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Closing Gaps in Asymptotic Fair Division
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We study a resource allocation setting wherem discrete items are to be divided among n agents with additive

utilities, and the agents’ utilities for individual items are drawn at random from a probability distribution.

Since common fairness notions like envy-freeness and proportionality cannot always be satisfied in this

setting, an important question iswhen allocations satisfying these notions exist. In this paper, we close several

gaps in the line of work on asymptotic fair division. First, we prove that the classical round-robin algorithm

is likely to produce an envy-free allocation provided thatm = Ω(n logn/log logn), matching the lower bound

from prior work. We then show that a proportional allocation exists with high probability as long asm ≥ n,
while an allocation satisfying envy-freeness up to any item (EFX) is likely to be present for any relation

betweenm and n. Finally, we consider a related setting where each agent is assigned exactly one item and

the remaining items are left unassigned, and show that the transition from non-existence to existence with

respect to envy-free assignments occurs atm = en.

1 INTRODUCTION

One of the most frequently occurring tasks in our society is that of allocating scarce resources
among interested agents or entities. Indeed, whether it be apportioning government funds among
public organizations, allotting office space to research groups in a university, or assigning houses
to residents of a city, one is faced with the decision of how to best allocate the limited resource.
A central concern when making such decisions is fairness: it is desirable that all agents view the
share they receive as fair.
Among the plethora of fairness notions that have been proposed in the literature, perhaps the

two best-known ones are envy-freeness and proportionality. An allocation is said to be envy-free if
it does not induce envy between any pair of agents, and proportional if it gives every agent at least
1/n of their value for the entire resource, where n denotes the number of agents among whom
the resource is divided. When the resource to be allocated is divisible, such as advertisement space
or broadcast time, it is known that envy-free and proportional allocations are guaranteed to exist
[Dubins and Spanier, 1961, Stromquist, 1980]. However, in many situations we need to allocate
indivisible resources like houses, cars, electronics, andmusical instruments. For such discrete items,
neither envy-freeness nor proportionality can always be satisfied; this can be most easily seen
when two quarrelling siblings try to divide a single toy between themselves.

In light of this negative observation, an important question is when allocations satisfying these
and other fairness notions are likely to exist. Dickerson et al. [2014] were the first to address this
question: under the assumption that utilities are additive and each agent’s utilities for individual
items are drawn from probability distributions, they established that an envy-free allocation is
present with high probability when the number of items m is at least Ω(n logn), but not when
m = n + o(n).1 Manurangsi and Suksompong [2019] further refined these bounds by exhibiting
that existence is in fact likely as long as m ≥ 2n if m is divisible by n, but unlikely even when
m = Θ(n logn/log logn) ifm is not “almost divisible”2 by n. Suksompong [2016] investigated the
asymptotic existence of proportional allocations—which are weaker than envy-free allocations
under the additivity assumption—and showed that such allocations occur with high probability
provided that eitherm is a multiple of n orm = ω(n).

1Whenm < n, any allocation necessarily leaves some agent empty-handed, so no allocation can be envy-free or propor-

tional provided that each agent has a positive utility for every item.
2This means thatm − ℓ is not divisible by n for all ℓ ∈ {−no(1), . . . , no(1) }.

http://arxiv.org/abs/2004.05563v1
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In this paper, we present several new results on asymptotic fair division and in the process close
a number of gaps left open by previous work. We assume that agents are endowed with additive
utilities, and the utility of each agent for each item is drawn independently from a continuous
distributionD supported on [0, 1]whose probability density function is bounded above and below.
We say that an event happens “with high probability” if the probability that it happens converges
to 1 as n goes to infinity.

• First (Section 3), we show that when m = Ω(n logn/log logn), the round-robin algorithm,
which lets the agents take turns picking their favorite item from the remaining items, outputs
an envy-free allocationwith high probability. This improves upon the aforementioned upper
bound ofm = Ω(n logn) and, perhaps more importantly, matches the non-existence result in
the case thatm is not “almost divisible” by n. Hence, except for the case wherem is “almost
divisible” by n, our result essentially resolves the question of when envy-free allocations
exist. Furthermore, our result gives a separation between the round-robin allocation and the
welfare-maximizing allocation: while the latter is likely to be envy-free whenm = Ω(n logn)
[Dickerson et al., 2014], it is unlikely to be even proportional, let alone envy-free, when
m = o(n logn) [Manurangsi and Suksompong, 2019].
• Second (Section 4), we show that if the distribution D has mean at most 1/2,3 a proportional
allocation exists with high probability as long asm ≥ n; this completely closes the gap for
propotionality with respect to such distributions (cf. footnote 1). The result form ≥ 2n is ob-
tained by using the round-robin algorithm and generalizes a prior result of Amanatidis et al.
[2017], which holds only when D is the uniform distribution on [0, 1]. On the other hand,
the case n ≤ m ≤ 2n is handled using a matching-based algorithm inspired by previous
work.
• Third (Section 5), we consider envy-freeness up to any item (EFX): an allocation satisfies this
property if any envy that an agent has towards another agent can be eliminated by remov-
ing any item from the latter agent’s bundle [Caragiannis et al., 2019b]. While it is currently
an important open problem whether an EFX allocation always exists, we show that such
allocations are likely to exist for any relation between m and n. This complements recent
lines of work which show the (non-asymptotic) existence of approximate EFX allocations
[Amanatidis et al., 2020, Plaut and Roughgarden, 2018] and exact EFX allocationswhen items
can be discarded [Caragiannis et al., 2019a, Chaudhury et al., 2020b].
• Fourth (Section 6), we analyze the related but slightly different setting of assignments, also
known as house allocation, where each agent is assigned exactly one item and the remaining
items are left unassigned. In this setting, Gan et al. [2019] proved that an envy-free assign-
ment is present with high probability ifm = Ω(n logn), and left open the question of where
the transition between non-existence and existence occurs. We essentially settle this ques-
tion by showing that this transition occurs atm = en: for any constant ε > 0, an envy-free
allocation is likely to exist ifm/n ≥ e + ε , and unlikely to exist ifm/n ≤ e − ε .

Besides closing the gaps themselves, our results also reveal qualitative insights on the relative
fairness guarantees provided by different algorithms. For example, the classical round-robin algo-
rithm performs optimally with respect to envy-freeness, whereas a matching-based algorithm is
better suited for proportionality when the number of items is small.

1.1 Further Related Work

Fair division is a fascinating topic whose formal study stretches back over half a century [Steinhaus,
1948]; see the books by Brams and Taylor [1996] and Moulin [2003] for an overview of its long

3We comment on the necessity of this condition in Section 4.
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and intriguing history. While early work in the subject focused on allocating divisible resources (a
problem often referred to as cake cutting), the fair allocation of indivisible resources has attracted
substantial interest from different research communities in the last few years [Markakis, 2017,
Moulin, 2019, Thomson, 2016]. After the work of Dickerson et al. [2014] that initiated the study of
asymptotic fair division, Kurokawa et al. [2016] and Farhadi et al. [2019] established the probabilis-
tic existence of allocations satisfying a weakening of proportionality calledmaximin share fairness,
the latter work also allowing agents to have unequal entitlements. Manurangsi and Suksompong
[2017] extended Dickerson et al.’s results on envy-freeness to a more general setting where items
are allocated to groups instead of to individual agents.
In addition to EFX, another (weaker) relaxation of envy-freeness that has been extensively stud-

ied is envy-freeness up to one item (EF1), which requires that any envy that an agent has towards
another agent can be eliminated by removing some item from the latter agent’s bundle [Budish,
2011, Lipton et al., 2004]. Unlike EFX, whose guaranteed existence remains an open question, EF1
can be easily attained for additive utilities using the round-robin algorithm.

2 PRELIMINARIES

In our model, a setM = [m] of indivisible items is to be allocated to a set N = [n] of agents, where
[k] := {1, 2, . . . ,k} for any positive integer k . Each agent i ∈ N has a utility ui (j) ≥ 0 for each
item j ∈ M . We assume without loss of generality that ui (j) ∈ [0, 1] for all i, j , since otherwise
we can simply scale down the utilities by their maximum. The utilities are additive, meaning that
ui (M ′) =

∑
j∈M′ ui (j) for all M ′ ⊆ M . Additivity is a common assumption in fair division; in

particular, to the best of our knowledge, it is assumed in all of the works on asymptotic fair division
thus far.
A bundle refers to any subset M ′ ⊆ M of items. An allocation is a partition of the items into n

bundles (M1, . . . ,Mn), where agent i receives bundle Mi . An allocation is said to be envy-free if
ui (Mi ) ≥ ui (Mi ′) for all i, i ′ ∈ N , and envy-free up to any item (EFX) if ui (Mi ) ≥ ui (Mi ′\{j}) for
all i, i ′ ∈ N and all j ∈ Mi ′ . For the sake of convenience, when the allocation under consideration
is clear, we say that agent i is envy-free (resp., EFX) with respect to agent i ′ if the corresponding
inequality is satisfied for i and i ′, and that agent i is envy-free (resp., EFX) if the corresponding
inequality is satisfied for i and all i ′ ∈ N . An allocation is said to be proportional if ui (Mi ) ≥
ui (M)/n for all i ∈ N .4

For agents i ∈ N and items j ∈ M , the utilities ui (j) are drawn independently from a given dis-
tribution D supported on [0, 1]. A distribution is said to be non-atomic if it does not put positive
probability on any single point. For a non-atomic distribution D, we denote by FD and fD the cu-
mulative distribution function (CDF) and the probability density function (PDF) ofD respectively.
Throughout this work, the assumption that we place on the distributions we consider is that their
PDFs are bounded, as stated more precisely below.

Definition 2.1. For α , β > 0, we say that a distribution D supported on [0, 1] is (α , β)-PDF-
bounded if D is non-atomic and α ≤ fD(x) ≤ β for all x ∈ [0, 1]. We say that D is PDF-bounded if
it is (α , β)-PDF-bounded for some α , β > 0.

It follows from the definition that any (α , β)-PDF-bounded distribution must have α ≤ 1 and
β ≥ 1. Note that many common distributions, including the uniform distribution on [0, 1] (hence-
forth denoted by U [0, 1]) and a normal distribution (with any mean and variance) truncated at 0
and 1 are PDF-bounded. For the sake of convenience, we may use the notations FX and fX for a

4When discussing proportionality, we will sometimes allow allocations to be partial, i.e., leave some items unallocated. It

is clear that if a partial allocation is proportional, then by allocating the remaining items arbitrarily, we obtain a complete

proportional allocation.
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random variable X to refer to the CDF and PDF of its associated distribution. Similarly, we say
that X is (α , β)-PDF-bounded if its distribution is (α , β)-PDF-bounded. In this paper, we think of
D as a fixed distribution that does not change with n andm; specifically, the parameters α , β are
constants and our big-O notation may include terms that depend on these parameters. We say that
an event happens with high probability if the probability that it happens approaches 1 as n → ∞.
Furthermore, when we write logn, the logarithm is assumed to have base 2.
In the round-robin algorithm, the agents take turns picking their favorite item from the remain-

ing items. We assume without loss of generality that the order in which the agents pick the items
is 1, 2, . . . ,n, 1, 2 . . . until the items run out. The t-th “round” consists of each agent’s t-th pick (so
in the last round, not every agent may get to pick).

2.1 Range-Conditioned Distributions

In the analysis of the round-robin algorithm,wewill often find ourselves dealing with distributions
restricted to some range. We provide some useful notation and facts for such distributions next.
For any distributionD and any real number c ∈ (0, 1], we useD≤c to denote the conditional dis-

tribution ofD on [0, c] (provided that FD(c) > 0). Notice that the CDF and PDF of this distribution
are

FD≤c (x) =
{
FD (x )
FD(c) if x ≤ c;
1 otherwise.

(1)

and

fD≤c (x) =
{
fD (x )
FD (c) if x ≤ c;
0 otherwise.

Now, let Y be a random variable generated as follows: we draw X from D≤c and set Y = X/c .
Then, from the above expression of fD≤c , we have

fY (y) =
{
c ·fD (cy)
FD(c) if y ≤ 1;

0 otherwise.

The following proposition follows almost immediately from the above expression. (Recall from
Definition 2.1 that a PDF-bounded distribution is implicitly assumed to be supported on [0, 1].)

Proposition 2.2. For any (α , β)-PDF-bounded distributionD and any c ∈ (0, 1], suppose thatY is
a random variable where we drawX fromD≤c and let Y = X/c . Then, Y is (α/β, β/α)-PDF-bounded.

Proof. Since D is (α , β)-PDF-bounded, we have α ≤ fD(x) ≤ β for all x ∈ [0, c]. This implies
that FD(c) ∈ [c · α , c · β]. Hence, for all y ∈ [0, 1], we have

fY (y) =
c · fD(cy)
FD(c)

≤ c · β
c · α =

β

α

and

fY (y) =
c · fD(cy)
FD(c)

≥ c · α
c · β =

α

β
.

Hence Y is (α/β, β/α)-PDF-bounded, as desired. �

For any real number c < 1 (such that FD(c) < 1), we also define D>c in a similar manner as
D≤c above.



Pasin Manurangsi and Warut Suksompong 5

2.2 (Anti-)Concentration Inequalities

We will need a few (anti-)concentration inequalities for sums of independent random variables.
Our first inequality is the standard Chernoff bound:

Lemma 2.3 (Chernoff bound). Let X1, . . . ,Xk be independent random variables taking values in

[0, 1], and let S := X1 + · · · + Xk . Then, for any δ ≥ 0,

Pr[S ≥ (1 + δ )E[S]] ≤ exp

(
−δ 2E[S]

3

)
and

Pr[S ≤ (1 − δ )E[S]] ≤ exp

(
−δ 2E[S]

2

)
.

