Corollary 3.4. If the algorithmic parameters αk, λk, τk and γk of the CoexDurCG method are set to

αk = 2
k+1 , λk = k−1

k , τk = β
√
k, and γk = β

k [(k + 1)
√
k + 1− k

√
k], (3.10)

with β = DX

√
9M̄2

h + ‖A‖2 for k ≥ 1, then we have, ∀w ∈ X × Rm × Rd+,

Q(zk, z) ≤ 2(Lf+zTLh)D2
X

N+1 +
DX
√

9M̄2
h+‖A‖2

√
N

[
3(‖y − q0‖22 + ‖z − r0‖22) + 1

]
. (3.11)

In addition, we have

f(xN)− f(x∗) ≤ 2LfD
2
X

N+1 +
DX
√

9M̄2
h+‖A‖2

√
N

[
3(‖q0‖22 + ‖r0‖22) + 1

]
(3.12)

and

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ 2(Lf+(‖z∗‖2+1)L̄h)D2
X

N+1

+
DX
√

9M̄2
h+‖A‖2

√
N

[
3[(‖y∗‖2 + 1)2 + (‖z∗‖2 + 1)2 + ‖q0‖22 + ‖r0‖22] + 1

]
, (3.13)

where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (2.6).
Proof. From the definition of αk in (3.10), we have Γk = 2/[k(k + 1)] and αk/Γk = k. Hence the first

two conditions in (3.6) hold. In addition, it follows from these identities and (3.10) that αkτk
Γk

= βk
√
k and

αk−1(τk−1+γk−1)
Γk−1

= (k − 1)
[
β
√
k − 1 + β

k−1 [k
√
k − (k − 1)

√
k − 1]

]
= βk

√
k,

and hence that the last relation in (3.6) also holds. Observe that by (3.10),∑N
k=1

α2
k

Γk
= 2

∑N
k=1

k
k+1 ≤ 2N, (3.14)∑N

k=1
αkγk
Γk

= β
∑N
k=1[(k + 1)

√
k + 1− k

√
k] = β[(N + 1)

√
N + 1− 1], (3.15)∑N

k=1
αkλ

2
k

τkΓk
=
∑N
k=1

(k−1)2

βk
√
k
≤ 1

β

∑N
k=1

√
k − 1 ≤ 1

β

∫ N
0

√
tdt = 2

3βN
3/2. (3.16)

16

Using these relations in (3.7), we have

Q(wN , w) ≤ 2(Lf+zTLh)D2
X

N+1 +
2
√
N(9M̄2

h+‖A‖2)D2
X

3β(N+1) +
N(9M̄2

h+‖A‖2)D2
X

β(N+1)2
√
N+1

+ 2β
√
N+1
N (‖y − q0‖22 + ‖z − r0‖22)

=
2(Lf+zTLh)D2

X

N+1 +
DX
√

9M̄2
h+‖A‖2

√
N

[
2
3 + N

(N+1)2 + 2
√
N+1√
N

(‖y − q0‖22 + ‖z − r0‖22)
]

≤ 2(Lf+zTLh)D2
X

N+1 +
DX
√

9M̄2
h+‖A‖2

√
N

[
3(‖y − q0‖22 + ‖z − r0‖22) + 1

]
.

The bounds in (3.12) and (3.13) can be shown similarly and the details are skipped.
In view of the results obtained in Corollary 3.4, the rate of convergence of CoexDurCG matches that of

CoexCG. Moreover, the cost of each iteration of the CoexDurCG is the same as that of CoexCG.

3.2. Structured Nonsmooth Functions. In this subsection, we consider problem (1.1) with struc-
tured nonsmooth functions f and hi given in (2.41). One possible way to solve this nonsmooth problem is to
apply the CoexDurCG method for the smooth approximation problem (2.55). However, this approach still
requires us to fix the number of iterations N when choosing smoothing parameters ηi, i = 0, . . . , d.

Our goal in this subsection is to generalize the CoexDurCG method to solve this structured nonsmooth
problem directly. Rather than applying this algorithm to problem (2.55), we modify the smoothing parameters
ηi, i = 0, . . . , d, at each iteration. More specifically, we assume that

η1
i ≥ η2

i ≥ . . . ≥ ηki , ∀i = 0, . . . , d, (3.17)

and define a sequence of smoothing functions fηk0 (x) and hi,ηki (x), i = 1, . . . , d, according to (2.45) and (2.49),
respectively. For simplicity, we denote

fk(x) ≡ fηk0 (x), hki (x) ≡ hi,ηki (x) and hk(x) ≡ (hk1(x); . . . ;hkd(x)).

Also let us define the Lipschitz constants

Lkf ≡
‖B‖2
µ0+ηk0

, Lkh ≡ (‖C1‖2
µ1+ηk1

; . . . ; ‖Cd‖
2

µd+ηkd
), and L̄kh ≡ ‖Lkh‖2.

It can be seen from (3.17) that

fk−1(x) ≤ fk(x) ≤ fk−1(x) + (ηk−1
0 − ηk0)D2

U , ∀x ∈ X. (3.18)

Indeed, it suffices to show the second relation in (3.18). By definition, we have

fk(x) = max
q∈Q
{〈Bx, q〉 − f̂(q)− ηk0U(q)} = max

q∈Q
{〈Bx, q〉 − f̂(q)− ηk−1

0 U(q) + (ηk−1
0 − ηk0)U(q)}

≤ max
q∈Q
{〈Bx, q〉 − f̂(q)− ηk−1

0 U(q) + (ηk−1
0 − ηk0)D2

U} = fk−1(x) + (ηk−1
0 − ηk0)D2

U ,

where the inequality follows from the definition of DU in (2.44) and the assumption ηk−1
0 ≥ ηk0 in (3.17).

