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ANALYSIS AND ALGORITHMS FOR SOME COMPRESSED
SENSING MODELS BASED ON L1/L2 MINIMIZATION\ast 

LIAOYUAN ZENG\dagger , PEIRAN YU\dagger , AND TING KEI PONG\dagger 

Abstract. Recently, in a series of papers [Y. Rahimi, C. Wang, H. Dong, and Y. Lou, SIAM
J. Sci. Comput., 41 (2019), pp. A3649--A3672; C. Wang, M. Tao, J. Nagy, and Y. Lou, SIAM J.
Imaging Sci., 14 (2021), pp. 749--777; C. Wang, M. Yan, and Y. Lou, IEEE Trans. Signal Process.,
68 (2020), pp. 2660--2669; P. Yin, E. Esser, and J. Xin, Commun. Inf. Syst., 14 (2014), pp. 87--109],
the ratio of \ell 1 and \ell 2 norms was proposed as a sparsity inducing function for noiseless compressed
sensing. In this paper, we further study properties of such model in the noiseless setting, and propose
an algorithm for minimizing \ell 1/\ell 2 subject to noise in the measurements. Specifically, we show that
the extended objective function (the sum of the objective and the indicator function of the constraint
set) of the model in [Y. Rahimi, C. Wang, H. Dong, and Y. Lou, SIAM J. Sci. Comput., 41 (2019),
pp. A3649--A3672] satisfies the Kurdyka--\Lojasiewicz (KL) property with exponent 1/2; this allows
us to establish linear convergence of the algorithm proposed in [C. Wang, M. Yan, and Y. Lou, IEEE
Trans. Signal Process., 68 (2020), pp. 2660--2669] (see equation 11) under mild assumptions. We next
extend the \ell 1/\ell 2 model to handle compressed sensing problems with noise. We establish the solution
existence for some of these models under the spherical section property [S. A. Vavasis, Derivation of
Compressive Sensing Theorems from the Spherical Section Property, University of Waterloo, 2009;
Y. Zhang, J. Oper. Res. Soc. China, 1 (2013), pp. 79--105] and extend the algorithm in [C. Wang,
M. Yan, and Y. Lou, IEEE Trans. Signal Process., 68 (2020), pp. 2660--2669] (see equation 11)
by incorporating moving-balls-approximation techniques [A. Auslender, R. Shefi, and M. Teboulle,
SIAM J. Optim., 20 (2010), pp. 3232--3259] for solving these problems. We prove the subsequential
convergence of our algorithm under mild conditions and establish global convergence of the whole
sequence generated by our algorithm by imposing additional KL and differentiability assumptions
on a specially constructed potential function. Finally, we perform numerical experiments on robust
compressed sensing and basis pursuit denoising with residual error measured by \ell 2 norm or Lorentzian
norm via solving the corresponding \ell 1/\ell 2 models by our algorithm. Our numerical simulations show
that our algorithm is able to recover the original sparse vectors with reasonable accuracy.

Key words. L1/L2 minimization, Kurdyka--Lojasiewicz exponent, moving balls approximation,
linear convergence
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1. Introduction. In compressed sensing (CS), a high-dimensional sparse or ap-
proximately sparse signal x0 \in \BbbR n is compressed (linearly) as Ax0 for transmission,
where A \in \BbbR m\times n is the sensing matrix. The CS problem seeks to recover the original
signal x0 from the possibly noisy low-dimensional measurement b \in \BbbR m. This problem
is NP-hard in general; see [29].

When there is no noise in the transmission, i.e., Ax0 = b, one can recover x0

exactly by minimizing the \ell 1 norm over A - 1\{ b\} if x0 is sufficiently sparse and the
matrix A satisfies certain assumptions [15, 19]. To empirically enhance the recovery
ability, various nonconvex models like the \ell p (0 < p < 1) minimization model [18] and
the \ell 1 - 2 minimization model [27] have been proposed, in which the \ell p quasi-norm and
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the difference of \ell 1 and \ell 2 norms are minimized over A - 1\{ b\} , respectively. Recently,
a new nonconvex model based on minimizing the quotient of the \ell 1 and \ell 2 norms was
introduced in [32, 41] and further studied in [38, 39]:

\nu \ast cs := min
x\in \BbbR n

\| x\| 1
\| x\| 

s.t. Ax = b,(1.1)

where A \in \BbbR m\times n has full row rank and b \in \BbbR m\setminus \{ 0\} . As discussed in [32], the above
\ell 1/\ell 2 model has the advantage of being scale-invariant when reconstructing signals
and images with high dynamic range. An efficient algorithm was proposed for solving
(1.1) in [39, equation 11] and subsequential convergence was established under mild
assumptions.

In practice, however, there is noise in the measurement, i.e., b = Ax0 + \epsilon for
some noise vector \epsilon , and (1.1) is not applicable for (approximately) recovering x0. To
deal with noisy situations, it is customary to relax the equality constraint in (1.1)
to an inequality constraint [14]. In this paper, we consider the following model that
minimizes the \ell 1/\ell 2 objective over an inequality constraint:

\nu \ast ncs = min
x\in \BbbR n

\| x\| 1
\| x\| 

s.t. q(x) \leq 0,(1.2)

where q(x) = P1(x) - P2(x) with P1 : \BbbR n \rightarrow \BbbR being continuously differentiable with
Lipschitz continuous gradient and P2 : \BbbR n \rightarrow \BbbR being convex continuous, and we
assume that \{ x : q(x) \leq 0\} \not = \emptyset and q(0) > 0. Our assumptions on q are general
enough to cover commonly used loss functions for modeling noise in various scenarios:

1. Gaussian noise: When the noise in the measurement follows the Gaussian
distribution, the least squares loss function y \mapsto \rightarrow \| y - b\| 2 is typically employed
[14, 19]. One may consider the following \ell 1/\ell 2 minimization problem:

min
x\in \BbbR n

\| x\| 1
\| x\| 

s.t. \| Ax - b\| 2  - \sigma 2 \leq 0,(1.3)

where \sigma > 0, A \in \BbbR m\times n has full row rank, and b \in \BbbR m satisfies \| b\| > \sigma .
Problem (1.3) corresponds to (1.2) with q(x) = P1(x) = \| Ax - b\| 2  - \sigma 2 and
P2 = 0.

2. Cauchy noise: When the noise in the measurement follows the Cauchy
distribution (a heavy-tailed distribution), the Lorentzian norm1 \| y\| LL2,\gamma :=\sum m

i=1 log
\bigl( 
1 + \gamma  - 2y2i

\bigr) 
is used as the loss function [16, 17], where \gamma > 0. Note

that the Lorentzian norm is continuously differentiable with Lipschitz con-
tinuous gradient. One may then consider the following \ell 1/\ell 2 minimization
problem:

min
x\in \BbbR n

\| x\| 1
\| x\| 

s.t. \| Ax - b\| LL2,\gamma  - \sigma \leq 0,(1.4)

where \sigma > 0, A \in \BbbR m\times n has full row rank, and b \in \BbbR m with \| b\| LL2,\gamma > \sigma .
Problem (1.4) corresponds to (1.2) with q(x) = P1(x) = \| Ax  - b\| LL2,\gamma  - \sigma 
and P2 = 0.

1We refer readers to [17, equation (12)] for the definition and notation of the Lorentzian norm.
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1578 LIAOYUAN ZENG, PEIRAN YU, AND TING KEI PONG

3. Robust compressed sensing: In this scenario, the measurement is cor-
rupted by both Gaussian noise and electromyographic noise [17, 31]: the
latter is sparse and may have large magnitude (outliers). Following [26, sec-
tion 5.1.1], one may make use of the loss function y \mapsto \rightarrow dist2(y, S), where
S := \{ z \in \BbbR m : \| z\| 0 \leq r\} , \| z\| 0 is the number of nonzero entries in z, and r
is an estimate of the number of outliers. One may then consider the following
\ell 1/\ell 2 minimization problem:

min
x\in \BbbR n

\| x\| 1
\| x\| 

s.t. dist2(Ax - b, S) - \sigma 2 \leq 0,(1.5)

where \sigma > 0, S = \{ z \in \BbbR m : \| z\| 0 \leq r\} with r \geq 0, A \in \BbbR m\times n has full row
rank and b \in \BbbR m satisfies dist(b, S) > \sigma . Notice that

dist2(Ax - b, S) - \sigma 2 = \| Ax - b\| 2  - \sigma 2\underbrace{}  \underbrace{}  
P1(x)

 - max
z\in S
\{ \langle 2z,Ax - b\rangle  - \| z\| 2\} \underbrace{}  \underbrace{}  

P2(x)

(1.6)

with P1 being continuously differentiable with Lipschitz continuous gradient
and P2 being convex continuous. So this problem corresponds to (1.2) with
P1 and P2 as in (1.6) and q = P1  - P2.

In the literature, algorithms for solving (1.3) with \ell 1 norm or \ell p quasi-norm in place
of the quotient of the \ell 1 and \ell 2 norms have been discussed in [5, 20, 35], and [43]
discussed an algorithm for solving (1.4) with \ell 1 norm in place of the quotient of the
\ell 1 and \ell 2 norms. These existing algorithms, however, are not directly applicable for
solving (1.2) due to the fractional objective and the possibly nonsmooth continuous
function q in the constraint.

In this paper, we further study properties of the \ell 1/\ell 2 models (1.1) and (1.2)
and propose an algorithm for solving (1.2). In particular, we first argue that an
optimal solution of (1.1) exists by making connections with the s-spherical section
property [37, 44] of kerA: a property which is known to hold with high probability
when n \gg m for Gaussian matrices. We then revisit the algorithm proposed in [39,
equation 11] (see Algorithm 4.1 below) for solving (1.1). Specifically, we consider the
following function:

F (x) :=
\| x\| 1
\| x\| 

+ \delta A - 1\{ b\} (x),(1.7)

where A \in \BbbR m\times n has full row rank and b \in \BbbR m\setminus \{ 0\} . We show in section 4.2 that F is
a Kurdyka--\Lojasiewicz (KL) function with exponent 1

2 . This together with standard
convergence analysis based on the KL property [1, 2, 3] allows us to deduce local linear
convergence of the sequence \{ xt\} generated by Algorithm 4.1 when \{ xt\} is bounded.
The KL exponent of F is obtained based on a new calculus rule that deduces the KL
exponent of a fractional objective from the difference between the numerator and (a
suitable scaling of) the denominator.

Next, for the model (1.2), we also relate existence of solutions to the s-spherical
section property of kerA when q takes the form in (1.3) and (1.4). We then propose an
algorithm, which we call MBA\ell 1/\ell 2 (see Algorithm 6.1), for solving (1.2), which can
be seen as an extension of Algorithm 4.1 by incorporating moving-balls-approximation
(MBA) techniques. The MBA algorithm was first proposed in [4] for minimizing a
smooth objective function subject to multiple smooth constraints and was further
studied in [6, 8, 43] for more general objective functions. However, the existing con-
vergence results of these algorithms cannot be applied to MBA\ell 1/\ell 2 because of the
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possibly nonsmooth continuous function q and the fractional objective in (1.2). Our
convergence analysis of MBA\ell 1/\ell 2 relies on a specially constructed potential function,
which involves the indicator function of the lower level set of a proper closed function
related to q (see (6.8)). We prove that any accumulation point of the sequence gener-
ated by MBA\ell 1/\ell 2 is a so-called Clarke critical point, under mild assumptions; Clarke
criticality reduces to the usual notion of stationarity when q is regular. Moreover, by
imposing additional KL assumptions on this potential function and assuming P1 is
twice continuously differentiable, we show that the sequence generated by MBA\ell 1/\ell 2

is globally convergent, and the convergence rate is related to the KL exponent of
the potential function. Finally, we perform numerical experiments to illustrate the
performance of our algorithm on solving (1.3), (1.4), and (1.5).

The rest of this paper is organized as follows. We present notation and some
preliminaries in section 2. Existence of solutions for (1.1) is discussed in section 3.
In section 4, we derive the KL exponent of F in (1.7) and establish local linear
convergence of the algorithm proposed in [39, equation 11]. Properties of (1.2) such
as solution existence and optimality conditions are discussed in section 5, and our
algorithm, MBA\ell 1/\ell 2 , for solving (1.2) is proposed and analyzed in section 6. Finally,
numerical results are presented in section 7.

2. Notation and preliminaries. In this paper, we use \BbbR n to denote the Euclid-
ean space of dimension n and use \BbbN + to denote the set of nonnegative integers.
For two vectors x and y \in \BbbR n, we use \langle x, y\rangle to denote their inner product, i.e.,
\langle x, y\rangle =

\sum n
i=1 xiyi. The Euclidean norm, the \ell 1 norm, and the \ell 0 norm (i.e., the

number of nonzero entries) of x are denoted respectively by \| x\| , \| x\| 1, and \| x\| 0.
We also use B(x, r) to denote a closed ball centered at x with radius r \geq 0, i.e.,
B(x, r) = \{ y : \| y  - x\| \leq r\} .

