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Abstract. In this paper we propose an approximation method for high-dimensional 1-periodic
functions based on the multivariate ANOVA decomposition. We provide an analysis on the classical
ANOVA decomposition on the torus and prove some important properties such as the inheritance of
smoothness for Sobolev type spaces and the weighted Wiener algebra. We exploit special kinds of
sparsity in the ANOVA decomposition with the aim to approximate a function in a scattered data or
black-box approximation scenario. This method allows us to simultaneously achieve an importance
ranking on dimensions and dimension interactions which is referred to as attribute ranking in some
applications. In scattered data approximation we rely on a special algorithm based on the non-
equispaced fast Fourier transform (or NFFT) for fast multiplication with arising Fourier matrices.
For black-box approximation we choose the well-known rank-1 lattices as sampling schemes and show
properties of the appearing special lattices.
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1. Introduction. The approximation of high-dimensional functions is an im-
portant and current topic with great interest in many applications. We consider a
setting of periodic functions f : Td → C, d ∈ N, over the torus T where certain data
about the function is known. Here, we distinguish between a black-box setting, i.e.,
f can be evaluated at points x ∈ Td at a certain cost, and a scattered data setting,
i.e., sampling points X ⊆ Td and function values (f(x))x∈X are given. Besides the
natural question of wanting to find an approximation for f , we want to consider the
question of interpretability, i.e., analyzing the importance of the dimensions and di-
mension interactions of the function. In applications this is sometimes referred to as
an attribute ranking.

The main tool to achieve our goals is the analysis of variance (ANOVA)
decomposition [6, 45, 38, 23] which is an important model in the analysis of dimen-
sion interactions of multivariate, high-dimensional functions. It has proved useful in
understanding the reason behind the success of certain quadrature methods for high-
dimensional integration [40, 4, 17] and also infinite-dimensional integration [1, 19, 34].
The ANOVA decomposition decomposes a d-variate function in 2d ANOVA terms
where each term belongs to a subset of D := {1, 2, . . . , d}. The single term depends
only on the variables in the corresponding subset and the number of these variables
is the order of the ANOVA term. In this paper we study the classical ANOVA de-
composition for periodic functions and how it acts on the frequency domain. The
decomposition is referred to as classical since it is based on an integral projection op-
erator. In this setting we find relationships between ANOVA terms and the support of
the frequencies as subsets of Zd. Moreover, we prove formulas for the representation
of ANOVA terms and projections.

Classical approximation methods cannot be applied for high-dimensional func-
tions in general since the data required increases exponentially because of the curse of
dimensionality. However, the observation has been made that in practical applications

∗Chemnitz University of Technology, Germany (potts@math.tu-chemnitz.de, http://www.
tu-chemnitz.de/∼potts/).
†Chemnitz University of Technology, Germany (michael.schmischke@math.tu-chemnitz.de, http:

//www.tu-chemnitz.de/∼mischmi/).

1

ar
X

iv
:1

90
7.

11
41

2v
4 

 [
m

at
h.

N
A

] 
 2

3 
Fe

b 
20

21

mailto:potts@math.tu-chemnitz.de
http://www.tu-chemnitz.de/~potts/
http://www.tu-chemnitz.de/~potts/
mailto:michael.schmischke@math.tu-chemnitz.de
http://www.tu-chemnitz.de/~mischmi/
http://www.tu-chemnitz.de/~mischmi/


2 D. POTTS, AND M. SCHMISCHKE

with multivariate, high-dimensional functions, often only the ANOVA terms of a low
order are enough to describe a function, see e.g. [6]. This leads to the notion of a
superposition dimension ds ∈ D that limits the order of the ANOVA terms involved.
Using this as a sparsity assumption to circumvent the curse of dimensionality, we
consider functions where the ANOVA decomposition is mostly supported on terms of
a low order, i.e., the norm of the remaining decomposition weighed by the norm of
f is small. This leads to a truncation of the decomposition through a superposition
threshold. We consider how the previously described error can be related to the decay
of Fourier coefficients and specifically the smoothness of f .

We present and analyze an approximation method that uses sensitivity analysis,
cf. [47, 48, 38], on the truncated ANOVA decomposition which is able to identify im-
portant ANOVA terms and incorporate this information in finding an approximation.
The goal is to simplify the approximation model which yields benefits in reducing the
influence of overfitting regarding the amount of data. We determine approximations
of the Fourier coefficients of the function (or learn them) by solving least-squares
problems. This is done through exploiting the special structure of the system ma-
trix by identifying submatrices with the corresponding ANOVA terms. In the case
of black-box approximations we are using rank-1 lattices as a spatial discretization,
see e.g. [24, 25, 26, 27], and for scattered data approximation we rely on the iterative
LSQR method [42] and the fast matrix-vector multiplications for Fourier matrices
provided by the non-equispaced fast Fourier transform (or NFFT) introduced in [31].

The paper is organized as follows. In Section 3 we introduce the classical ANOVA
decomposition and study its behavior for periodic functions with regard to the Fourier
system. We prove new formulas for the Fourier coefficients of projections in Lemma 3.1
and ANOVA terms in Lemma 3.5. Moreover, we prove that functions in Sobolev type
spaces and the weighted Wiener algebra inherit their smoothness to the ANOVA
terms, see Theorem 3.10 and Theorem 3.11. In Section 4 we consider the trun-
cated ANOVA decomposition and prove formulas for their Fourier coefficients, see
Lemma 4.1 and Corollary 4.2. We also give direct formulas for the truncated decom-
position using the projections in Lemma 4.4 and Corollary 4.5. Furthermore, we relate
Sobolev type spaces and the weighted Wiener algebra to the previously introduced
functions of low-dimensional structure and compute the errors in Theorem 4.6 and
Theorem 4.7. Specifically, we consider a class of product and order-dependent weights,
see [35, 13, 33, 14], of functions with isotropic and dominating-mixed smoothness, cf.
[16, 26, 5], to obtain specific error bounds, see Corollary 4.8 and Corollary 4.10.
In Section 5 we present an approximation method for functions that are of an low-
dimensional structure, cf. Algorithm 5.1. We start by considering a black-box ap-
proximation scenario with rank-1 lattices as sampling schemes and show properties
of the arising lattices in Lemma 5.3, Lemma 5.5, and Corollary 5.6. Furthermore, we
discuss scattered data approximation in Subsection 5.2.2. The arising approximation
errors are considered in Section 6 with main results being Theorem 6.1, Theorem 6.2,
Theorem 6.5, and Theorem 6.7. In Section 7 we perform numerical experiments with
a specific benchmark function.

2. Prerequisites and Notation. We consider multivariate 1-periodic functions
f : Td → C with spatial dimension d ∈ N, which are square-integrable, i.e., elements
of L2(Td). Those functions have a unique representation with regard to the Fourier
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system {e2πik·x}k∈Zd as Fourier series

f(x) =
∑
k∈Zd

ck(f) e2πik·x,

where ck(f) :=
∫
Td f(x) e−2πik·xdx ∈ C, k ∈ Zd, are the Fourier coefficients of f .

Given a finite index set I ⊆ Zd, we call the trigonometric polynomial

(2.1) SIf(x) =
∑
k∈I

ck(f) e2πik·x

the Fourier partial sum of f with respect to the index set I.
In this paper we make use of indexing with sets. First, for a given spatial dimen-

sion d we denote with D = {1, 2, . . . , d} the set of coordinate indices and subsets as
bold small letters, e.g., u ⊆ D. The complement of those subsets are always with
respect to D, i.e., uc = D \ u. For a vector x ∈ Cd we define xu = (xi)i∈u ∈ C|u|.
There remains a small ambiguity regarding the order of the components of xu which
can be clarified if one chooses a consistent ordering, e.g., ascending order which would
be a natural choice.

Furthermore, we use the p-norm which is defined as

‖x‖p =


|{i ∈ D : xi 6= 0}| : p = 0(∑d

i=1 |xi|
p
)1/p

: 1 ≤ p <∞
maxi∈D |xi| : p =∞

for x ∈ Rd. Note that the case 1 ≤ p < ∞ can be expanded to 0 < p < 1, but then
‖·‖p would only be a quasi-norm. In the case p = 0, ‖·‖p is not a norm at all.

2.1. Rank-1 lattice. In the case of black-box approximation we are going to
rely on rank-1 lattice as sampling schemes, see e.g. [24, 25, 26, 27]. For a given lattice
size M ∈ N and a generating vector z ∈ Zd we define a rank-1 lattice

Λ(z,M) :=

{
xj :=

j

M
z mod 1 : j = 0, 1, . . . ,M − 1

}
.

These lattices are useful in the evaluation of trigonometric polynomials

p ∈ ΠI := span
{

e2πik·◦ : k ∈ I
}

over a finite index set I ⊆ Zd for given Fourier coefficients ck(p). As discussed in [37],
we have

p(xj) = p

(
j

M
z mod 1

)
=

M−1∑
l=0

 ∑
k∈I

k·z≡l mod M

ck(p)

 e2πi jlM .

The computation of the sum over l can be realized trough a one-dimensional FFT
and therefore the evaluation of p at all lattice nodes can be done using only this single
FFT. The arithmetic complexity of this evaluation is in O(M logM + d |I|).

However, using a special kind of rank-1 lattice, it is possible to reconstruct the
Fourier coefficients ck(p) by sampling p at the nodes in Λ(z,M) in an exact and stable
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way. For an index set I ⊆ Zd we define a reconstructing rank-1 lattice Λ(z,M, I) as
a rank-1 lattice Λ(z,M) such that the condition

m · z 6≡ 0 mod M ∀m ∈ D(I) \ {0}

is fulfilled with

(2.2) D(I) := {k − h : k,h ∈ I}

being the difference set for I. Using the nodes of a reconstructing rank-1 lattice
Λ(z,M, I), the Fourier coefficients can be calculated as

ck(p) =
1

M

M∑
j=0

p

(
j

M
z mod 1

)
e−2πij k·z

M .

The calculation of all Fourier coefficients ck(p), k ∈ I, can then be realized trough a
one-dimensional FFT and the computation of the products k · z. Consequently, the
arithmetic complexity of this evaluation is again in O(M logM + d |I|).

The principle of this reconstruction can be generalized to functions f ∈ Aw(Td) :=
{f ∈ L1(Td) : ‖f‖Aw(Td) :=

∑
k∈Zd w(k) |ck(f)| <∞}, w : Zd → [1,∞), by taking the

Fourier partial sum SIf for a suitable index set I ⊆ Zd and treating the evaluations
of f as the evaluations of the trigonometric polynomial SIf . Using the same idea as
before, we get

ck(f) ≈ f̂k :=
1

M

M∑
j=0

f

(
j

M
z mod 1

)
e−2πij k·z

M

with a a reconstructing rank-1 lattice Λ(z,M, I). The error for each coefficient is

(2.3) f̂k = ck(f) +
∑

h∈Λ⊥(z,M)\{0}

ck+h(f)

with the integer dual lattice

Λ⊥(z,M) :=
{
k ∈ Zd : k · z ≡ 0 mod M

}
.

Consequently, if
∑
h∈Λ⊥(z,M)\{0} |ck+h(f)| is small, the approximations f̂k are close

to the Fourier coefficients ck(f). For further details on this topic we refer to [26, 27]
and [43, Chapter 8].

3. The classical ANOVA decomposition of 1-periodic functions. In this
section we introduce the ANOVA decomposition, see e.g. [6, 38, 23], and derive new
results for the periodic setting specifically with regard to the decomposition acting on
the frequency domain.

We start by defining the projection operator

(3.1) Puf(xu) :=

∫
Td−|u|

f(x)dxuc

that integrates over the variables xuc . For |u| > 0 this operator maps a function from
L2(Td) to L2(T|u|) by the Cauchy-Schwarz inequality and the image Puf depends
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only on the variables xu ∈ T|u|. In the case of u = ∅, the projection gives us the
integral of f . We define the index set

(3.2) P(d)
u :=

{
k ∈ Zd : kuc = 0

}
which can be identified with Z|u| using the mapping k 7→ ku. Note that we use the
convention Z|∅| = {0}. We now prove a relationship between the Fourier coefficients
of Puf and f .