Similarly, we have

hk−1
i (x) ≤ hki (x) ≤ hk−1

i (x) + (ηk−1
i − ηki)D2

Vi , ∀xX, i = 1, . . . , d. (3.19)

Note that in our algorithmic scheme, we can set ηki = 0, i = 0, 1, . . . , d, if the corresponding objective or
constraint functions are smooth (i.e., µi = 0).

We now describe the more general CoexDurCG method for solving structured nonsmooth problems.

Algorithm 3 CoexDurCG for Structured Nonsmooth Problems

The algorithm is the same as Algorithm 2 except that the extrapolation step (2.10) is replaced by

h̃k = lhk−1(xk−2, pk−1) + λk[lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2)], (3.20)

and the linear optimization step is replaced by

pk = argminx∈X{lfk(xk−1, x) + 〈g(x), qk〉+ 〈lhk(xk−1, x), rk〉}. (3.21)

17

In Algorithm 3 we do not explicitly use the smooth approximation problem (2.55). Instead, we incorporate
in (3.20) and (3.21) the adaptive linear approximation functions lhk and lfk for the objective and constraints,
respectively. The convergence analysis of this algorithm relies on the adaptive primal-dual gap function:

Qk(w̄, w) ≡ Qηk(w̄, w) := fk(x̄)− fk(x) + 〈g(x̄), y〉 − 〈g(x), ȳ〉+ 〈hk(x̄), z〉 − 〈hk(x), z̄〉, (3.22)

as demonstrated in the following result.
Proposition 3.5. For any k > 1, we have

Qk(wk, w) ≤ (1− αk)Qk−1(wk−1, w) +
(Lkf+zTLkh)α2

kD
2
X

2

+ (1− αk)[(ηk−1
0 − ηk0)D2

U +
∑d
i=1(ηk−1

i − ηki)ziD
2
Vi

]

+
αkλ

2
k(12M̄2

C,V +‖A‖2)D2
X

2τk
+

3λ2
k

τk

∑d
i=1(ηk−2

i − ηk−1
i)2D4

Vi

+ αk[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]
+ αk[〈lhk(xk−1, pk)− lhk−1(xk−2, pk−1), z − rk〉

− λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), z − rk−1〉]

+ αkτk
2 (‖y − qk−1‖22 + ‖z − rk−1‖22)− αk(τk+γk)

2 (‖y − qk‖22 + ‖z − rk‖22)

+ αkγk
2 [‖y − q0‖22 + ‖z − r0‖22], ∀w ∈ X × Rm × Rd+,

where DX is defined in (2.4).
Proof. Similar to (3.5), we can show that

Qk(wk, w) ≤ (1− αk)Qk(wk−1, w) +
(Lkf+zTLkh)α2

kD
2
X

2

+ αk〈g(pk)− g̃k), y − qk〉+ αk〈lhk(xk−1, pk)− h̃k, z − rk〉

+ αkτk
2 [‖y − qk−1‖22 − ‖qk − qk−1‖22]− αk(τk+γk)

2 ‖y − qk‖22
+ αkτk

2 [‖z − rk−1‖22 − ‖rk − rk−1‖22]− αk(τk+γk)
2 ‖z − rk‖22

+ αkγk
2 [‖y − q0‖22 + ‖z − r0‖22], ∀w ∈ X × Rm × Rd+. (3.23)

Moreover, by the definition of h̃k in (3.20), we have

〈lhk(xk−1, pk)− h̃k, z − rk〉 − τk
2 ‖rk − rk−1‖22

= 〈lhk(xk−1, pk)− lhk−1(xk−2, pk−1), z − rk〉 − λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), z − rk−1〉
+ λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), rk − rk−1〉 − τk

2 ‖rk − rk−1‖22
≤ 〈lhk(xk−1, pk)− lhk−1(xk−2, pk−1), z − rk〉
− λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), z − rk−1〉

+
6λ2
kD

2
XM̄

2
C,V

τk
+

3λ2
k

τk

∑d
i=1(ηk−2

i − ηk−1
i)2D4

Vi
, (3.24)

where the last inequality follows from

λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), rk − rk−1〉 − τk
2 ‖rk − rk−1‖22

≤ λ2
k

2τk

∑d
i=1[lhk−1

i
(xk−2, pk−1)− lhk−2

i
(xk−3, pk−2)]2

=
λ2
k

2τk

∑d
i=1[hk−1

i (xk−2)− hk−2
i (xk−3) + 〈∇hk−1

i (xk−2), pk−1 − xk−2〉+ 〈∇hk−2
i (xk−3), pk−2 − xk−3〉]2

≤ 3λ2
k

2τk

∑d
i=1

[
(hk−1
i (xk−2)− hk−2

i (xk−3))2 + 2M2
Ci,Vi

D2
X〉
]

≤ 3λ2
k

2τk

∑d
i=1

[
2(hk−2

i (xk−2)− hk−2
i (xk−3))2 + 2(ηk−2

i − ηk−1
i)2D4

Vi
+ 2M2

Ci,Vi
D2
X〉
]

≤ 6λ2
kD

2
X

τk

∑d
i=1M

2
Ci,Vi

+
3λ2
k

τk

∑d
i=1(ηk−2

i − ηk−1
i)2D4

Vi

=
6λ2
kD

2
XM̄

2
C,V

τk
+

3λ2
k

τk

∑d
i=1(ηk−2

i − ηk−1
i)2D4

Vi
. (3.25)

18

Here, the first inequality follows from Young’s inequality, the second inequality follows from the cauchy-
schwarz inequality, the definition of DX in (2.4) and the bound of ∇hki in (2.53), the third inequality follows
by the relation between hk−1

i and hk−2
i in (3.19) and the simple fact that (a+ b)2 ≤ 2a2 + 2b2, and the last

inequality follows from the Lipschitz continuity of hk−2
i and the bound in (2.53). In addition, it follows from

(3.18) and (3.19) that for any w ∈ X × Rm × Rd+,

Qk(wk−1, w) ≤ Qk−1(wk−1, w) + (ηk−1
0 − ηk0)D2

U +
∑d
i=1(ηk−1

i − ηki)ziD
2
Vi
. (3.26)

The result follows by combining (3.23), (3.24), (3.26) and the bound in (2.23).