An extended-real-valued function h : \BbbR n \rightarrow ( - \infty ,\infty ] is said to be proper if its
domain domh := \{ x : h(x) < \infty \} is nonempty. A proper function h is said to
be closed if it is lower semicontinuous. For a proper closed function h, the regular
subdifferential \widehat \partial h(\=x) at \=x \in domh and the limiting subdifferential \partial h(\=x) are given
respectively as

\widehat \partial h(\=x) :=

\biggl\{ 
\upsilon : lim inf

x\rightarrow \=x,x \not =\=x

h(x) - h(\=x) - \langle \upsilon , x - \=x\rangle 
\| x - \=x\| 

\geq 0

\biggr\} 
,

\partial h(\=x) :=
\Bigl\{ 
\upsilon : \exists xt h\rightarrow \=x and \upsilon t \in \widehat \partial h(xt) with \upsilon t \rightarrow \upsilon 

\Bigr\} 
,

where xt h\rightarrow \=x means xt \rightarrow \=x and h(xt)\rightarrow h(\=x). In addition, we set \partial h(x) = \widehat \partial h(x) = \emptyset 
by convention when x /\in domh, and we define dom \partial h := \{ x : \partial h(x) \not = \emptyset \} . It is known
that \partial h(x) = \{ \nabla h(x)\} if h is continuously differentiable at x [34, Exercise 8.8(b)]. For
a proper closed convex function, the limiting subdifferential reduces to the classical
subdifferential for convex functions [34, Proposition 8.12]. The convex conjugate of a
proper closed convex function h is defined as

h\ast (y) = sup
x\in \BbbR n

\{ \langle x, y\rangle  - h(x)\} .

We recall the following relationship concerning convex conjugate and subdifferential
of a proper closed convex function h; see [34, Proposition 11.3]:

y \in \partial h(x) \leftrightarrow x \in \partial h\ast (y) \leftrightarrow h(x) + h\ast (y) \leq \langle x, y\rangle \leftrightarrow h(x) + h\ast (y) = \langle x, y\rangle .
(2.1)
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For a locally Lipschitz function h, its Clarke subdifferential at \=x \in \BbbR n is defined by

\partial \circ h(\=x) :=

\Biggl\{ 
\upsilon : lim sup

x\rightarrow \=x,t\downarrow 0

h(x + tw) - h(x)

t
\geq \langle \upsilon ,w\rangle for all w \in \BbbR n

\Biggr\} 
;

it holds that \partial h(\=x) \subseteq \partial \circ h(\=x) (see [11, Theorem 5.2.22]). Finally, for a proper closed
function f , we say that \=x is a stationary point of f if 0 \in \partial f(\=x). All local minimizers
are stationary points according to [34, Theorem 10.1].

For a nonempty closed set C, we define the indicator function as

\delta C(x) :=

\Biggl\{ 
0, x \in C,

\infty , x /\in C.

The normal cone (resp., regular normal cone) of C at an x \in C is given by NC(x) :=

\partial \delta C(x) (resp., \widehat NC(x) := \widehat \partial \delta C(x)). The distance from a point x to C is denoted by
dist(x,C). The set of points in C that are closest to x is denoted by ProjC(x). The
convex hull of C is denoted by convC.

We next recall the KL property. This property and the associated notion of KL
exponent have been used extensively in the convergence analysis of various first-order
methods; see [1, 2, 3, 9, 25].

Definition 2.1 (KL property and exponent). We say that a proper closed func-
tion h : \BbbR n \rightarrow ( - \infty ,\infty ] satisfies the KL property at an \widehat x \in dom \partial h if there are a \in 
(0,\infty ], a neighborhood U of \widehat x, and a continuous concave function \varphi : [0, a)\rightarrow [0,\infty )
with \varphi (0) = 0 such that

(i) \varphi is continuously differentiable on (0, a) with \varphi \prime > 0 on (0, a);
(ii) for every x \in U with h(\widehat x) < h(x) < h(\widehat x) + a, it holds that

\varphi \prime (h(x) - h(\widehat x))dist(0, \partial h(x)) \geq 1.(2.2)

If h satisfies the KL property at \widehat x \in dom \partial h and the \varphi in (2.2) can be chosen as
\varphi (\nu ) = a0\nu 

1 - \theta for some a0 > 0 and \theta \in [0, 1), then we say that h satisfies the KL
property at \widehat x with exponent \theta .

A proper closed function h satisfying the KL property at every point in dom \partial h is
called a KL function, and a proper closed function h satisfying the KL property with
exponent \theta \in [0, 1) at every point in dom \partial h is called a KL function with exponent \theta .

KL functions arise naturally in various applications. For instance, proper closed
semialgebraic functions are KL functions with some exponent \theta \in [0, 1); see [2].

Another notion that will be needed in our discussion later is (subdifferential)
regularity; see [34, Definition 6.4] and [34, Definition 7.25].

Definition 2.2. A nonempty closed set C is regular at x \in C if NC(x) = \widehat NC(x),
and a proper closed function h is (subdifferentially) regular at x \in domh if its epigraph
epih := \{ (x, t) \in \BbbR n \times \BbbR : h(x) \leq t\} is regular at (x, h(x)).

According to [34, Example 7.28], continuously differentiable functions are regular
everywhere. Thus, the constraint functions in (1.3) and (1.4) are regular everywhere.
In addition, a nonsmooth regular function particularly relevant to our discussion is
the objective function of (1.1). Indeed, in view of [28, Corollary 1.111(i)], it holds
that
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At any \=x \not = 0,
\| \cdot \| 1
\| \cdot \| 

is regular and \partial 
\| \=x\| 1
\| \=x\| 

=
1

\| \=x\| 
\partial \| \=x\| 1  - 

\| \=x\| 1
\| \=x\| 3

\=x.(2.3)

We will also need the following auxiliary lemma concerning the subdifferential of a
particular class of functions in our analysis in section 6.

Lemma 2.3. Let q = P1  - P2 with P1 : \BbbR n \rightarrow \BbbR being continuously differentiable
and P2 : \BbbR n \rightarrow \BbbR being convex continuous. Then for any x \in \BbbR n, we have

\partial \circ q(x) = \nabla P1(x) - \partial P2(x).(2.4)

Proof. Note that for any x \in \BbbR n, we have

\partial \circ q(x)
(a)
= \nabla P1(x) + \partial \circ ( - P2)(x)

(b)
= \nabla P1(x) - \partial \circ P2(x)

(c)
= \nabla P1(x) - \partial P2(x),

where (a) follows from Corollary 1 of [21, Proposition 2.3.3], (b) holds because of [21,
Proposition 2.3.1], and (c) follows from [21, Proposition 2.2.7].

3. Solution existence of model (1.1). In this section, we establish the ex-
istence of optimal solutions to problem (1.1) under suitable assumptions. A similar
discussion was made in [32, Theorem 2.2], where the existence of local minimizers
was established under the strong null space property (see [32, Definition 2.1]) of the
sensing matrix A. It was indeed shown that any sufficiently sparse solution of Ax = b
is a local minimizer for problem (1.1), under the strong null space property. Here,
our discussion focuses on the existence of globally optimal solutions, and our analysis
is based on the spherical section property [37, 44].

Definition 3.1 (spherical section property [37, 44]). Let m, n be two positive
integers such that m < n. Let V be an (n - m)-dimensional subspace of \BbbR n and s be
a positive integer. We say that V has the s-spherical section property if

inf
v\in V \setminus \{ 0\} 

\| v\| 1
\| v\| 

\geq 
\sqrt{} 

m

s
.

Remark 3.2. According to [44, Theorem 3.1], if A \in \BbbR m\times n (m < n) is a random
matrix with independent and identically distributed (i.i.d.) standard Gaussian entries,
then its (n  - m)-dimensional null space has the s-spherical section property for s =
c1(log(n/m) + 1) with probability at least 1 - e - c0(n - m), where c0 and c1 are positive
constants independent of m and n.

We now present our analysis. We first characterize the existence of unbounded
minimizing sequences of (1.1): recall that \{ xt\} is called a minimizing sequence of

(1.1) if Axt = b for all t and limt\rightarrow \infty 
\| xt\| 1

\| xt\| = \nu \ast cs. Our characterization is related to

the following auxiliary problem, where A is as in (1.1):

\nu \ast d := inf

\biggl\{ 
\| d\| 1
\| d\| 

: Ad = 0, d \not = 0

\biggr\} 
.(3.1)

Lemma 3.3. Consider (1.1) and (3.1). Then \nu \ast cs = \nu \ast d if and only if there exists
a minimizing sequence of (1.1) that is unbounded.

Proof. We first suppose that there exists an unbounded minimizing sequence \{ xt\} 
of (1.1). By passing to a subsequence if necessary, we may assume without loss of
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generality that \| xt\| \rightarrow \infty and that limt\rightarrow \infty 
xt

\| xt\| = x\ast for some x\ast with \| x\ast \| = 1.

Then we have \| x\ast \| 1 = \nu \ast cs using the definition of minimizing sequence, and

Ax\ast = lim
t\rightarrow \infty 

Axt

\| xt\| 
= lim

t\rightarrow \infty 

b

\| xt\| 
= 0.(3.2)

One can then see that

\nu \ast d \leq 
\| x\ast \| 1
\| x\ast \| 

= \| x\ast \| 1 = \nu \ast cs <\infty .(3.3)

Next, fix any x such that Ax = b and choose any d \not = 0 satisfying Ad = 0 (these exist
thanks to \nu \ast d \leq \nu \ast cs <\infty ). Then it holds that

\nu \ast cs \leq 
\| x + sd\| 1
\| x + sd\| 

for any s \in \BbbR . It follows from the above display that

\nu \ast cs \leq lim
s\rightarrow \infty 

\| x + sd\| 1
\| x + sd\| 

=
\| d\| 1
\| d\| 

.

Then we have \nu \ast cs \leq \nu \ast d by the arbitrariness of d. This together with (3.3) shows that
\nu \ast cs = \nu \ast d .

We next suppose that \nu \ast cs = \nu \ast d . Since \nu \ast cs < \infty (thanks to A - 1\{ b\} \not = \emptyset ), there

exists a sequence \{ dk\} satisfying Adk = 0 and dk \not = 0 such that limk\rightarrow \infty 
\| dk\| 1

\| dk\| = \nu \ast d .

Passing to a further subsequence if necessary, we may assume without loss of generality

that limk\rightarrow \infty 
dk

\| dk\| = d\ast for some d\ast with \| d\ast \| = 1. It then follows that

Ad\ast = lim
k\rightarrow \infty 

Adk

\| dk\| 
= 0 and \| d\ast \| 1 = lim

k\rightarrow \infty 

\bigm\| \bigm\| \bigm\| \bigm\| dk

\| dk\| 

\bigm\| \bigm\| \bigm\| \bigm\| 
1

= \nu \ast d .

Now, choose any x0 such that Ax0 = b and define xt = x0 + td\ast for each t = 1, 2, . . ..
Then we have Axt = b for all t. Moreover \| xt\| \rightarrow \infty as t\rightarrow \infty and

lim
t\rightarrow \infty 

\| xt\| 1
\| xt\| 

=
\| d\ast \| 1
\| d\ast \| 

= \nu \ast d = \nu \ast cs.

Thus, \{ xt\} is an unbounded minimizing sequence for (1.1). This completes the
proof.

We are now ready to present the theorem on solution existence for (1.1).

Theorem 3.4 (solution existence for (1.1)). Consider (1.1). Suppose that kerA
has the s-spherical section property for some s > 0 and there exists \widetilde x \in \BbbR n such that
\| \widetilde x\| 0 < m/s and A\widetilde x = b. Then the optimal value \nu \ast cs of (1.1) is attainable, i.e., the
set of optimal solutions of (1.1) is nonempty.

Proof. According to the s-spherical property of kerA and the definition of \nu \ast d in
(3.1), we see that \nu \ast d \geq 

\sqrt{} 
m
s . It then follows that

\nu \ast cs
(a)

\leq \| \widetilde x\| 1
\| \widetilde x\| (b)

\leq 
\sqrt{} 
\| \widetilde x\| 0 (c)

<

\sqrt{} 
m

s
\leq \nu \ast d ,
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where (a) follows from the definition of \nu \ast cs and the fact that A\widetilde x = b, (b) follows from
the Cauchy--Schwarz inequality, and (c) holds by our assumption. Invoking Lemma 3.3
and noting \nu \ast cs < \infty , we see that there is a bounded minimizing sequence \{ xt\} for
(1.1). We can then pass to a convergent subsequence \{ xtj\} so that limj\rightarrow \infty xtj = x\ast 

for some x\ast satisfying Ax\ast = b. Since b \not = 0, this means in particular that x\ast \not = 0.