Our next inequality is a sharpening of (the first case of) the above Chernoff bound for a certain
regime. The formal statement of the bound is stated below; we note here that the important case
is when we would like to bound Pr[Y1 + · · · + Yr ≥ r − O(1)]. In this case, the Chernoff bound5

gives an n−Ω(1) bound only when r = Ω(logn), whereas the following inequality gives an n−Ω(1)

bound even when r = Ω(logn/log logn) (by letting c = O(1) and d = r
2c ). This log logn saving in

r is precisely what will allow us to establish the (asymptotically) tight bound for the existence of
envy-free allocations, which we do in Section 3.

Lemma 2.4. Let r , c,d be any positive integers such that r ≥ cd , and let Y1, . . . ,Yr be independent
random variables that are (α̃ , β̃)-PDF-bounded. Then, we have

Pr[Y1 + · · · + Yr ≥ r − c] ≤ 2r

(
β̃

d

)r−cd
.

Proof. The inequality is trivial if β̃ > d , so we may assume that β̃ ≤ d . Let S denote the set of
indices i such that Yi ≤ 1− 1

d
. If Y1 + · · · +Yr ≥ r − c , we must have |S | ≤ cd . As a result, by union

bound, we have

Pr[Y1 + · · · + Yr ≥ r − c] ≤
∑

S⊆[r ], |S |≤cd
Pr

[
∀i < S,Yi > 1 − 1

d

]

≤
∑

S⊆[r ], |S |≤cd

(
β̃

d

)r−|S |

≤ 2r

(
β̃

d

)r−cd
,

as claimed. �

Our last inequality is of the opposite nature from the above bounds: it says that the probability
that X1 + · · · + Xk is “far” from its expectation is still large (i.e., anti-concentration).

Lemma 2.5. Let X1, . . . ,Xk be independent random variables sampled from D whose support is a

subset of [0, 1], and let S := X1 + · · · + Xk . Suppose that D has variance σ 2 > 0 and mean at most

1/2. Then,
Pr

[
S ≤ k

2
− 0.01σ

√
k

]
> 0.49 −O

(
1
√
k

)
,

5In particular, we may apply the first inequality in Lemma 2.3 with k = r (so E[S ] is linear in r ) and δ = O (1).
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where the constant in the big-O notation can depend on σ .

Proof. Let µ ≤ 1/2 denote the mean ofD. Consider S ′ := 1

σ
√
k
(S −k · µ). From the Berry-Esseen

theorem [Berry, 1941, Esseen, 1942], the CDF of S ′ and that of the standard normal distribution Φ

differ by at most O(1/
√
k) pointwise. It follows that

Pr

[
S ≤ k

2
− 0.01σ

√
k

]
≥ Pr

[
S ≤ k · µ − 0.01σ

√
k
]

= Pr[S ′ ≤ −0.01]

≥ Φ(−0.01) −O
(
1
√
k

)

> 0.49 −O
(
1
√
k

)
. �

2.3 An Inequality for the Round-Robin Algorithm

Wenow present a lemma related to the round-robin algorithm. To state this lemma, let us introduce

another notation: for any distribution D and any positive integer k , we use Dmax(k) to denote the
distribution of the maximum of k independent random variables distributed according to D.
In the round-robin algorithm, consider any agent i and let Xr be his value for the item that he

gets in round r (and X0 = 1 for convenience). We will show later (in Lemma 3.2) that X1,X2, . . .

are distributed as if they were drawn from the following process: for r = 1, 2, . . . , sample Xr from

Dmax(m+1−i−n(r−1))
≤Xr−1

. We often want to show that Xr is large for a specified r . We make a generic

calculation below, which will be used multiple times in this work.

Lemma 2.6. Let T be a positive integer and let s1, . . . , sT be any positive integers. Consider the

random variablesX0 = 1 andX1, . . . ,XT generated by the following process: for every t = 0, 1, . . . ,T−
1, sample Xt+1 according toDmax(st+1)

≤Xt
. IfD is (α , β)-PDF-bounded, then for any parameter p ∈ (0, 1)

we have

Pr

[
XT ≥ 1 − β

α
· T ln(T/p)

s

]
≥ 1 − p,

where s := min{s1, . . . , sT }.

Proof. The inequality trivially holds if the expression 1 − β

α
· T ln(T /p)

s
is negative, so we may

assume that this expression is nonnegative, which means that 1 − β

α
· ln(T /p)

s
is also nonnegative.

For every t = 0, 1, . . . ,T −1, Proposition 2.2 implies that if we sample Z ∼ D≤Xt and let Y = Z/Xt ,
then Y is (α/β, β/α)-PDF-bounded. As a result, we have

Pr

[
Z <

(
1 − β

α
· ln(T/p)

s

)
Xt

]
= Pr

[
Y < 1 − β

α
· ln(T/p)

s

]

(From (α/β, β/α)-PDF-boundedness of Y ) ≤ 1 − α
β
· β
α
· ln(T/p)

s

= 1 − ln(T/p)
s
.

From the above inequality and since Xt+1 is sampled from Dmax(st+1)
≤Xt

, we have

Pr

[
Xt+1 <

(
1 − β

α
· ln(T/p)

s

)
Xt

]
≤

(
1 − ln(T/p)

s

)st+1
≤ e−

ln(T /p)
s ·st+1 ≤ e− ln(T /p) = p/T ,
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where the second inequality follows from the well-known inequality 1− x ≤ e−x , which holds for
any real number x .

Hence, by union bound, with probability at least 1 − p, we have Xt+1 ≥
(
1 − β

α
· ln(T /p)

s

)
Xt for

all t = 0, 1, . . . ,T − 1. When this is the case, we get

XT ≥
(
1 − β

α
· ln(T/p)

s

)T
X0 ≥ 1 − β

α
· T ln(T/p)

s
,

where we use Bernoulli’s inequality for the second inequality and the assumption that X0 = 1.
This completes the proof of the lemma. �

3 ENVY-FREENESS

In this section, we consider envy-freeness. Our main result is the following theorem:

Theorem 3.1. Suppose that D is PDF-bounded. Form = Ω

(
n logn
log logn

)
, the round-robin algorithm

outputs an envy-free allocation with high probability.

Since an envy-free allocation is unlikely to exist even when m = Θ(n logn/log logn) if m
is not “almost divisible” by n and the constant in the asymptotic notation is sufficiently small
[Manurangsi and Suksompong, 2019], the bound in Theorem 3.1 is asymptotically tight.
Let us introduce an additional notation, which we will use in this section as well as in Section 4.

For any agents i, i ′, denote by X i,i ′

t agent i’s utility for the t-th item received by agent i ′ in the

round-robin algorithm, and let X i,i ′

0 = 1 for convenience. When i = i ′, we abbreviate X i,i ′

t as

X i
t . The following lemma, which was alluded to before Lemma 2.6, allows us to consider a simple

random process that generates (X i,i ′

t )i,i ′∈[n],t ∈
[
1+

⌊
m−i′
n

⌋ ] rather than dealing with the round-robin

algorithm directly.

Lemma 3.2. (X i,i ′

t )i,i ′∈[n],t ∈
[
1+

⌊
m−i′
n

⌋ ] has the same distribution as if it is generated as follows:

(1) For t = 1, . . . , ⌈m/n⌉:
(a) For i = 1, . . . ,min{n,m − (t − 1)n}:

(i) Sample X i
t ∼ D

max(m+1−(t−1)n−i )
≤X i

t−1
.

(ii) For every 1 ≤ i ′ < i , sample X i ′,i
t ∼ D≤X i′

t
.

(iii) For every i < i ′ ≤ n, sample X i ′,i
t ∼ D≤X i′

t−1
.

The proof of Lemma 3.2 is deferred to the appendix. We note here that each loop in Step 1a
should be thought of as agent i choosing his/her t-th item. Observe also thatm + 1 − (t − 1)n − i
is simply the number of remaining items before agent i’s choice is made, and Step 1(a)i can be
thought of as picking the best among these items.
Before we prove Theorem 3.1, let us give the high-level intuition behind the proof. Consider any

pair of agents i, i ′. If i < i ′, then clearly i does not envy i ′, so we focus on the case where i > i ′.
For i to envy i ′, we must have ui (Mi ′) − ui (Mi ) > 0. Note that ui (Mi ′) − ui (Mi ) is at most

X i,i ′

1 − (X
i
1 − X

i,i ′

2 ) − (X
i
2 − X

i,i ′

3 ) − · · · − (X
i
z−1 − X i,i ′

z ),

where z is the last round in which i ′ picks an item. In other words,X i,i ′

1 is the amount that i ′ “gains”

with her first item from i’s viewpoint, and (X i
1 −X

i,i ′

2 ), (X i
2 −X

i,i ′

3 ), . . . , (X i
z−1 −X

i,i ′
z ) are the gains

of i that i will use to try to “catch up”, so that i does not envy i ′ in the end. Note that the first gain

X i,i ′

1 of i ′ is rather small, i.e., no more than 1. Moreover, each of the gains (X i
t −X

i,i ′

t+1) can be written
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as X i
t (1 − X

i,i ′

t+1/X i
t ). Lemma 2.6 ensures that these “scaling factors” X i

t are relatively large, which
allows us to apply the concentration of sums of independent random variables from Lemma 2.4 to

X i,i ′

t+1/X i
t . The proof below implements this idea with the appropriate selection of parameters.

Proof of Theorem 3.1. Suppose that D is (α , β)-PDF-bounded and thatm ≥ 106β̃ log(106β̃) ·
n log(10n)
log log(10n) , where β̃ := β/α . Consider any pair of distinct agents i, i ′. We will show that the proba-

bility that i envies i ′ is at mostO(1/m3). The union bound then allows us to immediately arrive at
the desired result.
Observe that, if i < i ′, then clearly i does not envy i ′. As a result, we may henceforth assume that

i > i ′. In this case, from Lemma 3.2, we may view the values X i,i ′

1 ,X
i
1,X

i,i ′

2 , . . . as being generated
by the following process:

(1) Randomly sample X i,i ′

1 from D.

(2) For t = 1, 2, . . . , 1 +
⌊
m−i
n

⌋
:

(a) Randomly sample X i
t from D

max(m+1−i−n(t−1))
≤X i

t−1
.

(b) Randomly sample X i,i ′

t+1 from D≤X i
t
.

Note that in the last iteration it may be possible that X i,i ′

t+1 is not actually selected in the round-
robin algorithm if all the items are already assigned. In this case we overestimate i’s value for i ′’s
bundle; hence, we will still get an upper bound on the probability that i envies i ′.

Let us also define Y i,i ′

t := X i,i ′

t+1/X i
t . Recall that i does not envy i

′ if ui (Mi ) ≥ ui (Mi ′). To bound
the probability that this happens, let us rearrange ui (Mi ) − ui (Mi ′) as

ui (Mi ) − ui (Mi ′) =
©
«
1+⌊m−in ⌋∑

t=1

X i
t
ª®¬
− ©

«
2+⌊m−in ⌋∑

t=1

X i,i ′

t
ª®¬

=
©«
1+⌊m−in ⌋∑

t=1

(X i
t − X i,i ′

t+1)
ª®
¬
− X i,i ′

1

≥ ©
«
1+⌊m−in ⌋∑

t=1

X i
t · (1 − Y i,i ′

t )
ª®¬
− 1. (2)

Let T := 100
⌈
β̃ · logm

log logm

⌉
. Recall from Definition 2.1 that β̃ = β/α ≥ 1, and notice that

m/2 − nT = n
(m
4n
+

m

4n
−T

)
(
Fromm ≥ 106β̃ log(106β̃) · n log(10n)

log log(10n)

)
≥ n

(
1000β̃

log(10n)
log log(10n) + 1000β̃ log(m/n) −T

)

(From 1 ≤ log log(10n) ≤ log logm) ≥ n
(
1000β̃

log(10n)
log logm

+ 1000β̃
log(m/n)
log logm

−T
)

= n

(
1000β̃ · log(10m)

log logm
−T

)
≥ 0, (3)
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where in the first inequality we also use the fact that x
log x is non-decreasing in the range x ∈ [e,∞),

which implies that m/n
log(m/n) ≥

106 β̃ log(106 β̃ )
log(106 β̃ log(106 β̃ )) ≥ 4000β̃ . This in turn implies that T ≤ m

2n ≤ 1 +⌊
m−i
n

⌋
, i.e., that X i,i ′

T
,X i

T
are well-defined.

We now consider two “bad” events:

E1 : The event that Y i,i ′

1 + · · · + Y i,i ′

T
≥ T − 2.

E2 : The event that X i
T
< 1/2.

Let us bound the probability that each event occurs. For the event E1, consider any x i1, . . . , x
i
T
∈

[0, 1]. Conditioned on X i
1 = x i1, . . . ,X

i
T = x iT , Proposition 2.2 implies that Y i,i ′

1 , . . . ,Y
i,i ′

T are

(α/β, β̃)-PDF-bounded, and observe that they are independent. Hence, by applying Lemma 2.4
with r = T , c = 2, and d = T/4, we have

Pr[E1 occurs | X i
1 = x

i
1, . . . ,X

i
T = x

i
T ] ≤ 2T

(
β̃ · 4

T

)T /2

=

(
β̃ · 16

T

)T /2

(From our choice ofT ) ≤
(
log logm

logm

)6 logm
log logm

(Since log logm ≤
√
logm for anym ≥ 106) ≤

(
1√
logm

)6 logm
log logm

=

1

m3
.