Theorem 3.6. Let Γk be defined in (2.20) and assume that the algorithmic parameters αk, τk and λk in
the CoexDurCG method in Algorithm 3 satisfy (3.6). Then we have, ∀w ∈ X × Rm × Rd+,

Q(wN , w) ≤ ΓN
∑N
k=1

[
(Lkf+zTLkh)α2

kD
2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk
+

3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i)2D4

Vi

]
+ ΓN

∑N
k=1

αk
Γk

(ηk0D
2
U +

∑d
i=1 η

k
i ziD

2
Vi

) +
αN (12M̄2

C,V +‖A‖2)D2
X

2(τN+γN) +
6αN

∑d
i=1(ηN−1

i − ηNi)2D4
Vi

2(τN+γN)

+ ΓN

(
τ1
2 +

∑N
k=1

αkγk
2Γk

)
(‖y − q0‖22 + ‖z − r0‖22) + ηN0 D

2
U + ‖z‖(

∑d
i=1(ηNi D

2
Vi

)2)1/2,

(3.27)
where DX is defined in (2.4). As a consequence, we have

f(xN)− f(x∗) ≤ ΓN
∑N
k=1

[
Lkfα

2
kD

2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk
+

3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i)2D4

Vi

]
+ ΓN

∑N
k=1

αk
Γk
ηk0D

2
U +

αN (12M̄2
C,V +‖A‖2)D2

X

2(τN+γN) +
6αN

∑d
i=1(ηN−1

i − ηNi)2D4
Vi

2(τN+γN)

+ ΓN

(
τ1
2 +

∑N
k=1

αkγk
2Γk

)
(‖q0‖22 + ‖r0‖22) + ηN0 D

2
U (3.28)

and

‖g(xN)‖2 + ‖[h(xN)]+‖2

≤ ΓN
∑N
k=1

[
[Lkf+(‖z∗‖2+1)L̄kh]α2

kD
2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk
+

3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i)2D4

Vi

]
+ ΓN

∑N
k=1

αk
Γk

(ηk0D
2
U +

∑d
i=1 η

k
i ẑiD

2
Vi

) +
αN (12M̄2

C,V +‖A‖2)D2
X

2(τN+γN) +
6αN

∑d
i=1(ηN−1

i − ηNi)2D4
Vi

2(τN+γN)

+ ΓN

(
τ1 +

∑N
k=1

αkγk
2Γk

)
[(‖y∗‖2 + 1)2 + ‖q0‖22 + (‖z∗‖2 + 1)2 + ‖r0‖22]

+ ηN0 D
2
U + (‖z∗‖2 + 1)(

∑d
i=1(ηNi D

2
Vi

)2)1/2, (3.29)

where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (2.6).

19

Proof. It follows from Lemma 2.2, Proposition 3.5 and (3.6) that

QN (wN , w) ≤ ΓN
∑N
k=1[

(Lkf+zTLkh)α2
kD

2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk
+

3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i)2D4

Vi
]

+ ΓN
∑N
k=1

αk
Γk

(ηk0D
2
U +

∑d
i=1 η

k
i ziD

2
Vi

)

+ αN 〈A(pN − pN−1), y − qN 〉 − αN (τN+γN)
2 ‖y − qN‖22

+ αN 〈lhN (xN−1, pN)− lhN−1(xN−2, pN−1), z − rN 〉 − αN (τN+γN)
2 ‖z − rN‖22

+ α1τ1ΓN
2 [‖y − q0‖22 + ‖z − r0‖22] + ΓN

∑N
k=1

αkγk
2Γk

[‖y − q0‖2 + ‖z − r0‖2]

≤ ΓN
∑N
k=1[

(Lkf+zTLkh)α2
kD

2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk
+

3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i)2D4

Vi
]

+ ΓN
∑N
k=1

αk
Γk

(ηk0D
2
U +

∑d
i=1 η

k
i ziD

2
Vi

)

+ αN
2(τN+γN)‖A‖

2‖pN − pN−1‖22 +
12M̄2

C,V αND
2
X

2(τN+γN) +
6αN

∑d
i=1(ηN−1

i − ηNi)2D4
Vi

2(τN+γN)

+ α1τ1ΓN
2 [‖y − q0‖22 + ‖z − r0‖22]

+ ΓN
∑N
k=1

αkγk
2Γk

[‖y − q0‖22 + ‖z − r0‖22],

where the last relation follows from Young’s inequality and a result similar to (3.25). The result in (3.27)
then immediately follows from the above inequality and the observation that Q(wN , w) ≤ QN (wN , w) +

ηN0 D
2
U + ‖z‖(

∑d
i=1(ηNi D

2
Vi

)2)1/2 due to (2.59). We can show (3.28) and (3.29) similarly to (2.56) and (2.57),
and hence the details are skipped.

Corollary 3.7 below shows how to specify the smoothing parameter {ηki } in (3.17) and other parameters
for the CoexDurCG method in Algorithm 3. We focus on the most challenging case when the objective
function f and all the constraint functions are nonsmooth (i.e., µi = 0, i = 1, . . . , n). Slightly improved rate
of convergence can be obtained by setting ηki = 0 for those component functions with µi > 0.