Lemma 3.1. Let f ∈ L2(Td) and ` ∈ Z|u|. Then

c`(Puf) = ck(f)

for k ∈ Zd with ku = ` and kuc = 0.

Proof. We consolidate the two integrals and derive

c`(Puf) =

∫
T|u|

∫
Td−|u|

f(x)dxuc e−2πi`·xudxu

=

∫
Td
f(x) e−2πi`·xudx

=

∫
Td
f(x) e−2πik·xdx = ck(f) .

Using Lemma 3.1, we are able to write Puf as both, a d-dimensional Fourier se-
ries Puf(x) =

∑
k∈P(d)

u
ck(f) e2πik·x and a |u|-dimensional Fourier series Puf(xu) =∑

`∈Z|u| c`(Puf) e2πi`·xu .
Now, we recursively define the ANOVA term for u ⊆ D

(3.3) fu := Puf −
∑
v(u

fv.

There exists a direct formula for the ANOVA terms fu defined in (3.3).

Lemma 3.2. Let a ∈ N0 and b ∈ N with b > a. Then

b−1∑
n=a

(−1)n−a+1

(
b− a
n− a

)
= (−1)b−a.

Proof. We prove an equivalent form obtained through multiplication with (−1)a

and an index shift

b−a−1∑
n=0

(−1)n+a+1

(
b− a
n

)
= (−1)b.

Splitting the sum and applying the Binomial theorem yields

b−a−1∑
n=0

(−1)n+a+1

(
b− a
n

)
=

b−a∑
n=0

(−1)n+a+1

(
b− a
n

)
− (−1)b+1

= (−1)a+1
b−a∑
n=0

(−1)n
(
b− a
n

)
︸ ︷︷ ︸

=(−1+1)b−a=0

+(−1)b

= (−1)b.
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Lemma 3.3. Let f ∈ L2(Td) with u ⊆ D. Then

(3.4) fu =
∑
v⊆u

(−1)|u|−|v|Pvf.

Proof. A proof based on properties of projection operators was given in [36] while
we use combinatorial arguments. We prove this statement through structural induc-
tion over the cardinality of u. For |u| = 0, i.e., u = ∅, we have

(−1)0−0 (P∅) (x) = (P∅) (x) = (P∅) (x)−
∑
v(∅

fv(x).

Now, let (3.4) be true for v ⊆ D, |v| = 0, 1, . . . ,m − 1, m ∈ {1, 2, . . . , d}, and take a
subset u ⊆ D with |u| = m. We use the notation

δw⊆v =

{
1 : w ⊆ v
0 : otherwise.

and start from the recursive expression in (3.3) to obtain

fu(x) = (Puf) (x)−
∑
v(u

fv(x) = (Puf) (x)−
∑
v(u

∑
w⊆v

(−1)|v|−|w| (Pwf) (x)

= (Puf) (x)−
∑
v(u

∑
w(u

(−1)|v|−|w| (Pwf) (x)δw⊆v.

We exchange the two sums and sum over the order of the ANOVA terms∑
v(u

∑
w(u

(−1)|v|−|w| (Pwf) (x)δw⊆v =
∑
w(u

(Pwf) (x)
∑
v(u

(−1)|v|−|w|δw⊆v

=
∑
w(u

(Pwf) (x)

m−1∑
n=|w|

∑
v⊆u
|v|=n

(−1)|v|−|w|δw⊆v

=
∑
w(u

(Pwf) (x)

m−1∑
n=|w|

(−1)n−|w|
∑
v⊆u
|v|=n

δw⊆v.

Applying Lemma 3.2 yields the formula.

We proceed to present a relationship between the Fourier coefficients of fu and
f . Furthermore, we prove fu ∈ L2(T|u|). Therefore, we define the index set

F(d)
u :=

{
k ∈ Zd : kuc = 0, kj 6= 0∀j ∈ u

}
which can be identified with (Z \ {0})|u| using the mapping k 7→ ku. Here, we use
the convention (Z \ {0})|∅| = {0}.

Lemma 3.4. Let u,v ⊆ D with u 6= v. Then F(d)
u ∩ F(d)

v = ∅. Moreover, we have

Zd =
⋃
u⊆D

F(d)
u .
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Proof. Let u,v ⊆ D, u 6= v, and w.l.o.g. |u| ≥ |v|. We assume there exists a

k̃ ∈ F(d)
u ∩ F(d)

v and first consider the case u ∩ v = ∅. Since k̃ ∈ F(d)
u we have k̃uc = 0

and therefore k̃v = 0. This contradicts k̃ ∈ F(d)
v . In the case of u∩ v 6= ∅ there exists

a j ∈ vc ∩ u. Then k̃ ∈ F(d)
v implies that k̃j = 0 which contradicts k̃ ∈ F(d)

u .

The inclusion
⋃
u⊆D F(d)

u ⊆ Zd is trivial since F(d)
u ⊆ Zd for every u ⊆ D. To

prove Zd ⊆
⋃
u⊆D F(d)

u we take a k ∈ Zd and define u = {j ∈ D : kj 6= 0}. Then

k ∈ F(d)
u and therefore k ∈

⋃
u⊆D F(d)

u .

Lemma 3.5. Let f ∈ L2(Td) with u ⊆ D and ` ∈ Z|u|. Then

c`(fu) =


ck(f) : ` ∈ (Z \ {0})|u|

δu,∅ · c0(f) : ` = 0

0 : otherwise

for k ∈ Zd with ku = ` and kuc = 0. Furthermore, fu ∈ L2(T|u|).
Proof. We begin by employing the direct formula (3.4) to obtain

c`(fu) =

∫
T|u|

fu(xu) e−2πi`·xudxu

=

∫
T|u|

∑
v⊆u

(−1)|u|−|v|Pvf(xv)

 e−2πi`·xudxu

=
∑
v⊆u

(−1)|u|−|v|
∫
T|u|

Pvf(xv) e−2πi`·xudxu

=
∑
v⊆u

(−1)|u|−|v|ckv (Pvf) δku\v,0.

We go on to prove c0(fu) = δu,∅ ·c0(f). In this case, kv = 0 and δku\v,0 = 1 for every
v ⊆ u. By the Binomial Theorem, we have

c`(fu) =
∑
v⊆u

(−1)|u|−|v|ckv (Pvf) δku\v,0 = c0(f)
∑
v⊆u

(−1)|u|−|v|

= c0(f)

|u|∑
n=0

(
|u|
n

)
(−1)|u|−n = c0(f) · δu,∅.

For the second case, we consider an ` and with a set v ⊆ u such that ∅ 6= v := {i ∈
u : ki = 0} 6= u. Then δku\v,0 = 1 ⇐⇒ vc := u \ v ⊆ v and with the Binomial
Theorem we get

c`(fu) =
∑
v⊆u

(−1)|u|−|v|ckv (Pvf) δku\v,0 =
∑

vc⊆v⊆u

(−1)|u|−|v|ckv (Pvf)

= ck(f)
∑

vc⊆v⊆u

(−1)|u|−|v| = ck(f)

|u|∑
n=|vc|

(
|u| − |vc|
n− |vc|

)
(−1)|u|−n

= ck(f)

|u|−|vc|∑
m=0

(
|u| − |vc|

m

)
(−1)|u|−|v

c|−m = 0.
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For the case were the entries of ` are all nonzero, only the addend where v = u is
nonzero, i.e., c`(fu) = ck(f).

With Lemma 3.5 we have two equivalent series representations for the ANOVA
term fu, the d-dimensional Fourier series fu(x) =

∑
k∈F(d)

u
ck(f) e2πik·x and the

|u|-dimensional Fourier series fu(xu) =
∑
`∈Z|u| c`(fu) e2πi`·xu with c`(fu) as in

Lemma 3.5. The ANOVA terms have the following important property.

Corollary 3.6. Let f ∈ L2(Td) and u,v ⊆ D with u 6= v. Then the ANOVA
terms fu and fv are orthogonal, i.e.,

〈fu, fv〉L2(Td) = 0.

Proof. We employ Lemma 3.4 and Lemma 3.5 to deduce

〈fu, fv〉L2(Td) = 〈
∑
k∈F(d)

u

ck(f) e2πik·x,
∑
`∈F(d)

u

c`(f) e2πi`·x〉L2(Td)

=
∑
k∈F(d)

u

∑
`∈F(d)

u

ck(f) c`(f) δk,` = 0.

Having defined the ANOVA terms, we now go on to the ANOVA decomposi-
tion, cf. [6, 38].

Theorem 3.7. Let f ∈ L2(Td), the ANOVA terms fu as in (3.3) and the set of
coordinate indices D = {1, 2, . . . , d}. Then f can be uniquely decomposed as

(3.5) f(x) = f∅ +

d∑
i=1

f{i}(xi) +

d−1∑
i=1

d∑
j=i+1

f{i,j}(x{i,j}) + · · ·+ fD(x) =
∑
u⊆D

fu(xu)

which we call analysis of variance (ANOVA) decomposition.

Proof. We use that Zd is the disjoint union of the sets F(d)
u for u ⊆ D and obtain∑

u⊆D

fu(xu) =
∑
u⊆D

∑
k∈F(d)

u

ck(f) e2πik·x =
∑

k∈
⋃

u⊆D F(d)
u

ck(f) e2πik·x

=
∑
k∈Zd

ck(f) e2πik·x = f(x).

Since the union is disjoint, the decomposition is unique.

Remark 3.8. The ANOVA decomposition (3.5) depends strongly on the projec-
tion operator Puf , see (3.1). The integral operator considered in this paper leads
to the so called classical ANOVA decomposition. Another important variant is the
anchored decomposition where one chooses an anchor point c ∈ Td and the projection
operator is then defined as

Puf(xu) = f(y), yu = xu,yuc = cuc .

This decomposition can for example be used in methods for the integration of high-
dimensional functions such as the multivariate decomposition method, see e.g. [34, 11].
However, the error analysis may again be based on the classical ANOVA decomposi-
tion, see e.g. [12].

In Figure 1 we have visualized the different frequency index sets F(d)
u , u ⊆ D, for

a 3-dimensional example.
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Fig. 1: The ANOVA decomposition working on the hypercube [−8, 8]3 as a part of
the 3-dimensional index set Z3.

3.1. Variance and Sensitivity. In order to get a notion of the importance of
single terms compared to the entire function, we define the variance of a function

σ2(f) :=

∫
Td

(f(x)− c0(f))
2

dx
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for real-valued f . In this case, we have the equivalent formulation

σ2(f) = ‖f‖2L2(Td) − |c0(f)|2

which yields a sensible definition for complex-valued functions f . For the ANOVA
terms fu with ∅ 6= u ⊆ D we have c0(fu) = 0 and therefore

σ2(fu) = ‖fu‖2L2(T|u|) .

Lemma 3.9. Let f ∈ L2(Td). Then we obtain for the variance

σ2(f) =
∑
∅6=u⊆D

σ2(fu).

Proof. We show that the right-hand side equals the left-hand side by employing
Lemma 3.4 and Lemma 3.5∑

∅6=u⊆D

σ2(fu) =
∑
∅6=u⊆D

∑
k∈F(d)

u

|ck(f)|2 =
∑

k∈
⋃
∅6=u⊆D F(d)

u

|ck(f)|2

=
∑
k∈Zd

|ck(f)|2 − |c0(f)|2 = ‖f‖2L2(Td) − |c0(f)|2 .

The global sensitivity indices

(3.6) %(u, f) :=
σ2(fu)

σ2(f)
∈ [0, 1]

for ∅ 6= u ⊆ D provide a comparable score to rank the importance of ANOVA
terms against each other, cf. [47, 48, 38]. Clearly, we have

∑
∅6=u⊆D %(u, f) = 1

by Lemma 3.9.
We now introduce one notion of effective dimensions as proposed in [6]. Given

a fixed δ ∈ (0, 1], the general notion of superposition dimension is defined as the
minimum

min

s ∈ D :
∑
∅6=u⊆D
|u|≤s

σ2(fu) ≥ δσ2(f)

 .

