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Abstract. We study the dynamics of visco-elastic materials coupled by a common cohesive interface (or, equiv-
alently, two single domains separated by a prescribed cohesive crack) in the anti-plane setting. We consider a
general class of traction-separation laws featuring an activation threshold on the normal stress, softening and elas-
tic unloading. In strong form, the evolution is described by a system of PDEs coupling momentum balance (in the
bulk) with transmission and Karush-Kuhn-Tucker conditions (on the interface). We provide a detailed analysis of
the system. We first prove existence of a weak solution, employing a time discrete approach and a regularization
of the initial data. Then, we prove our main results: the energy identity and the existence of solutions with
acceleration in L∞(0, T ;L2).
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1 Introduction

The problem of interaction between two elastic or r visco-elastic bodies in contact along a common interface
arises naturally in many branches of the mechanics of solid and is strongly connected with the nucleation
and propagation of cracks along a prescribed path [3]. In the last few years, these problems have been
studied extensively from the mathematical point of view, considering several traction-separation laws and
different evolution, both in quasi-statics (energetic and balanced-viscosity) and dynamic setting.

As far as quasi-static evolutions several contributions have been proposed, covering many similar
models with either adhesive or cohesive contact. For energetic evolutions [19] we quote [12, 29, 5, 28],
among the many in our context. For balanced-viscosity evolutions we may further distinguish between
solutions obtained by vanishing viscosity [18] and solutions obtained by incremental local minimization
[17]. For our problem, we mention [4, 2] for the latter approach, and [22, 21] for the former.

Besides rate-independent evolutions also rate-dependent systems with inertial effects have been consid-
ered to describe the motion of visco-elastic bodies together with crack propagation, delamination, debond-
ing and damage evolution; we quote only some important contributions, as [8, 14, 9, 7, 32, 31, 10, 34, 24]
and references therein. In some cases, starting from dynamic models it is possible to recover a quasi-static
evolution by time rescaling. Among the results in this direction, we quote [27, 30] for delamination models,
[15] for a debonding problem, [11] for a plasticity, [16] for damage, and finally [1, 20] for general results
in finite dimension.

Let us now describe the model. Following the quasi-static models of [23, 22] and the dynamical model
of [34] we are here interested in an evolution accounting for visco-elastic and inertial effects, in the bulk,
and traction-separation laws with finite activation threshold and different loading-unloading regimes, in
the cohesive interface. A closer comparison with the setting and the results of [34] is postponed at the end
of the introduction. Let Ω ⊂ R2 represent (the planar section of) our reference configuration, consisting of
a couple of elastic bodies in contact along a common interface K, i.e., Ω = Ω+∪Ω− and K = ∂Ω+∩∂Ω−.
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We denote by u : Ω → R the antiplane displacement, i.e., orthogonal to the plane containing Ω. The
elastic energy of the system is then written as

E(u) =

∫
Ω

µ|∇u|2dx, (1)

where µ > 0 is the shear modulus. We consider external loadings in the form of a linear functional
f(t), depending on time t ∈ [0, T ], accounting for bulk forces and traction on the Neumann part of the
boundary, i.e.,

(f(t), u) =

∫
Ω

fbu dx+

∫
∂NΩ

fsu dH1.

In addition we take into account a damping term given by the Kelvin-Voigt viscosity, associated to the
dissipation

D(u̇) =

∫
Ω

η|∇u̇|2dx. (2)

The energy is complemented with a cohesive potential of the form

Ψ(u, ξ) :=

∫
K

ψ(JuK, ξ)dH1. (3)

The density ψ depends on the opening JuK := u+ − u− (the difference between the traces of u on K from
Ω+ and Ω−) and on the internal variable ξ, whose role is to keep track of the history of the evolution of JuK:
the (non-negative) value of ξ at a point l ∈ K and at time t ∈ [0, T ] plays the role of the maximum opening
at the point l during the time interval [0, t], i.e. ξ(l, t) := maxs∈[0,t]{|Ju(l, s)K|}. Besides some technical
assumptions, the density ψ is monotone non-decreasing in the internal variable and convex-concave in
the opening. The former property models dissipation on the interface while the latter models the elastic
response in unloading and softening in loading. In particular, for ξ = 0 softening occurs only above a
certain threshold on the normal traction, indeed the density ψ behaves like c|JuK| for ξ = 0 and |JuK| � 1
and thus the energy Ψ turns out not to be Frechét differentiable.

In summary, the total energy F of our system is given by

F(t, u, ξ) := E(u) + Ψ(u, ξ)− (f(t), u). (4)

Along with these energies, we study the dynamics of the following system, consisting of the momentum
balance

ρü− divσ = fb in Ω, (5a)

where σ := µ∇u+ η∇u̇ is the visco-elastic stress, the transmission condition

σ+ν = σ−ν ∈ ∂wψ(JuK, ξ) on K, (5b)

where ν is the normal unit vector to K pointing from Ω+ to Ω−, ∂wψ represents the subdifferential of ψ
with respect to w = JuK, and the flow rule for the internal variable

ξ̇(ξ − |JuK|) = 0, |JuK| ≤ ξ on K. (5c)

Equations (5a)-(5c) are complemented with the boundary conditions

u = 0 on ∂DΩ, (5d)

σν = fs on ∂NΩ, (5e)

and the initial condition

u(0) = u0, u̇(0) = v0, ξ(0) = ξ0 ≥ |Ju0K|. (5f)