We then have upon using the continuity of \| \cdot \| 1

\| \cdot \| at x\ast and the definition of minimizing

sequence that
\| x\ast \| 1
\| x\ast \| 

= lim
j\rightarrow \infty 

\| xtj\| 1
\| xtj\| 

= \nu \ast cs.

This shows that x\ast is an optimal solution of (1.1). This completes the proof.

4. KL exponent of \bfitF in (1.7) and global convergence of Algorithm 4.1.
In this section, we discuss the KL exponent of (1.7) and its implication on the conver-
gence rate of the algorithm proposed in [39, equation 11] for solving (1.1). For ease
of reference, this algorithm is presented as Algorithm 4.1. It was shown in [39] that
if the sequence \{ xt\} generated by this algorithm is bounded, then any accumulation
point is a stationary point of F in (1.7).

Algorithm 4.1 The algorithm proposed in [39, equation 11] for (1.1).

Step 0. Choose x0 with Ax0 = b and \alpha > 0. Set \omega 0 = \| x0\| 1/\| x0\| and t = 0.
Step 1. Solve the subproblem

xt+1 = arg min
x\in \BbbR n

\| x\| 1  - 
\omega t

\| xt\| 
\langle x, xt\rangle +

\alpha 

2
\| x - xt\| 2

s.t. Ax = b.
(4.1)

Step 2. Compute \omega t+1 = \| xt+1\| 1/\| xt+1\| . Update t\leftarrow t + 1 and go to Step 1.

Here, we first remark that if the sequence \{ xt\} generated by Algorithm 4.1 is
bounded, then it converges to a stationary point x\ast of F in (1.7). The argument is
standard (see [2, 3, 9]), making use of H1, H2, H3 in [3, section 2.3]. We include the
proof for the ease of readers.

Proposition 4.1 (global convergence of Algorithm 4.1). Consider (1.1). Let
\{ xt\} be the sequence generated by Algorithm 4.1 and suppose that \{ xt\} is bounded.
Then \{ xt\} converges to a stationary point of F in (1.7).

Proof. First, according to [39, Lemma 1], the sequence \{ \omega t\} generated by Algo-
rithm 4.1 enjoys the following sufficient descent property:

\omega t  - \omega t+1 \geq 
\alpha 

2\| xt+1\| 
\| xt+1  - xt\| 2.(4.2)

Now, if we let \lambda t denote a Lagrange multiplier of the subproblem (4.1) at iteration t,
one can then see from the first-order optimality condition that

 - AT\lambda t +
\| xt\| 1
\| xt\| 2

xt  - \alpha (xt+1  - xt) \in \partial \| xt+1\| 1.(4.3)

On the other hand, using (2.3) and noting that xt \not = 0 for all t, we have

1

\| xt+1\| 
\partial \| xt+1\| 1  - 

\| xt+1\| 1
\| xt+1\| 3

xt+1 +
AT\lambda t

\| xt+1\| 

= \partial 
\| xt+1\| 1
\| xt+1\| 

+
AT\lambda t

\| xt+1\| 
\subset \partial 
\| xt+1\| 1
\| xt+1\| 

+ NA - 1\{ b\} (xt+1) = \partial F (xt+1),
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where the last equality follows from [34, Corollary 10.9], the regularity at xt+1 of \| \cdot \| 1

\| \cdot \| 
(see (2.3)) and \delta A - 1\{ b\} (\cdot ) (see [34, Theorem 6.9]), and the definition of F in (1.7).
Combining (4.3) and the above display, we obtain that

1

\| xt+1\| 

\biggl( 
\| xt\| 1
\| xt\| 2

xt  - \| x
t+1\| 1

\| xt+1\| 2
xt+1

\biggr) 
 - \alpha 

\| xt+1\| 
(xt+1  - xt) \in \partial F (xt+1).

On the other hand, since \| xt\| \geq infy\in A - 1\{ b\} \| y\| > 0 for all t (thanks to Axt = b and
b \not = 0) and \{ xt\} is bounded, we see that there exists C0 > 0 so that\bigm\| \bigm\| \bigm\| \bigm\| \| xt\| 1

\| xt\| 2
xt  - \| x

t+1\| 1
\| xt+1\| 2

xt+1

\bigm\| \bigm\| \bigm\| \bigm\| \leq C0\| xt+1  - xt\| for all t.

Thus, in view of the above two displays, we conclude that

dist(0, \partial F (xt+1)) \leq C0 + \alpha 

infy\in A - 1\{ b\} \| y\| 
\| xt+1  - xt\| for all t.

Using the boundedness of \{ xt\} , (4.2), the above display and the continuity of F on
its domain, we see that the conditions H1, H2, H3 in [3, section 2.3] are satisfied.
Since F is clearly proper closed semialgebraic and hence a KL function, we can then
invoke [3, Theorem 2.9] to conclude that \{ xt\} converges to a stationary point of F .

While it is routine to show that the sequence \{ xt\} generated by Algorithm 4.1
is convergent when it is bounded, it is more challenging to deduce the asymptotic
convergence rate: the latter typically requires an estimate of the KL exponent of F
in (1.7), which was used in the above analysis. In what follows, we will show that the
KL exponent of F is 1

2 . To do this, we will first establish a calculus rule for deducing
the KL exponent of a fractional objective from the difference between the numerator
and (a suitable scaling of) the denominator: this is along the line of the calculus rules
for KL exponents developed in [25, 26, 42] and can be of independent interest.

4.1. KL exponent of fractional functions. Let f : \BbbR n \rightarrow \BbbR \cup \{ \infty \} be
proper closed and g : \BbbR n \rightarrow \BbbR be a continuous nonnegative function that is con-
tinuously differentiable on an open set containing dom f . Suppose that inf f \geq 0 and
infdom f g > 0. We consider the following fractional programming problem:

min
x

G(x) :=
f(x)

g(x)
.(4.4)

In algorithmic developments for solving (4.4) (see, for example, [22, 23]), it is custom-
ary to consider functions of the following form:

Hu(x) := f(x) - f(u)

g(u)
g(x),(4.5)

where u typically carries information from the previous iterate. In the literature,
KL-type assumptions are usually imposed on G or Hu for establishing the global
convergence of the sequence generated by first-order methods for solving (4.4); see,
for example, the discussions in [12, Theorem 16] and [13, Theorem 5.5]. Here, we
study a relationship between the KL exponent of G in (4.4) and that of H\=x in (4.5)
when \=x is a stationary point of G.
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Theorem 4.2 (KL exponent of fractional functions). Let f : \BbbR n \rightarrow \BbbR \cup \{ \infty \} 
be a proper closed function with inf f \geq 0 and g : \BbbR n \rightarrow \BbbR be a continuous nonnega-
tive function that is continuously differentiable on an open set containing dom f with
infdom f g > 0. Assume that one of the following conditions holds:

(i) f is locally Lipschitz.
(ii) f = h+ \delta D for some continuously differentiable function h and nonempty closed

set D.
(iii) f = h + \delta D for some locally Lipschitz function h and nonempty closed set D,

and h and D are regular at every point in D.
Let \=x be such that 0 \in \partial G(\=x), where G is defined as in (4.4). Then \=x \in dom \partial H\=x. If
H\=x defined as in (4.5) satisfies the KL property with exponent \theta \in [0, 1) at \=x, then so
does G.

Proof. It is clear that domH\=x = dom f = domG. We first argue that under the
assumptions on f and g, we have for any x \in domG that

\partial H\=x(x) = \partial f(x) - G(\=x)\nabla g(x) and \partial G(x) =
1

g(x)
(\partial f(x) - G(x)\nabla g(x)) .(4.6)

Indeed, in all cases, the first relation in (4.6) follows from [34, Exercise 8.8(c)]. When
f is locally Lipschitz, the second relation in (4.6) follows from [28, Corollary 1.111(i)].
When f = h+\delta D for some continuously differentiable function h and nonempty closed
set D, the second relation in (4.6) follows by first applying [34, Exercise 8.8(c)] to
G = h

g + \delta D, then applying the usual quotient rule to the differentiable function h
g ,

and subsequently using \partial f = \nabla h + \partial \delta D (thanks to [34, Exercise 8.8(c)]). Finally,
when f = h + \delta D for some locally Lipschitz function h and nonempty closed set D
with h and D being regular at every point in D, we have that the function h

g is regular

for all x \in D in view of [28, Corollary 1.111(i)]. This together with the regularity of
D gives

\partial G(x) = \partial 

\biggl( 
h

g

\biggr) 
(x) + \partial \delta D(x)

=
g(x)\partial h(x) - h(x)\nabla g(x)

g(x)2
+ \partial \delta D(x)

=
g(x)\partial f(x) - f(x)\nabla g(x)

g(x)2
,

where the first and last equalities follow from [34, Corollary 10.9] and [34, Exer-
cise 8.14], and the second equality follows from [28, Corollary 1.111(i)].

Now, in view of (4.6), we have dom \partial H\=x = dom \partial f = dom \partial G. In addition, in
all three cases, it holds that dom f = dom \partial f . Indeed, when f is locally Lipschitz,
this claim follows from Exercise 8(c) of [10, section 6.4]. When f = h + \delta D as in
(ii), the claim follows from [34, Exercise 8.8(c)], while for case (iii), we have dom f =
dom \partial f = D in view of [34, Corollary 10.9], [34, Exercise 8.14], and Exercise 8(c)
of [10, section 6.4]. Consequently, in all three cases, we have

\Xi := domG = dom \partial G = domH\=x = dom \partial H\=x = dom f = dom \partial f,

and H\=x is continuous relative to \Xi . In particular, \=x \in dom \partial G = dom \partial H\=x.
Let U be the open set containing dom f on which g is continuously differentiable.

Since H\=x satisfies the KL property with exponent \theta at \=x and is continuous relative to
\Xi , there exist \epsilon > 0 and c > 0 so that B(\=x, 2\epsilon ) \subseteq U and
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dist(0, \partial H\=x(x)) \geq c(H\=x(x) - H\=x(\=x))\theta = c(H\=x(x))\theta (4.7)

whenever x\in \Xi , H\=x(x)> 0 and \| x - \=x\| \leq \epsilon . Let M:= sup\| x - \=x\| \leq \epsilon max\{ g(x), \| \nabla g(x)\| \} ,
which is finite as g is continuously differentiable on U \supseteq B(\=x, 2\epsilon ). Using the facts that
\theta \in [0, 1), H\=x is continuous relative to \Xi , H\=x(\=x) = 0, and infdom f g > 0, we deduce
that there exists \epsilon \prime \in (0, \epsilon ) such that

| H\=x(x)| 1 - \theta \leq c infdom f g

2M
whenever \| x - \=x\| \leq \epsilon \prime and x \in \Xi ,(4.8)

where c is given in (4.7).
Now, consider any x \in \Xi satisfying \| x  - \=x\| \leq \epsilon \prime and G(\=x) < G(x) < G(\=x) + \epsilon \prime .

Then we have from (4.6) that

dist(0, \partial G(x)) =
1

g(x)
inf

\xi \in \partial f(x)
\| \xi  - G(x)\nabla g(x)\| 

(a)

\geq 1

M
inf

\xi \in \partial f(x)
\| \xi  - G(x)\nabla g(x)\| 

(b)

\geq 1

M
inf

\xi \in \partial f(x)
\| \xi  - G(\=x)\nabla g(x)\|  - 1

M
| G(x) - G(\=x)| \| \nabla g(x)\| 

(c)

\geq 1

M
inf

\xi \in \partial f(x)
\| \xi  - G(\=x)\nabla g(x)\|  - (G(x) - G(\=x))

=
1

M
dist(0, \partial H\=x(x)) - 1

g(x)
H\=x(x)

(d)

\geq 1

M
dist(0, \partial H\=x(x)) - 1

infdom f g
H\=x(x)

(e)

\geq c

M
(H\=x(x))\theta  - 1

infdom f g
H\=x(x)

(f)

\geq c

2M
(H\=x(x))\theta 

=
c(g(x))\theta 

2M
(G(x) - G(\=x))\theta 

(g)

\geq c(infdom f g)\theta 

2M
(G(x) - G(\=x))\theta ,

where (a) holds because g(x) \leq M , (b) follows from the triangle inequality, (c) holds
because \| \nabla g(x)\| \leq M and G(x) > G(\=x), (d) holds because H\=x(x) > 0 (thanks to
G(x) > G(\=x)), (e) then follows from (4.7), and (f) follows from (4.8) and the fact that
H\=x(x) > 0. Finally, (g) holds because G(x) > G(\=x). This completes the proof.