Hence, we have

Pr[E1 occurs]

=

∫ 1

0
· · ·

∫ 1

0
Pr[E1 occurs|X i

1 = x
i
1, . . . ,X

i
T = x

i
T ] · fX i

1 , ...,X
i
T
(x i1, . . . , x iT ) dx i1 · · ·dx iT

≤
∫ 1

0
· · ·

∫ 1

0

1

m3
· fX i

1 , ...,X
i
T
(x i1, . . . , x iT ) dx i1 · · ·dx iT

=

1

m3
,

where fX i
1 , ...,X

i
T
denotes the PDF of the joint distribution over X i

1, ...,X
i
T
(which are not indepen-

dent random variables).
As for the event E2, notice that the sequence X i

0,X
i
1, . . . ,X

i
T
is sampled in the same way as that

in Lemma 2.6 with st =m + 1− i −n(t − 1) for t = 1, . . . ,T . Observe also that, for sufficiently large

m, we have
β
α
· T ln(T ·m3)

m/2 ≤ 1/2 and s1, . . . , sT ≥ m + 1 − i − n(T − 1) ≥ m − nT ≥ m/2, where
the last inequality follows from (3). As a result, by plugging in Lemma 2.6 with p = 1/m3, we have
Pr[E2 occurs] ≤ 1

m3 .
Hence, by union bound, the probability that at least one of the two bad events occurs is at most

O(1/m3). Now, when neither E1 nor E2 occurs, we can further bound (2) as

ui (Mi ) − ui (Mi ′) ≥
©«
1+⌊m−in ⌋∑

t=1

X i
t · (1 − Y i,i ′

t )
ª®
¬
− 1
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≥
(
T∑
t=1

X i
t · (1 − Y i,i ′

t )
)
− 1

(since E2 does not occur) ≥
(
1

2

T∑
t=1

(1 − Y i,i ′

t )
)
− 1

(since E1 does not occur) ≥
(
1

2
· 2

)
− 1 = 0,

meaning that i does not envy i ′. As a result, the probability that i does not envy i ′ is at least
1 −O(1/m3). By taking a union bound over all pairs i, i ′, we have that the allocation is envy-free
with probability at least 1 −O(1/m), completing the proof. �

4 PROPORTIONALITY

In this section, we investigate another fundamental fairness notion, proportionality, and establish
the following result:

Theorem 4.1. Suppose that D is PDF-bounded and has mean at most 1/2. For anym ≥ n, there is
a polynomial-time algorithm that outputs a proportional allocation with high probability.

The assumption thatD hasmean atmost 1/2 is necessary to guarantee the existence of a propor-
tional allocation for allm ≥ n with high probability. To see this, suppose that D has mean 1/2+ ε
for some constant ε > 0, and letm = 2n − 1. In this case, the expected value of u1(M), . . . ,un(M)
is n(1 + 2ε − o(1)); by standard Chernoff and union bounds, we have that with high probability,
ui (M) > n simultaneously for all i . When this happens, any allocation cannot be proportional—
indeed, it is not proportional for an agent who receives at most one item (since each item has value
at most 1), and such an agent always exists due to the pigeonhole principle.
The proof of Theorem 4.1 will be divided into two parts according to the range ofm. For the case

m ≥ 2n we will again employ the round-robin algorithm (Theorem 4.2), while the case n ≤ m ≤ 2n
will be handled using a matching-based algorithm (Theorem 4.4).

4.1 The Casem ≥ 2n

We begin by showing that the allocation produced by the round-robin algorithm, in addition to sat-
isfying EF1 with certainty and envy-freeness with high probability, is also likely to be proportional
even for a modest number of items.

Theorem 4.2. Suppose that D is PDF-bounded and has mean at most 1/2. When m ≥ 2n, the
round-robin algorithm outputs a proportional allocation with high probability.

Theorem4.2 generalizes a result of Amanatidis et al. [2017], who showed an analogous existence
but only for the uniform distributionU [0, 1]. We remark here that the requirementm ≥ 2n is tight.
In particular, suppose that m = 2n − 1 and that D = U [0, 1]. Then there is at least a constant
probability that un(M) > n. When this happens, the round-robin algorithm will surely fail, as it
only assigns one item (of value at most 1) to the last agent n.
To illustrate the high-level idea of the proof, it is most useful to focus on the casem = 2n and
D = U [0, 1]. In this case, Lemma 2.6 implies that with high probability, every agent receives an

item that she values 1−Õ(1/n) in the first round.6 For simplicity of the discussion, let us ignore the

Õ(1/n) term and assume that each agent receives an item of value 1 in the first round. Now, from

Chernoff bound, we have that every agent is likely to value the whole setM at mostn(1+Õ(1/√n)).
6Here we use the notation Õ to hide a multiplicative factor O ((logn)c ) for some constant c .
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As a result, in order for the allocation to be proportional, it suffices for each agent to receive an item

of value at least Õ(1/
√
n) in the second round. For the last agent n, the utility she receives in the

second round is, roughly speaking, drawn fromU [0, 1]; hence, the “bad” event for this agent occurs
with probability Õ(1/√n). For the second-to-last agent n − 1, her item’s value in the second round

is approximately drawn from Dmax(2); hence, the bad event for this agent occurs with probability

Õ(1/n). Similarly, for each of the remaining agents, the probability of the bad event occurring is

at most Õ(1/n1.5). Taking a union bound over all agents yields the desired result.
The formal proof follows the idea outlined above, with some additional steps to ensure that

we can appropriately deal with the more general setup. For instance, in the casem = 2.5n, it no

longer suffices for agent n to receive value Õ(1/√n) in the second round, because now un(M)/n is
1.25 ± o(1) instead of 1 ± o(1). However, this is in fact an easier case: Lemma 2.6 already implies
that the second item that each agent receives is also of value 1 − o(1).

Proof of Theorem 4.2. When m = Ω

(
n logn
log logn

)
, Theorem 3.1 already implies that the round-

robin algorithm produces an envy-free (and therefore proportional) allocation with high probabil-
ity. Hence, it suffices to prove the statement for the case wherem = O(n logn).
Suppose that D is an (α , β)-PDF-bounded distribution with mean at most 1/2. One can check

using Chernoff and union bounds that with high probability, we have

ui (M) ≤
m

2
+ 10

√
m logn (4)

for all agents i ∈ N . We will henceforth assume that (4) holds for all i ∈ N .
Let us writem as nr + q, where r = ⌊m/n⌋ ≥ 2 and r = O(logn). We will consider two cases,

depending onwhetherq ≤ n0.1. (Note that the threshold forq can be any value that isω(log2 n) and
o(n); we simply select n0.1 for concreteness.) Define the notation X i

t as in Section 3. By Lemma 3.2,
the sequence X i

0,X
i
1, . . . ,X

i
r is sampled in the same way as that in Lemma 2.6 with st = m + 1 −

i − n(t − 1) ≥ q for t = 1, . . . , r .

Case 1: q ≥ n0.1. Consider an agent i . Substituting p = 1/n2 in Lemma 2.6 implies that the
following holds with probability at least 1 − 1/n2:

X i
r ≥ 1 − β

α
· r ln(r/p)

q
= 1 −O

(
log2 n

n0.1

)
.

This means that the agent receives an item of value at least 1 −O(log2 n/n0.1) in each of the first
r rounds. As a result, i’s utility for his bundle is at least r

(
1 −O(log2 n/n0.1)

)
. Furthermore, (4)

ensures that ui (M)/n is at most

m

2n
+O

(√
m logn

n

)
≤ r + 1

2
+O

(
logn
√
n

)
,

where we use our assumption m = O(n logn). Since r ≥ 2, we have r > r+1
2 . It follows that for

sufficiently large n, the allocation is proportional for i . By taking a union bound over all agents,
we conclude that the allocation is proportional with high probability.

Case 2: q < n0.1. In this case, we will have to give a more refined bound which differs for each
agent i ∈ N , with the agents near the end of the round-robin ordering having a worse probability
bound. This bound is stated formally below.

Claim 4.3. For each i ∈ N , the allocation output by the round-robin algorithm is proportional for

i with probability at least 1 −O(1/nmin{0.05(n−i+1),2}).
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Proof. Observe that st ≥ n for t = 1, . . . , r − 1. Substituting p = 1/n2 in Lemma 2.6 implies that
the following holds with probability at least 1 − 1/n2:

X i
r−1 ≥ 1 − β

α
· r ln(r/p)

n
= 1 −O

(
log2 n

n0.1

)
. (5)

This means that agent i receives an item of value at least 1 − O(log2 n/n0.1) in each of the first
r − 1 rounds. Hence, from the first r − 1 rounds, the agent already has a bundle with utility at least
(r − 1)

(
1 −O(log2 n/n0.1)

)
. From (4), it suffices for the agent to receive the following utility in the

r -th round for him to consider the allocation to be proportional:(
m

2n
+

10
√
m logn

n

)
− (r − 1)

(
1 −O

(
log2 n

n0.1

))

(Fromm = O(n logn)) ≤
(
nr + q

2n
+O

(
logn
√
n

))
− (r − 1)

(
1 −O

(
log2 n

n0.1

))

(From r ≥ 2) ≤ q

2n
+O

(
logn
√
n

)
+ (r − 1) ·O

(
log2 n

n0.1

)

(From q < n0.1 and r = O(logn)) ≤ O
(
log3 n

n0.1

)
.

Recall from Lemma 3.2 that the item that agent i receives in the r -th round has value distributed
as the maximum ofm + 1− i −n(r − 1) ≥ n − i + 1 i.i.d. random variables fromD≤X i

r−1
. As a result,

conditioned on (5) occurring, the probability that the allocation is proportional for i is at least

1 − FDmax(n−i+1)
≤X i

r−1

(
O

(
log3 n

n0.1

))
= 1 −

(
FD≤X i

r−1

(
O

(
log3 n

n0.1

)))n−i+1

(From Proposition 2.2) ≥ 1 −
©
«
β

α
·
O

(
log3 n

n0.1

)
X i
r−1

ª®®¬

n−i+1

(Since we condition on (5)) ≥ 1 −
©
«
β

α
·

O
(
log3 n

n0.1

)
1 −O

(
log2 n

n0.1

) ª®®
¬

n−i+1

≥ 1 −O(n)−0.05(n−i+1)

≥ 1 −O(n)−min{0.05(n−i+1),2}
= 1 −O

(
n−min{0.05(n−i+1),2}

)
.

From this and the fact that (5) occurs with probability at least 1 − O(1/n2), we get the desired
claim. �

Thus, by union bound, the allocation produced by the round-robin algorithm fails to be propor-
tional with probability at most

n∑
i=1

O
(
1/nmin{0.05(n−i+1),2}

)
≤

n−40∑
i=1

O(1/n2) +
n∑

i=n−39
O(1/n0.05) = O(1/n0.05) = o(1),

which concludes Case 2 and therefore our proof. �
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4.2 The Case n ≤ m ≤ 2n

We now address the case where the number of items is between n and 2n. As discussed at the
beginning of Section 4.1, the round-robin algorithm fails in this regime. Nevertheless, we devise
an alternative algorithm that computes a proportional allocation with high probability using some
ideas from previous work together with an additional new idea.

Theorem 4.4. Suppose that D is PDF-bounded and has mean at most 1/2. For n ≤ m ≤ 2n, there
is a polynomial-time algorithm that outputs a proportional allocation with high probability.

We first explain the intuition leading up to the algorithm. In prior work of Suksompong [2016],
a matching-based algorithm is used to find proportional allocations. The most basic case of the
algorithm is the casem = n, where the algorithm can be stated as follows:

Algorithm 1 Proportional Algorithm form = n

1: procedure ThresholdMatchingτ (N ,M , {ui }i ∈N )
2: Let E≥τ ← {(i, j) ∈ N ×M | ui (j) ≥ τ }.
3: if G≥τ = (N ,M , E≥τ ) contains a perfect matching then
4: return any perfect matching ofG≥τ
5: else

6: return NULL

A classic result of Erdős and Rényi states that a random balanced bipartite graph is likely to

contain a perfect matching when the probability of each edge occurring is, say,
1.1 logn

n . We use the
notation G(a,b,p) to denote a distribution over bipartite graphs where the two vertex sets have
size a and b, and each edge occurs with probability p independently of other edges.

Lemma 4.5 (Erdős and Rényi [1964]). LetG = (A,B, E) be a graph sampled from the Erdős-Rényi

random bipartite graph distribution G(n,n,p)where p = (logn+ω(1))/n. Then, with high probability,
G contains a perfect matching.

Hence, by setting τ = 1 − 1.1 logn
αn

, Algorithm 1 produces, with high probability, an allocation in
which every agent has utility at least τ . From Chernoff bound, we also know that each agent likely

values the whole setM at most n
(
1
2 + Õ

(
1√
n

))
. As a result, the algorithm produces a proportional

allocation whenm = n is sufficiently large.
Notice here that the guaranteed lower bound of τ on each agent’s utility is quite strong. In

particular, if, say, m = 1.999n and we just run the above algorithm on the first m items, then
the resulting (partial) allocation is already proportional with high probability, because each agent
values the whole set M roughly 0.9995n ± o(n).

As a result, we are only left with the case wherem = (2 − o(1))n. For simplicity of discussion,
let us focus on the case m = 2n − 1. In this case, Algorithm 1 is not yet sufficient for us: recall
from the beginning of Section 4 that in this regime, there are likely to be agents who need at least
two items in order to be proportional. This motivates our algorithm, which consists of two stages.
Initially, we run Algorithm 1 on the first n items. We then use the remainingm − n items to help
“fix” the agents for whom the allocation is not yet proportional. In particular, we create a graph
where the left vertices correspond to these agents, the right vertices to the remainingm −n items,
and there is an edge between an agent and an item exactly when adding that item to the agent’s
bundle results in the bundle being proportional for that agent. The pseudocode of the algorithm
is presented as Algorithm 2.
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Algorithm 2 Proportional Algorithm for n ≤ m ≤ 2n

1: procedure TwoStageMatchingτ (N ,M , {ui }i ∈N )
2: LetM0 be the first n items inM , and letM1

= M \M0.
3: (M0

1, . . . ,M
0
n) ← ThresholdMatchingτ (N ,M , {ui }i ∈N ).

4: if (M0
1 , . . . ,M

0
n) = NULL then

5: return NULL
6: else

7: N violated ← {i ∈ N | ui (M0
i ) <

ui (M)
n
}.