The system (5a)-(5f) provides a strong formulation; existence of solutions actually requires some additional
conditions on the energies and on the data. Instead, under more general hypotheses we prove the energy
identity and the existence of weak solutions, in the following sense. Assuming u0, v0 ∈ H1(Ω) × L2(Ω),
we prove that there exist u, ξ with

u ∈ H1(0, T ;H1(Ω)) ∩H2(0, T ;H1(Ω)∗),

ξ ∈ H1(0, T ;L2(K)), (6)



September 7, 2021 3

satisfying (5d), (5f), and for a.e. t ∈ [0, T ]

(ρü(t), φ)H1 + ∂uF(t, u(t), ξ(t);φ) + 〈η∇u̇,∇φ〉 ≥ 0, (7)

ξ̇(t)(ξ(t)− |Ju(t)K|) = 0, |Ju(t)K| ≤ ξ(t) on K, (8)

for every φ ∈ H1(Ω) with φ = 0 on ∂DΩ. In equation (7) the symbol ∂uF(t, u, ξ;φ) represents the partial
derivative of the total energy in the direction φ, whereas 〈·, ·〉 is the scalar product in L2(Ω), and (·, ·)H1 is
the duality between H1(Ω)∗ and H1(Ω). We prove that the solutions to (7) satisfy, for any 0 ≤ s ≤ t ≤ T ,
the energy balance

E(u(t)) + Ψ(u(t), ξ(t)) +K(u̇(t)) = E(u(s)) + Ψ(u(s), ξ(s)) +K(v(s))

+

∫ t

s

(f(r), u̇(r)) dr −
∫ t

s

D(u̇(r)) dr, (9)

where

K(u̇) =

∫
Ω

|u̇|2 dx

is the kinetic energy. We also show that these solutions solve the system of equations (5a)-(5f) if some
additional technical requirements are made. More precisely, if the domain, the initial data, and the
external force, are suitably regular, we show that (5a)-(5f) hold with ü belonging to L2(Ω). These are the
so-called strong solutions.

The precise statements of our main results, namely Theorems 3.2 and 3.3, are contained in Section 3.
In order to prove them, we proceed in two steps. The idea consists in fixing a parameter ε > 0 and finding
a solution (uε, ξε) which satisfies (7)-(8) with regularized initial data. In particular the initial values of
the internal variable ξε(0) is strictly positive. In this way we gain a regularized cohesive energy (since the
cohesive potential is singular only at ξ = 0). In a second step we pass to the limit as ε → 0 and recover
the original initial data and the solution to the original problem. In order to prove the existence of (uε, ξε)
we classically proceed by time discretization and solve a minimization problem at each step.

We conclude this introduction comparing with adhesive interface energies (more details are provided
in Remark 4.3); as pointed out in [34], adhesive and cohesive settings are indeed closely related, with
some differences which are worth to point out. Although adhesive models cover a vast type of interface
energy profiles, see e.g. [34], the interface energy is, roughly speaking, quadratic at the origin while the
dissipation on the interface is positively 1-homogeneous. Here we employ instead more general cohesive
energies, non-quadratic and non-differentiable in the origin, combined with non-linear dissipations; as a
consequence our model features a finite positive activation threshold on the normal tractions, typical of
cohesive fracture. This provides additional mathematical difficulties which enforces us to first regularize
the problem and then to pass to the limit to recover a solution to the original singular model. The
regularization, performed indirectly with the aid of the initial values ξε(0), allows in practice to work with
a family of adhesive energies, becoming singular as ε→ 0.

It is also interesting to briefly compare with the so-called semi-stable energetic solutions, often employed
in adhesive models. This notion of solution, in essence, consists in coupling (7) with an energy minimization
problem, governing the evolution of the internal variable (see also Remark 4.3). In our context, recasting
the discrete scheme as energy minimization problem for the internal variable leads to an ill-posed problems,
with infinitely many solutions. For this reason, we employ instead the Karush-Kuhn-Tucker conditions
(8) which describe clearly the evolution of the internal variable and are crucial in the proof of the energy
identity.

Beyond existence of weak solutions, our work aims at proving a couple of noteworthy properties, which
have never been proved in the literature on cohesive interfaces: the energy identity (9) and the existence
of strong solutions, i.e. solutions to the PDE system (5a)-(5f). Both the properties are natural from the
modelling point of view, however their proofs are not straightforward. Energy identity requires indeed
to show that the interface energy is absolutely continuous in time, which in turn follows from the time
regularity of the internal variable together with the Karush-Kuhn-Tucker conditions; strong solutions
require to improve the time regularity of the acceleration ü from L2(0, T ;H1(Ω)∗) to L∞(0, T ;L2(Ω)) by
means of a delicate compactness estimate, which, loosely speaking, holds when the energy u 7→ F(t, u, ξ)
is convex and boundary traction vanishes.
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2 Setting and preliminaries

2.1 Geometry and spaces

We consider as reference configuration a set Ω ⊂ R2 obtained as union of disjoint open sets Ω+ and Ω−,
whose boundary overlaps on a common interface K = ∂Ω+ ∩ ∂Ω−. Technically, we assume both the sets
Ω± to be connected, bounded, and Lipschitz (additional hypotheses on Ω and K will be introduced to
prove existence of strong solutions). We assume that the sets ∂Ω± \K (i.e., the set where the boundaries
∂Ω± are not in contact) can be written as the union of two parts, ∂DΩ± and ∂NΩ± = ∂Ω± \ (K ∪∂DΩ±).
On the former part of the boundary we will impose Dirichlet boundary condition, whereas in the latter
Neumann boundary condition. In order to avoid trivial and singular cases, which would require ad-hoc
arguments, we will assume that H1(K) > 0 and H1(∂DΩ±) > 0. For later convenience we will also denote
∂DΩ = ∂DΩ+ ∪ ∂DΩ− and similarly ∂NΩ = ∂NΩ+ ∪ ∂NΩ−. Note that

∂Ω = K ∪ ∂DΩ ∪ ∂NΩ.

