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Abstract. For a diffusion problem modeled by the p-Laplacian operator, we are interested in
obtaining numerically the two-phase material which maximizes the internal energy. We assume that
the amount of the best material is limited. In the framework of a relaxed formulation, we present
two algorithms, a feasible directions method and an alternating minimization method. We show the
convergence for both of them, and we provide an estimate for the error. Since for p > 2 both methods
are only well-defined for a finite-dimensional approximation, we also study the difference between
solving the finite-dimensional and the infinite-dimensional problems. Although the error bounds for
both methods are similar, numerical experiments show that the alternating minimization method
works better than the feasible directions one.

Key words. optimal design, two-phase material, p-Laplacian operator, feasible directions
method, alternating minimization method

AMS subject classifications. 49MO05, 49J20

DOI. 10.1137/20M1353563

1. Introduction. The aim of the present work is the numerical resolution of
an optimal design problem. It corresponds to the maximization of the energy for
a nonlinear diffusion process in a two-phase material modeled by the p-Laplacian
operator. Namely, we are interested in the control problem

w

max 1/ (aX, + 8 (1 - X)) |[VulPdx
pJa

(1.1) —div (e, + B (1 — X)) [VulP ?Vu) = f in Q

= Wol»P(Q), w C Q measurable, |w| < &,

with Q a bounded open set in RN, N > 2, p € (1,00), o, 3,k > 0, a < 3, and
f e W=t (Q). Here a and § are the diffusion constants corresponding to the two
materials that we want to mix in order to maximize the corresponding functional. If
we do not impose any restrictions on the amount of material « (i.e., K > |Q]), then
the solution is the trivial one given by w = €. Thus, the interesting case corresponds
to k < |Q|. This problem has been extensively studied for p = 2 ([1], [6], [8], [12],
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[14], [15], [20]). In this case, it models, for example, the optimal rearrangement of
two materials in the cross section of a beam in order to minimize its torsion (in this
application f = 1). Analogously, for p € (1,2) U (2,00), the p-Laplacian operator
models the torsional creep in the cross section of a beam [9]. Therefore, problem (1.1)
corresponds to find the two-phase material which minimizes the torsion in nonlinear
elasticity, assuming that the amount of the best material is limited. As usual for
this type of problem ([17], [18]), it has no solution in general ([6], [7], [20]). Thus,
it is necessary to work with a relaxed formulation which can be obtained from the
homogenization theory ([1], [19], [21]). In the present case, it has been proved in [7]
([20] for p = 2) that such relaxation is given by

m Xl/ _Aval?
o p Ja (L4 )Pt !
) |VulP—2 1, .
1.2 —div( ——
(1.2) dlv((1 T u) 3 f inQ
uwe WyP(Q), 6eL>(Q;00,1)), 0dr <k,

Q

with ¢ = (é)ﬁ — 1. In this formulation, the materials o and 3 have been replaced
by mixtures of them obtained by laminations. The new control variable 6 represents
the proportion of the best material a used in the mixture.

The problem can also be formulated in a simple way as the following calculus of

variation problem:
.1 |Vu|P 1
2 Y g — =
g () [ e 500

(1.3)
6 Lo [0,1]), ue WP Q) / bdz < .
Q

The numerical resolution of (1.3) for p = 2 has been the subject of several works. In
this way, some numerical simulations have been carried out in [12] and [14] using a
multigrid method. In [1] and [22], the convergence of the alternating minimization
algorithm has been shown, using the optimality conditions. In [3], the convergence of
a projected gradient method has been studied.

For p # 2, the use of the optimality conditions implies the resolution of the p-
Laplacian equation in each iteration. This is a problem which has been considered, for
example, in [11] and [13] using a steepest descent method. We also refer the reader to
[10], where a reformulation of the p-Laplacian is given in order to use an augmented
Lagrangian method. In these works, the order of convergence is linear in the best
case.

In the present paper, we introduce two algorithms to solve (2.1). The first one
is based on the Frank—Wolfe algorithm, also known as the feasible direction method.
The second one is an alternating minimization method. In both of them, we choose a
descent direction in Hg (2) instead of W, () and we solve a linear problem instead
of a p-Laplacian, which, as we said above, is very expensive from a computational
point of view. For p > 2, this forces us to work with a discretized version of the
problem because HA(Q) is not contained in W, ().

We prove the convergence of both methods obtaining estimates for the rate of
convergence. In the best of the cases (p > 2), we only have a convergence of order
1/i, with ¢ the number of iterations. This is due to the nonstrict convexity of the
problem. In this sense, we can observe that solving the minimum in # in problem
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(1.3) and using the Kuhn-Tucher theorem, we can rewrite (1.3) as (see [6], [7], [12],

[14])

, CpPp—1ec 1 }
a4 B e ) R e LA
with L 1) €l

pP(p—1ec .
5(1—}—6)17_1—’_ lfﬂ<(1+c)
_ -1 _NP(P—l) : i§
F(p,&) = P E] B if i+0 <<€
lep it 1> .