If we consider a particular Hilbert space H ⊆ L2(Td) with norm ‖·‖H , we modify
the superposition dimension in the sense of this space, see e.g. [41]. For f ∈ H and
δ ∈ (0, 1] we define the modified superposition dimension as

(3.7) d(sp) := min

s ∈ D : sup
‖f‖H≤1

∑
|u|>s

‖fu‖2L2(Td) ≤ 1− δ

 .

Finally, we investigate how the smoothness of f translates to projections Puf
and ANOVA terms fu. For a different setting this has been discussed in [38, 18, 19]
and therein called inheritance of smoothness. In our setting, we express smoothness
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through special subspaces of L2(Td) and how f being an element of those spaces
translates to the projections Puf and ANOVA terms fu. In particular, we look at
Sobolev type spaces, cf. [32],

Hw(Td) :=

f ∈ L2(Td) : ‖f‖Hw(Td) :=

∑
k∈Zd

w2(k) |ck(f)|2
 1

2

<∞


and the weighted Wiener algebra

Aw(Td) :=

f ∈ L1(Td) : ‖f‖Aw(Td) :=
∑
k∈Zd

w(k) |ck(f)| <∞


with a weight function w : Zd → [1,∞) for both cases.

Theorem 3.10 (Inheritance of smoothness for Sobolev type spaces). Let f ∈
Hw(Td) with weight function w : Zd → [1,∞). Then for any weight function
wu : Z|u| → [1,∞) with

wu(ku) ≤ w(k)∀k ∈ P(d)
u

we have Puf ∈ Hwu(T|u|) and fu ∈ Hwu(T|u|).

Proof. We show that the norm ‖Puf‖Hwu (T|u|) is finite by using Lemma 3.1∑
`∈Z|u|

w2
u(`) |c`(Puf)|2 =

∑
k∈P(d)

u

w2
u(ku) |ck(f)|2 ≤

∑
k∈P(d)

u

w2(k) |ck(f)|2

≤
∑
k∈Zd

w2(k) |ck(f)|2 = ‖f‖2Hw(Td) <∞.

Analogously, we employ Lemma 3.5 to prove fu ∈ Hwu(T|u|)∑
`∈Z|u|

w2
u(`) |c`(fu)|2 =

∑
k∈F(d)

u

w2
u(ku) |ck(f)|2 ≤

∑
k∈F(d)

u

w2(k) |ck(f)|2

≤
∑
k∈Zd

w2(k) |ck(f)|2 = ‖f‖2Hw(Td) <∞.

Theorem 3.11 (Inheritance of smoothness for the weighted Wiener algebra).
Let f ∈ Aw(Td) with weight function w : Zd → [1,∞). Then for any weight function
wu : Z|u| → [1,∞) with

wu(ku) ≤ w(k)∀k ∈ P(d)
u

we have Puf ∈ Awu(T|u|) and fu ∈ Awu(T|u|).
Proof. We use Lemma 3.1 to show that Puf ∈ Aw(T|u|)∑

`∈Z|u|
wu(`) |c`(fu)| =

∑
k∈P(d)

u

wu(ku) |ck(f)| ≤
∑
k∈P(d)

u

w(k) |ck(f)|

≤
∑
k∈Zd

w(k) |ck(f)| = ‖f‖Aw(Td) <∞.
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We utilize Lemma 3.5 to prove fu ∈ Awu(T|u|)∑
`∈Z|u|

wu(`) |c`(fu)| =
∑
k∈F(d)

u

wu(ku) |ck(f)| ≤
∑
k∈F(d)

u

w(k) |ck(f)|

≤
∑
k∈Zd

w(k) |ck(f)| = ‖f‖Aw(Td) <∞.

The inheritance of smoothness has special significance with regard to the numer-
ical realization of the method presented in Section 5. It ensures that the ANOVA
terms fu are at least as smooth as the function f in consideration which is relevant
for the quality of the approximation produced by the method.

4. Truncated ANOVA decomposition. The number of ANOVA terms of a
function is equal to the cardinality of P(D) = 2d and therefore grows exponentially
in the dimension. This reflects the curse of dimensionality in a certain way and poses
a problem for the approximation of a function. In this section we consider truncating
the ANOVA decomposition, i.e., removing certain terms fu, and therefore creating a
certain form of sparsity. We define a subset of ANOVA terms as a subset of the
power set of D, i.e., U ⊆ P(D), such that the inclusion condition

(4.1) u ∈ U =⇒ ∀v ⊆ u : v ∈ U

holds, cf. [23, Chapter 3.2]. This is necessary due to the recursive definition of the
ANOVA terms, see (3.3).

For any subset of ANOVA terms U we then define the truncated ANOVA decom-
position as

TUf :=
∑
u∈U

fu.

A specific truncation idea can be obtained by relating to the superposition dimension
d(sp), see (3.7). For a chosen superposition threshold ds ∈ D (that may or may not
be equal to the superposition dimension d(sp)), we define Uds := {u ⊆ D : |u| ≤ ds}
and Tds := TUds . We subsequently prove properties of both TU in general and Tds
in particular.

Lemma 4.1. Let f ∈ L2(Td) and U ⊆ P(D) be a subset of ANOVA terms. Then
TUf ∈ L2(Td) and for k ∈ Zd the Fourier coefficient is

ck(TUf) =

{
ck(f) : ∃u ∈ U : k ∈ F(d)

u

0 : otherwise.

Proof. Clearly, we have TUf ∈ L2(Td). Let now k ∈ Zd. Then there exists a

u0 ⊆ D such that k ∈ F(d)
u0 . We employ Lemma 3.5 and obtain

ck(TUf) =

∫
Td

(∑
u∈U

fu(xu)

)
e2πik·xdx =

∑
u∈U

∫
Td
fu(xu)e2πik·xdx

=
∑
u∈U

∫
T|u|

fu(xu)e2πiku·xudxu δku,0 =
∑
u∈U

ck(f) δkuc ,0 (1− δku,0)

=

{
ck(f) : u0 ∈ U
0 : otherwise.



APPROXIMATION OF HIGH-DIMENSIONAL PERIODIC FUNCTIONS 13

Corollary 4.2. Let f ∈ L2(Td) and ds ∈ D a superposition threshold. Then
Tdsf ∈ L2(Td) and only the Fourier coefficients corresponding to ds-sparse frequencies
are nonzero, i.e.,

ck(Tdsf) =

{
ck(f) : ‖k‖0 ≤ ds
0 : otherwise.

Proof. Since Uds is a subset of ANOVA terms, Tdsf ∈ L2(Td) follows directly

from Lemma 4.1. Moreover, ∃u ∈ Uds : k ∈ F(d)
u ⇐⇒ ‖k‖0 ≤ ds.

The following lemma shows that the number of terms in Uds is polynomial in d
for a fixed ds and therefore allows us to circumvent the curse of dimensionality in
terms of the number of sets.

Lemma 4.3. We estimate the cardinality of |Uds | as follows

|Uds | <
(

ed

ds

)ds
,

i.e., the number of terms in Uds has polynomial growth in d for fixed ds ∈ D \ {d}.
Proof. We estimate the sum as follows

|Uds | =
ds∑
n=0

(
d

n

)
≤

ds∑
n=0

dndns
n! dns

=

ds∑
n=0

(
d

ds

)n
dns
n!
≤
(
d

ds

)ds ds∑
n=0

dns
n!
.

Estimating the sum by the Taylor series for eds yields the statement.

In the following we show direct formulas for the truncated ANOVA decomposition
based on the projections similarly as for the ANOVA terms, see (3.4).

Lemma 4.4. Let f ∈ L2(Td) and U ⊆ P(D) a subset of ANOVA terms. Then we
have the direct formula

TUf =
∑
u∈U

∑
v∈U
u⊆v

(−1)|v|−|u|Puf.

Proof. We apply equation (3.4) and obtain immediately

TUf =
∑
u∈U

fu =
∑
u∈U

∑
v⊆u

(−1)|u|−|v|Pvf =
∑
u∈U

∑
v∈U

(−1)|u|−|v|Pvf δv⊆u

=
∑
v∈U

∑
u∈U
v⊆u

(−1)|u|−|v|Pvf.

Corollary 4.5. Let f ∈ L2(Td) and ds ∈ D a superposition threshold. Then we
have the direct formula

Tdsf =
∑
u⊆D
|u|≤ds

 ds∑
n=|u|

(−1)n−|u|
(
d− |u|
n− |u|

)Puf.
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Proof. Since the equality

∑
v∈Uds
u⊆v

(−1)|v|−|u| =

ds∑
n=|u|

(−1)n−|u|
(
d− |u|
n− |u|

)
,

holds, we employ Lemma 4.4 and the formula is proven.

The truncated ANOVA decomposition plays a major role in our approximation
approach presented in Section 5. Therefore we are interested in functions that can be
approximated well by a truncated ANOVA decomposition. Specifically, we are looking
to characterize functions such that the truncation operation by TUf for different sets
U retains most of the function, i.e., we have a relative error

(4.2)
‖f − TUf‖H1

‖f‖H2

< ε

with ε > 0, and H1, H2 certain subspaces of L2(Td). It is especially interesting to
characterize these functions by properties like the smoothness. To this end, we start
by proving general bounds for Sobolev type spaces Hw(Td) and the weighted Wiener
algebra Aw(Td) to later relate this to weight functions w defined by specific kinds of
smoothness.

Moreover, this can be related to the superposition dimension d(sp) for a δ ∈ (0, 1],
see (3.7). Let H1 = L2(Td) and H2 ∈ {Hw(Td),Aw(Td)} for a weight function w.
If we choose truncation by a superposition threshold ds ∈ D then the bound on the
right-hand side ε(ds) ∈ (0, 1) depends on ds. Moreover, we have

(4.3) sup
f 6=0

‖f − Tdsf‖
2
L2(Td)

‖f‖2H2

= sup
‖f‖H2

≤1

∑
|u|>ds

‖fu‖2L2(Td) < ε(ds)

which follows from ‖f − Tdsf‖
2
L2(Td) =

∑
|u|>ds ‖fu‖

2
L2(Td). The modified superposi-

tion dimension d(sp) will now be smaller or equal to min{ds ∈ D : ε(ds) ≤ 1− δ}, i.e.,
truncation by this minimum as superposition threshold is guaranteed to be effective
in relation to δ.

Theorem 4.6. Let f ∈ Hw(Td) with weight function w : Zd → [1,∞). Then

‖f − TUf‖L2(Td)

‖f‖Hw(Td)

≤ 1

min
k∈
⋃
u⊆D
u/∈U

F(d)
u
w(k)

.

Proof. We employ Parseval’s identity and Lemma 4.1 to derive

‖f − TUf‖2L2(Td) =
∑
k∈Zd

|ck(f)− ck(TUf)|2 =
∑

k∈
⋃
u⊆D
u/∈U

F(d)
u

|ck(f)|2

=
∑

k∈
⋃
u⊆D
u/∈U

F(d)
u

w2(k)

w2(k)
|ck(f)|2

≤ 1

min
k∈
⋃
u⊆D
u/∈U

F(d)
u
w2(k)

‖f‖2Hw(Td) .
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Theorem 4.7. Let f ∈ Aw(Td) with weight function w : Zd → [1,∞). Then

‖f − TUf‖L∞(Td)

‖f‖Aw(Td)

≤ 1

min
k∈
⋃
u⊆D
u/∈U

F(d)
u
w(k)

.

For f ∈ Hw(Td) with a weight function w : Zd → [1,∞) such that {1/w(k)}k∈Zd ∈ `2
we have

‖f − TUf‖L∞(Td) ≤
√√√√√ ∑
k∈
⋃
u⊆D
u/∈U

F(d)
u

1

w2(k)
‖f‖Hw(Td) .

Proof. We estimate the L∞-norm by the sum of the absolute values of the Fourier
coefficients and then use Lemma 4.1

‖f − TUf‖L∞(Td) ≤
∑
k∈Zd

|ck(f)− ck(TUf)| =
∑

k∈
⋃
u⊆D
u/∈U

F(d)
u

|ck(f)|

=
∑

k∈
⋃
u⊆D
u/∈U

F(d)
u

w(k)

w(k)
|ck(f)|(4.4)

≤ 1

min
k∈
⋃
u⊆D
u/∈U

F(d)
u
w(k)

‖f‖Aw(Td) .