We denote by ν± the outer unit normal to Ω±; we also denote by ν the outer unit normal on ∂Ω \K.
On K we set ν := ν− = −ν+.

We consider antiplane displacements u : Ω→ R belonging to the space

U = {u ∈ H1(Ω) : u = 0 on ∂DΩ}.

The space U is endowed with the norm ‖u‖U = ‖∇u‖L2 ; by Poincaré inequality in the sets Ω± this norm
is equivalent to ‖u‖H1 = ‖u‖L2 +‖∇u‖L2 . We denote by U∗ the dual space of U , and by (·, ·)U the duality
pairing between U∗ and U ; we denote the L2-scalar product by 〈·, ·〉.

We denote by u± the restriction to K of the traces u± on the Lipschitz boundaries ∂Ω±. The jump
of u on K is JuK = u+ − u−. Clearly the map u 7→ JuK is linear and continuous from U to L2(K). By
Poincaré and trace theorem we have the following inequality

‖∇u‖2L2(Ω) ≥ ĉ
∫
K

JuK2 dH1, (10)
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for some positive constant ĉ. On the interface we will also employ an internal (history) variable ξ, which
will play the role of the maximal opening, belonging to the space

Ξ = L2(K;R+),

where R+ = [0,+∞); the set Ξ is endowed with the L2-norm.

2.2 Energies

First, let us introduce the energy F : [0, T ]× U × Ξ→ R of the form

F(t, u, ξ) = E(u)− (f(t), u)U + Ψ(u, ξ),

where E is the elastic (bulk) energy, f accounts for bulk and surface external forces while Ψ is the cohesive
interface energy, defined in the next subsection (note that Ψ will further split into the stored energy Ψs

and the dissipated energy Ψd). Moreover, we will employ a kinetic energy K : U → R and a dissipation
(rate of dissipated energy) D : U → R of the form

K(u̇), D(u̇) = ∂vR(u̇)[u̇],

where R : U → R is a dissipation pseudo-potential.
More precisely, the elastic energy reads

E(u) = 1
2

∫
Ω

µ|∇u|2 dx,

where µ = µ+1Ω+ + µ−1Ω− and µ± > 0 are the shear moduli of Ω±.
In the sequel we will assume f ∈W 1,2(0, T ;U∗). This hypothesis covers the case

(f(t), u)U =

∫
Ω

fb(t)u dx+

∫
∂NΩ

fs(t)u dH1, (11)

where fb ∈W 1,2(0, T ;L2(Ω)) and fs ∈W 1,2(0, T ;L2(∂NΩ)) are the external forces, acting respectively in
the bulk and in the Neumann part of the boundary; in order to prove that ü belongs to L2(Ω) we will
actually assume that fs = 0 and thus f ∈ W 1,2(0, T ;L2(Ω)). Accordingly, we introduce the power of
external forces Pext : [0, T ]× U → R given by

Pext(t, u̇) = (f(t), u̇)U .

Next, given the density ρ = ρ+1Ω+ + ρ−1Ω− , for ρ± > 0, the kinetic energy K : U → R is defined by

K(v) = 1
2

∫
Ω

ρ|v|2dx,

where v plays the role of the speed u̇.
Then, for η = η+1Ω+ + η−1Ω− , with η± > 0, we consider the Kelvin-Voigt visco-elastic dissipation

D : U → R and the associated pseudo-potential R : U → R given by

D(v) =

∫
Ω

η|∇v|2 dx = ∂vR(v)[v], R(v) = 1
2

∫
Ω

η|∇v|2 dx.

It remains to define the interface energy. Following [23] we introduce a function ψ̂ : R+ → R+ which
satisfies the following properties:

(H1) ψ̂ is concave, with ψ̂(0) = 0, ψ̂(w) > 0 for w > 0, ψ̂(w) = ψ̂(ξc) for w ≥ ξc > 0 ;

(H2) ψ̂ is of class C1 in [0,+∞) and of class C2 in [0, ξc].

The above conditions imply that ψ is non-decreasing. Moreover, let β > 0 be defined as

− β = min{ψ̂′′(w) for w ∈ [0, ξc]}. (12)
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Note that by the concavity and the C2-regularity of ψ̂ in [0, ξc] we have β ≥ 0; however, β = 0 contradicts

the C1-regularity in [0,+∞), since ψ̂ would be linear in [0, ξc] and constant in [ξc,+∞). We denote
R2

+ = R× R+ and define ψ : R2
+ → R+ by

ψ(w, ξ) =

ψ̂(|w|) if |w| ≥ ξ,

ψ̂(ξ)− ψ̂′(ξ)
(
ξ2 − w2

2ξ

)
if |w| < ξ,

(13)

(see Figure 1 for an example). The behaviour for |w| < ξ (and ξ > 0) corresponds to an elastic unloading.
Then, the interface cohesive energy takes the form

Ψ(u, ξ) =

∫
K

ψ(JuK, ξ) dH1.

We remark that for technical reasons ψ is defined in the whole R2
+, even if the evolution will take place

in the cone {(w, ξ) ∈ R2
+ : |w| ≤ ξ}.