4.2. KL exponent of \bfitF in (1.7). Before proving our main result concerning
the KL exponent of F in (1.7), we also need the following simple proposition.

Proposition 4.3. Let p be a proper closed function, and let \=x \in dom p be such
that p(\=x) > 0. Then the following statements hold:

(i) We have \partial (p2)(x) = 2p(x)\partial p(x) for all x sufficiently close to \=x.
(ii) Suppose in addition that \=x \in dom \partial (p2) and p2 satisfies the KL property at \=x

with exponent \theta \in [0, 1). Then p satisfies the KL property at \=x with exponent
\theta \in [0, 1).

Proof. Since p(\=x) > 0 and p is closed, there exists \epsilon > 0 so that

0 < p(x) <\infty 

whenever \| x - \=x\| \leq \epsilon and x \in dom p. Then we deduce from [30, Lemma 1] that

\widehat \partial (p2)(x) = 2p(x)\widehat \partial p(x) whenever x \in dom p and \| x - \=x\| \leq \epsilon .(4.9)

Using (4.9), and invoking the definition of limiting subdifferential and by shrinking
\epsilon if necessary, we deduce that

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ANALYSIS AND ALGORITHMS FOR L1/L2 MINIMIZATION 1587

\partial (p2)(x) = 2p(x)\partial p(x) whenever x \in dom p and \| x - \=x\| \leq \epsilon .(4.10)

In particular, if \=x \in dom \partial (p2), then \=x \in dom \partial p.
When p2 also satisfies the KL property at \=x with exponent \theta , by shrinking \epsilon 

further if necessary, we see that there exists c > 0 so that

dist(0, \partial (p2)(x)) \geq c(p2(x) - p2(\=x))\theta ,(4.11)

whenever p2(\=x) < p2(x) < p2(\=x) + \epsilon (2p(\=x) + \epsilon ) and \| x - \=x\| \leq \epsilon . Thus, for x \in dom \partial p
satisfying \| x - \=x\| \leq \epsilon and p(\=x) < p(x) < p(\=x) + \epsilon , we have from (4.10) that

dist(0, \partial p(x)) =
1

2p(x)
dist(0, \partial (p2)(x)) \geq 1

2p(\=x) + 2\epsilon 
dist(0, \partial (p2)(x))

(a)

\geq c

2p(\=x) + 2\epsilon 
(p2(x) - p2(\=x))\theta =

c

2p(\=x) + 2\epsilon 
(p(x) + p(\=x))\theta (p(x) - p(\=x))\theta 

\geq c[p(\=x)]\theta 

21 - \theta (p(\=x) + \epsilon )
(p(x) - p(\=x))\theta ,

where (a) follows from (4.11). This completes the proof.

We are now ready to show that the KL exponent of F in (1.7) is 1
2 . We remark

that if the set \scrX := \{ x : 0 \in \partial F (x)\} is empty, then this claim holds trivially in view
of [25, Lemma 2.1]. However, in general, one can have \scrX \not = \emptyset . Indeed, according to
Theorem 3.4 and [34, Theorem 10.1], we have \scrX \not = \emptyset with high probability when A is
generated in a certain way.

Theorem 4.4. The function F in (1.7) is a KL function with exponent 1
2 .

Proof. In view of [25, Lemma 2.1], it suffices to look at the KL exponent at a
stationary point \=x of F . For any \=x satisfying 0 \in \partial F (\=x), we have F (\=x) > 0 since
b \not = 0. Moreover, we have 0 \in \partial (F 2)(\=x) in view of Proposition 4.3(i). Next, note that
the function

F1(x) := \| x\| 21  - 
\| \=x\| 21
\| \=x\| 2

\| x\| 2 + \delta A - 1\{ b\} (x)

can be written as min\sigma \in R\{ Q\sigma (x)+P\sigma (x)\} , where R=\{ u \in \BbbR n : ui \in \{ 1, - 1\} for all i\} ,
Q\sigma are quadratic functions (nonconvex), and P\sigma are polyhedral functions indexed
by \sigma : indeed, for each \sigma \in R, one can define P\sigma as the indicator function of
the set \{ x : Ax = b, \sigma \circ x \geq 0\} , where \circ denotes the Hadamard product, and

Q\sigma (x) := (\langle \sigma , x\rangle )2  - \| \=x\| 2
1

\| \=x\| 2 \| x\| 2. Then, in view of [25, Corollary 5.2], F1 is a KL func-

tion with exponent 1
2 . Since the convex function \| \cdot \| 21 is regular everywhere and the

convex set A - 1\{ b\} is regular at every x \in A - 1\{ b\} (thanks to [34, Theorem 6.9]), we
deduce using Theorem 4.2 that the function

x \mapsto \rightarrow \| x\| 
2
1

\| x\| 2
+ \delta A - 1\{ b\} (x)

satisfies the KL property at \=x with exponent 1
2 . The desired conclusion now follows

from this and Proposition 4.3(ii).

Equipped with the result above, by following the line of arguments in [1, Theo-
rem 2], one can conclude further that the sequence \{ xt\} generated by Algorithm 4.1
converges locally linearly to a stationary point of F in (1.7) if the sequence is bounded.
The proof is standard and we omit it here for brevity.
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Theorem 4.5 (convergence rate of Algorithm 4.1). Consider (1.1). Let \{ xt\} be
the sequence generated by Algorithm 4.1 and suppose that \{ xt\} is bounded. Then \{ xt\} 
converges to a stationary point x\ast of F in (1.7) and there exist t \in \BbbN +, a0 \in (0, 1)
and a1 > 0 such that

\| xt  - x\ast \| \leq a1a
t
0 whenever t > t.

5. Compressed sensing with noise based on \ell \bfone /\ell \bftwo minimization. In the
previous sections, we had been focusing on the model (1.1), which corresponds to
noiseless CS problems. In this section and the next, we will be looking at (1.2). We
will discuss conditions for existence of solutions and derive some first-order optimality
conditions for (1.2) in this section. An algorithm for solving (1.2) will be proposed
in the next section and will be shown to generate sequences that cluster at ``critical""
points in the sense defined in this section, under suitable assumptions.

5.1. Solution existence. Clearly, if q in (1.2) is in addition level-bounded,
then the feasible set is compact and hence the set of optimal solutions is nonempty.
However, in applications such as (1.3), (1.4), and (1.5), the corresponding q is not
level-bounded. Here, we discuss solution existence for (1.3) and (1.4). Our arguments
are along the same line as those in section 3. We first present a lemma that establishes
a relationship between the problems (1.3), (1.4), and (3.1).

Lemma 5.1. Consider (3.1) and (1.2) with q given as in (1.3) or (1.4). Then
\nu \ast ncs = \nu \ast d if and only if there exists a minimizing sequence of (1.2) that is unbounded.

The proof of this lemma is almost identical to that of Lemma 3.3. Here we omit
the details and only point out a slight difference concerning the derivation of (3.2).
Take (1.3) as an example and let \{ xt\} be an unbounded minimizing sequence of it

with limt\rightarrow \infty 
xt

\| xt\| = x\ast for some x\ast satisfying \| x\ast \| = 1. Then one can prove Ax\ast = 0

by using the facts that \| Axt - b\| \leq \sigma for all t and \| xt\| \rightarrow \infty . Similar deductions can
be done for (1.4).

Using Lemma 5.1, we can deduce solution existence based on the spherical section
property of kerA and the existence of a sparse feasible solution to (1.3) (or (1.4)).
The corresponding arguments are the same as those in Theorem 3.4 and we omit the
proof for brevity.

Theorem 5.2 (solution existence for (1.3) and (1.4)). Consider (1.2) with q given
as in (1.3) or (1.4). Suppose that kerA has the s-spherical section property and there
exists \widetilde x \in \BbbR n such that \| \widetilde x\| 0 < m/s and q(\widetilde x) \leq 0. Then the optimal value of (1.2)
is attainable.

5.2. Optimality conditions. We discuss first-order necessary optimality con-
ditions for local minimizers. Our analysis is based on the following standard constraint
qualifications.

Definition 5.3 (generalized Mangasarian--Fromovitz constraint qualifications).
Consider (1.2). We say that the generalized Mangasarian--Fromovitz constraint qual-
ifications (GMFCQ) holds at an x\ast satisfying q(x\ast ) \leq 0 if the following statement
holds:

\bullet If q(x\ast ) = 0, then 0 /\in \partial \circ q(x\ast ).

The GMFCQ reduces to the standard MFCQ when q is smooth. One can then
see from sections 5.1 and 5.2 of [43] that the GMFCQ holds at every x feasible for
(1.3) and (1.4) for all positive \sigma and \gamma , because A is surjective. We next study the
GMFCQ for (1.5), in which A is also surjective.
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Proposition 5.4. The GMFCQ holds in the whole feasible set of (1.5).

Proof. It is straightforward to see that the GMFCQ holds for those x \in \{ x :
q(x) < 0\} . Then it remains to consider those x satisfying q(x) = 0. Let q be as in
(1.5) and let \=x satisfy q(\=x) = 0. Notice that a \xi \in ProjS(A\=x - b) takes the following
form:

\xi j =

\Biggl\{ 
[A\=x - b]j if j \in I\ast ,

0 otherwise,

where I\ast is an index set corresponding to the r-largest entries (in magnitude). Then
for any \xi \in ProjS(A\=x - b), we have

\langle A\=x - b, \xi \rangle = \| \xi \| 2,
\| A\=x - b\| 2 = \| \xi \| 2 + \| A\=x - b - \xi \| 2

= \| \xi \| 2 + dist2(A\=x - b, S)
(a)
= \| \xi \| 2 + \sigma 2,

(5.1)

where (a) holds because 0 = q(\=x) = dist2(A\=x  - b, S)  - \sigma 2. Furthermore, since A
is surjective, we can deduce from [34, Example 8.53], [34, Exercise 10.7], and [34,
Theorem 8.49] that

\partial \circ q(\=x) = conv\{ 2AT (A\=x - b - \xi ) : \xi \in ProjS(A\=x - b)\} .

Now, suppose to the contrary that 0 \in \partial \circ q(\=x). Using Carath\'eodory's theorem,
we see that there exist \lambda i \geq 0 and \xi i \in ProjS(A\=x  - b), i = 1, . . . ,m + 1, such that\sum m+1

i=1 \lambda i = 1 and
\sum m+1

i=1 \lambda iA
T (A\=x - b - \xi i) = 0. Since A is surjective, we then have

m+1\sum 
i=1

\lambda i(A\=x - b - \xi i) = 0.

Multiplying both sides of the above equality by (A\=x - b)T , we obtain further that

0 =

m+1\sum 
i=1

\lambda i\langle A\=x - b, A\=x - b - \xi i\rangle =

m+1\sum 
i=1

\lambda i[\| A\=x - b\| 2  - \langle A\=x - b, \xi i\rangle ]

(a)
=

m+1\sum 
i=1

\lambda i[\| \xi i\| 2 + \sigma 2  - \| \xi i\| 2] = \sigma 2 > 0,

where (a) follows from (5.1) and the fact that \xi i \in ProjS(A\=x - b) for each i, and the

last equality holds because
\sum m+1

i=1 \lambda i = 1. This is a contradiction and thus we must
have 0 /\in \partial \circ q(\=x). This completes the proof.

In the next definition, we consider some notions of criticality. The first one is the
standard notion of stationarity while the second one involves the Clarke subdifferen-
tial.

Definition 5.5. Consider (1.2). We say that an \=x \in \BbbR n satisfying q(\=x) \leq 0 is
(i) a stationary point of (1.2) if

0 \in \partial 
\Bigl( 

\| \cdot \| 1

\| \cdot \| + \delta [q\leq 0](\cdot )
\Bigr) 

(\=x);(5.2)

(ii) a Clarke critical point of (1.2) if there exists \=\lambda \geq 0 such that

0 \in \partial \| \=x\| 1

\| \=x\| + \=\lambda \partial \circ q(\=x) and \=\lambda q(\=x) = 0.(5.3)
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As mentioned above, Definition 5.5(i) is standard and it is known that every local
minimizer of (1.2) is a stationary point; see [34, Theorem 10.1]. We next study some
relationships between these notions of criticality and show in particular that every
local minimizer is Clarke critical when the GMFCQ holds.

Proposition 5.6 (stationarity versus Clarke criticality). Consider (1.2) and let
\=x be such that q(\=x) \leq 0. Then the following statements hold.

(i) If \=x is a stationary point of (1.2) and the GMFCQ holds at \=x, then \=x is a Clarke
critical point.

(ii) If \=x is a Clarke critical point of (1.2) and q is regular at \=x, then \=x is stationary.