Employing the Cauchy-Schwarz inequality in (4.4) instead of extracting the minimum
yields

‖f − TUf‖L∞(Td) ≤
√√√√√ ∑
k∈
⋃
u⊆D
u/∈U

F(d)
u

1

w2(k)
‖f‖Hw(Td) .

The condition {1/w(k)}k∈Zd ∈ `2 assures that the sum which appears in the bound
is finite.

In the following, we relate the truncation of f by the operator Tds with the
smoothness of f . To this end, we introduce the weights

(4.5) wα,β(k) := γ−1
suppk (1 + ‖k‖1)α

∏
s∈suppk

(1 + |ks|)β

with suppk = {i ∈ D : ki 6= 0} and parameters β ≥ 0, and α > −β. The parame-
ters α, β, and the weight γu, u ⊆ D, regulate the decay of the Fourier coefficients.
Specifically, the parameter α is regulating the isotropic smoothness and β the domi-
nating mixed smoothness, cf. [7]. Moreover, γ controls the influence of the different
dimensions. We choose a POD (product and order-dependent) structure for γu such
that

(4.6) γu = Γ|u|
∏
s∈u

γs,
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where Γ ∈ (0, 1]d is nonincreasing and γ = (γi)
d
i=1 ∈ (0, 1]d. The POD structure is

motivated by the application of quasi-Monte Carlo methods for PDEs with random
coefficients, cf. [35, 13, 33, 14]. Similar weights for isotropic and dominating mixed
smoothness have been considered in [16, 26, 5]. Moreover, the Sobolev type spaces
may also be referred to as weighted Korobov spaces, cf. [46] for product weights and
[9] for general weights.

We now use the previously obtained bounds for general weight functions w and
derive results for the weights wα,β from (4.5). We focus on the subsets of ANOVA
terms Uds defined by a superposition threshold ds ∈ D.

Corollary 4.8. Let f ∈ Awα,β (Td) with weight function from (4.5) with POD
structure (4.6), β ≥ 0, α > −β, Γ ∈ (0, 1]d, and γ ∈ (0, 1]d. Then

(4.7)
‖f − Tdsf‖L∞(Td)

‖f‖Awα,β (Td)

≤ Γds+1 (2 + ds)
−α 2−β(ds+1)

ds+1∏
s=1

γ∗s

where γ∗ is the non-increasing rearrangement of γ.

Proof. We use Theorem 4.7 and calculate the bound for the weight function wα,β,γ

by computing the minimum

M := min
k∈Zd
‖k‖0>ds

Γ−1
‖k‖0

(1 + ‖k‖1)α
d∏
s=1

(1 + |ks|)β
∏

s∈suppk

γ−1
s .

Since Γ is non-increasing by definition, Γ−1
ds+1 has to be equal to the smallest value.

The frequencies in F(d)
u have exactly |u| nonzero entries, therefore we get

M = Γ−1
ds+1(1 + ds + 1)α(1 + 1)β(ds+1) min

k∈Zd
‖k‖0>ds

∏
s∈u

γ−1
s .

The remaining product becomes minimal for the product of the ds+1 smallest entries
in γ which yields the statement.

Lemma 4.9. Let n ∈ D and γ ∈ (0, 1]d. Then∑
u⊆D
|u|=n

∏
s∈u

γ2
s ≤ ‖γ‖

2n
2 .

Proof. We rewrite the sum as follows

∑
u⊆D
|u|=n

∏
s∈u

γ2
s =

d∑
i1=1

γ2
i1

d∑
i2=i1+1

γ2
i2 · · ·

d∑
in=in−1+1

γ2
in .

Then every single sum can be estimated by ‖γ‖22, i.e.,

d∑
ij=ij−1+1

γ2
ij ≤

d∑
ij=1

γ2
ij = ‖γ‖22

for j ∈ {2, 3, . . . , d} with equality for j = 1.
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Corollary 4.10. Let f ∈ Hwα,β (Td) with weight function from (4.5) with POD
structure (4.6), β ≥ 0, α > −β, Γ ∈ (0, 1]d, and γ ∈ (0, 1]d. Then

(4.8)
‖f − Tdsf‖L2(Td)

‖f‖
Hw

α,β
(Td)

≤ Γds+1 (2 + ds)
−α 2−β(ds+1)

ds+1∏
s=1

γ∗s

where γ∗ = (γ∗s )ds=1 is the non-increasing rearrangement of γ. For functions with
isotropic smoothness α = 0 and dominating mixed smoothness β > 1/2 we have

‖f − Tdsf‖L∞(Td)

‖f‖
Hw

α,β
(Td)

≤

√√√√ d∑
n=ds+1

2nΓ2
n (ζ(2β)− 1)

n ‖γ‖2n2

where ζ is the Riemann zeta function. Exponential decay for Γs, i.e., Γs = cs, 0 <
c ≤ 1, such that the condition

(4.9) ‖γ‖2 <
1

c
√

2ζ(2β)− 2

holds, yields the bound

(4.10)
‖f − Tdsf‖L∞(Td)

‖f‖
Hw

α,β
(Td)

≤

(
c ‖γ‖2

√
2ζ(2β)− 2

)ds+1

√
1− 2c2 ‖γ‖22 (ζ(2β)− 1)

.

Proof. The bound from statement (4.8) is a consequence of Theorem 4.6 and can
be calculated analogously to the proof of Corollary 4.8. For the second statement, we
calculate the constant in the bound from Theorem 4.7. We use Lemma 3.4 and the
product structure of the weights wα,β(k) to obtain∑

k∈
⋃
u⊆D
|u|>ds

F(d)
u

1

w2(k)
=
∑
u⊆D
|u|>ds

∑
k∈F(d)

u

1

Γ−2
|u| (1 + |ks|)2β∏

s∈u γ
−2
s

=
∑
u⊆D
|u|>ds

Γ2
u

∑
k∈(Z\{0})|u|

1(∏
s∈u γ

−2
s

) (∏|u|
s=1(1 + |ks|)2β

)
=
∑
u⊆D
|u|>ds

Γ2
|u|

∏
s∈u

γ2
s

∑
k∈Z\{0}

1

(1 + |k|)2β
.

We find an explicit form by replacing the sums with the Riemann zeta function∏
s∈u

γ2
s

∑
k∈Z\{0}

1

(1 + k)2β
=
∏
s∈u

2γ2
s

∑
k∈N

1

(1 + k)2β
= 2|u| (ζ(2β)− 1)

|u|∏
s∈u

γ2
s .

Applying Lemma 4.9 then gives us the upper bound

d∑
n=ds+1

2nΓ2
n (ζ(2β)− 1)

n
∑
u⊆D
|u|=n

∏
s∈u

γ2
s ≤

d∑
n=ds+1

2nΓ2
n (ζ(2β)− 1)

n ‖γ‖2n2 .
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(a) bounds (4.8), (4.7) for 0 ≤ α ≤ 10, β = 1
(solid), and for α = 1, 0 ≤ β ≤ 10 (dashed)
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(b) bound (4.10) with α = 0, 1.7287 ≤ β ≤ 10

Fig. 2: Decay of errors from (4.8), (4.10), and (4.7) in relation to their isotropic
smoothness α and dominating-mixed smoothness β with d = 9, ds = 3, dimension de-
pendent coefficients γ = (1/s)9

s=1 and order dependent coefficients Γ = (π−s
√

3
s
)9
s=1.

If we choose an exponential decay for Γn, i.e., Γn := cn, 0 < c ≤ 1, the explicit upper
bound becomes

d∑
n=ds+1

2nc2n (ζ(2β)− 1)
n ‖γ‖2n2 =

qds+1

1− q
(1− qd−ds)

where q := 2c2 (ζ(2β)− 1) ‖γ‖22 with 0 < q < 1 because of the condition (4.9).

The bound in Corollary 4.8 and (4.8) in Corollary 4.10 are independent of the
spatial dimensions d of the functions f as long as they have the same superposition
threshold and the norm stays the same. This allows us to circumvent the curse of
dimensionality here and use the ANOVA terms in Uds for a superposition threshold
ds ∈ D. The bound (4.10) can also be considered for d → ∞. The dependence on

the dimension d is contained within the norm ‖γ‖22. Choosing a square-summable
sequence {γ`}`∈N results in an upper bound for ‖γ‖2 for any d→∞. In this case the
bound can be made independent of d by the condition (4.9).

Figure 2 shows the different bounds for weights wα,β with γ = (1/s)9
s=1 and

Γ = (π−s
√

3
s
)9
s=1, see (4.5). With regard to the superposition dimension d(sp) for

Hwα,β (Td), cf. (3.7), one may interpret this as follows: Given f ∈ Hwα,β (Td), the value
ε(α, β) ∈ (0, 1) of the bound in part (a) of Figure 2 tells us that for δ = 1− ε(α, β)2

the superposition dimension d(sp) is smaller or equal to the superposition threshold
ds = 3, e.g., ε(0, 1) ≈ 0.0008 and therefore δ = 0.99999936.

5. ANOVA approximation method. We consider the general problem of ap-
proximating a periodic function f : Td → C given certain function evaluations of f .
Specifically, we distinguish two approximation scenarios – black-box approximation
and scattered data approximation. In the case of black-box approximation, we are
able to evaluate f at any given point x ∈ Td. Since the evaluations come at a certain
cost, we aim to keep them minimal or require a certain trade-off. For scattered data
approximation we have a finite set of nodes X ⊆ Td and know the function values
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y = (f(x))x∈X . Here, one cannot add more nodes to X or choose the locations of
the nodes. Both scenarios have a high relevance for problems in various applications.

In this section, we consider an approximation scheme for high-dimensional, peri-
odic functions of a low-dimensional structure, i.e., functions with a small superposition
dimension d(sp) ∈ D for a δ ∈ (0, 1] that is close to one, cf. (3.7). In this case the
truncation by Tds with a small superposition threshold ds ∈ D will be effective. It has
been observed that functions in many practical applications belong to such a class, see
e.g. [6]. In Section 4 we have considered errors for functions of dominating-mixed and
isotropic smoothness defined trough the decay of the Fourier coefficients and therefore
obtained an upper bound for the modified superposition dimension d(sp) from (3.7).
Considering Figure 2, we know that e.g. POD weights lead to a decay such that the
functions are of a low-dimensional structure.

The approximation scheme can be viewed in both approximation scenarios al-
though the details are different. We work for now with the node set X as well as
function evaluations y and keep in mind that X may also be chosen if we are in the
black-box case. The first step is to reduce the ANOVA decomposition to the terms
in Uds , i.e., we approximate

f ≈ Tdsf =
∑
u∈Uds

fu.

The Fourier coefficients ck(Tdsf) can only be nonzero if the frequency k is at most
ds-sparse, i.e., ‖k‖0 ≤ ds, see Corollary 4.2. Based on this, we aim to approximate f
by a Fourier partial sum SIf with a finite index set

(5.1) I ⊆
{
k ∈ Zd : suppk ∈ Uds

}
.

The challenge is to determine an appropriate index set I. To this end, we employ a
special scheme to determine frequency locations based on the ANOVA terms and an
importance ranking on them.

We call the first step active set detection and its aim is to determine an importance
ranking on the terms fu with u ∈ Uds based on the global sensitivity indices %(u, f),
cf. (3.6). This information is also highly relevant to interpret relations in our data X
and y.

Based on the sensitivity indices we build an active set of ANOVA terms U ⊆ Uds .
This relates to the importance of frequencies and therefore information on how to
choose the index set I from (5.1). Reducing the number of ANOVA terms and in turn
the number of frequencies leads to a reduction of the model complexity. The effects
of overfitting are therefore lessened. In Subsection 5.1 we consider the details of the
active set detection and in Subsection 5.3 the approximation with an active set as
well as approximation errors.