Corollary 3.7. Suppose that the parameters αk, λk, τk and γk in Algorithm 3 are set to (3.10) with

β = DX

√
12M̄2

C,V + ‖A‖2 for k ≥ 1. If the smoothing parameters ηki are set to

ηk0 = ‖B‖DX√
kDU

, ηki = ‖Ci‖DX√
kDVi

, ∀i = 1, . . . , d, (3.30)

then we have, ∀w ∈ X × Rm × Rd+,

Q(wk, w) ≤ 8(‖B‖DU+
∑d
i=1 zi‖Ci‖DVi)DX

3
√
N

+

√
12M̄2

C,V +‖A‖2DX√
N

[2(‖y − q0‖2 + ‖z − r0‖2) + 2]

+
12
∑d
i=1 ‖Ci‖2DXD

2
Vi√

12M̄2
C,V +‖A‖2(N+1)

√
N

+ DX√
N

(‖B‖DU + ‖z‖
√∑d

i=1 ‖Ci‖2D2
Vi

).

(3.31)

In addition, we have

f(xN)− f(x∗) ≤ 11‖B‖DUDX
3
√
N

+

√
12M̄2

C,V +‖A‖2DX√
N

[2(‖q0‖2 + ‖r0‖2) + 2]

+
12
∑d
i=1 ‖Ci‖2DXD

2
Vi√

12M̄2
C,V +‖A‖2(N+1)

√
N

(3.32)

and

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤
7(‖B‖DU+(‖z∗‖+1)

√∑d
i=1 ‖Ci‖2D2

Vi
)DX

3
√
N

+
12
∑d
i=1 ‖Ci‖2DXD

2
Vi√

12M̄2
C,V +‖A‖2(N+1)

√
N

+
2
√

12M̄2
C,V +‖A‖2DX√

N
[4[(‖y∗‖2 + 1)2 + (‖z∗‖2 + 1)2 + ‖q0‖22 + ‖r0‖22] + 2], (3.33)

where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (2.6).

20

Proof. From the definition of αk in (3.10), we have Γk = 2/[k(k + 1)] and αk/Γk = k. Similarly to
Corollary 3.4, we can check that condition (3.6), and the bounds in (3.14)-(3.16) hold. In addition, it follows
from the definition of ηki in (3.30) that

(ηk−2
i − ηk−1

i)2 =
‖Ci‖2D2

X

D2
Vi

(1
k−1 + 1

k−2 −
2√

k−1
√
k−2

) ≤ ‖Ci‖2D2
X

(k−1)(k−2)D2
Vi

,

Lkf = ‖B‖DU
√
k

DX
, and Lkh,i =

‖Ci‖DVi
√
k

DX
, ∀i = 1, . . . , d.

Using these relations in (3.27), we have

Q(wN , w) ≤ 2(‖B‖DU+
∑d
i=1 zi‖Ci‖DVi)DX
N(N+1)

∑N
k=1

k
√
k

k+1 +
2
√

12M̄2
C,V +‖A‖2DX
3
√
N

+ 3
βN(N+1)

∑N
k=1(
√
k(k + 1)

∑d
i=1

‖Ci‖2D2
XD

2
Vi

(k−1)(k−2))

+
2(‖B‖DU+

∑d
i=1 zi‖Ci‖DVi)DX
N(N+1)

∑N
k=1

√
k +

√
12M̄2

C,V +‖A‖2DX
(N+1)

√
N+1

+
3
∑d
i=1 ‖Ci‖2D2

XD
2
Vi

(N+1)
√
N+1(N−1)(N−2)

+ β
N(N+1) [(N + 1)

√
N + 1][‖y − q0‖2 + ‖z − r0‖2]

+ ηN0 D
2
U + ‖z‖(

∑d
i=1(ηNi D

2
Vi

)2)1/2,

which implies (3.31) after simplification. (3.32) and (3.33) can be shown similarly and the details are skipped.

Comparing the results in Corollary 3.7 with those in Corollary 2.7, we can see that the rate of convergence
of CoexDurCG is about the same as that of CoexCG for nonsmooth optimization. However, it is more
convenient to implement CoexDurCG since it does not require us to fix the number of iterations a priori.

4. Numerical Experiments. In this section, we apply the proposed algorithms to the intensity mod-
ulated radiation therapy (IMRT) problem briefly discussed in Section 1.

4.1. Problem Formulation. In IMRT, the patient will be irradiated by a linear accelerator (linac)
from several angles and in each angle the device uses different apertures. In traditional IMRT, we select and
fix 5-9 angles and then design and optimize the apertures and their corresponding intensity. Following [34],
we would like to integrate the angle selection into direct aperture optimization in order to use a small number
of angles and apertures in the final treatment plan.

To model the IMRT treatment planning, we discretize each structure s of the patient into small cubic
volume elements called voxels, V. There are a finite number of angles, denoted by A, around the patient. A
beam in each angle, ba, is decomposed into a rectangular grid of beamlets. A beamlet (i, j) is effective if it is
not blocked by either the left, li, and right, ri, leaves. An aperture is then defined as the collection of effective
beamlets. The relative motion of the leaves controls the set of effective beamlets and thus the shape of the
aperture. The estimated dose received by voxel v from beamlet (i, j) at unit intensity is denoted by D(i,j)v

in Gy. The dose absorbed by a given voxel is the summation of the dose from each individual beamlet.
Let Pa be the set of allowed apertures determined by the position of the left and right leaves in beam

angle a. Suppose that the rectangular grid in each angle has m rows and n columns, and the leaves move along

each row independently. Then the number of possible apertures in each angle amounts to (n(n−1)
2)m. We

use xa,t, comprised of binary decision variables xa,t(i,j), to describe the shape of aperture t ∈ Pa. In particular,

xa,t(i,j) = 1 if beamlet (i, j) is effective, i.e., falling within the left and right leaves of row i, otherwise xa,t(i,j) = 0.