8: Efix ← {(i, j) ∈ N violated ×M1 | ui (j) ≥ ui (M)
n
− ui (M0

i )}.
9: if Gfix

= (N violated,M1, Efix) contains a matching of size |N violated | then
10: (M1

1, . . . ,M
1
n) ← the allocation corresponding to the matching

11: return (M0
1 ∪M1

1 , . . . ,M
0
n ∪M1

n).
12: else

13: return NULL

Note that when the algorithm does not output NULL, it always outputs a proportional allocation.
Hence, to complete the proof of Theorem 4.4, it suffices to show that it rarely outputs NULL when
we set an appropriate value for the parameter τ , which we do in the following lemma.

Lemma 4.6. Suppose that D is an (α , β)-PDF-bounded distribution with mean at most 1/2. For
n ≤ m ≤ 2n, Algorithm 2 with τ = 1 − 1.1 logn

αn outputs NULL with o(1) probability.
Before we present a formal proof of Lemma 4.6, let us briefly discuss the intuition behind it. First

of all, we note that the graph Gfix is very dense—this is because the amount needed to “fix” each
agent i’s bundle (i.e., ui (M)/n − ui (M0

i ) ≤ ui (M)/n − τ ) is o(1). Hence, intuitively, the matching

in Gfix should exist as long as |N violated | < |M1 |. Now, notice that agent i can only belong to

N violated if ui (M)/n ≥ τ . Since E[ui (M)/n] ≤ 1 and τ = 1 − O
(
logn
n

)
, the probability that this

happens for each i should be 1/2 + o(1). (A slightly looser, but sufficient, bound will be derived
from Lemma 2.5.) As a result, |N violated | should be of size only around n/2, which is considerably
less than |M1 | =m − n = n − o(n).
To formalize the above ideas, we need an additional bound regarding the existence of matchings,

which is more tailored towards our application. It says that, if we sample a (non-balanced) random
bipartite graph (A,B, E), where A is slightly larger than B, with sufficiently large probability p,
then any subset S ⊆ A of size noticeably smaller than B is likely to contain a matching to B. The
bound is stated below; note that we do not attempt to optimize any parameters here, and instead
only prove a version which suffices for our application. For a graph G and a set S of vertices, we
denote by ZG (S) the set of vertices adjacent to at least one vertex in S .

Lemma 4.7. Let G = (A,B, E) be a graph sampled from the Erdős-Rényi random bipartite graph

distribution G(n,q,p), where p ≥ 0.5 and 0.9n ≤ q ≤ n. Then, with high probability, for every S ⊆ A
of size at most 0.6n, we have |ZG (S)| ≥ |S |.
Proof. We can bound the probability that the “bad event” occurs as follows:

Pr[∃S ⊆ A, |S | ≤ 0.6n, |ZG(S)| < |S |] ≤
⌊0.6n ⌋∑
i=1

Pr[∃S ⊆ A, |S | = i, |ZG (S)| ≤ i − 1]

=

⌊0.6n ⌋∑
i=1

Pr[∃S ⊆ A,T ⊆ B, |S | = i, |T | = i − 1,ZG (S) ⊆ T ]
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≤
⌊0.6n ⌋∑
i=1

∑
S⊆A,T ⊆B
|S |=i, |T |=i−1

Pr[ZG (S) ⊆ T ]

=

⌊0.6n ⌋∑
i=1

∑
S⊆A,T ⊆B
|S |=i, |T |=i−1

Pr[∀u ∈ S,v ∈ (B \T ), (u,v) < E]

=

⌊0.6n ⌋∑
i=1

∑
S⊆A,T ⊆B
|S |=i, |T |=i−1

∏
u ∈S,v ∈(B\T )

Pr[(u,v) < E]

≤
⌊0.6n ⌋∑
i=1

∑
S⊆A,T ⊆B
|S |=i, |T |=i−1

2−i (q+1−i )

=

⌊0.6n ⌋∑
i=1

(
n

i

) (
q

i − 1

)
2−i (q+1−i )

(From
(
n

i

)
≤ ni and q ≥ 0.9n) ≤

⌊0.6n ⌋∑
i=1

(nq)i2−0.3in .

For sufficiently largen, we have 20.1n ≥ n2. We can use this to further bound the above summation
as

⌊0.6n ⌋∑
i=1

(nq)i2−0.3in ≤
⌊0.6n ⌋∑
i=1

n2i2−0.3in ≤
⌊0.6n ⌋∑
i=1

2−0.2in ≤ 2−0.2n + 0.6n · 2−0.4n = O(2−0.2n),

which concludes our proof. �

With this setup ready, we can now proceed to the proof of Lemma 4.6.

Proof of Lemma 4.6. Let G≥τ = (N ,M0, E≥τ ) be the graph as defined in Algorithm 1 with our

threshold τ = 1 − 1.1 logn
αn

. As in the proof of Theorem 4.2, one can check that Chernoff and union
bounds imply that, with high probability, we have

ui (M) ≤
m

2
+ 10

√
m logn (6)

for all agents i ∈ N . Wewill henceforth assume that (6) holds for all i ∈ N . Furthermore, Lemma 4.5
immediately implies that a perfect matching in G≥τ exists with high probability; we will also
assume that this is the case from now on.
Let q =m − n (so 0 ≤ q ≤ n). We consider two cases, based on the value of q.

Case 1: q < 0.9n. For sufficiently large n, (6) implies that ui (M)/n ≤ 0.996 < τ for all i ∈
N . Hence, the partial allocation (M0

1 , . . . ,M
0
n) is already proportional for every agent, and the

algorithm outputs this allocation without going into the second stage.

Case 2: q ≥ 0.9n. In this case, we will need to consider two more “good” events. Let G1
≥0.5/β =

(N ,M1, E1≥0.5/β ) be such that (i, j) ∈ E1≥0.5/β if and only if ui (j) ≥ 0.5/β .

E1 : |N violated | ≤ 0.6n;
E2 : For every S ⊆ N of size at most 0.6n, we have |ZG1

≥0.5/β
(S)| ≥ |S |.
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Before we prove that E1 and E2 hold with high probability, let us argue that if they hold, then
the algorithm outputs a proportional allocation. To this end, first observe that since E1 and E2
hold, Hall’s marriage theorem implies that there exists a matching from N violated to M1 that uses
all vertices in N violated. Moreover, notice that for sufficiently large n, ui (M)/n, which is at most
1 + o(1) by (6), is less than 0.5/β + τ = (1 + 0.5/β) − o(1) for all i ∈ N . As a result, the aforemen-
tioned matching remains a matching in the graphGfix. The algorithm thus outputs a proportional
allocation as desired.
It remains to show that both E1 and E2 occur with high probability. This is obvious for E2, since

the graphG1
≥0.5/β is generated in exactly the same way as in Lemma 4.7 (with p = 1−FD(0.5/β) ≥

0.5).
As for E1, let us consider each agent i ∈ N . Let σ 2 > 0 be the variance of D. For sufficiently

large n, Lemma 2.5 implies that

Pr[ui (M)/n > τ ] = 1 − Pr[ui (M) ≤ nτ ]
= 1 − Pr [ui (1) + · · · + ui (m) ≤ n − (1.1 logn)/α]
≤ 1 − Pr

[
ui (1) + · · · + ui (m) ≤ m/2 − 0.01σ

√
m

]
≤ 0.51 +O(1/

√
m)

≤ 0.55,

where the first inequality follows from n ≥ m/2 and the fact that 1.1 logn/α = Θ(logn) is smaller
than 0.01σ

√
m = Θ(√n) for any sufficiently large n.

By Chernoff bound, with high probability, at most 0.6n agents i have ui (M)/n > τ . Only these
agents can be included into N violated. Hence, E1 holds with high probability.
Thus, the algorithm outputs a proportional allocation with high probability in both cases. �

5 ENVY-FREENESS UP TO ANY ITEM

In this section, we turn our attention to an important relaxation of envy-freeness: envy-freeness
up to any item (EFX). While the worst-case existence of EFX is an intriguing open problem, we
show that an EFX allocation is likely to exist for any relation between the number of agents and
the number of items:

Theorem 5.1. Suppose thatD is PDF-bounded. There is a polynomial-time algorithm that outputs

an EFX allocation with high probability.

Let r = ⌊m/n⌋ and q = m − nr . An EFX allocation obviously exists whenm ≤ n (by assigning
at most one item to each agent),7 so we may restrict our attention to the casem > n. Furthermore,

since an envy-free (and therefore EFX) allocation exists with high probability when r = Ω

(
logn

log logn

)
(see Section 3), or when r ≥ 2 and q = 0 [Manurangsi and Suksompong, 2019], we may assume
that r = O(logn) and q ≥ 1.
As with proportionality (Section 4), the existence of EFX allocations will be shown via two

kinds of algorithms: round-robin-based and matching-based. The former will work whenever the
remainder q is ω(1). On the other hand, for the case q = O(1), we in fact present two matching-
based algorithms: the first works for r ≥ 2 and the second specifically for r = 1. These three
algorithms and their corresponding proofs of correctness are given in Sections 5.1–5.3; we then
combine them to deduce Theorem 5.1 in Section 5.4.

7In fact, Amanatidis et al. [2020] showed that an EFX allocation always exists even whenm ≤ n + 2.
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5.1 Round-Robin-Based Algorithm for q = ω(1)
We start by describing the round-robin-based algorithm. The algorithm works in exactly the same
way as round-robin for the first r rounds: in each round, we let agents 1, 2, . . . ,n choose their
most preferred item in this order. However, in the final round, we reverse the order and let agents
n,n − 1, . . . ,n − q + 1 chooses their most preferred item in this order.

We show that ifq = ω(1), then this algorithm,whichwewill refer to as the round-robin algorithm
with reversed last round, is likely to produce an EFX allocation.

Theorem 5.2. With probability 1 −O(1/√q), the allocation output by the round-robin algorithm
with reversed last round is EFX.

Before we proceed to prove Theorem 5.2, let us note that using different agent orderings in the
algorithm is intuitively a fairer way of distributing items. For instance, by letting agent n pick first
in the last round, we somewhat “balance out” the unfairness of the previous rounds. On a more
formal level, it is also the case that the standard round-robin algorithm fails to give a guarantee as
in Theorem 5.2. A simple example is when r = 1 and q = Ω(n). In this case, the output allocation
is not EFX for agent n if his most preferred item was picked by one of the first q agents; this bad
event happens with constant probability (i.e., Ω(q/n)). However, as Theorem 5.2 shows, reversing
the order allows us to rule out such bad events with high probability.
Another remark we would like to make is that when q ≥ 2 is constant, there is a constant

probability that round-robin with reversed last round fails to find an EFX allocation. To see this,
consider the case where r = 1 (i.e.,m = n+q). Observe that there is an exp(−O(q)) probability that
each of the last q + 1 items remaining has value at most, say, 0.1 for agent n. In this case, agent
n’s bundle has value at most 0.2 to him/her. On the other hand, there is a constant probability that
agent (n − 1)’s first item is of value more than 0.2 to agent n. This means that with probability at
least exp(−O(q)), agent n would not be EFX; this probability is constant when q is constant.
We now proceed to the proof of Theorem 5.2. To start with, note that a particularly worrying

case when proving that EFX is satisfied for an agent is when this agent receives strictly fewer
items than some other agent. Our algorithm is specifically designed to handle this issue: the output
allocation is always EFX for i with respect to i ′ for every pair of agents i, i ′ such that i receives r
items and i ′ receives r + 1 items, as stated below. (Note that this guarantee is not probabilistic.)

Claim 5.3. For every i ∈ {1, . . . ,n − q} and every i ′ ∈ {n − q + 1, . . . ,n}, in the allocation output
by the round-robin algorithm with reversed last round, i is EFX with respect to i ′.

Proof. As in Section 3, for any agents i1, i2, we use X
i1,i2
t to denote agent i1’s utility for the t-th

item received by agent i2. When i1 = i2, we abbreviate X
i1,i2
t asX i1

t . First, observe that since agent i

chooses his/her most preferred item in each of the first r rounds before i ′, we haveX i
ℓ
≥ X i,i ′

ℓ
,X i,i ′

ℓ+1
for all ℓ ∈ {1, . . . , r }.
Now, consider anyM ′ = Mi ′\{j} for some item j ∈ Mi ′ . Suppose that j is the item that i ′ chooses

in the t-th round. Then, we have

ui (M ′) = X i,i ′

1 + · · · + X
i,i ′

t−1 + X
i,i ′

t+1 + · · · + X
i,i ′

r+1

≤ X i
1 + · · · + X i

t−1 + X
i
t + · · · + X i

r

= ui (Mi ).
As a result, i is EFX with respect to i ′. �

Next, we demonstrate that agents with the same number of items are EFX with respect to each
other. We show this by proving that with high probability, ui (Mi ) ≥ |Mi | −1 for all i . Notice that if
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|Mi | = |Mi ′ | for some i, i ′, then this immediately implies thatui (Mi ) ≥ |Mi |−1 ≥ maxj∈Mi′ ui (Mi ′ \
{j}), i.e., that i is EFX with respect to i ′.
The proof that ui (Mi ) ≥ |Mi | − 1 with high probability is divided into two claims, based on

whether i receives r items (Claim 5.4) or r + 1 items (Claim 5.5). The proofs of these claims share
some similarities with the proof in Section 4 which shows that round-robin produces a propor-
tional allocation with high probability. Nonetheless, the proofs here are slightly different due to
the different lower bounds needed and the reversed order in the last round, so we state them in
full below.

Claim 5.4. With probability 1 −O(1/n), ui (Mi ) ≥ r − 1 for all i ∈ {1, . . . ,n − q} simultaneously.

Proof. We will bound the probability that ui (Mi ) ≥ r − 1 for a fixed i ∈ {1, . . . ,n − q} and
apply the union bound in the end. Observe that, similarly to the standard round-robin algorithm
(i.e., Lemma 3.2), X i

1, . . . ,X
i
r are distributed as follows. First, X i

1 is drawn from Dmax(m+1−i ). Then,

for each t = 1, . . . , r − 1, X i
t+1 is sampled according to Dmax(m+1−i−nt )

≤X i
t

.