5.1. Active set detection. The method assumes that the underlying function
f is of a low-dimensional structure, i.e., f ≈ Tdsf for some superposition threshold
ds ∈ D. The goal in the active set detection step is to determine an importance
ranking for the ANOVA terms. In order to do this, we choose an appropriate search
index set. Since we have no a-priori knowledge about the importance of the ANOVA
terms or the smoothness of the function f , we work with order-dependent finite index
sets I0 = {0}, I1 ⊆ (Z \ {0}), . . . , Ids ⊆ (Z \ {0})ds . This achieves that two ANOVA
terms fu and fv with |u| = |v| are supported on equivalent index sets. We then use
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the projection operator

(5.2) PuI := {k ∈ Zd : ku ∈ I,kuc = 0}

to project the index sets and obtain

(5.3) I(Uds) =
⋃

u∈Uds

PuI|u|.

This leads to the approximation by a Fourier partial sum

(5.4) f(x) ≈ Tdsf(x) ≈ SI(Uds )f(x) =
∑

k∈I(Uds )

ck(f) e2πik·x.

The Fourier coefficients ck(f) in (5.4) are unknown and we aim to determine
approximations for them from the data X and y. To this end, we consider the least-
squares problem

(5.5) f̂sol = arg min

f̂∈C|I(Uds )|

∥∥∥y − FI(Uds )f̂
∥∥∥2

2

with Fourier matrix FI(Uds ) =
(
e2πik·x)

x∈X,k∈I(Uds )
. If the Fourier matrix has full

rank, the elements of the solution vector f̂sol = (f̂k)k∈I(Uds ) are the unique least-

squares approximation to the Fourier coefficients, i.e., f̂k ≈ ck(f), with respect to
X and y. Depending on the approximation scenario, there are different methods of
solving least-squares problems of the type (5.5). We refer to Subsection 5.2 for details.

We use the approximate Fourier coefficients f̂k to build the approximate Fourier
partial sum

(5.6) SI(Uds )f(x) ≈ SXI(Uds )f(x) =
∑

k∈I(Uds )

f̂k e2πik·x

which provides an initial approximation to the function f . In order to achieve a
Fourier matrix FI(Uds ) with full rank and combat the effects of overfitting, we may
need to severely limit the number of frequencies in the order-dependent sets I1, I2,
. . . , Ids . Details on this will be considered in the following subsections for the specific
approximation scenarios.

In order to determine an importance ranking on the ANOVA terms, we assume
that the global sensitivity indices of SXI(Uds )f and f behave similarly, i.e., it holds that

(5.7) %(u1, S
X
I(Uds )f) ≤ %(u2, S

X
I(Uds )f) =⇒ %(u1, f) ≤ %(u2, f)

for u1,u2 ∈ Uds . This allows us to use a threshold vector ε ∈ [0, 1]ds to define an
active set of ANOVA terms that only contains the important terms with respect to ε

(5.8) U
(ε)
X,y := {v ⊆ D : ∃u ∈ Uds : v ⊆ u and %(u, SXI(Uds )f) > ε|u|}.

The inclusion condition (4.1) is fulfilled by definition. We reduce the ANOVA decom-
position to this set of terms to determine an approximation for f in Subsection 5.3.
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5.2. Least-squares approximation. In this section, we discuss the solution of
least-squares problems of the form

(5.9) min
f̂∈C|I(U)|

∥∥∥y − FI(U)f̂
∥∥∥2

2

with a Fourier matrix FI(U) =
(
e2πik·x)

x∈X,k∈I(U)
. Here, U is an arbitrary subset

of ANOVA terms and for each term we have a given finite frequency index set Iu ⊆
(Z \ {0})|u|. The set

(5.10) I(U) =
⋃
u∈U

PuIu

is obtained through the projections (5.2).
The following remark shows that the Fourier matrix can be structured with re-

spect to the ANOVA terms. Moreover, we can decompose the matrix-vector multipli-
cations with both, FI(U) and its adjoint F ∗I(U).

Remark 5.1. Let FI(U) be a Fourier matrix with respect to a node set X and
an index set I(U) with a subset of ANOVA terms U ⊆ P(D) and index sets Iu ⊆
(Z \ {0})|u|, u ∈ U . Then

F f̂ = (Fu1
Fu2

· · · Fun) f̂

where u1,u2, . . . ,un with n = |U | is a numbering of the subsets of coordinate in-

dices in U such that f̂ =
(
f̂u1

f̂u2
· · · f̂un

)>
. The Fourier matrices are Fu =(

e2πi`·xu
)
x∈X,`∈Iu

. The matrix-vector product with F can therefore be decomposed
as

F f̂ =
∑
u∈U

Fuf̂u

with vector components f̂u. For the adjoint product F ∗f with a vector f ∈ C|X| we
obtain the result â ∈ C|I(U)| by computing the products

âu = F ∗uf , ∀u ∈ U.

Then we have the result vector â = (âu1
âu2

· · · âun)
>

.

5.2.1. Black-box scenario. In the case of black-box approximation, i.e., the
set X can be chosen, we have to determine an appropriate special discretization
for index sets of the type I(U). Here, we have different possibilities. One might
think of rank-1 lattices that have been used for integration before, see e.g. [8], and
approximation, see e.g. [26, 30]. For a general introduction to lattice rules, we refer
to Subsection 2.1. Sparse grid sampling related to the Smolyak algorithm is a further
possibility, cf. [15, 21, 22, 23].

In the following, we focus on using reconstructing single rank-1 lattice for function
approximation. If we have a reconstructing single rank-1 lattice Λ(z,M, I(U)) ⊆ Zd
for a generating vector z ∈ Zd and size M ∈ N with respect to an index set I(U),
then

(5.11) F ∗I(U)FI(U) = M · I
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with I the identity matrix, see [43, Chapter 8.2]. Then the solution to problem (5.9)

is unique and given by the multiplication of the Moore-Penrose inverse F †I(U) with y,

see e.g. [3]. Through the property (5.11) the Moore-Penrose inverse is simplified to

(5.12) F †I(U) =
1

M
F ∗I(U),

i.e., a multiplication with the adjoint matrix. This allows us to efficiently compute
approximations for the Fourier coefficients of f if the nodes form a reconstructing
rank-1 lattice.

It remains the issue of determining such a reconstructing rank-1 lattice given an
index set of type I(U). In [43, Theorem 8.16] it was shown that reconstructing lattices
exist if the lattice size M is sufficiently large. Since the evaluations of f come at a
certain cost, it is necessary to consider the lattice size for our special types of index
sets which we do in the following.

An important quantity to get estimations on the lattice size is the difference set
D(I(U)) from (2.2) since the result [43, Theorem 8.16] tells us that there exists a
reconstructing rank-1 lattice with prime cardinality

|I(U)| ≤M ≤ |D(I(U))| .

In the following, we proof properties and show estimates on the cardinality of both
I(U) and D(I(U)).

Lemma 5.2. Let U ⊆ P(D) be a subset of ANOVA terms and Iu ⊆ Z|u|, u ∈ U ,
finite symmetric frequency sets. Then we have

D(I(U)) =
⋃
u∈U
v⊆u

{k − h : k ∈ PuIu,h ∈ PvIv}.

Proof. It is easy to see that
⋃
u∈U
v⊆u
{k−h : k ∈ PuIu,h ∈ PvIv} ⊆ D(I(U)) since

PuIu ⊆ I(U) for every u ∈ U and v ∈ U for all v ⊆ u ∈ U due to (4.1). In order
to show the other inclusion we take an element ` ∈ D(I(U)). By the uniqueness
property of the ANOVA decomposition we know that there exists u,v ∈ U such that
` = k − h with k ∈ PuIu and h ∈ PvIv. Taking the symmetry of the index sets Iu
into account, we have proven the statement.

The following lemma gives an estimate for the size of the difference set of index sets
of type I(U) if there exists an upper bound on the cardinality of the term dependent
sets Iu.

Lemma 5.3. Let U be a subset of ANOVA terms and Iu ⊆ (Z \ {0})|u|,u ∈ U,
symmetric frequency sets. Then the cardinality of the difference set of I(U) is bounded
by

(5.13) |D(I(U))| ≤
∑
u∈U

∑
v⊆u

|Iu| |Iv| ≤ 2maxu∈U |u| |U |max
u∈U
|Iu|2 .

Proof. We estimate the cardinality of the difference set by applying Lemma 5.2

|D(I(U))| ≤
∑
u∈U

∑
v⊆u

|Iu| |Iv| .
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Here, we do not have equality since the union in Lemma 5.2 is not necessarily disjoint.
Applying the upper bound on the cardinality of the sets Iu, we arrive at∑

u∈U

∑
v⊆u

|Iu| |Iv| ≤
∑
u∈U

∑
v⊆u

max
u∈U
|Iu|2 ≤ max

u∈U
|Iu|2 2maxu∈U |u|

∑
u∈U

1

≤ 2maxu∈U |u| |U |max
u∈U
|Iu|2 .

Remark 5.4. The cardinality of Uds is bounded by (e · d/ds)ds , see Lemma 4.3.
Therefore the estimate in (5.13) becomes

|D(I(Uds))| ≤
(

2e · d
ds

)ds
max
u∈U
|Iu|2 .

In the following, we consider special term-dependent frequency index sets of the
structure

(5.14) Iu :=
{
` ∈ (Z \ {0})|u| : w(k) ≤ Nu for k ∈ Zd with ku = `, kuc = 0

}
with a subset of coordinate indices ∅ 6= u ⊆ D, a weight function w : Zd → [1,∞)
and cut-off Nu ∈ N. For a given subset of ANOVA terms U ⊆ P(D) we estimate the
cardinalities of both, I(U) and the difference set D(I(U)).

Lemma 5.5. Let U ⊆ P(D) be a subset of ANOVA terms, I∅ = {0}, and Iu,
∅ 6= u ∈ U , finite frequency sets as in (5.14) for a weight function w : Zd → [1,∞)
and Nu ∈ N. Moreover, let hmin : N → [1,∞) and hmax : N → [1,∞) be functions
such that

c hmin(Numin
) ≤ min

u∈U\{∅}
|Iu| and max

u∈U
|Iu| ≤ C hmax(Numax

)

with umin = arg minu∈U\{∅} |Iu|, umax = arg maxu∈U |Iu|, and 0 < c ≤ C. Then we
have for the asymptotic behavior of the cardinality of I(U)

c hmin(Numin
) ≤ |I(U)|

|U |
≤ C hmax(Numax

).

The constants do not depend on the spatial dimension d.

Proof. Since the projected sets PuIu, u ∈ U , are disjoint, we have

|I(U)| =
∑
u∈U
|Iu| .

In order to show the upper bound, we estimate the cardinality of each index set by
hmax∑

u∈U
|Iu| ≤

∑
u∈U

C hmax(Numax
) ≤ C hmax(Numax

)
∑
u∈U

1 = |U | C hmax(Numax
).

The lower bound follows with similar arguments.

Corollary 5.6. Let U ⊆ P(D) be a subset of ANOVA terms, I∅ = {0}, and
Iu, ∅ 6= u ∈ U , finite symmetric frequency sets as in (5.14) for a weight function
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w : Zd → [1,∞) and Nu ∈ N. Moreover, let hmax be a function as in Lemma 5.5.
Then

|D(I(U))| ≤ C2 2maxu∈U |u| |U |h2
max(Numax).

Proof. The corollary is a direct consequence of Lemma 5.3 and Lemma 5.5.

We may apply [43, Algorithm 8.17] to construct the reconstructing rank-1 lat-
tice Λ(z,M, I(U)) via a component-by-component approach. Choosing the set X =
Λ(z,M, I(U)) as sampling nodes yields a Moore-Penrose inverse of type (5.12) and
we are able to compute the solution to (5.9) by multiplying with the adjoint Fourier
matrix. This computation can be done efficiently using a lattice fast Fourier transform
or LFFT, see [43, Section 8.2.2].

5.2.2. Scattered data scenario. In this section, we consider the scenario of
scattered data approximation, i.e., we have a fixed set of nodes X ⊆ Td. Here,
we aim to solve the least-squares problem (5.9) with the iterative LSQR method
[42]. Specifically, we are interested in the matrix-free variant, i.e., we do not have to
construct the system matrix FI(U) ∈ C|X|,|I(U)| explicitly. The curse of dimensionality
would quickly lead to the size of the matrix becoming intractable. The matrix-free
variant requires two algorithms, one which takes a vector a ∈ C|I(U)| as an input
and returns the result of the matrix-vector multiplication FI(U)a and one that takes

â ∈ C|X| as an input and returns the result of F ∗I(U)â. If we take Remark 5.1 into
account, it is only necessary to provide algorithms for fast multiplication with Fourier
matrices FIu ∈ C|X|,|Iu|, u ∈ U .