In addition to selecting angles and apertures, we also need to determine the influence rate ya,t for aperture
t ∈ Pa, which will be used to determine the dose intensity and the amount of radiation time from aperture
t. The dose absorbed by voxel v is computed by zv =

∑
a∈A

∑
t∈Pa

∑m
i=1

∑n
j=1RD(i,j)v x

a,t
ij y

a,t, based on

the dose-influence matrix D, the aperture shape xk, and the aperture influence rate yk. We measure the
treatment quality by f(z) :=

∑
v∈V wv [T v − zv]2+ + wv [zv − T v]2+ via voxel-based quadratic penalty, where

[·]+ denotes max{0, ·}, and T v and T v are pre-specified lower and upper dose thresholds for voxel v.
We also need to consider a few important function constraints. Firstly, in order to obtain a sparse solution

with a small number of angles, we add the following group sparsity constraint
∑
a∈Amaxt∈Pa y

a,t ≤ Φ for
some properly chosen Φ > 0. Intuitively, this constraint will encourage the selection of apertures in those

21

angles Pa that have already contained some nonzero elements of ya,t, t ∈ Pa. Secondly, we need to meet a
few critical clinical criteria to avoid underdose (resp., overdose) for tumor (resp., healthy) structures. These
criteria are usually specified as value at risk (VaR) constraints. For example, in the prostate benchmark
dataset, the clinical criterion of “PTV56:V56≥ 95%” means that the percentage of voxels in structure PTV56
that receive at least 56 Gy dose should be at least 95%. Similarly, the criterion of “PTV68: V74.8≤ 10%”
implies that the percentage of voxels in structure PTV68 that receive more than 74.8 Gy dose should be at
most 10%. One possible way to satisfy these criteria is to tune the weights ((wv, wv)) in f(z). However, it
would be time consuming to tune these weights to satisfy all the prescribed clinical criteria. Therefore, we
suggest to incorporate a few critical criteria as problem constraints explicitly.

Instead of using VaR, we will use its convex approximation, commonly referred to as Conditional Value
at Risk (CVaR) in the constraints [33]. Recall the following definitions of VaR and CVaR

Upper tail: VaRα(X) = inf
τ
{τ : P (X ≤ τ) ≥ α},CVaRα(X) = inf

τ
τ + 1

1−αE[X − τ]+.

Lower tail: VaRα(X) = sup
τ
{τ : P (X ≥ τ) ≥ α},CVaRα(X) = sup

τ
τ − 1

1−αE[τ −X]+.

The upper (resp., lower) tail CVaR will be used to enforce the underdose (resp., overdose) clinical criteria.
For example, letting S1 and S2 denote structures PTV68 and PTV 56, and N1 and N2 be the number of
voxels in these structures, we can approximately formulate the criterion of “PTV68: V74.8≤ 10%” as infτ τ1+

1
(1−0.9)N1

∑
v∈S1

[zv − τ1]+ ≤ b for some b ≥ 74.8. Separately, the criterion of “PTV56:V56≥ 95%” will be

approximated by supτ τ− 1
(1−0.95)N2

∑
v∈S2

[τ−zv]+ ≥ b, or equivalently infτ −τ+ 1
(1−0.95)N2

∑
v∈S2

[τ−zv]+ ≤
−b for some b ≤ 56. Putting the above discussions together and denoting D̂a,t

v :=
∑m
i=1

∑n
j=1D(i,j)v x

a,t
ij , we

obtain the following problem formulation.

min f(z) := 1
Nv

∑
v∈V wv [T v − zv]2+ + wv [zv − T v]2+ (4.1a)

s.t. zv =
∑
a∈A

∑
t∈Pa

RD̂a,t
v ya,t, (4.1b)

− τi + 1
piNi

∑
v∈Si [τi − zv]+ ≤ −bi,∀i ∈ UD, (4.1c)

τi + 1
piNi

∑
v∈Si [zv − τi]+ ≤ bi,∀i ∈ OD, (4.1d)∑

a∈Amaxt∈Pa y
a,t ≤ Φ, (4.1e)∑

a∈A
∑
t∈Pa y

a,t ≤ 1, (4.1f)

ya,t ≥ 0, (4.1g)

τi ∈ [τ i, τ̄i],∀i ∈ UD & OD, (4.1h)

where OD and UD denote the set of overdose and underdose clinical criteria, respectively. Clearly, the
objective function f is convex and smooth. Constraints in (4.1c), (4.1d) and (4.1e) are structured non-
smooth function constraints corresponding to the function constraints h in (1.1), while (4.1f)-(4.1g) and
(4.1h), respectively, define a simplex constraint on y and a box constraint on τi, with their Catesian product
corresponding to the convex set X in (1.1). The bounds τ and τ̄ in constraints (4.1h) can be obtained from
the corresponding clinical criteria. For example, the criterion of “PTV68:V68≥ 95%” implies that value at
risk ≥ 68. By the definition of CVaR, the optimal τ equals to the value at risk, hence we set τ = 68. In a
similar way, we set τ̄ = 74.8 in view of the criterion of “PTV68: V74.8≤ 10%”.