Remark 5.7. Since local minimizers of (1.2) are stationary points, we see from
Proposition 5.6(i) that when the GMFCQ holds in the whole feasible set, local mini-
mizers are also Clarke critical.

Proof. Suppose that \=x is a stationary point of (1.2) at which the GMFCQ holds.
Then (5.2) holds and we consider two cases.

Case 1: q(\=x) < 0. Since q is continuous, (5.2) implies 0 \in \partial \| \=x\| 1

\| \=x\| and hence (5.3)

holds with \=\lambda = 0. Thus, \=x is a Clarke critical point.
Case 2: q(\=x) = 0. Since the GMFCQ holds for (1.2) at \=x, we see that 0 /\in \partial \circ q(\=x).

Then we can deduce from (5.2) and [34, Exercise 10.10] that

0 \in \partial 
\| \=x\| 1
\| \=x\| 

+ N[q\leq 0](\=x)
(a)

\subseteq \partial 
\| \=x\| 1
\| \=x\| 

+
\bigcup 
\lambda \geq 0

\lambda \partial \circ q(\=x),

where (a) follows from [11, Theorem 5.2.22], the first corollary to [21, Theorem 2.4.7],
and the fact that 0 /\in \partial \circ q(\=x). Thus, (5.3) holds with some \=\lambda \geq 0 (recall that q(\=x) = 0),
showing that \=x is a Clarke critical point. This proves item (i).

We now prove item (ii). Suppose that \=x is a Clarke critical point and that q is
regular at \=x. Then there exists \=\lambda \geq 0 so that (5.3) holds. We again consider two
cases.

Case 1: \=\lambda = 0. In this case, we see from (5.3) that 0 \in \partial \| \=x\| 1

\| \=x\| , which implies

0 \in \partial 
\| \=x\| 1
\| \=x\| 

(a)
= \widehat \partial \| \=x\| 1

\| \=x\| 
\subseteq \widehat \partial \| \=x\| 1
\| \=x\| 

+ \widehat N[q\leq 0](\=x)

(b)

\subseteq \widehat \partial \biggl( 
\| \cdot \| 1
\| \cdot \| 

+ \delta [q\leq 0](\cdot )
\biggr) 

(\=x)
(c)

\subseteq \partial 

\biggl( 
\| \cdot \| 1
\| \cdot \| 

+ \delta [q\leq 0](\cdot )
\biggr) 

(\=x),

where (a) follows from (2.3) and [34, Corollary 8.11], (b) holds thanks to [34, Corol-
lary 10.9], and (c) follows from [34, Theorem 8.6]. Thus, \=x is a stationary point.

Case 2: \=\lambda > 0. In this case, we have from (5.3) that q(\=x) = 0. Since q is regular
at \=x, we see from [34, Corollary 8.11] and the discussion right after [34, Theorem 8.49]
that

\widehat \partial q(\=x) = \partial q(\=x) = \partial \circ q(\=x).(5.4)

Now, in view of (5.4), q(\=x) = 0, and [34, Proposition 10.3], we have

\widehat N[q\leq 0](\=x) \supseteq 
\bigcup 
\lambda \geq 0

\lambda \widehat \partial q(\=x) =
\bigcup 
\lambda \geq 0

\lambda \partial \circ q(\=x).(5.5)
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We then deduce that

\partial 

\biggl( 
\| \cdot \| 1
\| \cdot \| 

+ \delta [q\leq 0](\cdot )
\biggr) 

(\=x)
(a)

\supseteq \widehat \partial \| \=x\| 1
\| \=x\| 

+ \widehat N[q\leq 0](\=x)
(b)

\supseteq \partial 
\| \=x\| 1
\| \=x\| 

+
\bigcup 
\lambda \geq 0

\lambda \partial \circ q(\=x),

where (a) follows from [34, Theorem 8.6] and [34, Corollary 10.9], and (b) follows
from (5.5), (2.3), and [34, Corollary 8.11]. This together with the definition of Clarke
criticality shows that (5.2) holds. This completes the proof.

6. A moving-balls-approximation based algorithm for solving (1.2). In
this section, we propose and analyze an algorithm for solving (1.2), which is an ex-
tension of Algorithm 4.1 by incorporating MBA techniques [4]. Our algorithm, which
we call MBA\ell 1/\ell 2 , is presented as Algorithm 6.1.

Algorithm 6.1 MBA\ell 1/\ell 2 : Moving-balls-approximation based algorithm for (1.2).

Step 0. Choose x0 with q(x0) \leq 0, \alpha > 0, and 0 < lmin < lmax. Set \omega 0 =
\| x0\| 1/\| x0\| and t = 0.
Step 1. Choose l0t \in [lmin, lmax] arbitrarily and set lt = l0t . Choose \zeta t \in \partial P2(xt).
(1a) Solve the subproblem

\widetilde x = arg min
x\in \BbbR n

\| x\| 1  - 
\omega t

\| xt\| 
\langle x, xt\rangle +

\alpha 

2
\| x - xt\| 2

s.t. q(xt) + \langle \nabla P1(xt) - \zeta t, x - xt\rangle +
lt
2
\| x - xt\| 2 \leq 0.

(6.1)

(1b) If q(\widetilde x) \leq 0, go to Step 2. Else, update lt \leftarrow 2lt and go to Step (1a).
Step 2. Set xt+1 = \widetilde x and compute \omega t+1 = \| xt+1\| 1/\| xt+1\| . Set \=lt := lt. Update
t\leftarrow t + 1 and go to Step 1.

Unlike previous works [6, 8, 43] that made use of MBA techniques, our algorithm
deals with a fractional objective and a possibly nonsmooth continuous constraint
function. Thus, the convergence results in [6, 8, 43] cannot be directly applied to
analyze our algorithm. Indeed, as we shall see later in section 6.2, we need to introduce
a new potential function for our analysis to deal with the possibly nonsmooth q in
the constraint.

We will show that Algorithm 6.1 is well defined later, i.e., for each t \in \BbbN +, the
subproblem (6.1) has a unique solution for every lt and the inner loop in Step 1
terminates finitely. Here, it is worth noting that (6.1) can be efficiently solved using
a root-finding procedure outlined in [43, Appendix A] since (6.1) takes the form of

min
x
\| x\| 1 +

\alpha 

2
\| x - ct\| 2 s.t. \| x - st\| 2 \leq Rt

for some ct \in \BbbR n, st \in \BbbR n, and Rt \geq 0.

6.1. Convergence analysis. In this subsection, we establish subsequential con-
vergence of MBA\ell 1/\ell 2 under suitable assumptions. We start with the following aux-
iliary lemma that concerns well-definedness and sufficient descent. The proof of the
sufficient descent property in item (iii) below is essentially the same as [39, Lemma 1].
We include it here for completeness.
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Lemma 6.1 (well-definedness and sufficient descent). Consider (1.2). Then the
following statements hold:

(i) MBA\ell 1/\ell 2 is well defined, i.e., for each t \in \BbbN +, the subproblem (6.1) has a unique
solution for every lt and the inner loop in Step 1 terminates finitely.

(ii) The sequence \{ \=lt\} is bounded.
(iii) Let \{ (xt, \omega t)\} be the sequence generated by MBA\ell 1/\ell 2 . Then there exists \delta > 0

such that \| xt\| \geq \delta for every t \in \BbbN +, and the sequence \{ \omega t\} satisfies

\omega t  - \omega t+1 \geq 
\alpha 

2\| xt+1\| 
\| xt  - xt+1\| 2, t \in \BbbN +.(6.2)

Proof. Suppose that an xt satisfying q(xt) \leq 0 is given for some t \in \BbbN +. Then
xt \not = 0 since q(0) > 0. Moreover, for any lt > 0, xt is feasible for (6.1) and the feasible
set is thus nonempty. Since (6.1) minimizes a strongly convex continuous function
over a nonempty closed convex set, it has a unique optimal solution, i.e., \widetilde x exists.

Let Lp be the Lipschitz continuity modulus of \nabla P1. Then we have

q(\widetilde x) = P1(\widetilde x) - P2(\widetilde x) \leq P1(xt) + \langle \nabla P1(xt), \widetilde x - xt\rangle +
Lp

2 \| \widetilde x - xt\| 2  - P2(\widetilde x)

(a)

\leq P1(xt) - P2(xt) + \langle \nabla P1(xt) - \zeta t, \widetilde x - xt\rangle +
Lp

2 \| \widetilde x - xt\| 2
(b)

\leq Lp - lt
2 \| \widetilde x - xt\| 2,

(6.3)

where (a) holds because of the convexity of P2 and the definition of \zeta t, and (b) follows
from the feasibility of \widetilde x for (6.1). Let k0 \in \BbbN + be such that Lp - 2k0 lmin \leq 0. Then by
(6.3) and the definition of lt we see that q(\widetilde x) \leq 0 after at most k0 calls of Step (1b).
Moreover, it holds that \=lt \leq 2k0 lmax. Therefore, if q(xt) \leq 0, then the inner loop of
Step 1 stops after at most k0 iterations and outputs an xt+1 satisfying q(xt+1) \leq 0
(in particular, xt+1 \not = 0) with \=lt \leq 2k0 lmax. Since we initialize our algorithm at an x0

satisfying q(x0) \leq 0, the conclusions in items (i) and (ii) now follow from an induction
argument.

Next, we prove item (iii). Since q(0) > 0, we see immediately from the continuity
of q that there exists some \delta > 0 such that \| x\| \geq \delta whenever q(x) \leq 0. Thus,
\| xt\| \geq \delta for all t \in \BbbN +, thanks to q(xt) \leq 0. Now consider (6.1) with lt = \=lt. Then
xt is feasible and xt+1 is optimal. This together with the definition of \omega t yields

\| xt+1\| 1 - 
\| xt\| 1
\| xt\| 2

\bigl\langle 
xt+1, xt

\bigr\rangle 
+
\alpha 

2
\| xt+1 - xt\| 2 \leq \| xt\| 1 - 

\| xt\| 1
\| xt\| 2

\bigl\langle 
xt, xt

\bigr\rangle 
+
\alpha 

2
\| xt - xt\| 2 = 0.

Dividing both sides of the above inequality by \| xt+1\| and rearranging terms, we have

\| xt+1\| 1
\| xt+1\| 

+
\alpha 

2\| xt+1\| 
\| xt  - xt+1\| 2 \leq \| x

t\| 1
\| xt\| 2

\bigl\langle 
xt+1, xt

\bigr\rangle 
\| xt+1\| 

\leq \| x
t\| 1

\| xt\| 2
\| xt+1\| \| xt\| 
\| xt+1\| 

=
\| xt\| 1
\| xt\| 

.

This proves (iii) and completes the proof.

We next introduce the following assumption.

Assumption 6.2. The GMFCQ for (1.2) holds at every point in [q \leq 0].

Recall from Proposition 5.4 and the discussions preceding it that Assumption 6.2
holds for (1.3), (1.4), and (1.5) since A is surjective. We next derive the Karush--
Kuhn--Tucker (KKT) conditions for (6.1) at every iteration t under Assumption 6.2,
which will be used in our subsequent analysis.

Lemma 6.3 (KKT conditions for (6.1)). Consider (1.2) and suppose that As-
sumption 6.2 holds. Let \{ xt\} be the sequence generated by MBA\ell 1/\ell 2 . Then the
following statements hold:
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(i) The Slater's condition holds for the constraint of (6.1) at each t \in \BbbN +.
(ii) For each t \in \BbbN +, \zeta 

t \in \partial P2(xt) and lt > 0, the subproblem (6.1) has a Lagrange
multiplier \lambda t \geq 0. Moreover, if \widetilde x is as in (6.1), then it holds that

\lambda t

\biggl( 
q(xt) +

\bigl\langle 
\nabla P1(xt) - \zeta t, \widetilde x - xt

\bigr\rangle 
+

lt
2
\| \widetilde x - xt\| 2

\biggr) 
= 0,(6.4)

0 \in \partial \| \widetilde x\| 1  - \omega tx
t

\| xt\| 
+ \lambda t(\nabla P1(xt) - \zeta t) + (\alpha + \lambda tlt)(\widetilde x - xt).(6.5)

Proof. Notice that we can rewrite the feasible set of (6.1) as B
\bigl( 
st,
\surd 
Rt

\bigr) 
with

st := xt  - 1
lt

(\nabla P1(xt)  - \zeta t) and Rt := 1
l2t
\| \nabla P1(xt)  - \zeta t\| 2  - 2

lt
q(xt), where Rt \geq 0

because q(xt) \leq 0. Suppose to the contrary that Rt = 0. Then we have q(xt) = 0
and \nabla P1(xt)  - \zeta t = 0. The latter relation together with (2.4) implies 0 \in \partial \circ q(xt),
contradicting the GMFCQ assumption at xt. Thus, we must have Rt > 0 and hence
the Slater's condition holds for (6.1) at the tth iteration.