Observe that F' is nonstrictly convex in £, and it is not differentiable with respect to
-

We also prove the convergence of the solutions of the discretized problem toward
the solutions of the continuous one. Moreover, taking a regular sequence of triangula-
tions in € of diameter h > 0 and discretizing W (2) and L°°(£2) by the usual P, and
Py finite elements, respectively, we show that the difference between the minimum for
the continuous and the discretized problem is of order h. In order to prove this result,
we assume the existence of a solution (u,f) for (1.3) such that u is in W (Q), Vu
belongs to BV (2)Y, and 6 belongs to BV (). Some smoothness results for problem
(1.3) can be found in [6] and [14] for p = 2 and [7] for p € (1,00); we also refer
the reader to [5] for the relaxed problem corresponding to take the minimum in (1.1)
instead of the maximum one. These smoothness results imply that u is in W1 (Q),
the flow o = |Vu[P~2Vu/(1+ cf)P~ 1 is in H1(Q)Y, and the derivatives of § in the di-
rection of o are in L?(£2). However, this is not enough to get Vu and § BV -functions.
Nevertheless, this assumption seems to be satisfied in the numerical experiments.

The paper is organized as follows. In section 2, we recall some known results for
problem (1.3) which have been proved in [7] (see [6], [20], for p = 2). In section 3, we
state the main results of the paper. Section 4 is devoted to prove the results in section
3. Finally, in section 5, we illustrate the results of the paper with some numerical
simulations. They show that the alternating minimization method converges faster
than the feasible direction method.

2. Previous results. As we mentioned in the introduction, our aim in the pres-
ent paper is to numerically solve the optimal design problem (1.1). Since it has no
solution in general, we work with the relaxed formulation (1.3), which, renaming f/8
by f to simplify the notation, can be written as

(2.1) mm{ﬂam;oeywmmﬂm u e WyP(Q), Aem<n},

with

1 |VuP
(2.2) f@m_géaiawjm—uﬁy
Here Q is a bounded open set of RV, N > 2, p € (1,00), ¢ > 0, 5 € (0,|]), and f is
a distribution in W~1#'(2). Since F is convex in (0, u) and coercive in u, W, () is
reflexive and L*°(€;[0,1]) is bounded and then sequentially compact for the weak-x
topology in L*°(), the existence of solution is straightforward. However, F is not
strictly convex, and therefore the uniqueness is not clear.
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The relaxed formulation (2.1) has been obtained in [7]. In this paper, we have
also obtained some optimality conditions and some equivalent formulations. As a
consequence, we got some uniqueness and smoothness results (see [6], [12], [14], [20]
for related results in the case p = 2).

Thanks to the convexity of F, Kuhn—Tucker’s theorem easily provides the follow-
ing system of optimality conditions ([7]).

PROPOSITION 2.1. A pair (é,ﬁ) is a solution of (2.1) if and only if there exists
= 0 such that the following hold:

If i =0, then
(2.3) 6=1ae in{rec: Vi(z) # 0}, }{xEQ: Vﬁ(z);éO}’ < K,
) |Valp—2 A> .
—div| ————Va | =f inQ,
(2.4) (wyapva) =
=0 on 0.
If i > 0, then

(2.5) é:max{O,min{l,i(vﬂa—l)}}, /Qéd:r::ff,

A~ p72
—div %Vﬁ =f inQ,
(2.6) (1+ ch)p—1

=0 on 0f.
Remark 2.1. The expression of 0 in Proposition 2.1 is obtained by solving (see
[7], [20])

. vl
2. ——dzx: L>(Q: 0,1 < .
2.7) mm{/Q g 0 =@ [0.1), [ pdr <

The constant /i > 0 is a Lagrange multiplier corresponding to the constraint [, 6 dz <
K.

We observe that for an arbitrary function 4 € WO1 P(Q) (not necessarily a solu-
tion for (2.1)), the solutions of (2.7) can be explicitly obtained using Kuhn-Tucker’s
theorem, which shows that 6 is a solution if and only if there exists i > 0 such that

I (/ Odz — /1) =0
Q
and 6 is a solution of

(2.8) mm{/Q (ljcié;ﬂdﬁﬂ/ﬂédx; 0 e L>®(Q; [0,1])}.

This provides the following rule to solve (2.7).
If @ is such that [{Vi # 0}] < &, then 6 is any function in L>(£2; [0, 1]) satisfying

0=1 ae. in{zeQ: Vi(z) #£ 0}, /édxém.
Q

In the other case, denoting for p > 0

6, = max {O,min {1, 1 <Vu — 1) }}
c\ H
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and defining G : (0,00) — [0, |Q[] by

G(n) = / 0.dx V€ (0,00),
Q
we have that the set of solutions of (2.7) is given by
(2.9) {6, € L=*(9;[0,1]): p>0, G(u)=r}.

Remark that the equation G(u) = k has a solution (not unique in general) due to G
decreasing, continuous, and

EL%G(M) =[{z € Q: Va(z) # 0}, HILH;O G(p) =0.
Numerically, the equation G(u) = k can be easily solved using, for example, a di-
chotomy method.
In [7] (see [20] for p = 2), it has also been proved that introducing the flow
[Vul[P~2
—V
1+t "

we have that (2.1) is equivalent to the min-max problem

(2.10)
min max /(1+c€)\a|p/dx: max min /(1+69)|0\p/dx.
—divo=f 0eL™(2:[0,1]) /O 0eL™(Q:[0,1]) —dive=f JQ
oer? (N [, 0dz<nk Jobde<n  oeL? ()N

Taking into account that the functional

cecL2(Q)N - max /(1 +cO)|o|? da
0eL>(£:[0,1]) JQ
fﬂedzgn

is strictly convex, we get the uniqueness of the optimal flow. Moreover, using (1.4),
we get the following smoothness results for the solutions of (2.1).
THEOREM 2.1. For every solution (8,4) of (2.1), the flow & defined by
A
(14 ch)r—1

(2.11) &=

is uniquely defined.