To prove the desired bound, we use Lemma 2.6 onX i
1, . . . ,X

i
r−1, which implies that the following

holds with probability at least 1 − 1/n2:

X i
r−1 ≥ 1 − β

α
· r ln(r/p)

n
= 1 −O

(
log2 n

n

)
,

where we use the assumption that r = O(logn). When this holds, the bundle from the first r − 1
rounds already yields value at least (r − 1)

(
1 −O

(
log2 n
n

))
to agent i . Hence, in order to have

ui (Mi ) ≥ r − 1, it suffices to have X i
r ≥ r · O

(
log2 n
n

)
= O

(
log3 n
n

)
. Recall that X i

r is distributed

as the maximum of m + 1 − i − n(r − 1) ≥ 2q + 1 ≥ 3 random variables independently drawn
from D≤X i

r−1
. Thus, for n large enough such that X i

r−1 is at least, say, 0.5, Proposition 2.2 implies

that the probability that X i
r < O

(
log3 n
n

)
is at most O

(
log3 n
n

)3
≤ O

(
1
n2

)
. As a result, we have

Pr[ui (Mi ) ≥ r − 1] ≥ 1 −O(1/n2).
Taking a union bound over all i ∈ {1, . . . ,n − q} completes our proof. �

Claim 5.5. With probability 1−O(1/√q),ui (Mi ) ≥ r for all i ∈ {n−q + 1, . . . ,n} simultaneously.

Proof. Fix i ∈ {n − q + 1, . . . ,n}. Similarly to the proof of Claim 5.4, we would like to bound
Pr[ui (Mi ) < r ]. To do so, we first use Lemma 2.6 on X i

1, . . . ,X
i
r−1, which implies that the following

holds with probability at least 1 − 1/n2:

X i
r−1 ≥ 1 − β

α
· r ln(r/p)

n
= 1 −O

(
log2 n

n

)
. (7)

Moreover, since X i
r is the maximum ofm + 1 − i − n(r − 1) > q random variables independently

sampled from D≤X i
r−1

, we have

Pr

[
X i
r <

(
1 − β

α
· 1
√
q

)
X i
r−1

]
≤

(
1 − 1
√
q

)q
≤ e−

√
q
,

where the first inequality follows from Proposition 2.2 and the second inequality from the well-
known fact that 1 + x ≤ ex for any real number x .

In other words, with probability at least 1 − e−
√
q , the following holds:

X i
r ≥

(
1 −O

(
1
√
q

))
X i
r−1. (8)
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When both (7) and (8) hold, we have

X i
1 + · · · + X i

r ≥ r −O
(
r log2 n

n

)
−O

(
1
√
q

)
≥ r −O

(
1
√
q

)
,

where the second inequality follows from r = O(logn) and q < n, which means thatO
(
r log2 n

n

)
≤

O
(
log3 n
n

)
≤ O

(
1√
n

)
≤ O

(
1√
q

)
.

In other words, to haveui (Mi ) ≥ r , it suffices to haveX i
r+1 ≥ O

(
1√
q

)
. SinceX i

r+1 is themaximum

of i − (n − q) random variables independently sampled from D≤X i
r
(recall that the ordering in the

last round is reversed), the probability that it is less thanO
(

1√
q

)
is

FDmax(i−(n−q))
≤X i

r

(
O

(
1
√
q

))
=

(
FD≤X i

r

(
O

(
1
√
q

)))i−(n−q)

(From Proposition 2.2) ≤
©
«
β

α
·
O

(
1√
q

)
X i
r

ª®®
¬

i−(n−q)

≤ O
(
1
√
q

)i−(n−q)

≤ O
(
1
√
q

)min{i−(n−q),4}

= O
(
q−min{0.5(i−(n−q)),2}

)
,

where the second inequality holds because, when conditioned on (7) and (8), we have X i
r ≥ 0.5 for

any sufficiently large n,q.
Hence, in total, we have

Pr[ui (Mi ) < r ] ≤
1

n2
+

1

e
√
q
+O

(
q−min{0.5(i−(n−q)),2}

)
≤ O

(
q−min{0.5(i−(n−q)),2}

)
.

By taking a union bound over i ∈ {n −q + 1, . . . ,n}, the probability that ui (Mi ) < r for some such
i is at most

n∑
i=n−q+1

O
(
q−min{0.5(i−(n−q)),2}

)
=

q∑
ℓ=1

O
(
q−min{0.5ℓ,2}

)
= O(q−0.5),

which concludes our proof. �

Theorem 5.2 can now be easily proved using the above claims.

Proof of Theorem 5.2. By Claims 5.4 and 5.5, with probability 1−O(1/√q), we have ui (Mi ) ≥
r − 1 for all i ∈ {1, . . . ,n − q} and ui (Mi ) ≥ r for all i ∈ {n − q + 1, . . . ,n}. To see that this implies
that the allocation is EFX, let us consider any pair of agents i, i ′ ∈ N . We argue that i is EFX with
respect to i ′ by considering the following three cases.

(1) i ≥ n −q + 1. SinceMi ′ contains at most r + 1 items, if we remove any item from this bundle,
then it has at most r items, meaning that i values it at most r . Recall that we haveui (Mi ) ≥ r .
Hence, in this case, i is EFX with respect to i ′.

(2) i ≤ n − q and i ′ ≥ n − q + 1. Claim 5.3 immediately implies that i is EFX with respect to i ′.
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(3) i, i ′ ≤ n − q. Similarly to the first case, since Mi ′ contains r items, if we remove any item
from this bundle, then it has at most r − 1 items, meaning that i values it at most r − 1. On
the other hand, we haveui (Mi ) ≥ r −1. Thus, i is also EFX with respect to i ′ in this case. �

5.2 An EF-based Algorithm for r ≥ 2 and q = O(1)
Wemove on to our second algorithm, which handles the case where r ≥ 2 while the remainder q is
O(1). In this case, wewill use the algorithm ofManurangsi and Suksompong [2019] as a subroutine.
The algorithm there workswhenm is divisible byn and produces an envy-free allocationwith high

probability. Furthermore, it guarantees that every item is valued at least 1−O
(
logm
n

)
by the agent

it is assigned to.8 This is stated more formally below.

Theorem 5.6 (Manurangsi and Suksompong [2019]). Whenm is divisible by n and 2n ≤ m ≤
2o(n), there exists an algorithmA that, with high probability, outputs an envy-free allocation (M1, . . . ,Mn)
such that |M1 | = · · · = |Mn | and ui (j) ≥ 1 −O

(
logm
n

)
for all i ∈ N and j ∈ Mi .

The algorithm A in Theorem 5.6 is a matching-based algorithm. We will not give the full de-
scription of the algorithm here since we do not need it, and instead simply use A in a black-box
manner.
Our EFX algorithm is incredibly simple: we just run A on the first rn items in M . The rest of

the items are assigned arbitrarily, in such a way that each agent receives at most one item. The
pseudocode of the algorithm is given as Algorithm 3.

Algorithm 3 EFX Algorithm for r ≥ 2 and q = O(1)
1: procedure EFX-via-EF(N = {1, . . . ,n},M , {ui }i ∈N )
2: M0 ← the set of first rn items inM
3: M1 ← M \M0

4: (M0
1, . . . ,M

0
n) ← A(N ,M0, {ui }i ∈N )

5: for i = n − q + 1, . . . ,n do

6: ji ← arbitrary item fromM1

7: M1 ← M1 \ {ji }
8: return (M0

1, . . . ,M
0
n−q,M

0
n−q+1 ∪ {jn−q+1}, . . . ,M0

n ∪ {jn})

The main result of this subsection is that Algorithm 3 produces an EFX allocation with high

probability when r ≥ 2 and q = O(1) (in fact, even when q = o
( √

n

log3 n

)
). This follows from the

theorem that we state next and our assumption that r = O(logn) (which impliesm = O(n logn)).
Theorem 5.7. When r ≥ 2, Algorithm 3 outputs an EFX allocation with probability 1 − o(1) −

O
(
q2r 3 log3m

n

)
.

Before we proceed to the proof, let us describe its high-level idea. Let τ := 1 − O
(
logm
n

)
be

the lower bound on the utility guaranteed by Theorem 5.6. The theorem ensures that each agent i
receives a bundle that he/she values at least rτ fromA, and that the partial allocation (M0

1 , . . . ,M
0
n)

is envy-free. (Note that here we use the assumption r ≥ 2, which is required by Theorem 5.6.)

8The guarantee as stated in [Manurangsi and Suksompong, 2019] is that this value is at least 1 −O
(
logm
n

)1/q
when D is

(θ, θ, q)-polynomially bounded at 1 (see the definition in their paper). However, our (α, β )-PDF-boundedness assumption

implies that D is (α, β, 1)-polynomially bounded at 1, which yields our claimed bound.
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Since the partial allocation (M0
1 , . . . ,M

0
n) is envy-free and every item yields value at most 1,

agent i will be EFX with respect to agent i ′, unless in the second step i ′ receives an item j with

ui (j) ≥ rτ − (r − 1) = 1 −O
(
r logm

n

)
—call this latter event (*). This is a low-probability event for a

fixed pair i, i ′; however, it cannot be neglected when we consider all pairs of agents, because every

item is likely to be valued more than 1 −O
(
r logm

n

)
by multiple agents.

To make the proof work, we need to make the following additional observation: since r ≥ 2,
if i is not EFX with respect to i ′, it must also be the case that there exists j ∈ M0

i ′ such that
ui (j) ≥ rτ − (r − 1)—call this event (**). One can check that the probability that both (*) and (**)

occur together is only
(qr logm)O (1)

n2 , meaning that we may now use the union bound over all pairs
i, i ′ (with i ′ ≥ n − q) to finish the proof.

The proof below follows the outlined approach; in particular, we refer to a pair i, i ′ that may
violate (**) as a potentially problematic pair, and a pair i, i ′ that may violate both (*) and (**) as
a problematic pair. The main contribution in the formal proof below is to show that with high
probability, no problematic pair exists.

Proof of Theorem 5.7. Let τ := 1 − O
(
logm
n

)
be the lower bound on the utility guaranteed

by Theorem 5.6, and let τ ′ := rτ − (r − 1) = 1 − O
(
r logm

n

)
. Now, for every agent i ∈ N and

i ′ ∈ {n − q + 1, . . . ,n} \ {i}, we say that the pair (i, i ′) is potentially problematic if there exists
an item j ∈ M0 such that ui (j) ≥ τ ′ and ui ′(j) ≥ τ . Furthermore, an agent i ∈ N is said to be
potentially problematic if (i, i ′) is potentially problematic for some i ′ ∈ {n − q + 1, . . . ,n} \ {i}.
Let us fix i ∈ N and i ′ ∈ {n − q + 1, . . . ,n} \ {i}. Consider any item j ∈ M . The probability that

ui (j) ≥ τ ′ and ui ′(j) ≥ τ is at most β(1− τ ) · β(1− τ ′) = O
(
r log2m

n2

)
. We can use a union bound on

all items j ∈ M0 to derive

Pr[(i, i ′) is potentially problematic] ≤ m ·O
(
r log2m

n2

)
= O

(
r 2 log2m

n

)
.

Hence, by once again taking a union bound over i ′ ∈ {n − q + 1, . . . ,n} \ {i}, we have

Pr[i is potentially problematic] ≤ O
(
qr 2 log2m

n

)
. (9)

Now, for each agent i ∈ N , we say that i is problematic if i is potentially problematic and there
exists j ∈ M1 such that ui (j) ≥ τ ′. Let us bound the probability that the latter happens. To do so,

note that for a fixed j ∈ M1, Pr[ui (j) ≥ τ ′] ≤ β(1 − τ ′) = O
(
r logm

n

)
. Hence, by union bound over

all q items inM1, we have

Pr[∃j ∈ M1
,ui (j) ≥ τ ′] ≤ O

(
qr logm

n

)
. (10)

Notice that the two events “i is potentially problematic” and “there exists j ∈ M1 such that ui (j) ≥
τ ′” are independent, because the former only concerns valuations of items inM0 whereas the latter
concerns those inM1. As a result, by combining (9) and (10), we have

Pr[i is problematic] ≤ O
(
q2r 3 log3m

n2

)
.
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Applying the union bound over all i ∈ N yields

Pr[∃i ∈ N , i is problematic] ≤ O
(
q2r 3 log3m

n

)
.

Finally, from Theorem 5.6 and the assumption r ≥ 2, we have that with high probability, the
partial allocation (M0

1 , . . . ,M
0
n) is envy-free, |M0

1 | = · · · = |M0
n | = r , and each agent values each

assigned item at least τ . Assume that this is the case, and that there is no problematic i ∈ N . To
conclude the proof, it suffices to show that the (complete) allocation produced by Algorithm 3 is
EFX. Consider any pair of distinct agents i, i ′, and divide into two cases:

(1) i ′ ≤ n − q. Since i ′ does not receive an item in the second phase of the algorithm, i does not
envy i ′ due to the guarantee from Theorem 5.6.

(2) i ′ > n −q. Since i is not problematic, we know that either i is not potentially problematic or
ui (j) < τ ′ for all j ∈ M1. We analyze these two cases separately.

(a) i is not potentially problematic. In this case, (i, i ′) is not potentially problematic. Since
ui ′(j) ≥ τ for all j ∈ M0

i ′ , we must have ui (j) < τ ′ for all j ∈ M0
i ′ . Recall that r ≥ 2, which

means that even after removing any item from the bundleMi ′ of i
′, at least one item from

M0
i ′ remains. Thus, after removing any item from Mi ′ , the bundle is valued by i less than
(r − 1) + τ ′ = r · τ . Since i values her own bundle at least r · τ , we have that i is EFX with
respect to i ′.