Since the Slater's condition holds for (6.1), we can apply [33, Corollary 28.2.1]
and [33, Theorem 28.3] to conclude that there exists a Lagrange multiplier \lambda t such that
the relation (6.4) holds at the tth iteration and \widetilde x minimizes the following function:

\frakL t(x) := \| x\| 1  - 
\omega t

\| xt\| 
\langle x, xt\rangle +

\alpha 

2
\| x - xt\| 2

+ \lambda t

\biggl( 
q(xt) +

\bigl\langle 
\nabla P1(xt) - \zeta t, x - xt

\bigr\rangle 
+

lt
2
\| x - xt\| 2

\biggr) 
.

This fact together with [34, Exercise 8.8] and [34, Theorem 10.1] implies that (6.5)
holds at the tth iteration. This completes the proof.

Now we are ready to establish the subsequential convergence of Algorithm 6.1.
In our analysis, we assume that the GMFCQ holds and that the \{ xt\} generated
by MBA\ell 1/\ell 2 is bounded. The latter boundedness assumption was also used in [39]
for analyzing the convergence of Algorithm 4.1. We remark that this assumption is
not too restrictive. Indeed, for the sequence \{ xt\} generated by MBA\ell 1/\ell 2 , in view of
Lemma 6.1(i), we know that q(xt) \leq 0 for all t. Thus, if q is level-bounded, then \{ xt\} is
bounded. On the other hand, if q is only known to be bounded from below (as in (1.3),
(1.4), and (1.5)) but the corresponding (1.2) is known to have an optimal solution,
then one may replace q(x) by the level-bounded function qM (x) := q(x)+(\| x\|  - M)2+
for a sufficiently large M . As long as M > \| x\ast \| for some optimal solution x\ast of (1.2),
replacing q by qM in (1.2) will not change the optimal value.

Theorem 6.4 (subsequential convergence of MBA\ell 1/\ell 2). Consider (1.2) and
suppose that Assumption 6.2 holds. Let \{ (xt, \zeta t, \=lt)\} be the sequence generated by
MBA\ell 1/\ell 2 and \lambda t be a Lagrange multiplier of (6.1) with lt = \=lt. Suppose in addition
that \{ xt\} is bounded. Then the following statements hold:

(i) limt\rightarrow \infty \| xt+1  - xt\| = 0.
(ii) The sequences \{ \lambda t\} and \{ \zeta t\} are bounded.

(iii) Let \=x be an accumulation point of \{ xt\} . Then \=x is a Clarke critical point of
(1.2). If q is also regular at \=x, then \=x is a stationary point.

Proof. Since \{ xt\} is bounded, there exists M > 0 such that \| xt\| \leq M for all
t \in \BbbN +. Using (6.2), we obtain

\infty \sum 
t=0

\alpha 

2M
\| xt  - xt+1\| 2 \leq \omega 0  - lim inf

t\rightarrow \infty 
\omega t \leq \omega 0,

which proves item (i).
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Now we turn to item (ii). The boundedness of \{ \zeta t\} follows from the boundedness
of \{ xt\} and [36, Theorem 2.6]. We next prove the boundedness of \{ \lambda t\} . Suppose to
the contrary that \{ \lambda t\} is unbounded. Then there exists a subsequence \{ \lambda tk\} such that
limk\rightarrow \infty \lambda tk = \infty . Passing to a subsequence if necessary, we can find subsequences
\{ xtk\} and \{ \lambda tk\} such that limk\rightarrow \infty xtk = x\ast and \lambda tk > 0 for all k \in \BbbN +, where
the existence of x\ast is due to the boundedness of \{ xt\} . According to (6.4) and the
definition of xtk+1, we obtain

q(xtk) + \langle \nabla P1(xtk) - \zeta tk , xtk+1  - xtk\rangle +
\=ltk
2

\bigm\| \bigm\| xtk+1  - xtk
\bigm\| \bigm\| 2 = 0.

Since \{ xt\} is bounded and \nabla P1 is Lipschitz continuous, we then see that \{ \nabla P1(xt)\} 
is bounded. Moreover, \{ \=ltk\} is bounded thanks to Lemma 6.1(ii) and we also know
that \{ \zeta t\} is bounded. Using these facts, item (i), and the continuity of q, we have
upon passing to the limit in the above display that q(x\ast ) = 0. Since the GMFCQ
holds for (1.2) at x\ast , we then have 0 /\in \partial \circ q(x\ast ).

Let t = tk, lt = \=ltk , \widetilde x = xtk+1 in (6.5), and divide both sides of (6.5) by \lambda tk .
Then

\nabla P1(xtk) - \zeta tk \in  - 1

\lambda tk

\partial \| xtk+1\| 1 +
\omega tkx

tk

\lambda tk\| xtk\| 
 - 

\biggl( 
\=ltk +

\alpha 

\lambda tk

\biggr) 
(xtk+1  - xtk).

Thus, there exists a sequence \{ \eta k\} satisfying \eta k \in \partial \| xtk+1\| 1 and

\nabla P1(xtk) - \zeta tk =  - 1

\lambda tk

\eta k +
\omega tkx

tk

\lambda tk\| xtk\| 
 - 

\biggl( 
\=ltk +

\alpha 

\lambda tk

\biggr) 
(xtk+1  - xtk).

Note that \{ \eta k\} is bounded since \partial \| x\| 1 \subseteq [ - 1, 1]n for any x \in \BbbR n. Moreover, \{ \omega tk\} 
is bounded since \| x\| \leq \| x\| 1 \leq 

\surd 
n\| x\| for any x \in \BbbR n. Furthermore, we have the

boundedness of \{ \=ltk\} from Lemma 6.1(ii). Also recall that limk\rightarrow \infty \lambda tk = \infty and
\zeta t \in \partial P2(xt). Using these together with item (i), we have upon passing to the limit in
the above display and invoking the closedness of \partial P2 (see Exercise 8 of [10, section 4.2])
that\nabla P1(x\ast ) \in \partial P2(x\ast ). This together with (2.4) further implies 0 \in \partial \circ q(x\ast ), leading
to a contradiction. Thus, the sequence \{ \lambda t\} is bounded.

We now turn to item (iii). Suppose \=x is an accumulation point of \{ xt\} with
limj\rightarrow \infty xtj = \=x for some convergent subsequence \{ xtj\} . Since \{ \lambda t, \=lt\} and \{ \zeta t\} are
bounded (thanks to Lemma 6.1(ii) and item (ii)), passing to a further subsequence if
necessary, we may assume without loss of generality that

lim
j\rightarrow \infty 

(\lambda tj ,
\=ltj ) = (\=\lambda , \=l) for some \=\lambda , \=l \geq 0, lim

j\rightarrow \infty 
\zeta tj = \=\zeta for some \=\zeta \in \partial P2(\=x);(6.6)

here, \=\zeta \in \partial P2(\=x) because of the closedness of \partial P2 (see Exercise 8 of [10, section 4.2]).
On the other hand, according to Lemma 6.1(iii), we have \| xt\| \geq \delta > 0 for all t \in \BbbN +.

This together with the definition of \=x yields \| \=x\| \not = 0. It then follows that \| \cdot \| 1

\| \cdot \| 
is continuous at \=x. Thus, we have, upon using this fact, the definition of \omega t, the
continuity of \nabla P1, the closedness of \partial \| \cdot \| 1, item (i), (6.6), and passing to the limit
as j \rightarrow \infty in (6.5) with (\widetilde x, \lambda t, lt) = (xtj+1, \lambda tj ,

\=ltj ) and t = tj that

0 \in \partial \| \=x\| 1  - 
\| \=x\| 1
\| \=x\| 2

\=x + \=\lambda (\nabla P1(\=x) - \=\zeta ).
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We then divide both sides of the above inclusion by \| \=x\| and obtain

0 \in 1

\| \=x\| 
\partial \| \=x\| 1  - 

\| \=x\| 1
\| \=x\| 3

\=x +
\=\lambda 

\| \=x\| 
(\nabla P1(\=x) - \=\zeta ) = \partial 

\| \=x\| 1
\| \=x\| 

+
\=\lambda 

\| \=x\| 
(\nabla P1(\=x) - \=\zeta ),(6.7)

where the equality holds due to (2.3). In addition, using (6.4) with (\widetilde x, \lambda t, lt) =
(xtj+1, \lambda tj ,

\=ltj ) and t = tj , we have

lim
j\rightarrow \infty 

\lambda tj

\biggl[ 
q(xtj ) + \langle \nabla P1(xtj ) - \zeta tj , xtj+1  - xtj \rangle +

\=ltj
2
\| xtj+1  - xtj\| 2

\biggr] 
= 0.

This together with item (i) and (6.6) shows that \=\lambda q(\=x) = 0. Combining this with
(6.7), \=\zeta \in \partial P2(\=x) (see (6.6)), (2.4), and the fact that q(\=x) \leq 0 (because q(xt) \leq 0 for
all t) shows that \=x is a Clarke critical point. Finally, the claim concerning stationarity
follows immediately from Proposition 5.6. This completes the proof.

6.2. Global convergence under KL assumption. We now discuss global
convergence of the sequence \{ xt\} generated by Algorithm 6.1. Our analysis follows
the line of analysis in [1, 2, 3, 6, 8, 43] and is based on the following auxiliary function:

\widetilde F (x, y, \zeta , w) :=
\| x\| 1
\| x\| 

+ \delta [\widetilde q\leq 0](x, y, \zeta , w) + \delta \| \cdot \| \geq \rho (x)(6.8)

with

\widetilde q(x, y, \zeta , w) := P1(y) + \langle \nabla P1(y), x - y\rangle + P \ast 
2 (\zeta ) - \langle \zeta , x\rangle +

w

2
\| x - y\| 2,(6.9)

where P1 and P2 are as in (1.2), and \rho > 0 is chosen such that \{ x : q(x) \leq 0\} \subset 
\{ x : \| x\| > \rho \} . Some comments on \widetilde F are in place. First, recall that in the potential
function used in [8] for analyzing their MBA variant, the authors replaced P1(x) by a

quadratic majorant P1(y) + \langle \nabla P1(y), x - y\rangle +
Lp

2 \| x - y\| 2, where Lp is the Lipschitz
continuity modulus of \nabla P1. Here, as in [43], we further introduce the variable w to
handle the varying \=lt. Finally, to deal with the possibly nonsmooth  - P2, we replaced
 - P2(x) by its majorant P \ast 

2 (\zeta ) - \langle \zeta , x\rangle as in [26].

The next proposition concerns the subdifferential of \widetilde F and will be used for deriv-
ing global convergence of the sequence generated by MBA\ell 1/\ell 2 .

Proposition 6.5. Consider (1.2) and assume that P1 is twice continuously dif-
ferentiable. Suppose that Assumption 6.2 holds. Let \{ (xt, \zeta t, \=lt)\} be the sequence

generated by MBA\ell 1/\ell 2 and suppose that \{ xt\} is bounded. Let \widetilde F and \widetilde q be given in
(6.8) and (6.9), respectively. Then the following statements hold:

(i) For any t \in \BbbN +, we have \widetilde q(xt+1, xt, \zeta t, \=lt) \leq 0.
(ii) There exist \kappa > 0 and t \in \BbbN + such that

dist(0, \partial \widetilde F (xt+1, xt, \zeta t, \=lt)) \leq \kappa \| xt+1  - xt\| for all t > t.D
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Proof. We first observe that

\widetilde q(xt+1, xt, \zeta t, \=lt)

= P1(xt) + \langle \nabla P1(xt), xt+1  - xt\rangle + P \ast 
2 (\zeta t) - \langle \zeta t, xt+1\rangle +

\=lt
2
\| xt+1  - xt\| 2

= P1(xt) + \langle \nabla P1(xt) - \zeta t, xt+1  - xt\rangle + P \ast 
2 (\zeta t) - \langle \zeta t, xt\rangle +

\=lt
2
\| xt+1  - xt\| 2

(a)
= P1(xt) - P2(xt) + \langle \nabla P1(xt) - \zeta t, xt+1  - xt\rangle +

\=lt
2
\| xt+1  - xt\| 2

= q(xt) + \langle \nabla P1(xt) - \zeta t, xt+1  - xt\rangle +
\=lt
2
\| xt+1  - xt\| 2 \leq 0,

(6.10)

where (a) follows from (2.1) because \zeta t \in \partial P2(xt), and the last inequality holds
because xt+1 is feasible for (6.1) with lt = \=lt. This proves item (i).