If f belongs to WHEH(Q) N LY(Q), ¢ > N, and Q is a CY'' domain, then & belongs
to Hl(Q)N N LOO(Q)N. Moreover, there exists C > 0, which only depends on N, p, c,
and Q, such that

(2.12) 161 1 (@) v L)y < C <||f||W1~1(Q)r1L<1(Q) + ﬂ) )

with i given by Proposition 2.1.
The function 0 satisfies

. I
(2.13) f(z) =
0 if |of<p,
and decomposing & = (61,...,06N), we have

(2.14)  9,06; — 0;06; = (1 + ¢0)(9;6: — 8;57)X 5=y € L*(Q), 1<i,j <N.
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Remark 2.2. Theorem 2.1 has been proved in [7], where some other regularity
results depending on the smoothness of f have been obtained. The case p = 2 has
been first proved in [6]. Observe that & in L°° ()" implies that @ belongs to W1°°(Q).
This was previously shown in [14] for p = 2.

3. Algorithms and main results. In this section, we present two variants of a
descent algorithm to numerically solve problem (2.1). We also show the convergence
of both algorithms.

A first attempt to construct an algorithm is to use an alternate method consisting
in minimizing in w, then in @, and so on. That is, assuming an approximation (u;, 6;)
of a solution of (2.1), we compute u;4+1 as a solution of

1 VoulP
(3.1) min {/' vl — <f,v>}
vewl ) Lo Jo (1+cby)P
and then 6,11 as a solution of
1 it1|P
(3.2) min f/ de .
ver>@i0.1) | p Jo (1 + ch)P—1
Jo 0dz<kr

This method works well if p = 2, but for p # 2, problem (3.1) is a p-Laplacian
problem, which is very expensive to solve from the computational point of view due
to the nonlinearity of the corresponding Euler-Lagrange equation.

Instead of using the above alternate method, we can also try to use a gradient
method, i.e., an iterative method where the iterations are defined through u;1; =
u; + tivi+1; 9i+1 = 01 + 57;('[91'_;,_1 — 01) for some ti7si € (0,1), with (Ui+1,191'+1) a

solution of
1 ip—2

min {/WIVUi~Vvdx—<f,v>},
HU”W&,p(Q)gl PJa (]. + 001-)1’

Vou,|P
max / 7| | Jdz,
ver> @01 Jo (14 cf;)P

Jo ®de<r

(3.3)

but the minimization in v also implies the resolution of a p-Laplacian problem. To
avoid this difficulty, we can replace the constraint ||vHW01,p(Q) < 1by [[vflgie < 1.
This is a feasible direction method. In each iteration, we look for the direction of
maximum descent of F in the convex set:

{(U,ﬁ) € H}(Q) x L=(Q;[0,1]) : vl 1) < 1, / ddx < KZ}.
0 Q

The maximum direction with respect to ¥ is simple to calculate. Namely, reasoning
as in Remark 2.1, we have the following.
If |{|Vu;| > 0} < &, then ¥; is any function in L>°(£; [0, 1]) such that

(3.4) X{|Vus|>0} < 9y, /9’191 dr < K.

In another case, we introduce H : (0,00) — [0, |2]] by

H(p)=|{z € Q: |Vui(z)] > (1+cbi)p} Vp>0.
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Then H is a decreasing function, continuous on the right and satisfying

lim H(p) = [{z € Q: [Vu;(z)| > 0}, lim H(p) = 0.
p—0+ 11— 00

This ensures the existence of p; > 0 (not unique in general) such that

H(pi) < £ < lim H(p),

By

which can be easily numerically obtained by a dichotomy rule. For such p;, the
maximum direction in 6 in (3.3), 9;, is given by any function in L°°(;[0,1]) such
that

(3.5) X{|Vui|>(1+cb)u} < Vi /Qﬂi dr = k.

A similar result holds if we use a finite-dimensional approximation consisting in
choosing 6 taking constant values in the elements of a given mesh. On the other hand,
the maximum descent direction with respect to v is unique, and it is the solution of
a linear equation. However, we observe that for p > 2, the sequence of functions {u;}
generated by the method is not in VVO1 P(Q). Thus, the algorithm has only a sense of
using a finite-dimensional space instead of L™ (Q) x W,"*(£2). In such a case, all the
norms are equivalent. However it would be necessary to prove the convergence of the
solutions of the discretized problem to the continuous one.