In order to better understand the thermodynamics of the system, it is interesting to split ψ in terms
of stored and dissipated densities, i.e. ψ(w, ξ) = ψs(w, ξ) + ψd(ξ) where ψd(ξ) = ψ(0, ξ). Accordingly, we
introduce the stored and dissipated interface energies

Ψs(u, ξ) =

∫
K

ψs(JuK, ξ) dH1, Ψd(ξ) =

∫
K

ψd(ξ) dH1. (14)

We will show in Lemma 2.3 below that the functional u 7→ Ψ(u, ξ) is λ-convex; this means that there
exists λ < 0 such that

Ψ(u, ξ)− λ‖JuK‖2L2(K), (15)

is convex for all ξ ∈ Ξ.
The above assumptions are sufficient to prove existence and energy identity of weak solutions; in

order to prove existence of strong solutions, improving the time regularity, we will assume the following
additional hypotheses:

(H3) ψ̂′ is concave on [0, ξc];

(H4) there exists c > 0 such that
µ‖u‖2U − β ‖JuK‖2L2(K) ≥ c ‖u‖

2
U . (16)

Note that under assumption (H4) the functional

u 7→ 1
2µ‖u‖

2
U + Ψ(u, ξ) (17)

is strictly convex for all ξ ∈ Ξ. Indeed by (12) the map w 7→ ψ(w, ξ) + 1
2βw

2 is convex and thus, by
linearity of the trace, the functional u 7→ Ψ(u, ξ) + 1

2β‖JuK‖2L2 is convex. Writing

1
2µ‖u‖

2
U + Ψ(u, ξ) =

(
1
2µ‖u‖

2
U − 1

2β‖JuK‖2L2

)
+
(
Ψ(u, ξ) + 1

2β‖JuK‖2L2

)
we get (17) since the first term is quadratic and positive (for u 6= 0) and thus strictly convex.

Remark 2.1 By trace and Poincaré inequalities we have

‖u‖2U ≥ c̃ ‖JuK‖2L2(K), (18)

and thus (16) holds for µc̃ > β. Alternatively, given µ and β, (16) holds for “small domains”. Indeed,
consider the sets lΩ for l > 0 and the functions ul(x) = u(x/l) we have

‖∇ul‖2L2(lΩ) = ‖∇u‖2L2(Ω) = ‖u‖2U ≥ c̃ ‖JuK‖2L2(K) = (c̃/l) ‖JulK‖2L2(lK). (19)

If l is sufficiently small (16) holds.
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2.3 An example

This setting complies for the simple case where Ω+ = (0, L)×(0, 1), Ω− = (0, L)×(−1, 0), K = (0, L)×{0}
and ∂DΩ = (0, L)× {−1, 1}.

We provide here a prototype example of cohesive potential (see Figure 1). For Gc, ξc > 0 define

ψ̂ : [0,+∞)→ [0,+∞) as

ψ̂(w) =

{
Gc(w/ξc)[2− (w/ξc)] 0 ≤ w ≤ ξc
Gc w > ξc.

(20)

Note that ψ̂ is of class C1 and that

ψ̂′(w) =

{
2(Gc/ξc)(1− (w/ξc)) 0 ≤ w ≤ ξ

0 w > ξc.

Then, for ξ > 0, the potential ψ takes the form

ψ(w, ξ) =

{
ψ̂(|w|) |w| > ξ,

1
2 (ψ̂′(ξ)/ξ)w2 +

(
ψ̂(ξ)− 1

2 ψ̂
′(ξ)ξ

)
|w| ≤ ξ.

(21)

Note that

ψd(ξ) =

{
ψ̂(ξ)− 1

2 ψ̂
′(ξ)ξ = (Gc/ξc) ξ, 0 ≤ ξ ≤ ξc

Gc ξ ≥ ξc.

while
ψs(w, ξ) = 1

2 (ψ̂′(ξ)/ξ)w2 = 1
2cξw

2 for |w| ≤ ξ and ξ > 0,

where we have set

cξ :=
ψ̂′(ξ)

ξ
.

In particular, ψs(·, ξ) is quadratic for |w| ≤ ξ and ξ > 0; hence, the elastic domain depends on ξ and

vanishes for ξ = 0, while cξ becomes singular when ξ → 0+, because ψ̂′(0) > 0. Finally, note that in
the energy density the singularity of cξ is in some sense “balanced” by w, indeed, for |w| ≤ ξ it holds

cξw
2 ≤ cξξ2 ≤ ψ̂′(ξ)ξ ≤ Cξ.

Remark 2.2 Assume ψ̂ of the form (13). If, for some α > 0, ψd is of the form

ψd(ξ) =

{
α ξ 0 ≤ ξ ≤ ξc
αξc ξ > ξc,

then, solving the ODE ψ̂(ξ)− 1
2 ψ̂
′(ξ)ξ = α ξ (which defines ψd) it turns out that ψ̂ is of the form (20).

2.4 Directional derivatives and subdifferential

We will denote by ∂wψ(w, ξ;φ) the directional derivative of ψ(·, ξ) with respect to φ, and by ∂wψ(w, ξ)
the subdifferential. We will also denote by ∂wψ(w, ξ) the partial derivative, where it exists, and we will
further note by ∂±wψ(w, ξ) the left and right derivatives. To compute explicitly the derivatives of ψ, it is
convenient to consider separately the interior, the exterior, and the boundary of the cone {|w| ≤ ξ} in
R2

+. In the set {|w| < ξ} (for ξ > 0) we have

∂wψ(w, ξ) =

(
ψ̂′(ξ)

ξ

)
w. (22)

In the set {|w| > ξ} we have ψ(w, ξ) = ψ̂(|w|), hence

∂wψ(w, ξ) = ψ̂′(|w|) sign(w).