We can apply the CoexCG and CoexDurCG methods described in Subsections 2.2 and 3.2, respectively, to
solve problem (4.1a)-(4.1h). Since the number of the potential apertures (i.e., the dimension of ya,t) increases
exponentially w.r.t. m, we cannot compute the full gradient of the objective and constraint functions w.r.t.
ya,t. Instead, we will perform gradient computation and linear optimization simultaneously. Let us focus on
the CoexCG method for illustration. Denote the constraints (4.1c)-(4.1e) as hi, i ∈ OD ∪ UD, and let the
corresponding smooth approximation hi,ηi be defined by (2.49) (using entropy distances for smoothing). For

a given search point xk−1 := ({ya,tk−1}, {τi,k−1}) and dual variable {ri,k−1}, let us denote πfk−1 = ∂f(xk−1)/∂z

and πhik−1 = ∂hi,ηi(xk−1)/∂z. Clearly, in view of (2.13), ya,tk−1 will be updated to a properly chosen extreme
point of the simplex constraint in (4.1f)-(4.1g). In order to determine this extreme point, we need to find the
aperture with the smallest coefficient in the linear objective of (2.13) given by:

ψa,t := πfk−1
∂z
∂ya,t+

∑
i ri,k−1π

hi
k−1

∂z
∂ya,t = R

∑m
i=1

∑n
j=1(

∑
vD(i,j)v(π

f
v,k−1+

∑
i ri,k−1π

hi
v,k−1))xij , xij ∈ {0, 1}.

22

Table 4.1: Data Instances with Φ = 0.2

Index # of voxels # of apertures bi & pi

Ins. 1 4096 460800 [30,40,200] & [0.05,0.05,0.05]
Ins. 2 4096 460800 [40,50,100] & [0.01,0.01,0.05]
Ins. 3 4096 460800 [50,60,80] & [0.01,0.01,0.01]
Ins. 4 262144 7372800 [40,50,100] & [0.01,0.01,0.05]
Ins. 5 262144 7372800 [50,60,80] & [0.01,0.01,0.01]

This can be achieved by using the following constructive approach. For any row i of the rectangular grid
in angle a, we find the column indices c1 and c2, respectively, for the left and right leaves, that give the
most negative value of

∑
c1<j<c2

∑
vD(i,j)v(π

f
v,k−1 +

∑
i ri,kπ

hi
v,k−1). Repeating this process row by row, we

construct the aperture with the smallest value of ψa,t in angle a. We construct one aperture similar to this for
each angle, and then choose the one with the most negative value of ψa,t among all the angles. Therefore, to
solve the linear optimization suproblem (i.e., to find the aperture with the smallest coefficient) only requires
O{|A|mn(n − 1)} arithmetic operations, even though the dimension of the problem (i.e., the total number
of apertures) is given by |A|(n(n− 1)/2)m.

4.2. Comparison of CoexCG and CoexDurCG on randomly generated instances. Due to the
privacy issue, publicly available IMRT datasets for real patients are very limited. To test the performance of
our proposed algorithms we first randomly generate some problem instances as follows. Let V = [−l, l]3 ⊆ R3

be a cube with length l. Viewing V as the human body, we then arbitrarily choose two (or more) cuboids
as healthy organs, and randomly choose 2 cubes inside V as the target tumor tissues. For a given accuracy
δ > 0, we discretize all these structures into small cubes with length δ to define a voxel. Around the cube
V , we generate a circle with radius 2l on the plane {x = 0}, and define every two degrees as one angle
for radiation therapy. In each angle, we consider the aperture as a square in [−l, l]2, and also discretize it
with small squares with length δ, resulting in a grid with size 2l

δ ×
2l
δ . After that, we randomly generate Na

beamlets with coordinate (x′, y′) ∈ [−l, l]2 for each angle a. As for the matrix D (recording the dose received
by voxel v from each beamlet), we first check if the voxel is radiated by the beamlet since each beamlet is
a line perpendicular to the aperture plane. If so, the dose received by the voxel from this beamlet will be
set to 2/d, where d is the distance between the voxel and the aperture plane; otherwise, the dose is 0. By
choosing different accuracy δ, we can create instances with different sizes in terms of the number of voxels
and potential apertures. Table 4.1 shows five different test instances generated with l = 8. We set δ = 1 and
0.25 for the first three instances (Ins. 1, Ins. 2 and Ins. 3), and the last two instances (Ins. 4 and Ins. 5),
respectively. Note that we consider 2 underdose and 1 overdose constraints and their corresponding r.h.s. b
and p are shown in the last column of Table 4.1. We set the T v = T̄v = 56 for tumor tissue and T v = T̄v = 0
for healthy organ in (4.1a). In addition, we set Φ = 0.2 for the group sparsity constraint in (4.1e).

We implement in Matlab the CoexCG and CoexDurCG algorithms for structured nonsmooth problems,
and report the computational results in Table 4.2. Here we use xN := (yN , τN), f(xN) and ‖h(xN)‖,
respectively, to denote the output solution, the objective value and constraint violations. The CPU times
are in seconds on a Macbook Pro with 2.6 GHz 6-Core Intel Core i7 processor. As shown in Table 4.2, both
CoexCG and CoexDurCG exhibit comparable performance in terms of objective value, constraint violation
and CPU time for different iteration limit N . However, unlike the CoexDurCG algorithm, we need to rerun
CoexCG for all the experiments whenever N changes.

In order to test our CoexCG and CoexDurCG algorithms, we still want to compare them with some
existing algorithm for constrained convex problems, such as ConEx algorithm [?]. Since the most existing
algorithms will require the computation of full gradient and hence get in stuck when dealing with this very
high dimensional problems, we generated a very small dimensional problem (dimension of decision variable
is 80000) with similar problem formulation for comparison. From Table 4.3, we see the ConEx algorithm
still requires the computation of full gradient, and hence has a total around 630 second computational time
of the D̂ matrix for every component. And also we can see the ConEx algorithm finally converges to a
almost feasible solution with a bit higher objective function value comparing to the solutions of CoexCG and
CoexDurCG algorithms. We also implemented the ConEx algorithm to the Instances 1-5, but the algorithm
gets in stuck in the first iteration and keeps running forever.