With these considerations, we are going to be interested in the problem

(3.6) min{}'(@,u): 0e®, uev, /degm, 6 €[0,1] a.e. inQ},
Q

with © and V finite-dimensional subspaces of L°°(Q) and H}(Q) N W, **(€2), respec-
tively. As in the continuous problem, it is not clear that (3.6) has a unique solution,
but for every solution (6*,u*), the flow

|Vu*|p—2

is unique because it is a solution of (see (2.10))

min max /(1+c9)\a|p/dx: oe LP ()N, /0~Vvdx:<f,v>, YoeV s,
eefLOZ(;z;ch}]) Q Q
Q0dz<r

where the function to minimize is strictly convex.
_ As an example of practical interest, we can consider a regular triangular mesh 7,
of 2 with maximum diameter A > 0 and the Lagrange finite element spaces

(3.8) @h:{v: Y ak ia eR vTeTh}
7€Th
(3.9) Vi ={veCQ(Q) : v, €Pi(r) VreTH},

with P (7) the space of affine functions in 7.
Since the minimization of F in € for u fixed is simple to carry out in practice (see
(2.1) for the infinite-dimensional case; the finite-dimensional one is analogous), we
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can also consider a variant of the previous algorithm consisting in directly computing
the minimum in 6 in each iteration.

With these considerations, we present the following two algorithms.

Algorithm 1.
Initialization: ¢ =1, 6y € ©, up € V, a,b € (0,1).

1: Set v; a solution of

(3.10) /QVvi~V¢dx:<f,¢>—/Q(vui|p2 Vu; -Vodr VeV,

1+ 091-)1’—1

2: Choose the step length by ¢; = & (Armijo’s rule), with j the smallest non-
negative integer such that

(311) .F(GZ,UZ +tﬂ)2) < .F(Ql,uz) — ati/ |Vvi|2dx,
Q

and set w41 = u; + t;v;.
3: Set 1J; a solution of

(3.12)
P
max{/ Mﬁdw: YeO, 0<¥ <1 ae. in Q, /ﬂdméﬁ}.
o (1+ct;)p Q
4: Choose s; = b, with k the smallest nonnegative integer such that
(3.13)
c(p—1 Vuiq1|P
F(0; +5:(0; —05),ui41) < F(0i,ui41) —as; (pp ) /Q (|1 +12911|)p (Vi —0;) d,

and set 0,41 =60, + 81(192 - 9,)
Algorithm 2.
Initialization: i =0, ug € V, a,b € (0, 1).

1: Set v; € V the solution of (3.10).

2: Choose the step length by t; = b/ with j the smallest nonnegative integer
such that (3.11) is satisfied, and set u;+1 = u; + t;v;.

3: Set 6;11 a solution of
(3.14)

P
min{/wm_ldx: ﬁe@,Ogﬁgla.e.inQ,/ﬂdargﬁs}.
Q(l“!‘@ﬁ)p o)

Remark 3.1. Since by definition (3.10) of v; we have
lim FOis wi + tvi) = F (0, wi) = —/ Vo [*da
Q

t—0 t

and a < 1, we get that
.F(Gz,uz + t’U,L') — f(@z,uz) g —at/ |VU1“2d.T,
Q

for 0 < t small enough. This proves the existence of ¢; satisfying (3.11). A similar
argument shows the existence of s; in (3.13).

Remark 3.2. If p = 2, then ¢t; = 1 for both algorithms and every i > 0. The
second method agrees in this case with the one given in [1] Theorem 5.1.5, and [22].
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Our main result is given by theorem 3.1 below which provides the convergence
for both algorithms. Before stating it, we need the following definition.

DEFINITION 3.3. For p > 1, we define v, > 0 by

||UHH3(Q) < IVPHU”WC}’I’(Q) if1<p<2
(3.15) , YoeV.
lollwer ) < Wllvllmye)y ifp=2

Remark 3.4. Clearly v = 1, while for p # 2 and V replaced by a sequence of
finite-dimensional spaces V}, such that

. . _ ) — l.p
Jim min [|v — v flyir) =0 Vv e Wy™(Q),

we have that v, = 7, tends to infinity when h goes to zero. For example, in the
case where the spaces V}, are given by (3.9), with 75, a sequence of regular meshes of
diameter h, we have

1
(3.16) Yo, = O <hN|51> -

p

THEOREM 3.1. Let Q C RY be a bounded open set, p € (1,00), f € W_l’p/(Q),
and O, V finite-dimensional subspaces of L>°(Q) and Wol’p(Q), respectively. Taking
(0i,u;) € © X V, the sequence defined by Algorithm 1 or 2, and denoting by F* the
minimum value of (3.6) and by e; the sequence of errors

(317) €; = .F(Gl,ul) - F* = O, 1 = O,

we have that e; is a decreasing sequence and that there exists C' > 0 depending on
a,b,ug, 0o, f,c, N, and p such that

{ Oygz"plﬁ ifl<p<?2
€ <

(3.18)
Cyyi~'  ifp=2

Vi > 1.

Moreover, the sequence

‘V’U,i|p_2
3.19 i = 7 VU
( ) g (1 + c&i)P—l Y
conwerges strongly to o* defined by (3.7) in LP' (Q)N. Namely, there exists C > 0 as
above such that

(3.20)

1
7

C(l + ’YPHUOHWOLP(Q))(QZ' - 6i+1)” ifl<p<2,

C(I1+plluollPty o)) (6: — €i41)?  if p =2,

/ (Io*|+|os])? 2|0 —o Pdz <
Q
Wy'?(Q)

Remark 3.5. In the continuous case V = W&’p(ﬂ) and 1 < p < 2, the classical
regularity results for the Poisson equation show that the solution v; of (3.10) satisfies
the estimate

(3.21) HUiHWOLP/(Q) < C(HUiHWC}'P(Q) 1 fllw-10 ()

with C' > 0 depending only on p and 2. Thanks to this result, we can deduce that in
this case (3.18) holds true with ~, replaced by one. Similar results to (3.21) also hold
for special choices of spaces V; see, e.g., [4, Theorem 8.5.3]. With these choices, we
can eliminate the dependence in 7, of estimate (3.18) for 1 < p < 2.
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Remark 3.6. In the case of the p-Laplacian problem, i.e.,

1
min {/ |Vu|Pde — (f,u)} ,
ueWy ?() P Jo
we can consider the following algorithm, similar to Algorithms 1 and 2.
Initialization: i =0, ug € V, a,b € (0, 1).
1: Set v; € V the solution of

(3.22) /QVvi -Vodx = (f, o) — /Q |Vu;[P~2Vu,; - Vodr Vo € V.