(b) ui (j) < τ ′ for all j ∈ M1. Consider a bundleM ′ that results from removing one item from
Mi ′ . If the removed item is the item that i ′ receives last, thenM ′ is exactlyM0

i ′ ; due to the

envy-freeness guarantee of (M0
1 , . . . ,M

0
n), we have ui (Mi ) ≥ ui (M ′). On the other hand, if

the item that i ′ receives last is not removed from the bundle, this item is valued less than
τ ′ by agent i . This means that ui (M ′) < (r − 1) + τ ′ = r · τ ≤ ui (Mi ). Hence, we can again
conclude that i is EFX with respect to i ′. �

5.3 A Matching-Based Algorithm for r = 1 and q = O(1)
We now proceed to our final case: r = 1 and q = O(1) (i.e.,m = n +O(1)). The algorithm for this
case is inspired by that from the previous subsection. At a high level, we again use a matching-
based algorithm to first assign one item to each agent while ensuring that each agent highly values
his/her own item. Then, in the second step, we give an additional item to some agents. Although
this general outline appears very similar to Algorithm 3, we have to be much more careful here:
since the starting assignment is no longer envy-free, we cannot simply select arbitrary agents to
receive additional items in the second step. In particular, if agent i envies agent i ′ after the first
step and agent i ′ receives an additional item, then agent i must also receive an additional item for
the allocation to be EFX.
To describe our algorithmmore precisely, let us introduce some additional notation. First, recall

that an assignmentψ is simply an injection fromN toM . For a weight functionw : N ×M → R, the
weight of an assignmentψ is

∑
i ∈N w(i,ψ (i)). It is well-known that a maximumweight assignment

can be found in polynomial time [Kuhn, 1955, Munkres, 1957]. Another concept that will be useful
is a topological ordering of a directed acyclic graph (V , E), which is defined as a mapping σ : V →
{1, 2, . . . , |V |} such that for any edge u → v in E, it holds that σ (u) < σ (v). Again, it is well-
known that such a ordering can be computed efficiently for any directed acyclic graph [Kahn,
1962]. Finally, following Lipton et al. [2004], we define the envy graph of an assignment ψ to be
the graph for which the vertex set is the set of all agents, and there is an edge from agent i to agent
i ′ if and only if ui (ψ (i)) < ui (ψ (i ′)).

With these prerequisites in mind, we now describe our algorithm. First, for an appropriate
threshold τ (to be chosen later) we define a weight functionw such thatw(i, j) = ui (j) if ui (j) ≥ τ
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andw(i, j) = −∞ otherwise, and find a maximum-weight assignmentψ with respect tow . We then
create the envy graph for the assignmentψ and assign one of the q unused items to each of the q
lowest-ranked agents in the topological ordering associated with the envy graph. The pseudocode
of the algorithm is presented as Algorithm 4.

Algorithm 4 EFX Algorithm for r = 1 and q = O(1)
1: procedureMaximumAssignmentτ (N ,M , {ui }i ∈N )
2: For every i ∈ N , j ∈ M , let

w(i, j) =
{
ui (j) if ui (j) ≥ τ ;
−∞ otherwise.

3: ψ ← maximum weight assignment with respect to w .
4: if w(i,ψ (i)) = −∞ for some i ∈ N then

5: return NULL
6: Eenvy ← {(i, i ′) ∈ N × N | ui (ψ (i)) < ui (ψ (i ′))}.
7: σ ← arbitrary topological ordering of (N , Eenvy).
8: {j1, . . . , jq} ← items not used in ψ .
9: for i ∈ N do

10: if σ (i) ≤ q then

11: Mi ← {ψ (i), jσ (i )}
12: else

13: Mi ← {ψ (i)}
14: return (M1, . . . ,Mn)

Before we prove the correctness of the algorithm, let us argue that the algorithm is even valid.
In particular, Line 7 implicitly assumes that the graph (N , Eenvy) is acyclic. We show below that
this always holds.

Lemma 5.8. (N , Eenvy) does not contain a cycle.

Proof. Suppose for the sake of contradiction that (N , Eenvy) contains a cycle i1 → i2 → · · · →
it → i1. Due to Line 5, if the algorithm reaches Line 7, then it must be thatw(i,ψ (i)) = ui (ψ (i)) ≥ τ
for all i ∈ N . Hence, the cycle implies that w(i1,ψ (i1)) + · · · + w(it−1,ψ (it−1)) + w(it ,ψ (it )) <
w(i1,ψ (i2))+ · · ·+w(it−1,ψ (it ))+w(it ,ψ (i1)). In other words, if we adjust the assignmentψ so that
i1 receivesψ (i2), i2 receivesψ (i3), . . . , and it receivesψ (i1), then this would result in a higher total
weight, which is a contradiction to the definition ofψ . �

Now that we have established the validity of the algorithm, we show that the algorithm outputs

an EFX allocation with high probability if we choose τ = 1 − 2 logn
αn .

Theorem 5.9. For q = o(n/logn) and τ = 1 − 2 logn
αn

, Algorithm 4 outputs an EFX allocation with

high probability.

To prove Theorem 5.9, it is helpful to clarify the independence between the different steps of
our algorithm. In this regard, let us think of each random variable ui (j) as being generated using
three independent random variables:

• A Bernoulli random variable bi, j such that bi, j = 1 with probability FD(τ ) ≤ max{0, 1 −
2 logn
n }.
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• A random variable v
high
i, j sampled from D>τ .

• A random variable v low
i, j sampled from D≤τ .

Once these three random variables are sampled, if bi, j = 1, thenui (j) is set tov low
i, j . Otherwise,ui (j)

is set to v
high
i, j .

By viewing the utilities as generated by the above process, it is obvious that our algorithm up

until Line 8 depends only on {bi, j }i ∈N , j∈M and {vhigh
i, j }i ∈N , j∈M (but not on {v low

i, j }i ∈N , j∈M ). With

this in mind, we proceed with our analysis in two stages. The first stage is up until Line 8, for
which we use the randomness of {bi, j }i ∈N , j∈M to upper bound the probability of the algorithm
terminating at Line 5, as formalized below.

Lemma 5.10. With high probability (over the randomness of {bi, j }i ∈N , j∈M ), Algorithm 4 does not

return NULL.

Proof. LetM ′ be the set of the first n items. Consider the bipartite graphG = (N ,M ′, E)where
E = {(i, j) ∈ N × M ′ | bi, j = 0}. If the graph G contains a perfect matching, then the algorithm
does not return NULL (at line 5); this is because if we pick the assignment ψ that corresponds to
this perfect matching, thenψ has a positive weight. Observe also thatG is distributed as G(n,n,p)
where p = Pr[bi, j = 0] = 1 − FD(τ ) ≥ min{1, 2 logn

n
}. Thus, from Lemma 4.5, G contains a perfect

matching with high probability. �

Next, we consider the second stage of the algorithm, which is after Line 8. For this purpose, we

may think of {bi, j}i ∈N , j∈M and {vhigh
i, j }i ∈N , j∈M as arbitrary (i.e., worst case) and {v low

i, j }i ∈N , j∈M as

being random.Wewill prove twomore lemmas. The first lemma is that the output allocation is EFX
for all agents whose topological rank is at least q + 1. We note that this lemma is not probabilistic
and holds regardless of the values of the random variables.

Lemma 5.11. When Algorithm 4 does not output NULL, the output allocation is EFX for all agents

i ∈ N such that σ (i) > q.
Proof. Fix i ∈ N such that σ (i) > q, and consider any agent i ′ , i . If i ′ also satisfies σ (i ′) > q,

then i ′ receives only one item and hence i is EFX with respect to i ′. On the other hand, if i ′ satisfies
σ (i ′) ≤ q, then i ′ receives two itemsψ (i ′) and jσ (i ′). Sinceσ (i) > q ≥ σ (i ′), there is no edge from i to
i ′ in Eenvy, meaning that ui (ψ (i)) ≥ ui (ψ (i ′)). Furthermore, since jσ (i ′) is unused in the assignment
ψ , it must be thatui (ψ (i)) ≥ ui (jσ (i ′)), as otherwise changingψ (i) to jσ (i ′) would increase theweight
of ψ . This means that i values Mi = {ψ (i)} at least as much as each of the two items received by
i ′; hence, i is again EFX with respect to i ′. �

The other lemma that we need is that, with high probability, the output allocation is EFX for all
agents whose topological rank is at most q. Note that this probability is over {v low

i, j }i ∈N , j∈M , and

the lemma holds for any (i.e., worst-case) values of {bi, j}i ∈N , j∈M and {vhigh
i, j }i ∈N , j∈M .

Lemma 5.12. When Algorithm 4 does not output NULL, with probability 1−O(q logn/n) (over the
randomness of {v low

i, j }i ∈N , j∈M ), the output allocation is EFX for all i ∈ N such that σ (i) ≤ q.
Proof. We will argue that for each i ∈ N such that σ (i) ≤ q, the probability that the output

allocation is not EFX for i isO(logn/n). Applying the union bound over all i ∈ {σ−1(1), . . . ,σ−1(q)}
yields the desired result.
In fact, we will prove an even stronger claim that for each i ∈ N with σ (i) ≤ q, we have

ui (Mi ) ≥ 1 with probability 1 −O(logn/n). Note that since each agent receives at most two items,
ui (Mi ) ≥ 1 immediately implies that the allocation is EFX for i .

To prove our claim, we consider two cases based on whether bi, jσ (i ) = 1.
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(1) bi, jσ (i ) = 0. In this case, we have ui (jσ (i )) ≥ τ . Furthermore, from our assumption that the
algorithm does not output NULL, we have ui (ψ (i)) ≥ τ . Hence, we have ui (Mi ) ≥ 2τ =
2 −O(logn/n), which is at least 1 for any sufficiently large n.

(2) bi, jσ (i ) = 1. Once again, from the assumption that the algorithm does not output NULL, we
have ui (ψ (i)) ≥ τ . Hence, if ui (Mi ) < 1, we must have ui (jσ (i )) < 1 − τ , which happens with
probability

Pr[v low
i, jσ (i )

< 1 − τ ] = FD(1 − τ )
FD(τ )

≤
2β logn
αn

1 − 2β logn
αn

= O

(
logn

n

)
.

Hence, in both cases, we have ui (Mi ) ≥ 1 with probability at least 1 − O
(
logn
n

)
, completing our

proof. �

Finally, by combining Lemmas 5.10, 5.11 and 5.12, we immediately arrive at Theorem 5.9.

5.4 Pu�ing Things Together: Proof of Theorem 5.1

The main theorem of this section (Theorem 5.1) can now be established by simply selecting one
of the three algorithms based on the range of the parameters.

Proof of Theorem 5.1. Ifq = ω(1), we run the round-robin algorithmwith reversed last round;
from Theorem 5.2, it outputs an EFX allocation with high probability. Else, q = O(1). If r ≥ 2, we
run Algorithm 3; from Theorem 5.7, this outputs an EFX allocationwith high probability. Finally, if
r = 1, we runAlgorithm 4, which, fromTheorem5.9, yields an EFX allocationwith high probability.

�

6 ENVY-FREE ASSIGNMENTS

In this section, we address another important resource allocation setting: assignments. Unlike
with allocations, here we assign exactly one item to every agent and leave the remaining items
unassigned. Envy-freeness in the assignment setting means that every agent values her assigned
item at least as much as that of any other agent. Since agents only compare individual items, the
(non-atomic) distribution D no longer plays an important role, and we may simply assume that
each agent draws a strict ranking of items from most preferred to least preferred independently of
other agents. Recently, Gan et al. [2019] showed that an envy-free assignment is likely to exist if
m = Ω(n logn), thereby leaving a gap between Ω(n logn) and n (the latter is the minimum number
of items needed so that any feasible assignment exists). Our contribution is the following theorem,
which essentially closes this gap.

Theorem 6.1. Let ε > 0 be any constant. If m
n
≥ e + ε , then with high probability an envy-free

assignment exists. On the other hand, if mn ≤ e−ε , then with high probability no envy-free assignment
exists.

Our proof of Theorem 6.1 follows an approach pioneered by Karp and Sipser [1981] and later
expanded upon by Wormald [1995] and others. Roughly speaking, this method can be applied to
analyze greedy algorithms when the input is randomized. To apply the method, we first write
out (probabilistic) recurrence relations for certain quantities important to the algorithm. Secondly,
we convert these recurrence relations into continuous ones (i.e., differential equations), which we
can then solve. The final step is to use concentration inequalities to show that the continuous
solution and the discrete one are approximately the same with high probability; from this discrete
solution, we can then deduce how well the algorithm performs. For more details and examples on
this approach, we refer to the survey of Wormald [1999].
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The rest of this section applies the outlined method to our problem. In particular, we start by
describing a simple greedy algorithm for the problem in Section 6.1. Then, we write out the prob-
abilistic recurrence relations in Section 6.2 and translate them to their continuous counterpart in
Section 6.3. Finally, we put all the pieces together and prove Theorem 6.1 in Section 6.4.

6.1 Greedy Algorithm

We first present a simple greedy algorithm which, as long as there are no ties in the ranking,
produces a correct answer: it outputs an envy-free assignment if one exists, and NULL otherwise.
The algorithm starts with an empty assignment and marks every item as “valid”. While there is
still at least one unassigned agent and at least one valid item left, it picks an unassigned agent
arbitrarily and considers her most preferred item among the valid items. If this item is not yet
matched to any agent, then assign it to this agent. Otherwise, mark this item invalid and deassign
it from any agent it was assigned to. The algorithm then terminates with an envy-free assignment
if there is at least one valid item at the end (in which case there must also be at least n such items),
and with no assignment otherwise.
The pseudocode for the algorithm is presented below; here we use ⊥ to represent “unassigned”

in the assignment, andM ′ and ≻ to denote the set of “valid” items and a ranking, respectively.