It is easy to check that the above derivatives coincide in the set {|w| = ξ 6= 0}; more precisely, for
w = ξ > 0 we have

∂+
wψ(w, ξ) = ψ̂′(ξ) = ∂−wψ(w, ξ),
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ψ̂(w)

Gc

ξ = 0

ξc w

Gc

ψ(w, ξ)

ξ > 0

ξcξ w
ψ̂′(w)

ξ = 0

ξc w

∂wψ(w, ξ)

ξ > 0

ξcξ w

Figure 1: An example of cohesive potential (top) and the associated traction-separation law (bottom).

Gc

ψd(ξ)

ξc ξ

Figure 2: Dissipated energy ψd (bold) compared with the energy ψ̂.

and similarly for w = −ξ < 0. As a consequence ∂wψ(w, ξ) is continuous in R2
+ \ (0, 0). On the contrary,

the density ψ is not differentiable in the origin where we have only the directional derivatives

∂wψ(0, 0;φ) = lim
h→0+

ψ(hφ, 0)

h
= ψ̂′(0)|φ| for every φ. (23)

It is important to observe that directional derivatives are positively 1-homogeneous, i.e., ∂wψ(w, ξ;κφ) =
κ∂wψ(w, ξ;φ) for every φ ∈ R and κ > 0 and that in general we have

|∂wψ(w, ξ;φ)| ≤ ψ̂′(0) |φ|. (24)

In a similar way we can compute the directional derivatives ∂ξψ(w, ξ; ζ) and the partial derivative
∂ξψ(w, ξ), where it exists. In the set {|w| < ξ} (for ξ > 0) we further distinguish the cases: ξ < ξc, ξ = ξc,
and ξ > ξc. In the former case we have

∂ξψ(w, ξ) = − 1
2

(
ψ̂′′(ξ)ξ − ψ̂′(ξ)

)(ξ2 − w2

ξ2

)
= −

(
ψ̂′(ξ)

2ξ

)′
(ξ2 − w2). (25)

For ξ > ξc we have ψ(ξ, w) = ψ̂(ξc) and thus ∂ξψ(ξ, w) = 0. For ξ = ξc we have only directional derivatives,
more precisely

∂−ξ ψ(w, ξc) = − 1
2

(
ψ̂′′(ξc)ξc − ψ̂′(ξc)

)(ξ2
c − w2

ξ2
c

)
, ∂+

ξ ψ(w, ξc) = 0.

In the set {|w| > ξ} we simply have ∂ξψ(w, ξ) = 0 because ψ(w, ξ) = ψ̂(|w|). It is not difficult to check
that in the set {|w| = ξ > 0} we have

∂+
ξ ψ(w, ξ) = ∂−ξ ψ(w, ξ) = 0.
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Finally, in the origin, by (21), we have

∂ξψ(0, 0; ζ) = lim
h→0+

ψ(0, hζ)

h
= lim
h→0+

1

h

(
ψ̂(hζ)− ψ̂(0)− 1

2 ψ̂
′(hζ)hζ

)
= 1

2 ψ̂
′(0)ζ for every ζ ≥ 0.

Note that there exists C > 0 such that

|∂ξψ(w, ξ; ζ)| ≤ C|ζ|

for every (w, ξ) ∈ R2
+ and every admissible ζ.

Lemma 2.3 Under assumption (H1) and (H2) the density ψ satisfies the following properties:

• ψ is Lipschitz continuous in R2
+ and differentiable in {0 < |w| < ξc};

• ∂wψ is continuous in R2
+ \ (0, 0);

• ψ(w, ·) is monotone non-decreasing;

• ψ(·, ξ) is pair, monotone non-decreasing in R+ and λ-convex in R, uniformly w.r.t. ξ ∈ R+.

Proof. By the above computations it is easy to see that: the directional derivatives are bounded in
the whole R2

+, that ∂wψ is continuous in R2
+ \ (0, 0), and that ∂ξψ is continuous in {0 < |w| < ξc}.

Moreover, by concavity and monotonicity, ψ̂′(0) ≥ ψ̂′(ξ1) ≥ ψ̂′(ξ2) ≥ 0 for every 0 ≤ ξ1 ≤ ξ2; it follows

that ξ 7→ ψ̂′(ξ)/ξ is monotone non-increasing, for ξ > 0; hence ∂ξψ(w, ξ) ≥ 0 and thus ψ(w, ·) is monotone
non-decreasing. It is easy to check that ψ(·, ξ) is pair and monotone non-decreasing in R+. By (12) and
[21, Lemma 2.4] we get the uniform λ-convexity.

Remark 2.4 By Lemma 2.3 the dissipated energy Ψd is monotone non-decreasing. Moreover the energy
Ψ(·, ξ) is λ-convex in L2(K), uniformly with respect to ξ.

Lemma 2.5 Assume (H1) and (H2). If (wn, ξn) → (w, ξ) in R2
+ then lim supn→+∞ ∂wψ(wn, ξn;φ) ≤

∂wψ(w, ξ;φ). If φn → φ then limn→+∞ ∂wψ(w,ξ;φn) = ∂wψ(w, ξ;φ).

Proof. If (w, ξ) 6= (0, 0) the statement is true because ∂wψ(w, ξ;φ) = ∂wψ(w, ξ)φ with ∂wψ continuous

away from the origin. If (w, ξ) = (0, 0) the same conclusion holds since ∂wψ(wn, ξn;φ) ≤ ψ̂′(0)|φ| =
∂wψ(0, 0;φ). The convergence with respect to φn is obvious, considering again the cases (w, ξ) = (0, 0)
and (w, ξ) 6= (0, 0).