2: Choose the step length by ¢; = b’ with j the smallest nonnegative integer
such that

1
*/ IV (wi + tv3) [Pda — (f, ui + tiv;)
PJa
1
<o [ urds = (o) - ats [ Vo,
P Ja Q
and set u; 1 = u; + t;v;.

Then a similar reasoning to the one used below to prove Theorem 3.1 shows the
estimates

2p
Cv " .
2(:71) if p<2,
i
(3.23) Flu;) — F* < ok if p=2,
2p
p—2
O it p>2,
1p—2

with C' < 1 for p = 2. Similarly to Remark 3.5, the dependence of the estimate on
vp can be suppressed for 1 < p < 2 in the continuous case or V finite-dimensional
but satisfying further assumptions. Observe that estimates (3.23) are better than the
ones obtained in Theorem 3.1. This is due to the strict convexity of the p-Laplacian
operator, which does not hold in our case.

We finish this section studying the convergence of the solutions of the discrete
problem to the solutions of the continuous one. The next result is an immediate
consequence of the convexity of F and therefore is given without proof.

PROPOSITION 3.1. Assume two sequences of spaces ©p C L®(Q) and V), C
WyP () such that
o for every 0 € L>°(Q), with 0 > 0, there exists a sequence 0y, € Oy, such that

(324) 0<6, < HQHLoo(Q), / Opdr < / de, 0, — 0 in Ll(Q),
Q Q

o for every u € Wol’p(Q), there exists a sequence up € Vj, such that
(3.25) up, — uin Wy P(Q).

Then, defining Fy; as the value of the minimum in (3.6) with © and V replaced by
Oy, and Vy,, respectively, and F as the value of the minimum in (3.1), we have

(3.26) lim Fj; = .
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Moreover, defining o}, by (3.7), with (0*,u*) any solution of (3.6) for © = O,
V =V, we have

(3.27) o =& in LV (Q)V,
with & defined by (2.11).

An example of spaces satisfying properties (3.24) and (3.25) is given by (3.8) and
(3.9). In this case, we have the following improvement

THEOREM 3.2. Assume  a polygonal open set, f € W=L(Q)NLY(Q), and that
there exists a solution (0,4) of (2.1) such that

(3.28) e BV(Q), 4eWhHe(Q), VieBV(Q)?N.

We also consider a reqular sequence Ty, of triangulations in Q0 by N-simpleres and
define the spaces ©p and Vi, by (3.8) and (3.9), respectively. Then there exists C > 0,
depending on ), p, and the functions é, 4, such that denoting by F and Fi the
minimum values of (2.1) and (3.6), respectively, with © = ©, and V =V}, we have

(3.29) FLFi<F+Ch Yh>0.

Moreover, the functions o}, and o defined as in Proposition 3.1 satisfy
(3.30) /(|a*| Flot)P2lo* — of[2da < Ch.
Q

Remark 3.7. In Theorem 2.1, we recalled some smoothness results for problem
(2.1). Contrary to Theorem 3.2, they assumed that  is C*! instead of a polygonal
set. Indeed, assuming 2 a smooth convex set, Theorem 3.2 could still be applied,
taking a sequence of regular meshes for polygonal subsets of {2 which fulfill 2 as the
limit. Even with this assumption, we do not know that 6 and Vu are in BV () and
BV (Q)Y, but numerical simulations usually provide solutions which seem to satisfy
these assumptions.

From (3.16), (3.18), and (3.29), we get the following.

COROLLARY 3.1. In the assumptions of Theorem 3.2, we have the estimates

1 ‘
C(mppth) Wl<r<2
(3.31) 0< Flin,uip) —F <

1
C’(th(li%)i—i—h) if p>2

Here F denotes the minimum value of (2.1), (6in,uip) is the ith pair obtained by
any of the algorithms, and Oy, Vi, are defined by (3.8) and (3.9), respectively.

4. Convergence proof. We dedicate this section to prove the results stated in
the previous one. In order to simplify the proof of Theorem 3.1, we start with the
following lemma.