Algorithm 5 Greedy Algorithm for Envy-Free Assignment

1: procedure GreedyAssignment(N ,M , {≻i}i ∈N )
2: ψ (i) ←⊥ for all i ∈ N .
3: M ′← M

4: whileψ (i) =⊥ for some i ∈ N andM ′ , ∅ do
5: j ← most preferred item of i withinM ′

6: if ψ (i ′) = j for some i ′ ∈ N then

7: ψ (i ′) ←⊥
8: M ′← M ′ \ {j}
9: else

10: ψ (i) ← j

11: if M ′ , ∅ then
12: returnψ

13: else

14: return NULL

The following lemma establishes the correctness of the algorithm.

Lemma 6.2. When the rankings {≻i }i ∈N contain no ties, Algorithm 5 always outputs an envy-free

assignment if one exists, and NULL otherwise.

Proof. First, observe that if the algorithm outputs an assignment ψ , the assignment must be
envy-free. Indeed, the items are assigned in such a way that for each agent i , ψ (i) is the most
preferred item of i within M ′.
Hence, it remains to show that whenAlgorithm 5 outputs NULL, no envy-free assignment exists.

Suppose that the algorithm indeed outputs NULL, and let j1, . . . , jm denote the items in the order
that they are removed fromM ′. We will use induction to show that if we assign one of j1, . . . , jm to
an agent, then the assignment is not envy-free. This in turn implies that no envy-free assignment
exists.
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Before we proceed to our inductive proof, let us introduce an additional notation: for every
t ∈ [m], let it and i ′t denote the agents i and i ′ that result in the removal of jt fromM ′ in line 8 of
the algorithm.
Base Case. Consider any assignment such that j1 is assigned to some agent. Since j1 is the most

preferred items for both i1 and i
′
1, at least one of these two agents will envy the agent who receives

j1. Hence, the assignment cannot be envy-free.
Inductive Step. Suppose that, for some 1 ≤ t < m, any assignment that uses at least one of

j1, . . . , jt is not envy-free. Consider any assignment that uses jt+1. If this assignment uses any of
j1, . . . , jt , it cannot be envy-free by our inductive hypothesis, so we may assume that the assign-
ment does not use any of j1, . . . , jt . Given how the algorithm works, it must be the case that jt+1 is
the most preferred item for both it+1 and i

′
t+1 among all the items inM \{j1, . . . , jt }. Hence, at least

one of these two agents will envy the agent who receives jt+1, which means that the assignment
is again not envy-free. This completes the inductive step and our proof. �

6.2 Recurrence Relations

Having described a greedy algorithm for the problem, we now write down a recurrence relation
corresponding to the algorithm. To do so, let us useM ′t to denote the setM

′ after the t-th iteration
of the while loop. We also useψt to denote the (possibly partial) assignment after the t-th iteration
andYt to denote the number of items assigned inψt ; equivalently,Yt = |{i ∈ N | ψ (i) ,⊥}|. We let
Xt denote the number of unassigned items inM ′t (with respect toψt ), i.e., Xt = |M ′t | −Yt . Initially,
we have X0 =m and Y0 = 0.

At step t + 1 ≥ 1 with Yt < n, notice that conditioned on the current set of valid items M ′t and
the current assignment ψt , the item j picked in Line 5 is distributed uniformly at random among

all items inM ′t . Hence, the probability that this item is not used inψt is
Xt

Xt+Yt
; when the item is not

used, the algorithm goes to Line 10 and we have (Xt+1,Yt+1) = (Xt − 1,Yt + 1). On the other hand,

with probability Yt
Xt+Yt

, the algorithm executes Lines 7 and 8, resulting in (Xt+1,Yt+1) = (Xt ,Yt −1).
In summary, we have

(Xt+1,Yt+1) =
{
(Xt − 1,Yt + 1) with probability Xt

Xt+Yt
;

(Xt ,Yt − 1) with probability Yt
Xt+Yt

.
(11)

WheneverYt = n, the algorithm exits thewhile loop and outputs an assignment. However, it will
bemore convenient for us to study the process with no such stopping condition. In other words, we
run the above Markovian process for t = 1, 2, . . . , 2m, and the probability that our algorithm finds
an envy-free assignment is exactly the probability that maxt=1,2, ...,2m Yt ≥ n. Note that we choose
to run the process for this range of t because 2Xt +Yt decreases by exactly 1 in each iteration and
both Xt ,Yt remain nonnegative throughout by (11), which means that the process is valid for this
range and that9 X2m = Y2m = 0.
The observation that 2Xt +Yt decreases by 1 in each iteration is also useful for simplifying our

recurrence relation. In particular, it implies that

2Xt + Yt = 2m − t . (12)

By plugging (12) into (11), we obtain the following recurrence relation on Xt alone.

Xt+1 =

{
Xt − 1 with probability Xt

2m−t−Xt
;

Xt with probability 1 − Xt

2m−t−Xt
.

(13)

9An alternative way to see this is to observe that for Xt to be zero, each item must be assigned once and unassigned once;

this happens after exactly 2m iterations.
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6.3 From Recurrence Relations to Differential Equations and Back

One way to quantify the “average” change ofXt is via the expected value ofXt+1−Xt . In particular,
we can use (13) to calculate

E[Xt+1 − Xt | Xt = x] = −
x

2m − t − x = −
x
2m

1 − t
2m −

x
2m

.

Let f (s, z) := − z
1−s−z for 0 ≤ s, z < 1. The above equation may be written as

E[Xt+1 − Xt | Xt = x] = f
( t

2m
,
x

2m

)
. (14)

The key idea in the approach of Karp and Sipser [1981] and Wormald [1995] is that as m → ∞,
this Markovian process is “similar” to the differential equation

dz

ds
= f (s, z) for 0 ≤ s < 1 (15)

with the initial condition z(0) = 1/2.
This similarity can be formalized. In particular, Wormald [1995, Theorem 1] proved a very gen-

eral theorem which essentially shows that whenever an equation such as (14) holds along with

some mild technical conditions, we have
��� Xt

2m − z
(
t
2m

) ��� = o(1) for all indices t with high proba-

bility, where z = z(s) is the unique solution to (15). An application of Wormald’s theorem to our
setting yields the following:

Lemma 6.3. With high probability asm→ ∞, |Xt −2m ·z
(
t
2m

)
| = o(m) for all t = 0, 1, . . . , 2m−1

simultaneously, where z(s) is the solution to (15) in the range s ∈ [0, 1) and z(0) = 1/2.

Since the technical constraints inWormald’s result are somewhat cumbersome to state, we defer
the full proof of Lemma 6.3 to the appendix.

6.4 Pu�ing Things Together: Proof of Theorem 6.1

With all the pieces ready, we now prove our main result of this section.

Proof of Theorem 6.1. Let us consider the Markovian process {(Xt ,Yt )}0≤t ≤2m defined by (11)
with (X0,Y0) = (m, 0). By Lemma 6.3, with high probability, we have |Xt − 2m · z

(
t
2m

)
| = o(m) for

all t = 0, 1, . . . , 2m − 1, where z is the solution to (20). When this holds, we can use (12) to derive�����Yt − 2m · z
( t

2m

)
· ln

(
1

2z
(
t
2m

)
)�����

(12)
=

�����2m − t − 2Xt − 2m · z
( t

2m

)
· ln

(
1

2z
(
t
2m

)
)�����

≤
�����2m − t − 4m · z

( t

2m

)
− 2m · z

( t

2m

)
· ln

(
1

2z
(
t
2m

)
)����� + o(m)

=

���2m − t − 2m · (2z ( t

2m

)
− z

( t

2m

)
· ln

(
2z

( t

2m

)))��� + o(m)
(20)
=

���2m − t − 2m · (1 − t

2m

)��� + o(m)
= o(m).
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This means that, with high probability, the following holds (recall that Y2m = 0):

max
t=0,1, ...,2m

Yt = 2m ·
(

max
t=0,1, ...,2m−1

z
( t

2m

)
· ln

(
1

2z
(
t
2m

)
))
± o(m). (16)

Now, observe that sups ∈[0,1) z(s) ln
(

1
2z(s)

)
=

1
2e , with the maximum achieved at s∗ = 1 − 3

2e

(and z(s∗) = 1
2e ). Clearly, maxt=0,1, ...,2m−1 z

(
t
2m

)
· ln

(
1

2z( t
2m )

)
≤ sups ∈[0,1) z(s) ln

(
1

2z(s)

)
=

1
2e .

On the other hand, we have maxt=0,1, ...,2m−1 z
(
t
2m

)
· ln

(
1

2z( t
2m )

)
≥ z

(
⌊2ms∗ ⌋
2m

)
· ln

(
1

2z
(
⌊2ms∗⌋
2m

)
)
.

Moreover, one can check that z(s) is continuous at s = s∗, which means that limm→∞ z
(
⌊2ms∗ ⌋
2m

)
·

ln

(
1

2z
(
⌊2ms∗⌋
2m

)
)
= z(s∗) · ln

(
1

2z(s∗)

)
=

1
2e . Combining these lower and upper bounds, we have

max
t=0,1, ...,2m−1

z
( t

2m

)
· ln

(
1

2z
(
t
2m

)
)
=

1

2e
+ o(1)

with high probability, where the termo(1) converges to zero asm →∞. Plugging this back into (16),
we get

max
t=0,1, ...,2m

Yt =m/e ± o(m).

Finally, recall that the probability that GreedyAssignment finds an envy-free assignment is
exactly the probability that maxt=0,1, ...,2m Yt ≥ n. Thus, ifm/n ≥ e + ε for some ε > 0, then with
high probability we have

max
t=0,1, ...,2m

Yt ≥
m

e
− o(m) = m

e + ε
+

mε

e(e + ε) − o(m) ≥ n +m ·
(

ε

e(e + ε) − o(1)
)
,

which is at leastn for any sufficiently largem. This implies thatGreedyAssignment finds an envy-
free assignment with high probability in this case. On the other hand, ifm/n ≤ e−ε for some ε > 0,
then, using a similar argument,we can conclude thatGreedyAssignment outputs NULLwith high
probability, in which case Lemma 6.2 implies that no envy-free assignment exists. �

7 CONCLUSION AND FUTUREWORK

In this paper, we have studied the asymptotic existence of fair allocations and settled several open
questions from previous work. In addition to the tight bounds themselves, our work also sheds
light on the fairness guarantees provided by different algorithms in the probabilistic setting. Specif-
ically, our results serve as a strong argument for using the classical round-robin algorithm when
allocating indivisible items: not only is the algorithm simple and its output always envy-free up to
one item (EF1), but the produced allocation is likely to be fully envy-free as well as proportional
provided that the number of items is sufficiently larger than the number of agents. We also show
that an EFX allocation exists with high probability for any relation between the numbers of agents
and items, further confirming the worst-case existence of such allocations as a tantalizing open
question.10

10Recently, Chaudhury et al. [2020a] showed that an EFX allocation always exists when there are three agents.
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An interesting avenue that remains after this work is to investigate the asymptotic behav-
ior of fair allocations that satisfy additional properties. In fact, some desirable properties are al-
ready implied by previous results—for example, Dickerson et al. [2014] showed that a welfare-
maximizing allocation is envy-free with high probability assuming that m = Ω(n logn), while
Manurangsi and Suksompong [2019] proved that ifm is a multiple of n, there exists an algorithm
that likely computes an allocation which is both envy-free and balanced (i.e., gives every agent
the same number of items) as long as m ≥ 2n. In a similar vein, one could examine common
fair division algorithms and solutions such as the envy-cycle elimination algorithm [Lipton et al.,
2004], the maximum Nash welfare solution [Caragiannis et al., 2019b], or the leximin solution
[Bogomolnaia and Moulin, 2004, Kurokawa et al., 2015] through the probabilistic lens.
Our asymptotic approach can also be applied beyond the canonical resource allocation setting

in which the resource is allocated to individual agents who have equal entitlements. For instance,
many practical situations entail dividing items among groups of agents—the agents in each group
share the same set of items but may have different opinions on them [Suksompong, 2018a,b]. In
this generalized setting, Manurangsi and Suksompong [2017] studied the asymptotic existence
of envy-free allocations and left open a logarithmic gap between existence and non-existence.
Likewise, a number of division problems involve agents who have different entitlements to the
resource [Babaioff et al., 2019, Farhadi et al., 2019]. The definition of envy-freeness can be nat-
urally extended to capture such scenarios, and Chakraborty et al. [2020] demonstrated through
experiments that weighted envy-free allocations are usually harder to find than their unweighted
counterparts. Providing a formal explanation for this phenomenon using probabilistic tools is an
intriguing direction for future research.
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A OMITTED PROOFS

Proof of Lemma 3.2

To prove Lemma 3.2, we will need the lemma below, which states that the following two processes
result in the same distribution: (1) sample ℓ i.i.d. random variables from a distribution D, and let
Ymax be the maximum value and Z1, . . . ,Zℓ−1 be the remaining values; and (2) sample the first ran-

dom variableW max from Dmax(m), and sampleW1, . . . ,Wℓ−1 independently from the distribution
D conditioned on the value being at mostW max (i.e., D≤W max ).

Lemma A.1. Let ℓ be a positive integer and let D be any non-atomic probability distribution (over

real numbers). Consider the following two processes:

• Sample Y1, . . . ,Yℓ i.i.d. at random from D. Let q∗ = argmaxq∈[ℓ]{Yq} (tie broken arbitrarily).

Then, let Ymax
= Yq∗ and, for each t ∈ [ℓ − 1], let

Zt =

{
Yt if 1 ≤ t < q∗;
Yt+1 if q∗ ≤ t ≤ ℓ − 1.

• SampleW max ∼ Dmax(ℓ). Then, sampleW1, . . . ,Wℓ−1 i.i.d. at random from D≤W max .

Then, (Ymax,Z1, . . . ,Zℓ−1) and (W max,W1, . . . ,Wℓ−1) are identically distributed.