The existence of such algorithms depends on the choice of the specific index sets
Iu. For full grids, i.e., frequency sets of the type

Iu = GuN =

{
k ∈ Z|u| : −Nu

2
≤ ki ≤

Nu
2
− 1, i = 1, 2, . . . , |u|

}
, Nu ∈ 2N,

the non-equispaced fast Fourier transform (NFFT) was introduced in [31]. Moreover,
for hyperbolic cross index sets of the form

Iu = H |u|n =
⋃

j∈N|u|0

‖j‖1=n

Ĝj

with Ĝn = ×|u|s=1Ĝns and Ĝns = (−2ns−1, 2ns−1]|u| ∩ Z, we have the non-equispaced
hyperbolic cross fast Fourier transform (NHCFFT), cf. [10].

5.3. Approximation with active set. Now that we have obtained the active

set U
(ε)
X,y from (5.8), we aim to construct an approximation using only these ANOVA

terms. The global sensitivity indices %(u, SXI(Uds )f) calculated from the approximation

SXI(Uds )f in (5.6) provide us with a basis to choose term-dependent frequency index

sets Iu ⊆ (Z \ {0})|u|, ∅ 6= u ∈ U (ε)
X,y. A higher sensitivity index suggests that the

term is more important to the function and therefore a larger corresponding index set
could be advisable.

We project the index sets as before to obtain I(U
(ε)
X,y), see (5.10). Note that in

general and depending on the threshold ε, we have reduced the number of frequencies
significantly. This is a sensible measure to reduce the effects of overfitting. Now, we
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approximate f by the Fourier partial sum

f(x) ≈ T
U

(ε)
X,y

f(x) ≈ S
I(U

(ε)
X,y)

f(x) =
∑

k∈I(U(ε)
X,y)

ck(f) e2πik·x.

The Fourier coefficients ck(f) are again unknown and we determine them by least-
squares approximation from X and y. The unique solution is given by

(5.15) f̂sol = arg min

f̂∈C|I(U
(ε)
X,y

)|

∥∥∥y − FI(U(ε)
X,y)

f̂
∥∥∥2

2

if the Fourier matrix F
I(U

(ε)
X,y)

=
(
e2πik·x)

x∈X,k∈I(U(ε)
X,y)

has full rank. Details on how

to solve this system for scattered data and black-box approximation can be found in
Subsection 5.2. We use the elements of the solutions vector f̂sol = (f̂k)

k∈I(U(ε)
X,y)

to

form the approximate Fourier partial sum and our solution

f(x) ≈ S
I(U

(ε)
X,y)

f(x) ≈ SX
I(U

(ε)
X,y)

f(x) =
∑

k∈I(U(ε)
X,y)

f̂k e2πik·x.

The following algorithm summarizes the proposed method.

Algorithm 5.1 ANOVA Approximation Method

Input: X ⊆ Td finite node set
y = (f(x))x∈X function values
ds ∈ D superposition threshold

1: Choose finite order-dependent search sets I1 ⊆ Z \ {0}, . . . , Ids ⊆ (Z \ {0})ds .
2: Compute solution of least-squares problem (5.5).

3: f̂sol = (f̂k)k∈I(Uds ) ← arg min
f̂∈C|I(Uds )|

∥∥∥y − FI(Uds )f̂
∥∥∥2

2

4: Compute global sensitivity indices for approximation SXI(Uds )f using (3.6).

5: %(u, SXI(Uds )f)←

∥∥∥(SXI(Uds )f)u

∥∥∥2
L2(Td)∥∥∥∥SXI(Uds )

f

∥∥∥∥2
L2(Td)

−
∣∣∣∣c0(SXI(Uds )

f

)∣∣∣∣2 , u ∈ Uds

6: Choose threshold vector ε ∈ [0, 1]ds and build active set.

7: U
(ε)
X,y ←

{
v ⊆ D : ∃u ∈ Uds : v ⊆ u and %(u, SXI(Uds )f) > ε|u|

}
8: Use information from global sensitivity indices to choose finite index sets Iu ⊆

(Z \ {0})|u| per ANOVA term in U
(ε)
X,y.

9: Compute solution of least-squares problem (5.15).

10: f̂sol = (f̂k)
k∈I(U(ε)

X,y)
← arg min

f̂∈C|I(U
(ε)
X,y

)|
∥∥∥y − FI(U(ε)

X,y)
f̂
∥∥∥2

2

Output: f̂k ∈ C,k ∈ I(U
(ε)
X,y) approximations to Fourier

coefficients ck(f)
%(u, SXI(Uds )f) ∈ [0, 1],u ∈ Uds global sensitivity indices of SXI(Uds )f

or importance ranking on the terms
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6. Error analysis. The error of our approximation method measured in the
norm of some space H ⊆ L2(Td) can be decomposed into multiple components by the
triangle inequality∥∥∥f − SXI(U)f

∥∥∥
H
≤ ‖f − TUf‖H︸ ︷︷ ︸

ANOVA truncation error

+
∥∥∥TUf − SXI(U)f

∥∥∥
H︸ ︷︷ ︸

approximation error

for an active set of ANOVA terms U ⊆ Uds with superposition threshold ds ∈ D.
We distinguish between the ANOVA truncation error and the approximation error.
Here, the analysis of the ANOVA truncation error is independent of the concrete
approximation problem (5.15) and the scenario (scattered data or black-box).

6.1. ANOVA truncation error. The ANOVA truncation error is related to the
truncation of the ANOVA decomposition to the set Uds with superposition threshold
ds ∈ D and the active set U ⊆ Uds . We can separate the ANOVA truncation error as
follows

(6.1) ‖f − TUf‖H ≤ ‖f − Tdsf‖H︸ ︷︷ ︸
truncation by ds

+ ‖Tdsf − TUf‖H︸ ︷︷ ︸
active set truncation

.

Here, we bring Tds in with the aim to relate the error to our function class of low-
order interactions, see (4.2). To control the second term, we require assumptions
on the sensitivity indices of the ANOVA terms in Uds \ U . Since the error is only
related to the structure of the function it can be considered independently of any
specific approximation scenario like black-box or scattered data approximation. We
show bounds for this error in the case that f is an element of a Sobolev type space
Hw(Td) or a Wiener algebra Aw(Td) and H is L2(Td) or L∞(Td).

Theorem 6.1. Let f ∈ Hw(Td) with a weight function w : Zd → [1,∞) and su-
perposition dimension d(sp), see (3.7), for a δ ∈ (0, 1). If there exists a subset of
ANOVA terms U ⊆ Ud(sp) such that

%(u, f) =
σ2(fu)

σ2(f)
< ε, ε > 0,

for every u ∈ Ud(sp) \ U then

‖f − TUf‖L2(Td)

‖f‖Hw(Td)

≤
√

1− δ +
√
|Ud(sp) \ U | ε.

Proof. The ANOVA truncation error can be separated as in (6.1). We prove an
upper bound for the active set truncation. With Parseval’s equality and the assump-
tion on the global sensitivity indices, we estimate

(6.2) ‖Td(sp)f − TUf‖2L2(Td) =
∑

u∈U
d(sp)\U

∑
k∈F(d)

u

|ck(f)|2 ≤ σ2(f) |Ud(sp) \ U | ε.

Clearly, we have σ2(f) ≤ ‖f‖2L2(Td) ≤ ‖f‖
2
Hw(Td).

Theorem 6.2. Let f ∈ Aw(Td) with a weight function w : Zd → [1,∞). If there
exsists a subset of ANOVA terms U ⊆ Uds , ds ∈ D, such that

(6.3)

∑
k∈F(d)

u
|ck(f)|∑

k∈Zd |ck(f)|
< ε1, ε1 > 0
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for every u ∈ Uds \ U and we have

‖f − Tdsf‖L∞(Td)

‖f‖Aw(Td)

< ε2, ε2 > 0,

then

‖f − TUf‖L∞(Td)

‖f‖Aw(Td)

≤ ε2 +
√
|Uds \ U | ε1.

Proof. We split the ANOVA truncation error as in (6.1) and prove an upper bound
for the second part. To this end, we estimate the L∞ norm of f by the absolute values
of its Fourier coefficients and apply (6.3) to obtain

‖Tdsf − TUf‖L∞(Td) ≤
∑

u∈Uds\U

∑
k∈F(d)

u

|ck(f)| ≤ |Uds \ U | ε1

∑
k∈Zd

|ck(f)| .

Naturally, it holds that
∑
k∈Zd |ck(f)| ≤ ‖f‖Aw(Td) which leads to the desired esti-

mate.

Note that in order to prove a bound for the error in L∞, we formulated a condition
on an `1 equivalent of the global sensitivity indices %(u, f) in accordance with the
Wiener algebra norm.

6.2. Approximation error. In this section, we focus on the approximation
error which we separate into two parts as well

(6.4)
∥∥∥TUf − SXI(U)f

∥∥∥
H
≤
∥∥TUf − SI(U)f

∥∥
H︸ ︷︷ ︸

truncation error

+
∥∥∥SI(U)f − SXI(U)f

∥∥∥
H︸ ︷︷ ︸

aliasing error

with H ∈ {L2(Td),L∞(Td)}, a subset of ANOVA terms U ⊆ P(D), and a finite
frequency index set I(U) ⊆ Zd of structure (5.10) with sets Iu as in (5.14). The trun-
cation error remains independent of the approximation scenario and can be estimated
by the norms in Aw and Hw.

Lemma 6.3. Let f ∈ Hw(Td), w : Zd → [1,∞) a weight function, and I(U) ⊆ Zd
a finite frequency index set of type (5.10) with U ⊆ P(D). Then the relative truncation
error can be estimated as

(6.5)

∥∥TUf − SI(U)f
∥∥

L2(Td)

‖f‖Hw(Td)

≤ 1

minu∈U Nu
.

If in addition we have
∑
k∈Zd

1
w2(k) <∞, we can estimate

(6.6)

∥∥TUf − SI(U)f
∥∥

L∞(Td)

‖f‖Hw(Td)

≤
√√√√∑
u∈U

∑
k∈F(d)

u \PuIu

1

w2(k)
.

Proof. In order to prove (6.5) we employ Parseval’s identity and use the weight
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w(k)

∥∥TUf − SI(U)f
∥∥2

L2(Td)
=
∑
u∈U

∑
k∈F(d)

u \PuIu

|ck(f)|2 =
∑
u∈U

∑
k∈F(d)

u \PuIu

w2(k)

w2(k)
|ck(f)|2

≤
∑
u∈U

1

N2
u

∑
k∈F(d)

u \PuIu

w2(k) |ck(f)|2 ≤ 1

minu∈U N2
u

‖f‖2Hw(Td) .

For the bound (6.6) we estimate the norm by the absolute sum of the Fourier coeffi-
cients and use the Cauchy-Schwarz inequality

∥∥TUf − SI(U)f
∥∥

L∞(Td)
=

∑
k∈
⋃

u∈U F(d)
u \I(U)

|ck(f)| =
∑

k∈
⋃

u∈U F(d)
u \I(U)

w(k)

w(k)
|ck(f)|

≤ ‖f‖Hw(Td)

√√√√∑
u∈U

∑
k∈F(d)

u \PuIu

1

w2(k)
.

Lemma 6.4. Let f ∈ Aw(Td) with w : Zd → [1,∞) a weight function such that∑
k∈Zd

1
w2(k) < ∞, and I(U) ⊆ Zd a finite frequency index set of type (5.10) with

U ⊆ P(D) and sets Iu as in (5.14). Then the relative truncation error can be estimated
as ∥∥TUf − SI(U)f

∥∥
L∞(Td)

‖f‖Aw(Td)

≤ min

 1

minu∈U Nu
,max
u∈U

√√√√ ∑
k∈F(d)

u \PuIu

1

w2(k)

 .

Proof. The proof requires similar steps to the proof of Lemma 6.3.

For the aliasing error in (6.4), we start by considering the black-box approximation
case where we solve the least-squares problem as described in Subsection 5.2.