LEMMA 4.1. Assume p € (1,00). Then we have the following:
1. There exists C > 0, depending only on p, such that for every &,n € RY, we
get

(4.2) [In"— |l —plelP~%¢-(n—-€)[ < { _
| | C(lgl+ )" le=nP? ifp>2.
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2. There exists C > 0, depending only on p and ¢, such that for every q,r € [0, 1],
we get
1 1 (p—1)c(r —q)

_ < Clr —¢|?.
Qrer T Oxcgr i’ (tegr Ir =l

(4.2)

Proof. In order to show (4.1), we first recall the following property of the function
€ € RN i |¢|P72¢ € RY: There exists ¢, > 0 such that for every £,n € RV, we have

cpl€ — P! ifp<2,
—2 .
(€l + )" "I —¢ iftp>2.
By the mean value theorem, for every &, € R, there exists A € (0, 1) such that
-2
(4.4) " = €17 = p|Ag + (1= Nn[" " (A + (1= X)n) - (n = &),
where, thanks to (4.3), we have
—2 _
A€ + (@ = 0mf" " (A + (1= M) — J¢73¢]
(4.5) { cplé — Pt if p <2,
<
_ -2 .
202, (€] + )" I —¢ itp =2

This proves (4.1). Let us now show (4.2). As above, for every ¢,r € [0, 1], the mean
value theorem provides the existence of A € (0,1) such that
1 1 (p = De(r —q)

(4.6) 1+ cr)r—1 - (1+ cq)p—1 - (1 +e(Ag+ (1 - )\)7“)>P7

(4.3) |InlP~%n — lgP~2¢| < {

where
|1+ cap? = (14 ehg + (1= A)n)’|
(1+c(Ag+(1— )\)r))p(l +cq)P

1 1

(1+c(Ag+(1— M) (1 +eg)p

Using here the mean value theorem in the numerator, that the denominator is bigger
or equal than 1, and that ¢,r € [0,1], we get

1 1
- <pl(2+c(g+r)P g —r
(4.7) (1+c(Ag+(1— )\)r))P (14 cq)? ( ( ) |
<p2PleP(1+ )P g -l
Inequalities (4.6) and (4.7) show (4.2). 0

The proof of Theorem 3.1 also uses the following lemma, which has been obtained
in [13, Lemma 1].

LEMMA 4.2. Assume v > 0, v > 1 and a sequence of positive numbers A, such
that
An — Ang1 2 VAL Vn 2 0.

Then, forr =1/(y—1), we have
1 2" —1\T
. < — .
(4.8) An € Tmax{)\o,( ” ) }

n
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Proof of Theorem 3.1. Let us first prove estimate (3.18) for Algorithm 1.
For every i > 0, estimate (4.1), Holder’s inequality and definition (3.10) of v;
imply the existence of C' > 0 depending only on p such that the following hold:

Ifl<p<?2,

‘/—'.(91, (17 + tvi) — ‘/—'.(61, ui)

(4.9) <t /WVui-Vvidx—U v;) —l—Ctp/ |V, |Pdx
: Q (1 +C9‘)p_1 ’ Q

= —tlvillfy o) + CE il g

Itp=>2,
|Vui|p*2
F(0iyu; + tv) — F(Oi,ui) <t o Wvui -V dr — (f,v;)
p—2
(4.10) + o (HuiHW&,p(Q) + JJus + tvi||W&,p(Q) 01121 g

p—2
= _t”le?‘Ié(Q) + Ct2(||U1HW01,p(Q) + HU'L +tleW01’p(Q)) ||U7;||?/V&’p(ﬂ)'
Now we observe that if ¢; < 1, then, by definition of ¢;, we have
./_'.(917 U; + btlvl) — ‘/_'.(61, ’U,i) > 7Cthzl|’UzH§{é(Q)

Combined with (4.9) or (4.10), this proves the existence of 7 > 0, which only depends
on a,b, and p such that

(4.11)
lvill 7 ¢
min{ 1,7 ﬁ if1<p<2,
. HUZHWI (Q)
lvill 3
min{ 1,7 Lt ifp>2
(Hu1||W01,p(Q) + ||ui+1||W01'P(Q)) ||’U1||W1 P(Q)

On the other hand, inequality (4.2) implies the existence of another constant C' > 0
depending only on p and ¢ such that

.7:(91 + 8(192 — 9i),ui+]) — }"(Gi,uiﬂ)

C(p 1)/ ‘:ui+1|p 2/ 2
< - ’191—01 d i pﬂi—gi d R
5 a c@i)p( )dr +Cs [Vuii]?] |“dx

which, reasoning as above, implies the existence of A > 0 depending only on a, b, c,

and p such that
P
/ M(ﬁz — 6,)dx

(4.12) $; >z min ¢ 1, A
/ |Vui+1|p|191- — 01|2d1’
Q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/09/22 to 150.214.182.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3090 J. CASADO-DIAZ, C. CONCA, AND D. VASQUEZ-VARAS

Using that
ei — eip1 = F(Oi,u;) — F* = (F(Oig1, uipr) — FF)
= F(0i,uiv1) — F(Oip1, wir) + F (05, u;) — F(0is wig1);
inequalities (3.11), (3.13), (4.11), and (4.12); and
Q0 Huilliye) i1 <p <2,
N TP e

we deduce the existence of C' > 0 depending only on a, b, ¢, p, and || such that the
following hold:If 1 < p < 2,

2
|Vu, 1\‘)
(4.13) ei—éei+1 > Cming 1 ( o ity 0i)d$) + Jlvg] %
. 1 1+1 = ) fQ ‘Vui+1|p|19i — 92|2d1' [ Hl(Q
Itp>2,
(4.14)
€ — €i+1
2
Vu; P
> C'min {1 <fQ ‘(”;9—1' 9i)dm) 4”%””’1 F(Q) }
= . L . 2 2 .
Jo |Vuisi|? WZ Oif>dz (||“iHWol’p(Q) + ||“i+1||wé"’(ﬂ))p

In particular, e; is a nonnegative and nonincreasing sequence and therefore a converg-
ing sequence. In particular e; —e; 11 tends to zero. Moreover, e; nonincreasing implies
that F(6;,u;) and then ||ui||W01,p(Q) are bounded.