Now, note that N\BbbR  - (\widetilde q(xt+1, xt, \zeta t, \=lt)) = \{ 0\} if \widetilde q(xt+1, xt, \zeta t, \=lt) < 0. Using this
together with [34, Proposition 10.3], we conclude that at any (xt+1, xt, \zeta t, \=lt) (regard-
less of whether \widetilde q(xt+1, xt, \zeta t, \=lt) < 0 or \widetilde q(xt+1, xt, \zeta t, \=lt) = 0), the relation

\widehat N[\widetilde q\leq 0](x
t+1, xt, \zeta t, \=lt) \supseteq \lambda \widehat \partial \widetilde q(xt+1, xt, \zeta t, \=lt)

holds for any \lambda \in N\BbbR  - (\widetilde q(xt+1, xt, \zeta t, \=lt)). Thus, for any \lambda \in N\BbbR  - (\widetilde q(xt+1, xt, \zeta t, \=lt)),
we have that\widehat N[\widetilde q\leq 0](x

t+1, xt, \zeta t, \=lt) \supseteq \lambda \widehat \partial \widetilde q(xt+1, xt, \zeta t, \=lt)

(a)
=

\left[      
\lambda [\nabla P1(xt) - \zeta t + \=lt(x

t+1  - xt)]

\lambda [\nabla 2P1(xt)(xt+1  - xt) - \=lt(x
t+1  - xt)]

\lambda \partial P \ast 
2 (\zeta t) - \lambda xt+1

\lambda 
2

\bigm\| \bigm\| xt+1  - xt
\bigm\| \bigm\| 2

\right]      (b)
\ni 

\left[      
\lambda V t

1

\lambda V t
2

\lambda (xt  - xt+1)

\lambda 
2

\bigm\| \bigm\| xt+1  - xt
\bigm\| \bigm\| 2

\right]      
(6.11)

with

V t
1 := \nabla P1(xt) - \zeta t + \=lt(x

t+1  - xt),

V t
2 := \nabla 2P1(xt)(xt+1  - xt) - \=lt(x

t+1  - xt),
(6.12)

where (a) uses the definition of \widetilde q, [34, Exercise 8.8(c)], [34, Proposition 10.5], and [34,

Proposition 8.12] (so that \partial P \ast 
2 (\zeta t) = \widehat \partial P \ast 

2 (\zeta t)), and (b) uses (2.1) and the fact that
\zeta t \in \partial P2(xt). On the other hand, we have from [34, Theorem 8.6] that

\partial \widetilde F (xt+1, xt, \zeta t, \=lt) \supseteq \widehat \partial \widetilde F (xt+1, xt, \zeta t, \=lt)

(a)

\supseteq 

\left[      
1

\| xt+1\| \partial 
\bigm\| \bigm\| xt+1

\bigm\| \bigm\| 
1
 - \| xt+1\| 1

\| xt+1\| 3x
t+1

0

0

0

\right]      + \widehat N[\widetilde q\leq 0](x
t+1, xt, \zeta t, \=lt),

(6.13)

where (a) uses [34, Corollary 10.9], (2.3), and [34, Corollary 8.11], and the facts that\widehat \partial \delta [\widetilde q\leq 0](x
t+1, xt, \zeta t, \=lt) = \widehat N[\widetilde q\leq 0](x

t+1, xt, \zeta t, \=lt) and \widehat N\| \cdot \| \geq \rho (xt+1) = \{ 0\} .
Let \lambda t \geq 0 be a Lagrange multiplier of (6.1) with lt = \=lt, which exists thanks to

Lemma 6.3. In view of the inequality and the last equality in (6.10) and using (6.4)
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with (\widetilde x, lt) = (xt+1, \=lt), we deduce that \lambda t \in N\BbbR  - (\widetilde q(xt+1, xt, \zeta t, \=lt)), which in turn

implies that \lambda t

\| xt+1\| \in N\BbbR  - (\widetilde q(xt+1, xt, \zeta t, \=lt)). We can hence let \lambda = \lambda t

\| xt+1\| in (6.11)

to obtain an element in \widehat N[\widetilde q\leq 0](x
t+1, xt, \zeta t, \=lt). Plugging this particular element into

(6.13) yields

\partial \widetilde F (xt+1, xt, \zeta t, \=lt) \supseteq 

\left[       
1

\| xt+1\| \partial 
\bigm\| \bigm\| xt+1

\bigm\| \bigm\| 
1
 - \| xt+1\| 1

\| xt+1\| 3x
t+1 + \lambda t

\| xt+1\| V
t
1

\lambda t

\| xt+1\| V
t
2

\lambda t

\| xt+1\| (xt  - xt+1)

\lambda t

2\| xt+1\| 
\bigm\| \bigm\| xt+1  - xt

\bigm\| \bigm\| 2

\right]       ,(6.14)

where V t
1 and V t

2 are given in (6.12). On the other hand, applying (6.5) with (\widetilde x, lt) =
(xt+1, \=lt) and recalling that \omega t = \| xt\| 1/\| xt\| , we obtain

\partial \| xt+1\| 1 \ni 
\| xt\| 1
\| xt\| 2

xt  - \lambda t(\nabla P1(xt) - \zeta t) - (\alpha + \lambda t
\=lt)(x

t+1  - xt)

=
\| xt\| 1
\| xt\| 2

xt  - \lambda tV
t
1  - \alpha (xt+1  - xt).

(6.15)

Combining (6.14) and (6.15), we see further that

\partial \widetilde F (xt+1, xt, \zeta t, \=lt) \ni 

\left[      
J t
1

\lambda t

\| xt+1\| V
t
2

\lambda t

\| xt+1\| (xt  - xt+1)

\lambda t

2\| xt+1\| 
\bigm\| \bigm\| xt+1  - xt

\bigm\| \bigm\| 2

\right]      ,(6.16)

where

J t
1 :=

1

\| xt+1\| 

\biggl( 
\| xt\| 1
\| xt\| 2

xt  - \| x
t+1\| 1

\| xt+1\| 2
xt+1

\biggr) 
 - \alpha 

\| xt+1\| 
(xt+1  - xt).

Next, recall from Lemma 6.1(iii) that

\| xt+1\| \geq \delta for all t \in \BbbN +.(6.17)

Using this together with our assumption that \{ xt\} is bounded, we see that there exists
L1 > 0 such that\bigm\| \bigm\| \bigm\| \bigm\| \| xt\| 1

\| xt\| 2
xt  - \| x

t+1\| 1
\| xt+1\| 2

xt+1

\bigm\| \bigm\| \bigm\| \bigm\| \leq L1\| xt+1  - xt\| for all t.

Combining the above three displays, we deduce that\bigm\| \bigm\| J t
1

\bigm\| \bigm\| \leq L1 + \alpha 

\delta 
\| xt+1  - xt\| .(6.18)

On the other hand, one can see from (6.17), the definition of V t
2 (see (6.12)), the

boundedness of \{ \lambda t, \=lt\} (see Theorem 6.4(ii) and Lemma 6.1(ii)), the continuity of
\nabla 2P1, and the boundedness of \{ xt\} that there exist L2 > 0 and L3 > 0 such that

\lambda t

\| xt+1\| 
\leq L2

\delta 
and

\bigm\| \bigm\| \bigm\| \bigm\| \lambda t

\| xt+1\| 
V t
2

\bigm\| \bigm\| \bigm\| \bigm\| \leq L3\| xt+1  - xt\| .(6.19)D
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Moreover, we can see from Theorem 6.4(i) that there exists t \in \BbbN + such that

\| xt+1  - xt\| 2 \leq \| xt+1  - xt\| 

whenever t \geq t. Now we can conclude from (6.16), (6.18), (6.19), and the above
display that there exists \kappa > 0 such that

dist(0, \partial \widetilde F (xt+1, xt, \zeta t, \=lt)) \leq \kappa \| xt+1  - xt\| 

for all t \geq t. This completes the proof.

When the sequence \{ xt\} generated by MBA\ell 1/\ell 2 is bounded, one can show that
the set of accumulation points \Omega of \{ (xt+1, xt, \zeta t, \=lt)\} is compact. This together with

Lemma 6.1(iii) and the continuity of \widetilde F on its domain shows that \widetilde F is constant on

\Omega \subseteq dom \partial \widetilde F . Using this together with Proposition 6.5 and Lemma 6.1(iii), one can

prove the following convergence result by imposing additional KL assumptions on \widetilde F .
The proof is standard and follows the line of arguments as in [1, 2, 3, 9, 26, 40]. We
omit the proof here for brevity.

Theorem 6.6 (global convergence and convergence rate of MBA\ell 1/\ell 2). Consider
(1.2) and assume that P1 is twice continuously differentiable. Suppose that Assump-
tion 6.2 holds. Let \{ xt\} be the sequence generated by MBA\ell 1/\ell 2 and assume that \{ xt\} 
is bounded. If \widetilde F in (6.8) is a KL function, then \{ xt\} converges to a Clarke critical

point x\ast of (1.2) (x\ast is stationary if q is in addition regular at x\ast ). Moreover, if \widetilde F
is a KL function with exponent \theta \in [0, 1), then the following statements hold:

(i) If \theta = 0, then \{ xt\} converges finitely.
(ii) If \theta \in (0, 1

2 ], then there exist c0 > 0, Q1 \in (0, 1) and t \in \BbbN + such that

\| xt  - x\ast \| \leq c0Q
t
1 for t > t.

(iii) If \theta \in ( 1
2 , 1), then there exist c0 > 0 and t \in \BbbN + such that

\| xt  - x\ast \| \leq c0t
 - 1 - \theta 

2\theta  - 1 for t > t.

Remark 6.7 (KL property of \widetilde F corresponding to (1.3), (1.4), and (1.5)).
(i) In both (1.3) and (1.4), we have q = P1 being analytic and P \ast 

2 = \delta \{ 0\} . Hence\widetilde F becomes \widetilde F (x, y, \zeta , w) = \| x\| 1

\| x\| + \delta \Delta (x, y, \zeta , w) with \Delta = \{ (x, y, \zeta , w) : P1(y) +

\langle \nabla P1(y), x - y\rangle + w
2 \| x - y\| 2 \leq 0, \zeta = 0, \| x\| \geq \rho \} . Hence, the graph of \widetilde F is\biggl\{ 

(x, y, \zeta , w, z) :
\| x\| 1 = z\| x\| , \| x\| \geq \rho , \zeta = 0,
P1(y) + \langle \nabla P1(y), x - y\rangle + w

2 \| x - y\| 2 \leq 0

\biggr\} 
,

which is semianalytic [24, p. 596]. This means that \widetilde F is subanalytic [24, Def-

inition 6.6.1]. Moreover, the domain of \widetilde F is closed and \widetilde F | dom \widetilde F is continuous.

Therefore, \widetilde F satisfies the KL property according to [7, Theorem 3.1].
(ii) For (1.5), first note that P2 is a convex piecewise linear-quadratic function (see,

for example, the proof of [26, Theorem 5.1]). Then P \ast 
2 is also a piecewise linear-

quadratic function thanks to [34, Theorem 11.14]. Thus, one can see that \widetilde q
corresponding to (1.5) is semialgebraic and so is the set \Theta = \{ (x, y, \zeta , w) :\widetilde q(x, y, \zeta , w) \leq 0\} . Therefore \widetilde F is semialgebraic as the sum of the semialgebraic

functions x \mapsto \rightarrow \| x\| 1

\| x\| + \delta \| \cdot \| \geq \rho (x) and \delta \Theta and is hence a KL function [2].
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Using Theorem 6.6, Remark 6.7, Proposition 5.4, and the discussions preceding
it, and recalling that continuously differentiable functions are regular, we have the
following immediately corollary.

Corollary 6.8 (global convergence of MBA\ell 1/\ell 2 for (1.3), (1.4), and (1.5)).
(i) Suppose that MBA\ell 1/\ell 2 is applied to (1.3) or (1.4). Then the sequence generated

converges to a stationary point of the problem if the sequence is bounded.
(ii) Suppose that MBA\ell 1/\ell 2 is applied to (1.5). Then the sequence generated con-

verges to a Clarke critical point of the problem if the sequence is bounded.

7. Numerical simulations. In this section, we perform numerical experiments
on solving random instances of (1.3), (1.4), and (1.5) by MBA\ell 1/\ell 2 . All numerical
experiments are performed in MATLAB 2019b on a 64-bit PC with an Intel Core
i7-6700 CPU (3.40GHz) and 32GB of RAM.