Theorem 6.5. Let f ∈ Hw(Td) with a weight function w : Zd → [1,∞) such that∑
k∈Zd

1
w2(k) <∞ and I(U) ⊆ Zd a finite frequency index set of type (5.10) with sets

Iu as in (5.14). Moreover, we have a reconstructing rank-1 lattice Λ(z,M, I(U)) for
a generating vector z ∈ Zd and lattice size M ∈ N. Then the aliasing error can be
estimated as

(6.7)

∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥
L2(Td)

‖f‖Hw(Td)

≤

√√√√ ∑
k∈Zd\I(U)

1

w2(k)
.

Furthermore, if f ∈ Aw(Td) we get for the L∞-norm

(6.8)

∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥
L∞(Td)

‖f‖Aw(Td)

≤ 1

minu∈U Nu
.
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Proof. We show the bound (6.7) by first applying Parseval’s identity and (2.3)∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥2

L2(Td)
=

∑
k∈I(U)

∣∣∣f̂k − ck(f)
∣∣∣2

=
∑

k∈I(U)

∣∣∣∣∣∣
∑

h∈Λ⊥(z,M)\{0}

ck+h(f)

∣∣∣∣∣∣
2

.

We then incorporate the weight and utilize the Cauchy-Schwarz inequality to obtain

∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥2

L2(Td)
=

∑
k∈I(U)

∣∣∣∣∣∣
∑

h∈Λ⊥(z,M)\{0}

w(k + h)

w(k + h)
ck+h(f)

∣∣∣∣∣∣
2

≤
∑

k∈I(U)

 ∑
h∈Λ⊥(z,M)\{0}

w2(k + h) |ck+h(f)|2
×

×

 ∑
h∈Λ⊥(z,M)\{0}

1

w2(k + h)



From [43, Lemma 8.13] we know that for fixed k ∈ I(U) we have disjoint sets

Mk :=
{
k + h : h ∈ Λ⊥(z,M) \ {0}

}
⊆ Zd \ I(U).

This means we are able to estimate∑
h∈Λ⊥(z,M)\{0}

w2(k + h) |ck+h(f)|2 =
∑
`∈Mk

w2(`) |c`(f)|2

≤
∑
`∈Zd

w2(`) |c`(f)|2 = ‖f‖2Hw(Td)

such that∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥2

L2(Td)
≤ ‖f‖2Hw(Td)

∑
k∈I(U)

∑
h∈Λ⊥(z,M)\{0}

1

w2(k + h)
.

Using that the sets Mk are disjoint and
⋃
k∈I(U)Mk ⊆ Zd \ I(U) yields

∑
k∈I(U)

∑
h∈Λ⊥(z,M)\{0}

1

w2(k + h)
=

∑
k∈I(U)

∑
`∈Mk

1

w2(`)

=
∑

`∈
⋃

k∈I(U)Mk

1

w2(`)
≤

∑
`∈Zd\I(U)

1

w2(`)
.

The L∞-bound (6.8) is obtained similarly to the method used in the proof of [43,
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Theorem 8.14]. We proceed as follows∥∥∥SI(U)f − S
Λ(z,M,I(U))
I(U) f

∥∥∥
L∞(Td)

≤
∑
u∈U

∑
k∈F(d)

u \PuIu

|ck(f)|

=
∑
u∈U

∑
k∈F(d)

u \PuIu

w(k)

w(k)
|ck(f)|

≤ 1

minu∈U Nu

∑
u∈U

∑
k∈F(d)

u \PuIu

w(k) |ck(f)| .

The result is obtained through estimating the sum by ‖f‖Aw(Td).

In the following we consider the approximation error for scattered data approx-
imation with a fixed node set X ⊆ Td. Previously, we assumed that the index set
I(U) and the node set X are such that the Fourier matrix FI(U) has full rank. In this
case the least-squares problem (5.9) has a unique solution. Assuming that the nodes
in X are i.i.d. random variables that are uniformly distributed in Td, it is possible to
achieve good bounds on the approximation error, see [2, 20, 29, 39].

Lemma 6.6. Let f ∈ Hw(Td) with a weight function w : Zd → [1,∞) such that∑
k∈Zd

1
w2(k) < ∞, X ⊆ Td a finite set of i.i.d. uniformly distributed points, y =

(f(x))x∈X , and I(U) ⊆ Zd a finite frequency index set of type (5.10) with U ⊆ P(D)
a subset of ANOVA terms and sets Iu as in (5.14). If for the number of frequencies

we have |I(U)| ≤ |X|
7r log|X| , r > 0, then

sup
‖f‖

Hw(Td)≤1

∑
x∈X

∣∣(f − SI(U)f
)

(x)
∣∣2

|X|
≤ 5 max

θ2
I(U),

8rκ2 log |X|
|X|

∑
k∈Zd\I(U)

1

w2(k)


with a probability of at least 1−3 |X|1−r for θI(U) =

∥∥f − SI(U)f
∥∥

L2(Td)
and κ = 1+

√
5

2 .

Proof. The setting of this lemma is a special case of [39, Theorem 5.1].

The following theorem deals with the actual approximation error by incorporating
the previous lemma.

Theorem 6.7. Let f ∈ Hw(Td) with a weight function w : Zd → [1,∞) such that∑
k∈Zd

1
w2(k) <∞, I(U) ⊆ Zd a finite frequency index set of type (5.10) with sets Iu

as in (5.14). Moreover, U ⊆ P(D), and SXI(U)f are the corresponding approximate
Fourier partial sum obtained through the scattered data approximation method de-
scribed in Subsection 5.2. If the elements of X ⊆ Td are i.i.d. random variables
uniformly distributed on Td and for the number of frequencies we have |I(U)| ≤
|X|

7r log|X| , r > 0, then∥∥∥SI(U)f − SXI(U)f
∥∥∥

L2(Td)

‖f‖Hw(Td)

≤

√√√√√8 max

θ2
I(U), κ

2
log |X|
|X|

∑
k∈Zd\I(U)

1

w2(k)


with a probability of at least 1−3 |X|1−r for θI(U) =

∥∥f − SI(U)f
∥∥

L2(Td)
and κ = 1+

√
5

2 .

Proof. We denote the Fourier coefficients with ĉ = (ck(f))k∈I(U) and the approx-

imate Fourier coefficients computed by Algorithm 5.1 with f̂ = (f̂k)k∈I(U). With
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Parseval’s identity as well as the Moore-Penrose inverse we obtain∥∥∥SI(U)f − SXI(U)f
∥∥∥

L2(Td)
=

√√√√ ∑
k∈I(U)

∣∣∣f̂k − ck(f)
∣∣∣2 =

∥∥∥f̂ − ĉ∥∥∥
2

=

∥∥∥∥(F ∗I(U)FI(U)

)−1

F ∗I(U)y − ĉ
∥∥∥∥

2

=

∥∥∥∥(F ∗I(U)FI(U)

)−1

F ∗I(U)

(
y − FI(U)ĉ

)∥∥∥∥
2

.

We use the properties of the spectral norm and estimate further

≤
∥∥∥∥(F ∗I(U)FI(U)

)−1

F ∗I(U)

∥∥∥∥
2

∥∥y − FI(U)ĉ
∥∥

2

=

∥∥∥∥(F ∗I(U)FI(U)

)−1

F ∗I(U)

∥∥∥∥
2

√∑
x∈X

∣∣(f − SI(U)f
)

(x)
∣∣2 .

Applying [39, Theorem 2.3] yields

sup
‖f‖

Hw(Td)≤1

∥∥∥SI(U)f − SXI(U)f
∥∥∥

L2(Td)
≤ sup
‖f‖

Hw(Td)≤1

√
2

|X|
∑
x∈X

∣∣(f − SI(U)f
)

(x)
∣∣2.

Finally, we use Lemma 6.6 to obtain our bound

sup
‖f‖

Hw(Td)≤1

∥∥∥SI(U)f − SXI(U)f
∥∥∥

L2(Td)
≤

√√√√√8 max

θ2
I(U), κ

2
log |X|
|X|

∑
k∈Zd\I(U)

1

w2(k)


with a probability of at least 1− 3 |X|1−r.

This concludes the consideration of the error of the presented method in both
approximation scenarios. We were able to achieve bounds for L2 and L∞ for functions
in weighted Wiener algebras and Sobolev type spaces.

7. Numerical Results. We present numerical results for the method described
in Section 5 for a test function f : [0, 1)9 → R,

(7.1) f(x) := B2(x1)B4(x5)+B2(x2)B4(x6)+B2(x3)B4(x7)+B2(x4)B4(x8)B6(x9),

where B2, B4 and B6 are parts of univariate, shifted, scaled and dilated B-splines of
order 2, 4, and 6, respectively, see Figure 3 for illustration. Their Fourier series is
given by

Bj(x) := cj
∑
k∈Z

sincj
(
π · k
j

)
cos(π · k) e2πik·x

with sinc(x) := sin(x)/x and the constants c2 :=
√

3/4, c4 :=
√

315/604, c6 :=√
277200/655177 such that ‖Bj‖L2(Td) = 1. This allows the direct computation of

the Fourier coefficients ck(f) and the norm ‖f‖L2(Td). The ANOVA terms fu are only
nonzero for

u ∈ U∗ := P({1, 5}) ∪ P({2, 6}) ∪ P({3, 7}) ∪ P({4, 8, 9}).
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Fig. 3: B-splines B2, B4, and B6 over T ∼= [0, 1).

The function f therefore has an exact low-dimensional structure for ds = 3, i.e.,
T3f = f . This leads to ds = 3 being the optimal choice for the superposition threshold
with no error caused by ANOVA truncation since it corresponds to the superposition
dimension d(sp) for δ = 1, see (4.3). In an approximation scenario with an unknown
function f this information is of course not known.

We consider two errors

(7.2) ε`2 =

∥∥∥y − (SXI(Uds )f(x))x∈X

∥∥∥
2

‖y‖2
, and εL2

=

∥∥∥f − SXI(Uds )f
∥∥∥

L2(T9)

‖f‖L2(T9)

.

Here, the error ε`2 can be regarded as a training error since it is taken at the given
sampling set X and the error εL2 as a type of generalization error since it measures
the error in the Fourier coefficients. Since our goal is to find the important ANOVA
terms, i.e., the terms in U∗, we expect to have an interval (or gap) in which to choose
the order-dependent threshold ε ∈ [0, 1]ds . Therefore, we define

I(j) =

{
∅ : assumption (5.7) is not fulfilled

(a(j), b(j)) : assumption (5.7) is fulfilled
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with 1 ≤ j ≤ ds and

a(j) := max
{
%(u, SXI(Uds )f) : u ∈ Uds \ U∗, |u| = j

}
,

b(j) := min
{
%(u, SXI(Uds )f) : u ∈ U∗, |u| = j

}
.

Here, the assumption (5.7) is to be understood for every order of terms, i.e., for u
and v with |u| = |v| = j.

Remark 7.1. The norm occurring in the error εL2
can be calculated using Parse-

val’s identity∥∥∥f − SXI(Uds )f
∥∥∥2

L2

= ‖f‖2L2
+

∑
k∈I(Uds )

∣∣∣ck(f)− f̂k
∣∣∣2 − ∑

k∈I(Uds )

|ck(f)|2

which is possible since we know the exact Fourier coefficients and the norm of the
function f . In general, this error cannot be computed.

7.1. Scattered Data Approximation. For our numerical experiments we use
one sampling set X ⊆ T9 of uniformly distributed nodes with M := |X| = 2.5·106, and
an evaluation vector y = (f(x))x∈X . We are going to start by choosing three as the
superposition threshold ds while later reducing it to two which allows us to see the ef-
fect of truncating an ANOVA term. Our primary aim for now is to detect the ANOVA
terms in U∗ which we achieve using the first step of our method, see Subsection 5.1.
To this end, we choose a frequency index set I(Uds) ⊆ Z9, cf. (5.4), through order-
dependent sets I0 = {0}, I1 = {−N1/2, . . . , N1/2− 1}, I2 = {−N2/2, . . . , N2/2− 1}2,
and I3 = {−N3/2, . . . , N3/2 − 1}3 with N1, N2, N3 ∈ 2N. The method gives us an
approximation SXI(Uds )f .