On the other hand, thanks to the convexity of F; u; 41 = u;+t;v;, with 0 < ¢; < 1;
and definitions (3.10) and (3.12) of v; and ¥;, respectively, we have
(4.15)

|p—2

dp—l)/"lquﬂp ,— 0  / / el
o ) ey P 0de Cli | (V] + [V )™ Volda

—1 . P
< / V’Ui . V(ui — u*) dr — C(p ) / (VU1+1| (91 - le)d(L’
Q Q

D 1+ ch;)P

+ C/ (‘V’UI1| + \Vui+1|)p71\Vvi\dx,
Q

where C only depends on p and ¢. Combined with Holder’s inequality, (4.13), (4.14),
and

min { [l HW[)“’(Q)’ 111121(1)1 [| s Hwolm(g)} < CHUOHW(}"’(Q%

which is a consequence of e; nonincreasing and the definition of ©*, we conclude
p=1
C’YP(HUOHWLP(Q) + 1) (61‘,1 — €i+1) P ifl< p <2,
(4.16) €1 < )
C%(HUOHWU o PU(eim1 —ei)? ifp>2

This inequality allows us to use Lemma 4.2 to get (3.18) for the first algorithm.
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For Algorithm 2, using again (4.9) or (4.10), we get that (4.11) still holds true.
Combined with
F(Oiy1,uit1) < F(0iy wit1),
we have analogously to (4.13) and (4.14)
(4.17)

Cmin{1,||vi|| ' if1<p<?2,

P
ey

e = eig1 > o 1l 0

Cmin{l, p2} if p>2.
(il ) + ltittllyre )

Using then that by convexity, 6;11 solution of (3.14) is equivalent to 6;11 solution of

.|P
max{/(wul'pﬁdxi YeO, 0<I<1 ae. inQ,/
Q

Ydr < k¢,
14+ cbit1) Q }

we have similarly to (4.15)
e; < / Vv, - V(u; —u*)de + C’/ (IVui—1] + |Vui|)p_1|Vvi,1|dac.
Q Q

Using here
€i—1=¢€ +e —e_1, €i—1 —€,€ —eiy1 < €1 — €

and taking into account (4.17), we conclude similarly to (4.16)
p—1 .
C’Wp(HuoHWOLP(Q) +1)(eio1 —eip1) 7 ifl<p<2,
(418) €;—1 g 9 1
C%(||“O||€V01,p(9) + (e —eig1)? if p>2,
which, by Lemma 4.2, proves that (3.18) also holds true for the second algorithm.

Let us now estimate the difference between o; and ¢*. To simplify the exposition,
we just prove the result for Algorithm 1; the proof for Algorithm 2 is completely
similar.

We consider a solution (6*,u*) of (3.6). Then (6*,0*) is a solution of the discrete
version of (2.10). Combined with the strict convexity properties of the function £ €
RN i [¢]P € R, we get

/(1+c9*)|a*|p’dx > /(1+c€i)\0*|p'd:c
Q Q
2/(1—|—c€i)|ai|plda:+p'/(l+c€,')|ai|p,720¢~(0*—ai) dz
Q Q
(4.19) + p/ (Jo*| + |o:|)P 20" — oy*da
Q
:/(1+c%9i)|ai|p/dx+p’/(l+69i)|oi|p/_20i-(U* — 0;) da
Q Q

+p / (o] + losP~2lo" — o3[2da + ¢ / (6; — 90)lol" da,
Q Q
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with p positive constants which only depend on p. Similarly, using ¥J; as a solution of
(3.12), we have
(4.20)

/(1+c19i)|ai\p/dx > /(1+c¢9*)|a*|p/dx
Q Q
+ p’/(l + cb)|o* |V 20* - (0, — 0F) dx + p/ (|o*| + |os|)P 20" — o3[ d.
Q Q
From (4.19) and (4.20), we deduce

0> p’/ ((1 +c0)|oi P "20; — (1 + 09*)\a*|p’-2a*) (0" — 03) dx
Q
(4.21)
+ 2p/ (Io* + los)P 20" — ou[*dzx + C/ (0; — V3|0 | da
Q Q

Now we use that
(@l 20— (1 +e)jo" ' 20") - (0" — )

VP L Y :
= (e 7~ e V) T )

which, taking into account (3.10) and that (6*,0*) satisfies the discrete version of
(2.7), prove
(4.22)

/ ((1 + cb)|o|? 20 — (1 + 09*)|0*\pl_20*) (0" —0;)dx = / V(u; —u*) - Vo, dz.
Q Q
Replacing this equality in (4.21) and recalling w; 1 = u; + t;v;, with 0 < ¢; < 1, we
get

|V [P

* 2 % 2
29/9 (Io*| +loi)? ~2|o™ — o3l *da < C/Q m(ﬁi —0;)dx
(4.23)