We set lmin = 10 - 8, lmax = 108, and \alpha = 1 in MBA\ell 1/\ell 2 . We let l00 = 1 and
compute, for each t \geq 1,

l0t =

\left\{     
max

\Bigl\{ 
lmin,min

\Bigl\{ 
\langle dt

x,d
t
g\rangle 

\| dt
x\| 2 , lmax

\Bigr\} \Bigr\} 
if \langle dtx, dtg\rangle \geq 10 - 12,

max
\Bigl\{ 
lmin,min

\Bigl\{ 
lt - 1

2 , lmax

\Bigr\} \Bigr\} 
otherwise,

where dtx = xt  - xt - 1 and dtg = \xi t  - \xi t - 1 with \xi t = \nabla P1(xt) - \zeta t: specifically, \zeta t = 0
when solving (1.3) and (1.4), while for (1.5), we pick any \zeta t \in ProjS(Axt  - b), which
can be obtained by finding the largest r entries of Axt  - b.

We initialize MBA\ell 1/\ell 2 at some feasible point xfeas and terminate MBA\ell 1/\ell 2 when

\| xt  - xt - 1\| \leq tol \cdot max\{ \| xt\| , 1\} ;(7.1)

we will specify the choices of xfeas and tol in each of the subsections below.

7.1. Robust compressed sensing problems (1.5). We generate a sensing
matrix A \in \BbbR (p+\iota )\times n with i.i.d. standard Gaussian entries and then normalize each
column of A. Next, we generate the original signal xorig \in \BbbR n as a k-sparse vector
with k i.i.d. standard Gaussian entries at random (uniformly chosen) positions. We
then generate a vector z\iota \in \BbbR \iota with i.i.d. standard Gaussian entries and set z \in \BbbR p+\iota 

to be a vector with the first p entries being zero and the last \iota entries being 2 sign(z\iota ).
The vector b in (1.5) is then generated as b = Axorig  - z + 0.01\varepsilon , where \varepsilon \in \BbbR p+\iota 

has i.i.d. standard Gaussian entries. Finally, we set \sigma = 1.2\| 0.01\varepsilon \| and r = 2\iota . In
MBA\ell 1/\ell 2 , we set xfeas = A\dagger b,2 and tol = 10 - 6 in (7.1).

In our numerical tests, we consider (n, p, k, \iota ) = (2560i, 720i, 80i, 10i) with i \in 
\{ 2, 4, 6, 8, 10\} . For each i, we generate 20 random instances as described above. The
computational results are shown in Table 1. We present the time tqr for the (reduced)
QR decomposition when generating xfeas, the CPU times tmba and tsum,3 the recovery

error RecErr =
\| xout - xorig\| 

max\{ 1,\| xorig\| \} , and the Residual = dist2(Axout  - b, S)  - \sigma 2, averaged

over the 20 random instances, where xout is the approximate solution returned by
MBA\ell 1/\ell 2 . We see that xorig are approximately recovered in a reasonable period of
time.

2We compute A\dagger b via the MATLAB commands [Q,R] = qr(A',0); xfeas = Q*(R'\setminus b).
3tmba is the run time of MBA\ell 1/\ell 2 , while tsum includes the run time of MBA\ell 1/\ell 2 , the time for

performing (reduced) QR factorization on AT , and the time for computing Q(R - 1)T b.
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Table 1
Random tests on robust CS.

i tqr tmba(tsum) RecErr Residual
2 0.5 1.2 ( 1.7) 3.3e-02 -3e-11
4 3.1 4.1 ( 7.2) 3.3e-02 -5e-11
6 9.8 8.3 ( 18.1) 3.3e-02 -9e-11
8 24.0 14.3 ( 38.4) 3.3e-02 -1e-10
10 43.6 21.5 ( 65.3) 3.3e-02 -2e-10

Table 2
Random tests on CS problems with Cauchy noise (tol = 10 - 6 for SCPls).

i tqr
CPU RecErr Residual

SCPls MBA\ell 1/\ell 2 SCPls MBA\ell 1/\ell 2 SCPls MBA\ell 1/\ell 2

2 0.5 10.0 0.6 ( 11.1) 1.3e-01 6.5e-02 -2e-07 -8e-08
4 3.0 52.4 2.0 ( 57.5) 1.3e-01 6.6e-02 -6e-07 -2e-07
6 9.4 87.3 4.1 ( 100.9) 1.3e-01 6.6e-02 -9e-07 -2e-07
8 23.4 281.6 7.0 ( 312.1) 1.3e-01 6.5e-02 -1e-06 -3e-07
10 42.4 285.5 11.4 ( 339.5) 1.3e-01 6.5e-02 -2e-06 -4e-07

7.2. CS problems with Cauchy noise (1.4). Similar to the previous subsec-
tion, we generate the sensing matrix A \in \BbbR m\times n with i.i.d. standard Gaussian entries
and then normalize each column of A. We then generate the original signal xorig \in \BbbR n

as a k-sparse vector with k i.i.d. standard Gaussian entries at random (uniformly cho-
sen) positions. However, we generate b as b = Axorig + 0.01\varepsilon with \varepsilon i \sim Cauchy(0, 1),
i.e., \varepsilon i = tan(\pi (\widetilde \varepsilon i - 1/2)) for some random vector \widetilde \varepsilon \in \BbbR m with i.i.d. entries uniformly
chosen in [0, 1]. Finally, we set \gamma = 0.02 and \sigma = 1.2\| 0.01\varepsilon \| LL2,\gamma .

We compare the \ell 1 minimization model (which minimizes \ell 1 norm in place of
\ell 1/\ell 2 in (1.4); see [43, equation (5.8)] with \mu = 0) with our \ell 1/\ell 2 model. We use
SCPls in [43] for solving the \ell 1 minimization model. We use the same parameter
settings for SCPls as in [43, section 5], except that we terminate SCPls when (7.1)
is satisfied with tol = 10 - 6 in Table 2. We initialize MBA\ell 1/\ell 2 at the approximate
solution xscp given by SCPls and terminate MBA\ell 1/\ell 2 when (7.1) is satisfied with
tol = 10 - 6.

In our numerical experiments, we consider (n,m, k) = (2560i, 720i, 80i) with i \in 
\{ 2, 4, 6, 8, 10\} . For each i, we generate 20 random instances as described above. Our
computational results are presented in Table 2, which are averaged over the 20 random
instances. Here we show the CPU time tqr for performing (reduced) QR decomposition

on AT , the CPU time,4 the recovery error RecErr =
\| xout - xorig\| 

max\{ 1,\| xorig\| \} , and the residual

Residual = \| Axout  - b\| LL2,\gamma  - \sigma of both SCPls and MBA\ell 1/\ell 2 , where xout is the
approximate solution returned by the respective algorithm. We see that the recovery
error is significantly improved by solving the nonconvex model.

Finally, as suggested by one reviewer, we investigate the effect of initialization
on the performance of MBA\ell 1/\ell 2 . Specifically, we test SCPls and MBA\ell 1/\ell 2 on the
same set of instances used in Table 2 but terminate SCPls when (7.1) is satisfied
with tol = 10 - 3. We then initialize MBA\ell 1/\ell 2 at the approximate solution returned
by SCPls and terminate MBA\ell 1/\ell 2 when (7.1) is satisfied with tol = 10 - 6. The

4For MBA\ell 1/\ell 2 , the time in parentheses is the total run time including the time for computing

the initial point A\dagger b for SCPls and the run times of SCPls and MBA\ell 1/\ell 2 , and the time without
parentheses is the actual run time of MBA\ell 1/\ell 2 starting from xfeas = xscp.
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Table 3
Random tests on CS problems with Cauchy noise (tol = 10 - 3 for SCPls).

i tqr
CPU RecErr Residual

SCPls MBA\ell 1/\ell 2 SCPls MBA\ell 1/\ell 2 SCPls MBA\ell 1/\ell 2

2 0.5 3.0 50.8 ( 54.3) 1.8e+00 1.6e+00 -3e+01 -6e-05
4 3.0 11.8 457.6 ( 472.5) 4.3e+00 4.2e+00 -1e+02 -5e-04
6 9.5 30.5 4.9 ( 44.9) 2.1e-01 6.6e-02 -9e-01 -2e-07
8 22.9 37.7 78.5 ( 139.2) 9.7e+00 9.6e+00 -6e+01 -9e-03
10 41.5 71.9 3164.0 (3277.6) 2.1e+00 1.7e+00 -1e+02 -2e-04

computational results are presented in Table 3. Not too surprisingly, we can see
that MBA\ell 1/\ell 2 can result in large recovery errors with this initialization, though the
recovery errors may still be small sometimes (see i = 6). Thus, the performance of
MBA\ell 1/\ell 2 is quite sensitive to its initialization.

7.3. Badly scaled CS problems with Gaussian noise (1.3). In this section,
we generate test instances similar to those in [39]. Specifically, we first generate
A = [a1, . . . , an] \in \BbbR m\times n with

aj =
1\surd 
m

cos

\biggl( 
2\pi wj

F

\biggr) 
, j = 1, . . . , n,

where w \in \BbbR m have i.i.d. entries uniformly chosen in [0, 1]. Next, we generate the
original signal xorig \in \BbbR n using the following MATLAB command:

I = randperm(n); J = I(1:k); xorig = zeros(n,1);

xorig(J) = sign(randn(k,1)).*10.\^(D*rand(k,1));

We then set b = Axorig + 0.01\varepsilon , where \varepsilon \in \BbbR m has i.i.d standard Gaussian entries.
Finally, we set \sigma = 1.2\| 0.01\varepsilon \| .

We compare the \ell 1 minimization model (which minimizes \ell 1 norm in place of
\ell 1/\ell 2 in (1.3); see [43, equation (5.5)] with \mu = 0) with our \ell 1/\ell 2 model. The \ell 1
minimization model is solved via SPGL1 [5] (version 2.1) using default settings. The
initial point for MBA\ell 1/\ell 2 is generated from the approximate solution xspgl1 of SPGL1
as follows: Specifically, since xspgl1 may violate the constraint slightly, we set the initial
point of MBA\ell 1/\ell 2 as

xfeas =

\Biggl\{ 
A\dagger b + \sigma 

xspgl1 - A\dagger b
\| Axspgl1 - b\| if \| Axspgl1  - b\| > \sigma ,

xspgl1 otherwise.

We terminate MBA\ell 1/\ell 2 when (7.1) is satisfied with tol = 10 - 8.
In our numerical tests, we set n = 1024, m = 64, and consider k \in \{ 8, 12\} ,

F \in \{ 5, 15\} , and D \in \{ 2, 3\} . For each (k, F,D), we generate 20 random instances as
described above. We present the computational results (averaged over the 20 random
instances) in Table 4. Here we show the CPU time,5 the recovery error RecErr =
\| xout - xorig\| 

max\{ 1,\| xorig\| \} , and the Residual = \| Axout  - b\| 2  - \sigma 2 of both SPGL1 and MBA\ell 1/\ell 2 ,

where xout is the approximate solution returned by the respective algorithm. We
again observe that the recovery error is significantly improved (on average) by solving

5For MBA\ell 1/\ell 2 , the time in parenthesis is the total run time including the time for computing

the feasible point A\dagger b and the run times of SPGL1 and MBA\ell 1/\ell 2 , the time without parenthesis is
the actual run time of MBA\ell 1/\ell 2 starting from xfeas.

D
ow

nl
oa

de
d 

05
/1

0/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1602 LIAOYUAN ZENG, PEIRAN YU, AND TING KEI PONG

Table 4
Random tests on badly scaled CS problems with Gaussian noise.

k F D
CPU RecErr Residual

SPGL1 MBA\ell 1/\ell 2 SPGL1 MBA\ell 1/\ell 2 SPGL1 MBA\ell 1/\ell 2

8 5 2 0.07 0.13 ( 0.20) 3.2e-02 2.3e-03 -4e-05 -1e-13
8 5 3 0.06 0.14 ( 0.20) 3.2e-03 6.8e-04 -4e-05 -2e-11
8 15 2 0.08 3.92 ( 4.01) 4.7e-01 1.5e-01 -9e-05 -7e-13
8 15 3 0.11 31.46 ( 31.58) 3.8e-01 5.3e-02 2e-02 -5e-11
12 5 2 0.06 2.26 ( 2.32) 1.4e-01 3.6e-02 -3e-04 -8e-13
12 5 3 0.08 4.05 ( 4.14) 6.0e-02 3.8e-03 1e-04 -7e-11
12 15 2 0.09 8.32 ( 8.41) 5.2e-01 2.0e-01 -1e-04 -1e-12
12 15 3 0.11 403.80 (403.91) 5.2e-01 1.5e+00 6e-02 -3e-10

the nonconvex model in most instances, except when (k, F,D) = (12, 15, 3). In this
case, we see that the xspgl1 can be highly infeasible and thus the starting point xfeas

provided to MBA\ell 1/\ell 2 may not be a good starting point. This might explain the
relatively poor performance of MBA\ell 1/\ell 2 in this case.
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