Results of numerical experiments with the function f from (7.1) and different
choices for the bandwidths N1, N2, and N3 are displayed in Table 1. They show
that it is indeed possible to detect the ANOVA terms in U∗ using trigonometric
polynomials of small degrees. Moreover, both errors are roughly of the same order.
Since our number of samples M is fixed, we are looking for values N such that one
balances the effects of underfitting and overfitting. The experiments suggest that the
choice in examples 5 and 8 is close to optimal. In Figure 4 we depicted the global
sensitivity indices %(u, SXI(Uds )f), cf. Algorithm 5.1, for example 8 from Table 1. The

one-dimensional sets {i}, i = 1, . . . , 9, all have large indices as they are all in U∗ while
the two dimensional sets

{1, 5}, {2, 6}, {3, 7}, {4, 8}, {4, 9}, {8, 9} ∈ U∗

are clearly separated from the two dimensional sets in Uds \ U∗. The same holds for
the one three-dimensional term {4, 8, 9} ∈ U∗. The size of the intervals I(j) suitable
to choose the parameters εj is especially relevant since it separates important from
unimportant terms.

Since there exists N , and ε such that we are able to recover the set of ANOVA

terms U∗, we set U
(ε)
X,y = U∗ from now on. We aim to improve our approximation

quality with the given data by solving the minimization problem (5.15). Here, we
could choose individual index sets for every ANOVA term in U∗ to form I(U∗) based
on the global sensitivity indices, but for our function order-dependence can be main-
tained. Table 2 shows the results of the approximation using the index set I(U∗).
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size of index sets relative errors

N |I(Uds)| ε`2 εL2
I(1), I(2), I(3)

1 [256, 32, 8] 65704 4.7 · 10−3 4.8 · 10−3 (0.0, 0.021)
(3.0 · 10−8, 0.019)
(1.2 · 10−8, 0.026)

2 [256, 32, 16] 320392 2.1 · 10−3 2.4 · 10−3 (0.0, 0.021)
(7.2 · 10−9, 0.019)
(2.5 · 10−8, 0.026)

3 [256, 32, 32] 2539336 2.6 · 10−2 2.8 · 10−2 (0.0, 0.016)
(8.3 · 10−5, 0.015)
(2.5 · 10−3, 0.023)

4 [256, 64, 8] 173992 4.4 · 10−3 4.7 · 10−3 (0.0, 0.021)
(1.1 · 10−7, 0.019)
(1.1 · 10−8, 0.026)

5 [256, 64, 16] 428680 1.6 · 10−3 1.9 · 10−3 (0.0, 0.021)
(1.8 · 10−8, 0.019)
(1.6 · 10−8, 0.026)

6 [256, 64, 32] 2647624 2.5 · 10−2 3.2 · 10−2 (0.0, 0.015)
(4.0 · 10−4, 0.015)
(2.9 · 10−3, 0.022)

7 [512, 64, 8] 176296 4.4 · 10−3 4.7 · 10−3 (0.0, 0.021)
(1.1 · 10−7, 0.019)
(1.1 · 10−8, 0.026)

8 [512, 64, 16] 430984 1.6 · 10−3 1.9 · 10−3 (0.0, 0.021)
(1.8 · 10−8, 0.019)
(1.6 · 10−8, 0.026)

9 [512, 64, 32] 2649928 2.5 · 10−2 3.2 · 10−2 (0.0, 0.015)
(4.0 · 10−4, 0.015)
(2.9 · 10−3, 0.022)

Table 1: Results of detection step for important ANOVA terms with M = 2.5 · 106

uniformly distributed nodes (N = [N1, N2, N3]).

The number of terms in U∗ is significantly smaller than in Uds such that we
are able to increase N while balancing the effects of over- and underfitting. We
observe that the reduction of the ANOVA terms to U∗ yields benefit with regard to
approximation quality due to the reduction in model complexity.

Now that we have experiments with no truncation error in the ANOVA decom-
position, i.e., T3f = f , we repeat the tests with a superposition threshold ds = 2. In
this case, it is not possible to detect the ANOVA term f{4,8,9} which results in the
set U+ := U∗ \ {4, 8, 9} being optimal for the detection step. For the following tests,
we use the same nodes as we did previously.

The results of the experiments in Table 3 show that it is possible to determine
the terms in U+. Since three-dimensional terms are not included, the term f{4,8,9} is
not in the approximation which results in the larger errors compared to Table 1.
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Fig. 4: Behavior of the global sensitivity indices %(u, SXI(Uds )f) for the example 8 from

Table 1.

size of index sets relative errors

N |I(U∗)| ε`2 εL2

1 [1024, 64, 64] 283069 5.6 · 10−4 6.3 · 10−4

2 [1024, 128, 32] 135773 6.0 · 10−4 6.4 · 10−4

4 [1024, 128, 64] 356029 2.7 · 10−4 3.1 · 10−4

5 [1024, 256, 64] 649405 2.0 · 10−4 2.7 · 10−4

Table 2: Results for approximation with active set U∗ and M = 2.5 · 106 uniformly
distributed nodes (N = [N1, N2, N3]).

Since there exists N ∈ N2 and ε > 0 such that U
(ε)
X,y = U+, we use U+ for the

next approximation step with suitable index sets I(U+). The results for different
choices of N1 and N2 are displayed in Table 4. We are able to achieve better errors
with the smaller index sets. Obviously, the influence of the cutoff error is dominating
such that a large benefit in taking many additional frequencies cannot be observed.

7.2. Black-Box Approximation. In the following numerical experiments we
aim to find reconstructing rank-1 lattice, see Subsection 2.1, for the function f . In
the first step, our goal is to determine the set of ANOVA terms U∗ and later use it
to improve our approximation quality. As discussed in [28], the function f works well
with hyperbolic cross index sets of dominating mixed smoothness 3/2. Therefore, we
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size of index sets relative errors

N |I(Uds)| ε`2 εL2
I(1), I(2)

1 [256, 16] 10396 9.4 · 10−2 9.4 · 10−2 (0.0, 0.021)
(3.0 · 10−6, 0.020)

2 [256, 32] 36892 9.3 · 10−2 9.4 · 10−2 (0.0, 0.021)
(3.0 · 10−6, 0.020)

3 [256, 64] 145180 9.1 · 10−2 9.6 · 10−2 (0.0, 0.021)
(4.8 · 10−5, 0.020)

4 [256, 128] 582940 8.2 · 10−2 1.1 · 10−1 (0.0, 0.021)
(2.3 · 10−4, 0.020)

Table 3: Results of detection step for important ANOVA terms with M = 2.5 · 106

uniformly distributed nodes and superposition threshold ds = 2, (N = [N1, N2]).

size of index sets relative errors

N |I(U+)| ε`2 εL2

1 [1024, 16] 10558 9.3 · 10−2 9.3 · 10−2

2 [1024, 32] 14974 9.3 · 10−2 9.3 · 10−2

3 [1024, 64] 33022 9.3 · 10−2 9.4 · 10−2

4 [1024, 128] 105982 9.1 · 10−2 9.5 · 10−2

Table 4: Approximation results for active set U+ with M = 2.5 · 106 uniformly
distributed nodes (N = [N1, N2]).

define

(7.3) HNj =

k ∈ Zj :
∏

s∈suppk

(1 + |ks|)
3
2 ≤ N

 , N ∈ N.

We choose as order-dependent index sets I0 = {0}, I1 = HN1
1 , I2 = HN2

2 , and I3 =
HN1

3 with N1, N2, N3 ∈ N to obtain I(Uds) as in (5.3). The method then gives us a
reconstructing rank-1 lattice X := Λ(z,M, I(Uds)) with generating vector z ∈ Z9 and
lattice sizes M ∈ N by employing the component-by-component construction from
[43, Algorithm 8.17]. The approximation is defined as SXI(Uds )f .

Table 5 shows results of numerical experiments with f , see (7.1), and different
choices for the parameters N1, N2, and N3. We can see that there exist an ε such that
it is possible to detect the active set of terms U∗ in every test scenario. The lattice
size increases with the growing index set as expected. Note that is sufficient to use
an index set of 3481 frequencies and a lattice with only 46351 evaluations in order to
detect the active set of ANOVA terms.

Now, we set the active set U
(ε)
X,y = U∗. The aim is again to improve our approx-

imation quality by solving the minimization problem (5.15). We also maintain the
order-dependence of the set I(U∗) based on the structure of the function. Table 6
shows the results of the approximation using the index set I(U∗). Larger cutoff pa-
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rameters Ni become possible such that we are able to achieve a good approximation
error with relatively small lattice sizes in relation to our problem dimension. The
sizes of our reconstructing lattices stay manageable as well.

size of index sets relative errors

N |I(Uds)| ε`2 εL2 M I(1), I(2), I(3)

[102, 102, 102] 3481 2.8 · 10−2 3.0 · 10−2 47351 (0.0, 0.021)
(3.4 · 10−5, 0.019)
(5.7 · 10−5, 0.025)

[103, 103, 103] 11203 1.0 · 10−2 1.0 · 10−2 490277 (0.0, 0.021)
(1.7 · 10−7, 0.019)
(5.7 · 10−7, 0.026)

[104, 104, 103] 16891 7.0 · 10−3 7.1 · 10−3 1114489 (0.0, 0.021)
(3.5 · 10−10, 0.019)
(5.3 · 10−8, 0.026)

[105, 104, 103] 17341 7.0 · 10−3 7.0 · 10−3 2349307 (0.0, 0.021)
(1.7 · 10−9, 0.019)
(2.8 · 10−9, 0.026)

Table 5: Results of detection step for important ANOVA terms (N = [N1, N2, N3]).

size of index sets relative errors

N |I(Uds)| ε`2 εL2
M

[104, 104, 104] 2243 2.4 · 10−3 2.6 · 10−3 157243
[105, 105, 105] 6565 8.3 · 10−4 8.3 · 10−4 1346881
[106, 105, 105] 7591 7.7 · 10−4 7.7 · 10−4 883391
[106, 106, 105] 13495 5.0 · 10−4 5.0 · 10−4 5691109

Table 6: Results of detection step for important ANOVA terms (N = [N1, N2, N3]).

8. Summary. In this paper we considered the classical ANOVA decomposition

for periodic functions. We studied different index sets P(d)
u and F(d)

u for the projections
Puf and ANOVA terms fu, respectively, and proved their properties as well as formu-
las for the Fourier coefficients. For functions in Sobolev type spaces Hw(Td) and the
weighted Wiener algebra Aw(Td) we showed that a function inherits its smoothness
to both the projections and ANOVA terms.

Moreover, we related the smoothness of a function characterized by the decay of
its Fourier coefficients to the class of functions of a low-dimensional structure and
considered relative errors for L∞ and L2 weighed by the corresponding Sobolev and
Wiener algebra norms. This lead to an upper bound for the modified superposition
dimension d(sp) in those spaces. For product and order-dependent weights wα,β we
were able to obtain specific bounds.

We introduced an approximation method for high-dimensional functions that are
of a low-dimensional structure in Section 5. The method can be employed in black-
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box and scattered data approximation. In the former scenario one needs a special
discretization for the index sets of type I(U), e.g., rank-1 lattice, and in the latter an
algorithm to realize an efficient multiplication with the Fourier matrices. We proved
results for the error of the method, see Section 6, in L2 and L∞. An L∞ bound in
the scattered data case for the aliasing error in (6.4) is still open. Here, one needs to
consider estimating the quantity

sup
‖f‖Aw(Td)≤1

1

|X|
∑
x∈X

∣∣(f − SI(U)f
)

(x)
∣∣ .

Numerical experiments with a benchmark function were successfully performed in
Section 7. The active set detection works well for this function in both approximation
scenarios and even for small degrees of trigonometric polynomials. A definite goal is to
perform experiments on real-world data sets and try to determine attribute rankings.

Moreover, it is possible to consider a similar analysis of the ANOVA decomposition
in weighted Lebesgue spaces with orthogonal polynomials as bases, e.g., the Cheby-
shev system. This would also allow a generalization of the approximation method to
a non-periodic setting, cf. [44].
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