+C [ (uil + V)" (Vulde +5 [ (Vusl + [90°]) [Voldo
Q Q

with C' depending only on p and ¢. By (4.13) and (4.14), we then conclude (3.20). O

Proof of Theorem 3.2. For (,4) the solution of (2.1) which satisfies (3.28), &
defined by (2.11), and h > 0, we introduce 0, € O, 6 € @hN, and ap € Vp, by

R 1 A 1
(4.24) F)h:—/de, &h:—/&d:c V1€ T,
ITl J- ITl J-

(4.25) ap(x;) = 4(z;) VYax; vertex of Tp.
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Thanks to (3.28) and the regularity of 7y, there exists C' > 0 such that
(4.26)  llanllwros o) + llan — @l o= (@) + @ = @ll i1y + 105 = 0l p2 @) < Ch.
The definition of F, the mean value theorem, and these estimates imply

F(0, ) ~ Flln.in)| < O (19l ey + Vit mqayy) 1900 w)llcr(0ys

+ IV} w10 = Onll L2 ) + 1 r @l = @l e ) < Ch.
Then, since the definitions of F and F5 imply
F(0,4) = F < Fjy < F(On, i),

we conclude (3.29). On the other hand, we consider (67,u}) a solution of (3.6) with
© and V replaced by O, and V},. We define 6 by (2.11) and o}, by

[V [P~2

4.2 1Y PRL
( 7) Op (1 _‘_ce;:)p—l

Vuy,
and we recall that, thanks to (2.10), we have

deém}.

/(1 + ¢0)|6]7 dx = max {/ (1+ )6 de: 6 € L°(00,1)),
Q Q Q

Thus, we deduce

[aebiapans [araoras> [0+l
(4.28)

+p’/ﬂ(1+692)\6h|p"262~(6—&Z)dx+p/ﬂ(lff\+6Z|)p’2|5—32|2d$

for some p > 0, which only depends on p. Using the definitions of ¢ and ¢* and that
(0,4), (6%, u}) are solutions of (2.1) and (3.6), we have

-~ Vil .
1+ ch Updxz/iAdxz—p]:,
/Q( el o (14 ch)p—1

! |Vu;;|p /
* *|p . — %
[+ etijoipas = [ e = ',

p//(l + cO)|6q " 25 - (6 — 63)da = p / (6 = 63) - Vuj dx = 0.
Q Q

Replacing these equalities in (4.28) and taking into account (3.29), we get (3.30). 0O
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5. Numerical experiments. In this section, we present some simulations for
the numerical resolution of (2.1) using the two algorithms presented in section 3. The
implementation has been carried out in Python using the finite element solver FeniCs
[2].

In our numerical experiments, we have taken N = 2, Q) the unit disc, c=1, f =1,
and k = 1. In this case, the solution of (2.1) is explicitly given by

1

2 o L
1 ifja <7} F(Hﬂ > —2af”)  if |2 < 73
O(x :{ ) = r
0 lf |l‘| > 2, — (1 . |x|p/) lf |x| - ﬂ-_%
2v=Tp’
and thus 1
ﬁ:f(é7’&):_ d T (1_ p’).
P (24 p)27—T o+

We solve the problem for meshes of different diameter h and p = 1.2, 2, 100.
The stop criterion for the first algorithm is

2 clp—1) / |V q|? 7 .
. i i — b < > )
(5.1) /Q |V |“dx + ) T 8) (9; — 0;)dx < 107" or i > 2000

while for the second one, it is given by

2 clp—1) Vuia]? .
(5.2) /Q|Vvi| da+ S /Q g (0 = 0 <1077 ori > 2000
Observe that in both cases, replacing 107 by 0 would mean that (;,u;) satisfies
the optimality conditions for (2.1) and then, by the convexity of F, that (8;,u;) is a
solution for (3.6).

Depending on p, h, and the choice of the algorithm, we present in Figure 1 the
convergence history of the objective function, the Lagrange multiplier u, and the stop
criterion (|| DF|| denotes the left-hand sides in (5.1) and (5.2), respectively). Observe
that for p = 1.2 and p = 2, the rate of convergence for both algorithms is similar.
However, for p = 100, Algorithm 2 converges faster than Algorithm 1. Although
our estimates depend on h, we do not observe this dependence in the numerical
experiments for p = 2. This is because v, = 1, and therefore, according to Remark
3.2, the step length is constant, and all the bounds in Theorem 3.1 do not depend on
the mesh size.

In Figure 2, we represent the solutions (6;,u;) depending on p but only for the
finest mesh. Observe that the solutions obtained are very similar for both algorithms.

In Figure 3, we show the time spent in the resolution of the numerical experiments.
We observe that the iterations are calculated faster for Algorithm 2 than for Algorithm
1. When the diameter of the mesh decreases, the time increases for both algorithms
in the same way. Moreover, for p large, Algorithm 2 needs fewer iterations than
Algorithm 1, while for p small, both algorithms use more or less the same number of
iterations.

In Figure 4, we present the value of the objective function for the final interaction
for each mesh size and Algorithm 1 and 2. For p = 1.2 and p = 2, both algorithms
have the same behaviours. On the other hand, when p = 100 Algorithm 2 achieves
a lower value of the objective function in the final iteration for all of the mesh sizes.
This agrees with the fact that Algorithm 2 is faster than Algorithm 1, as illustrated
in Figure 2.
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