Under the above assumptions we can introduce ∂uF(t, u, ξ;φ), the directional derivative of the energy
F(t, ·, ξ) in the direction φ, which reads

∂uF(t, u, ξ;φ) = dE(u)[φ]− (f(t), φ)U + ∂uΨ(u, ξ;φ),

where

dE(u)[φ] =

∫
Ω

µ∇u · ∇φdx, ∂uΨ(u, ξ;φ) =

∫
K

∂wψ(JuK, ξ; JφK) dH1.

Moreover, we recall that ζ ∈ U∗ is a (Clarke directional) subderivative for F in (t, u, ξ) if

∂uF(t, u, ξ;φ) ≥ (ζ, φ)U for every φ ∈ U ,

and that ζ ∈ U∗ belongs to the (limiting) subdifferential ∂uF(t, u, ξ) if

lim inf
w→u

F(t, w, ξ)−F(t, u, ξ)− (ζ, w − u)U
‖w − u‖U

≥ 0 .

Here the convergence w → u is intended with respect to the strong topology of U . Thanks to the properties
of F these two notions coincide, we have indeed the following statement.

Lemma 2.6 Assume (H1) and (H2) and let (t, u, ξ) ∈ [0, T ] × U × ξ and ζ ∈ U∗; ζ is a subderivative
for F in (t, u, ξ) if and only if it belongs to the subdifferential ∂uF(t, u, ξ). In particular the equilibrium
condition ∂uF(t, u, ξ;φ) ≥ 0 for every φ ∈ U is equivalent to the inclusion ∂uF(t, u, ξ) 3 0.
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Proof. If ζ ∈ ∂uF(t, u, ξ) and φ ∈ U \ {0}, the change of variable w = u+ hφ, for h > 0 leads to

lim inf
h→0+

F(t, u+ hφ, ξ)−F(t, u, ξ)

h‖φ‖U
≥ (ζ, φ)U
‖φ‖U

,

which gives ∂uF(t, u, ξ;φ) ≥ (ζ, φ)U .
On the other hand, by λ-convexity the auxiliary functional

Fλ,u(t, w, ξ) = F(t, w, ξ)− λ‖w − u‖2U

is convex in w. Note that Fλ,u(t, u, ξ) = F(t, u, ξ), ∂uFλ,u(t, u, ξ;φ) = ∂uF(t, u, ξ;φ) for every φ ∈ U and
that

lim inf
w→u

Fλ,u(t, w, ξ)−Fλ,u(t, u, ξ)− (ζ, w − u)U
‖w − u‖U

= lim inf
w→u

F(t, w, ξ)−F(t, u, ξ)− (ζ, w − u)U
‖w − u‖U

.

By convexity we have

Fλ,u(t, w, ξ)−Fλ,u(t, u, ξ) ≥ ∂uFλ,u(t, u, ξ;w − u) = ∂uF(t, u, ξ;w − u).

Hence,

lim inf
w→u

Fλ,u(t, w, ξ)−Fλ,u(t, u, ξ)− (ζ, w − u)U
‖w − u‖U

≥ lim inf
w→u

∂uF(t, u, ξ;w − u)− (ζ, w − u)U
‖w − u‖U

.

Let us consider a sequence wk such that

lim inf
w→u

∂uF(t, u, ξ;w − u)− (ζ, w − u)U
‖w − u‖U

= lim
k→∞

∂uF(t, u, ξ;wk − u)− (ζ, wk − u)U
‖wk − u‖U

= lim
k→∞

∂uF(t, u, ξ;φk)− (ζ, φk)U ,

where φk = (wk−u)/‖wk−u‖U . We extract a further subsequence, non relabelled, such that φk converge
weakly to φ in U and (by compactness of the trace) strongly in L2(K). Then, being ∂uF(t, u, ξ;φ) =
dE(u)[φ]− (f(t), φ)U + ∂uΨ(u, ξ;φ), by Lemma 2.3 and Lemma 2.5 we have ∂uΨ(u, ξ;φk)→ ∂uΨ(u, ξ;φ)
and then if ζ is a subderivative we have

lim
k→∞

∂uF(t, u, ξ;φk)− (ζ, φk)U = ∂uF(t, u, ξ;φ)− (ζ, φ)U ≥ 0,

which concludes the proof.

3 Main results

3.1 Weak solutions and energy identity

We introduce the concept of weak solution we are going to investigate in what follows:

Definition 3.1 Given (u0, ξ0) ∈ U×Ξ, with |Ju0K| ≤ ξ0, and v0 ∈ L2(Ω), a couple (u, ξ) ∈W 1,2(0, T ;U ×
Ξ) with ü ∈ L2(0, T ;U∗) is a weak solution with initial conditions u0 and v0 if

ρü(t) + ∂uF(t, u(t), ξ(t)) + ∂vR(u̇) 3 0, for a.e. t ∈ (0, T ),

ξ̇(t)(ξ(t)− |Ju(t)K|) = 0 and |Ju(t)K| ≤ ξ(t), for a.e. t ∈ (0, T ),

u(0) = u0, u̇(0) = v0.

(26)

By Lemma 2.6 the above differential inclusion in variational form reads

(ρü(t), φ)U + ∂uF(t, u(t), ξ(t);φ) + 〈η∇u̇(t),∇φ〉 ≥ 0, for every φ ∈ U .