23

Table 4.2: Results for different Instances

Index N
CoexCG CoexDurCG

f(xN) ‖h(xN)‖ CPU(s) f(xN) ‖h(xN)‖ CPU(s)

Ins. 1
1 46.8723 1.7237e+03
100 0.0683 0.4234 34 0.0616 0.3705 33
1000 0.0197 0.0319 323 0.0210 0.0219 327

Ins. 2
1 46.8723 1.7237e+03
100 0.0568 0.4424 33 0.0583 0.5002 34
1000 0.0224 0.0426 327 0.0232 0.0334 339

Ins. 3
1 46.8723 1.7237e+03
100 0.0625 13.7567 33 0.0604 7.3929 33
1000 0.0227 0.0514 332 0.0226 0.0193 332

Ins. 4
1 47.7099 8.7850e+03
100 0.4643 163.3043 1645 0.4643 163.3043 1645
1000 0.0398 12.1765 17254 0.0398 12.1765 17356

Ins. 5
1 47.7099 8.7850e+03
100 0.4866 253.9389 1644 0.4581 206.9143 1637
1000 0.0406 39.2051 17146 0.0417 38.6486 17607

Table 4.3: Comparison with ConEx

N Alg f(xN) ‖h(xN)‖ CPU(s)

2
ConEx 0.482 32.156 632.902
CoexCG 0.495 64.738 0.143
CoexDurCG 0.495 64.738 0.156

10
ConEx 0.311 6.137 633.948
CoexCG 0.033 9.381 0.692
CoexDurCG 0.074 8.913 0.654

100
ConEx 0.279 0.193 642.456
CoexCG 0.010 6.165 6.501
CoexDurCG 0.015 6.384 6.535

1000
ConEx 0.301 7.392e-04 725.477
CoexCG 0.010 6.626 63.958
CoexDurCG 0.022 6.361 66.661

4.3. Results for real dataset. In this subsection, we apply CoexDurCG to the real dataset for a
patient with prostate cancer (https://github.com/cerr/CERR/wiki), and evaluate the generated solution
from the clinical point of view. Dose volume histogram (DVH), a histogram relating radiation dose to tissue
volume in radiation therapy planning, is commonly used as a plan evaluation tool to compare doses received
by different structures under different plans [7, 25]. In this prostate dataset, there are totally 10 DVH
criteria as follows, PTV56: V56≥ 95%; PTV68: V68≥ 95%, V74.8≤ 10%; Rectum: V30≤ 80%, V50≤ 50%,
V65≤ 25%; Bladder: V40≤ 70%, V65≤ 30%; Left femoral head: V50≤ 1%; Right femoral head: V50≤ 1%.
For this dataset, we have 3, 047, 040 voxels, 180 angles and over 2× 1030 potential apertures in each angle.

Since a smaller number of angles results in shorter treatment duration, we study the quality of the
treatment plan generated when enforcing the group sparsity requirement with different Φ in (4.1e). In order
to balance the scale of the constraint violation, we normalized all the constraints (4.1c)-(4.1e) by dividing
both sides of the inequalities by the right hand side bi or Φ. The total number of apertures in a typical
treatment plan for this dataset would not be greater than 100. Thus, we set the iteration limit to 100 since
the CoexDurCG algorithm generates at most one new aperture in each iteration.

Table 4.4 shows the number of apertures/angles, objective value and constraints violation for different
solutions given different values of Φ. Figure 4.1 plots the DVH performance of the generated treatment plans
by presenting how the percentage of voxels in each organ changes over different iterations. If Φ = 1, the
constraint (4.1e) is redundant and we obtain a solution with the smallest function value and zero constraints

24

Table 4.4: Group Sparsity

Φ # of apertures # of angles Obj. Val. Con. Vio.

1 96 39 0.0902 0
0.1 96 39 0.0902 0
0.005 96 8 0.1027 0.098
0.0005 97 3 0.1357 0.0589

violation, but with the largest number of angles as shown in Table 4.4. In addition, the plots in the first
column (i.e., parts (a), (d), (g), (j) and (m)) of Figure 4.1 show that the generated plan satisfies all the DVH
criteria. Comparing the first two rows in Table 4.4, we see that the solutions remain the same when Φ ≥ 0.1.
By keeping decreasing Φ, we can obtain solutions with fewer angles. Plots in the second column of Figure 4.1
shows that most DVH criteria are still satisfied even if the number of angles in the solution reduces from 39
to 8. Moreover, the number of angles can be decreased to 3 if we are willing to sacrifice certain DVH criteria
as we can see from the plots in the third column of Figure 4.1.

5. Concluding Remarks. In this paper, we propose new constraint-extrapolated conditional gradi-
ent (CoexCG) methods for solving general convex optimization problems with function constraints. These
methods require only linear optimization rather than projection over the convex set X. We establish the
O(1/ε2) iteration complexity for CoexCG and show that the same complexity still holds even if the objective
or constraint functions are nonsmooth with certain structures. We further present novel dual regularized
algorithms that do not require us to fix the number of iterations a priori and show that they can attain com-
plexity bounds similar to CoexCG. Effectiveness of these methods are demonstrated for solving a challenging
function constrained convex optimization problems arising from IMRT treatment planning.

It seems to be possible to use some ideas from the conditional gradient sliding methods [23] to improve the
number of gradient computation of f and h, as well as the operator evaluation of g. However, the conditional
gradient sliding type methods would require us to compute and store the full gradient information. For the
IMRT treatment planning problem, it is impossible to compute the full gradient since its dimension increases
exponentially with the size of aperture. Nevertheless, incorporating the idea of conditional gradient sliding
for solving problems with function constraints will be an interesting topic for future research.

REFERENCES

[1] S. Ahipasaoglu and M. Todd. A modified frank-wolfe algorithm for computing minimum-area enclosing ellipsoidal cylinders:
Theory and algorithms. Computational Geometry, 46:494–519, 2013.

[2] F. Bach, S. Lacoste-Julien, and G. Obozinski. On the equivalence between herding and conditional gradient algorithms.
In the 29th International Conference on Machine Learning, 2012.