Proof. For any ymax, z1, . . . , zℓ−1 ∈ R, we may write Pr[Ymax ≤ ymax,Z1 ≤ z1, . . . ,Zℓ−1 ≤ zℓ−1]
as

Pr[Ymax ≤ ymax
,Z1 ≤ z1, . . . ,Zℓ−1 ≤ zℓ−1] =

∑
q∈[ℓ]

Pr[Ymax ≤ ymax
,Z1 ≤ z1, . . . ,Zℓ−1 ≤ zℓ−1,q∗ = q]

= ℓ · Pr[Ymax ≤ ymax
,Z1 ≤ z1, . . . ,Zℓ−1 ≤ zℓ−1,q∗ = ℓ],

where the equality follows from symmetry over the random variables Y1, . . . ,Yℓ and the fact that
sinceD is non-atomic, the probability of a tie (forq∗) is zero. We may rewrite the above expression
further as

Pr[Ymax ≤ ymax
,Z1 ≤ z1, . . . ,Zℓ−1 ≤ zℓ−1]

= ℓ · Pr[(Yℓ ≥ Y1, . . . ,Yℓ−1),Yℓ ≤ ymax
,Y1 ≤ z1, . . . ,Yℓ−1 ≤ zℓ−1]

= ℓ ·
∫ ymax

−∞

∫ min{amax,z1 }

−∞
· · ·

∫ min{amax,zℓ−1 }

−∞
fD(a1) · · · fD(aℓ−1)fD(amax) daℓ−1 · · ·da1damax

= ℓ ·
∫ ymax

∞

(∫ min{amax,z1 }

−∞
fD(a1)da1

)
· · ·

(∫ min{amax,zℓ−1 }

−∞
fD(aℓ−1)daℓ−1

)
fD(amax)damax

= ℓ ·
∫ ymax

∞
FD(min{amax

, z1}) · · · FD(min{amax
, zℓ−1})fD(amax)damax (17)

We will next expand a similar term for (W max,W1, . . . ,Wℓ−1). Before we do so, let us recall that,

due to the definition ofDmax(ℓ), we have FDmax(ℓ) (z) = FD(z)ℓ for any z ∈ R. Taking the derivative
of both sides, we have

fDmax(ℓ) (z) = ℓ · FD(z)ℓ−1 · fD(z). (18)

Now, for anywmax,w1, . . . ,wℓ−1 ∈ R, we can expand Pr[Wmax ≤ wmax,W1 ≤ w1, . . . ,Wℓ−1 ≤ wℓ−1]
as

Pr[Wmax ≤ wmax
,W1 ≤ w1, . . . ,Wℓ−1 ≤ wℓ−1]
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=

∫ wmax

−∞

(
FD≤amax (w1) · · · FD≤amax (wℓ−1)

)
fDmax(ℓ) (amax)damax

(1)
=

∫ wmax

−∞

(
FD(min{amax,w1})

FD(amax) · · · FD(min{amax,wℓ−1})
FD(amax)

)
fDmax(ℓ) (amax)damax

(18)
= ℓ ·

∫ wmax

∞
FD(min{amax

,w1}) · · · FD(min{amax
,wℓ−1})fD(amax)damax

. (19)

From (17) and (19), we conclude that (Ymax,Z1, . . . ,Zℓ) and (Wmax,W1, . . . ,Wℓ−1) are identically
distributed. �

Now, the main idea for the proof of Lemma 3.2 is to apply Lemma A.1 repeatedly to gradually
transfer the process from the original round-robin process to the one described in Lemma 3.2.

Proof of Lemma 3.2. Recall that the round-robin process can be written as follows:

(1) For every i ∈ [n], j ∈ [m], let ui (j) ∼ D≤X i
0
.

(2) For t = 1, . . . , ⌈m/n⌉:
(a) For i = 1, . . . ,min{n,m − (t − 1)n}:

(i) Let j∗ be the index of a remaining item that maximizes ui (j∗).
(ii) Remove j∗ from the set of available items.

(iii) Set X i
t = ui (j∗) and, for every i ′ ∈ [n] \ {i}, set X

i ′,i
t = ui ′(j∗).

Consider the first item j∗1 picked by the first agent (in Step 2(a)i when t = 1 and i = 1). For
notational convenience, let us assume without loss of generality that j∗1 = m. From Lemma A.1

with ℓ = m, we have that X 1
1 is distributed as Dmax(m)

= Dmax(m)
≤X 1

0

(recall that X 1
0 = 1), and that,

for the remaining items j ∈ [m − 1], the utilities u1(j) are distributed i.i.d. as D≤X 1
1
. Moreover,

since agent 1 does not consider other agents’ utilities at all when picking j∗1 , we also have that

X 2,1
1 , . . . ,X

n,1
1 are distributed i.i.d. as D and, for the remaining items j ∈ [m − 1], u2(j), . . . ,un(j)

are distributed i.i.d. as D. From the observations so far, the round-robin process is equivalent to
the following process:

(1) Sample utilities of the first item selected by the first agent:

• Sample X 1
1 ∼ D

max(m)
≤X 1

0

.

• For every 1 < i ≤ n, sample X i,1
t ∼ D≤X i

0
.

(2) Sample utilities of the remaining items:
• For every j ∈ [m − 1], sample u1(j) ∼ D≤X 1

1
.

• For every 1 < i ≤ n and j ∈ [m − 1], sample ui (j) ∼ D≤X i
0
.

(3) For t = 1, . . . , ⌈m/n⌉:
(a) For i = max{1, 2 · 1[t = 1]}, . . . ,min{n,m − (t − 1)n}:

(i) Let j∗ be the index of a remaining item that maximizes ui (j∗).
(ii) Remove j∗ from the set of available items.

(iii) Set X i
t = ui (j∗) and, for every i ′ ∈ [n] \ {i}, set X

i ′,i
t = ui ′(j∗).

(We use 1[E] to denote the indicator random variable for event E. Note that in Step 3a, the term
2 · 1[t = 1] is there so that the first agent does not get to pick in the first round, since this pick was
already taken care of in Step 1.)
Similarly to the arguments above, we may now consider the first item j∗2 picked by the second

agent (in Step 3a when t = 1 and i = 2) and assume without loss of generality that j∗2 = m − 1.

From Lemma A.1, X 2
1 is distributed as Dmax(m−1)

= Dmax(m−1)
≤X 2

0

(recall that X 2
0 = 1), and, for the
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remaining items j ∈ [m − 2], u2(j) is distributed i.i.d. as D≤X 2
1
. Moreover, since agent 2 does

not consider other agent’s utilities at all when picking j∗2 , we also have that X
1,2
1 ,X

3,2
1 , . . . ,X

n,2
1 are

independently distributed asD≤X 1
1
,D, . . . ,D respectively, and, for the remaining items j ∈ [m−2],

u1(j),u3(j), . . . ,un(j) are independently distributed as D≤X 1
1
,D, . . . ,D respectively. As a result,

the process above is in turn equivalent to the following process.

(1) Sample utilities of the first item selected by the first agent:

• Sample X 1
1 ∼ D

max(m)
≤X 1

0

.

• For every 1 < i ≤ n, sample X i,1
1 ∼ D≤X i

0
.

(2) Sample utilities of the first item selected by the second agent:

• Sample X 2
1 ∼ D

max(m−1)
≤X 2

0

.

• Sample X 1,2
1 ∼ D≤X 1

1
.

• For every 2 < i ≤ n, sample X i,2
1 ∼ D≤X i

0
.

(3) Sample utilities of the remaining items:
• For every j ∈ [m − 2], let u1(j) ∼ D≤X 1

1
and u2(j) ∼ D≤X 2

1
.

• For every 2 < i ≤ n and j ∈ [m − 2], let ui (j) ∼ D≤X i
0
.

(4) For t = 1, . . . , ⌈m/n⌉:
(a) For i = max{1, 3 · 1[t = 1]}, . . . ,min{n,m − (t − 1)n}:

(i) Let j∗ be the index of a remaining item that maximizes ui (j∗).
(ii) Remove j∗ from the set of available items.

(iii) Set X i
t = ui (j∗) and, for every i ′ ∈ [n] \ {i}, set X

i ′,i
t = ui ′(j∗).

By repeatedly applying this argumentm−2 additional times, we will arrive at the process stated
in Lemma 3.2, and the proof is complete. �

Proof of Lemma 6.3

We explain how Theorem 1 of Wormald [1995] implies our Lemma 6.3. To do so, we first restate
Wormald’s theorem for the special case of a single sequence of random variables:

TheoremA.2 (Wormald [1995]). Let (Xt )0≤t ≤T be aMarkovian randomprocess such thatX0/T =
x∗ ∈ R, |Xt − Xt+1 | ≤ 1 for all t = 0, 1, . . . ,T − 1, and there exists a function f : R2 → R such that

E[Xt+1 − Xt | Xt = x] = f (t/T , x/T )
for all t ∈ {0, 1, . . . ,T − 1}.
Suppose further that there exists a bounded connected open set D ⊆ R2 such that f is continuous

and satisfies the Lipschitz condition11 on D, and (0, x∗) ∈ D.
Then, the differential equation dz

ds = f (s, z) with the initial condition z(0) = x∗ has a unique
solution z(s) on D. Furthermore, with high probability as T → ∞, the following holds: for every t

such that (t/T , z(t/T )) ∈ D, we have
|Xt −T · z(t/T )| = o(T ).

At first glance, it may seem that the above theorem immediately implies our Lemma 6.3. Nonethe-
less, there is in fact a slightly subtle point, because the Lipschitz constant of our function f is not
bounded as s → 1. However, this is a common issue and was also faced by Wormald in his origi-
nal paper [Wormald, 1995]. Wormald handled this by using the concentration inequality only for

11That is, there exists a constant L > 0 such that f (s, z) − f (s ′, z′) ≤ L ·max{ |s − s ′ |, |z − z′ | } for all (s, z), (s ′, z′) ∈ D .

The constant L is said to be a Lipschitz constant of f .
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s ≤ 1−ε and then use the fact that |Xt−Xt+1 | ≤ 1 to deal with the rest of the range (i.e., t ≥ (1−ε)T ).
A similar approach works for us here, as formalized below.

Proof of Lemma 6.3. First, note that our differential equation (15) can be easily solved via stan-
dard methods, and its solution is the unique z = z(s) that satisfies

2z − z ln(2z) = 1 − s . (20)

Let 0 < ε < 1 be any constant. We will argue that, with high probability asm → ∞, we have
|Xt − 2m · z

(
t
2m

)
| ≤ εm for all t = 0, 1, . . . , 2m − 1.

Consider the set D = {(s, z) | −0.1 < s < 1,−0.1 < s + z < 1 − 0.01ε}. For any (s, z), (s ′, z′) ∈ D,
we have

f (s, z) − f (s ′, z′) = − z

1 − s − z +
z′

1 − s ′ − z′

=

z′ − z + zs ′ − z′s
(1 − s − z)(1 − s ′ − z′)

=

(z′ − z) + (zs ′ − z′s ′) + (z′s ′ − z′s)
(1 − s − z)(1 − s ′ − z′)

≤ |z
′ − z | + |s ′ | · |z − z′ | + |z′ | · |s ′ − s |

(1 − s − z)(1 − s ′ − z′)

(From |s ′ | < 1 and |z′ | < 1.1) ≤ 2|z′ − z | + 1.1|s ′ − s |
(1 − s − z)(1 − s ′ − z′)

(From s + z, s ′ + z′ < 1 − 0.01ε) ≤ 31000

ε2
·max{|z′ − z |, |s ′ − s |},

which means that f satisfies the Lipschitz condition on D (with Lipschitz constant 31000/ε2).
As a result, by applying Theorem A.2 with T = 2m, the following holds with high probability:

for all t such that t
2m + z

(
t
2m

)
< 1 − 0.01ε , we have���Xt − 2m · z

( t

2m

)��� ≤ o(m). (21)

Let s∗ ∈ [0, 1) be such that, in our equation (20), z(s∗) = 0.1ε . Note that there exists a unique
such s∗ because z(s) is decreasing and continuous for s ∈ [0, 1), z(0) = 1/2, and lims→1− z(s) = 0.
Moreover, we have z(s) > 0.1ε for s < s∗. Let t∗ = ⌈s∗T ⌉.
Notice that we have s + z(s) = 1 − z(s) + z(s) ln(2z(s)) < 1 − 0.1z(s) for all s ∈ [0, 1). In other

words, t
2m + z(

t
2m ) < 1 − 0.1z

(
t
2m

)
≤ 1 − 0.01ε for any integer t < t∗, which means that (21) is

satisfied for all t < t∗ with high probability.
On the other hand, to see that (21) is also likely to hold for t ≥ t∗, first observe that the sequence
(Xt )0≤t ≤T is non-increasing. Hence, for such t we have

Xt ≤ Xt ∗−1
(21)
≤ 2m · z

(
t∗ − 1
2m

)
+ o(m).

Now, since z(s) is continuous at s∗, it must be the case that t ∗−1
2m converges to s∗ asm grows. This

means that
���z (

t ∗−1
2m

)
− z(s∗)

��� = o(1), where the o(1) term converges to zero asm → ∞. Plugging
this into the inequality above, we get

Xt ≤ 2m · z(s∗) + o(m) = 0.2εm + o(m), (22)

where the equality follows from our choice of s∗. Thus, we have

−εm ≤ −0.2εm
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(From our choice of s∗) = −2m · z(s∗)

(Since z(s) is decreasing and t ≥ t∗) ≤ −2m · z
( t

2m

)
≤ Xt − 2m · z

( t

2m

)
≤ Xt

(From (22)) ≤ 0.2εm + o(m),
which is at most εm for any sufficiently large m. This implies that with high probability, |Xt −
2m · z

(
t
2m

)
| ≤ εm for all t ≥ t∗. In conclusion, we have |Xt − 2m · z

(
t
2m

)
| ≤ εm for all t ∈

{0, 1, . . . , 2m − 1} with high probability, as desired. �
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