In the next sections we will prove the following result.
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Theorem 3.2 Assume that hypotheses (H1) and (H2) hold and that f ∈ W 1,2(0, T ;U∗). Let (u0, ξ0) ∈
U × Ξ, with |Ju0K| ≤ ξ0, and v0 ∈ L2(Ω). Then, there exists a weak solution (u, ξ), in the sense of
Definition 3.1, which satisfies the energy identity

E(u(t∗)) + Ψ(u(t∗), ξ(t∗)) +K(u̇(t∗)) = E(u0) + Ψ(u0, ξ0) +K(v0)

+

∫ t∗

0

Pext(t, u̇(t)) dt−
∫ t∗

0

D(u̇(t)) dt, (27)

for every t∗ ∈ [0, T ].

Splitting the stored and dissipated parts of Ψ, as in (14), the above energy identity can be written also
in the following way:

E(u(t∗)) + Ψs(u(t∗), ξ(t∗)) +K(u̇(t∗)) = E(u0) + Ψs(u0, ξ0) +K(v0) +

∫ t∗

0

Pext(t, u̇(t)) dt

−
∫ t∗

0

D(u̇(t)) dt−
∫ t∗

0

∂ξΨd(ξ(t); ξ̇(t)) dt, (28)

where ∂ξΨd(ξ(t); ξ̇(t)) is the dissipation on the interface.

3.2 Solutions with higher time regularity

Under stronger assumptions on the data, we are able to refine Theorem 3.2 as follows.

Theorem 3.3 Besides the hypotheses of Theorem 3.2, assume that (H3) and (H4) hold and that f ∈
W 1,2(0, T ;L2(Ω)). Moreover, assume that v0 ∈ U with Jv0K = 0 and that there exists w0 ∈ L2(Ω) such
that

ρw0 + ∂uF(t, u0(t), ξ0(t)) + ∂vR(v0) 3 0. (29)

Then, there exists a weak solution (u, ξ), in the sense of Definition 3.1, satisfying the energy balance (27)
and the further regularity

u ∈W 2,∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;U). (30)

Remark 3.4 The function w0 appearing in Theorem 3.3 plays the role of ü0, thus (29) means that the
initial acceleration belongs to L2. Again by Lemma 2.6, condition (29) is equivalent to

〈ρw0, φ〉+ ∂uF(t, u0, ξ0;φ) + 〈η∇v0(t),∇φ〉 ≥ 0, for every φ ∈ U . (31)

This is readily satisfied if

u0 ∈ argmin {F(0, u, ξ0) + 〈η∇v0,∇u〉+ 〈ρw0, u〉, u ∈ U}. (32)

Notice that such u0 always exists and is also unique thanks to (17). In particular (29) and (32) turn out
to be equivalent.

3.3 Strong solutions

In this section we consider Ω± to be (curvilinear) polygonal domains, in the sense of [13]. In this setting,
under the assumptions of Theorem 3.3 the weak solutions given by Theorem 3.3 satisfy also the system
of PDEs (33).

Theorem 3.5 Besides the hypotheses of Theorem 3.3 assume that Ω± are (curvilinear) polygonal do-
mains. Let (u, ξ) be a solution provided by Theorem 3.3 and denote by σ(t) = µ∇u(t) + η∇u̇(t) the
visco-elastic stress. Then, the differential inclusion in U∗

ρü(t) + ∂uF(t, u(t), ξ(t)) + ∂vR(u̇) 3 0,

is equivalent to the following system of partial differential equations:
ρü(t)− div σ(t) = f(t) in Ω,

u(t) = u̇(t) = 0 in ∂DΩ±,

σ(t)ν = 0 in ∂NΩ±,

σ+(t)ν = σ−(t)ν ∈ ∂wψ
(
Ju(t)K, ξ(t)

)
in K.

(33)

In particular σ±(t)ν ∈ L∞(K) and σ+(t)ν = ∂wψ(Ju(t)K, ξ(t)) if ξ(t) > 0 while |σ+(t)ν| ≤ ψ̂′(0) if
ξ(t) = 0.
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Remark 3.6 Let us spend some words on the hypothesis (29). In this more regular setting where Ω±

are (curvilinear) polygonal domains, we might write condition (29) in a more treatable way.
Precisely, thanks to the regularity of the domain, we can now integrate by parts equation (29) (or (31))

and obtain that this condition is equivalent to the system
ρw0 − div σ0 = f(0) in Ω,

u0 = v0 = 0 in ∂DΩ±,

σ0ν = 0 in ∂NΩ±,

σ+
0 ν = σ−0 ν ∈ ∂wψ

(
Ju0K, ξ0

)
in K,

(34)

where we have set σ0 = µ∇u0 + η∇v0. The first condition also reads

ρw0 = µ∆u0 + η∆v0 + f(0). (35)

Since f(0) ∈ L2(Ω) the existence of w0 satisfying (35) is achieved as soon as

µ∆u0 + η∆v0 ∈ L2(Ω).

This is a natural requirement, since this condition is always satisfied by (u, v) during the evolution. The
first equation in (34) can then be seen as a compatibility condition for the initial stress σ0, since it
just requires that −divσ0 ∈ L2(Ω). Also the other conditions in (34) are natural and can be viewed as
compatibility conditions for σ0.

The additional hypothesis Jv0K = 0 has the following interpretation. At the points where ξ0 = 0 we
necessarily have Ju̇(0)K = 0, indeed, by definition of ξ, we would have ξ(t) = 0 and |Ju(t)K| = 0 for t < 0.
Therefore Jv0K = 0 is a natural condition on the set {ξ0 = 0} ⊂ K. To simplify the arguments we assume
that Jv0K = 0 on the whole K. This condition is possibly generalizable but we prefer not to weaken it
for technical reasons, that will be evident in the proof of Proposition 4.6 below, and in order to provide a
more clear exposition.

In view of the previous remark, we can state the equivalent of Theorem 3.3.