[3] A. Beck and M. Teboulle. A conditional gradient method with linear rate of convergence for solving convex linear systems.
Math. Methods Oper. Res., 59:235–247, 2004.

[4] D. Boob, Q. Deng, and G. Lan. Stochastic first-order methods for convex and nonconvex function constrained optimization.
arXiv, 2019. 1908.02734.

[5] G. Braun, S. Pokutta, and D. Zink. Lazifying conditional gradient algorithms. In ICML, pages 566–575, 2017.
[6] K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM Trans. Algorithms, 6(4):63:1–

63:30, Sept. 2010.
[7] R. Drzymala, R. Mohan, L. Brewster, J. Chu, M. Goitein, W. Harms, and M. Urie. Dose-volume histograms. International

Journal of Radiation Oncology* Biology* Physics, 21(1):71–78, 1991.
[8] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3:95–110, 1956.
[9] R. M. Freund and P. Grigas. New Analysis and Results for the Frank-Wolfe Method. ArXiv e-prints, July 2013.

[10] M. Goitein. Radiation oncology: a physicist’s-eye view. Springer Science & Business Media, 2007.
[11] M. L. Gonçalves and J. G. Melo. A newton conditional gradient method for constrained nonlinear systems. Journal of

Computational and Applied Mathematics, 311:473–483, 2017.
[12] C. Guzmán and A. Nemirovski. On lower complexity bounds for large-scale smooth convex optimization. Journal of

Complexity, 31(1):1–14, 2015.
[13] E. Y. Hamedani and N. S. Aybat. A primal-dual algorithm for general convex-concave saddle point problems. arXiv

preprint arXiv:1803.01401, 2018.
[14] Z. Harchaoui, A. Juditsky, and A. S. Nemirovski. Conditional gradient algorithms for machine learning. NIPS OPT

workshop, 2012.
[15] E. Hazan. Sparse approximate solutions to semidefinite programs. In E. Laber, C. Bornstein, L. Nogueira, and L. Faria,

25

(a) PTV56 when Φ = 1 (b) PTV56 when Φ = 0.005 (c) PTV56 when Φ = 0.0005

(d) PTV68 when Φ = 1 (e) PTV68 when Φ = 0.005 (f) PTV68 when Φ = 0.0005

(g) Rectum when Φ = 1 (h) Rectum when Φ = 0.005 (i) Rectum when Φ = 0.0005

(j) Bladder when Φ = 1 (k) Bladder when Φ = 0.005 (l) Bladder when Φ = 0.0005

(m) Lt. & Rt. when Φ = 1 (n) Lt. & Rt. when Φ = 0.005 (o) Lt. & Rt. when Φ = 0.0005

Fig. 4.1: Percentage of voxels in different organs

26

editors, LATIN 2008: Theoretical Informatics, volume 4957 of Lecture Notes in Computer Science, pages 306–316.
Springer Berlin Heidelberg, 2008.

[16] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In the 30th International Conference on
Machine Learning, 2013.

[17] M. Jaggi and M. Sulovský. A simple algorithm for nuclear norm regularized problems. In the 27th International Conference
on Machine Learning, 2010.

[18] B. Jiang, T. Lin, S. Ma, and S. Zhang. Structured nonconvex and nonsmooth optimization: algorithms and iteration
complexity analysis. Computational Optimization and Applications, 72(1):115–157, 2019.

[19] G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming, 133(1):365–397, 2012.
[20] G. Lan. The complexity of large-scale convex programming under a linear optimization oracle. arXiv preprint

arXiv:1309.5550, 2013.
[21] G. Lan. First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, Switzerland AG, 2020.
[22] G. Lan and Y. Zhou. An optimal randomized incremental gradient method. Mathematical programming.
[23] G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. Technical report, Technical Report, 2014.
[24] R. Luss and M. Teboulle. Conditional gradient algorithms for rank one matrix approximations with a sparsity constraint.

SIAM Review, 55:65–98, 2013.
[25] P. Mayles, A. Nahum, and J.-C. Rosenwald. Handbook of radiotherapy physics: theory and practice. CRC Press, 2007.
[26] C. Men, X. Gu, D. Choi, A. Majumdar, Z. Zheng, K. Mueller, and S. B. Jiang. Gpu-based ultrafast imrt plan optimization.

Physics in Medicine & Biology, 54(21):6565, 2009.
[27] C. Men, H. E. Romeijn, X. Jia, and S. B. Jiang. Ultrafast treatment plan optimization for volumetric modulated arc

therapy (vmat). Medical physics, 37(11):5787–5791, 2010.
[28] C. Men, H. E. Romeijn, Z. C. Taşkın, and J. F. Dempsey. An exact approach to direct aperture optimization in imrt

treatment planning. Physics in Medicine & Biology, 52(24):7333, 2007.
[29] A. S. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous

monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15:229–251,
2005.

[30] A. S. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic program-
ming. SIAM Journal on Optimization, 19:1574–1609, 2009.

[31] Y. E. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence O(1/k2). Doklady
AN SSSR, 269:543–547, 1983.

[32] Y. E. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming, 103:127–152, 2005.
[33] R. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. The Journal of Risk, 2:21–41, 2000.
[34] H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar. A column generation approach to radiation therapy treatment

planning using aperture modulation. SIAM Journal on Optimization, 15(3):838–862, 2005.
[35] A. G. S. Shalev-Shwartz and O. Shamir. Large-scale convex minimization with a low rank constraint. In the 28th

International Conference on Machine Learning, 2011.
[36] C. Shen, J. Kim, L. Wang, and A. van den Hengel. Positive semidefinite metric learning using boosting-like algorithms.

Journal of Machine Learning Research, 13:1007–1036, 2012.

27