Theorem 3.7 Let us assume the hypotheses of Theorem 3.1, and suppose Ω± are (curvilinear) polygonal
domains. Assume also that (H3) and (H4) hold and f ∈ W 1,2(0, T ;L2(Ω)). If u0 ∈ U , v0 ∈ U , ξ0 ∈ Ξ
satisfy 

σ0ν = 0 in ∂NΩ±,

σ+
0 ν = σ−0 ν ∈ ∂wψ

(
Ju0K, ξ0

)
in K,

Jv0K = 0 in K,

|Ju0K| ≤ ξ0 in K,

(36)

and
divσ0 ∈ L2(Ω),

then the same conclusions of Theorems 3.3 and 3.5 hold.

4 A preliminary regularized evolution

For sake of simplicity we will assume that ρ, µ and η are constant, i.e., ρ+ = ρ− etc. We also fix a positive
number ξ̄.

4.1 Time discrete evolution

Assume that the cohesive potential Ψ enjoys conditions (H1) and (H2). Moreover, assume that ξ0 ≥ ξ̄ > 0
a.e. on K; note that under the latter assumption the energy functional turns out to be differentiable
since the cohesive potential ψ(JuK, ξ) is singular only when JuK = ξ = 0. Thus, for ξ ≥ ξ̄, the functional
u 7→ Ψ(u, ξ) is Fréchet differentiable and

∂uΨ(u, ξ)[φ] =

∫
K

∂wψ(JuK, ξ)JφK dH1 =

∫
K

cξJuKJφK dH1, cξ = ψ̂′(ξ)/ξ, (37)

if |JuK| ≤ ξ, see (22).
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Let τn = T/n and let tn,k = kτn for k = −1, . . . , n. Since we assume f ∈ W 1,2(0, T ;U∗), for
k = 0, . . . , n we set, by continuity,

fn,k = f(tn,k).

We denote by f ]n the piecewise-constant, left-continuous interpolant of fn,k, i.e.

f ]n(t) := fn,k for t ∈ (tn,k−1, tn,k].

We also introduce the piecewise-affine interpolant of fn,k, namely

fn(t) := fn,k−1 + (t− tn,k−1)τ−1
n (fn,k − fn,k−1), for t ∈ [tn,k−1, tn,k). (38)

Accordingly define

Fn(t, u, ξ) = 1
2

∫
Ω

µ|∇u|2 dx− (f ]n(t), u)U +

∫
K

ψ(JuK, ξ) dH1.

We will define, by induction, two finite sequences un,k and ξn,k, for k = −1, ..., n. For k = −1, we set
un,−1 = u0 − τnv0. For k = 0, we set un,0 = u0 and ξn,0 = ξ0. For later convenience, we also set
ξn,−1 = ξn,0. For k ≥ 1, given un,k−1, un,k−2 and ξn,k−1 we define{

un,k ∈ argmin {Jn,k(u) : u ∈ U},

ξn,k = max{ξn,k−1, |Jun,kK|},
(39)

where

Jn,k(u) = 1
2τ
−2
n ρ‖u− 2un,k−1 + un,k−2‖2L2 + 1

2τ
−1
n η‖∇(u− un,k−1)‖2L2 + Fn(tn,k, u, ξn,k−1). (40)

Proposition 4.1 For τn � 1 there exists a unique minimizer un,k of Jn,k.

Proof. It is enough to note that Jn,k is coercive and strictly convex in U because F(t, ·, ξ) is coercive.
Let us check that Jn,k is strictly convex. Remember that u 7→ Ψ(u, ξ) − λ‖JuK‖2L2 is convex for some
λ < 0. Thus it is enough to check that for τn � 1 the functional u 7→ τ−1

n ‖∇(u− un,k−1)‖2L2 + λ ‖JuK‖2L2

is convex (recall λ < 0). To this aim we write∫
K

JuK2 dH1 =

∫
K

Ju− un,k−1K2 − Jun,k−1K2 + 2 Jun,k−1K JuK dH1.

It is enough to see that the functional z 7→ τ−1
n ‖∇z‖2L2 + λ ‖JzK‖2L2 is strictly convex in U ; indeed it is

quadratic and non-negative (by continuity of the trace) for τ � 1.

Remark 4.2 Following [22, Lemma 5.1] it is possible to replace (a posteriori) ξn,k−1 with ξn,k in the

incremental functional Jn,k, i.e. un,k ∈ argmin {J ]n,k(u) : u ∈ U} where

J ]n,k(u) = 1
2τ
−2
n ρ‖u− 2un,k−1 + un,k−2‖2L2 + 1

2τ
−1
n η‖∇(u− un,k−1)‖2L2 + Fn(tn,k, u, ξn,k)

is obtained from (40) replacing ξn,k−1 with ξn,k. This is just a consequence of the definition of the
cohesive potential, indeed Ψ(un,k, ξn,k−1) = Ψ(un,k, ξ) = Ψ(un,k, ξn,k) for every ξn,k−1 ≤ ξ ≤ ξn,k and
Ψ(un,k, ξ) ≥ Ψ(un,k, ξn,k) for every ξ ≥ ξn,k. Hence, in analogy with delamination and adhesive contact
models, we can recast the update ξn,k = max{ξn,k−1, |Jun,kK|} as a minimization problem, i.e.

ξn,k ∈ argmin {Ψ(un,k, ξ) : ξ ≥ ξn,k−1} = argmin {Fn(tn,k, un,k, ξ) : ξ ≥ ξn,k−1}.

However, in our setting this minimization problem is not well posed, since there are infinitely many mini-
mizers, given by any ξn,k−1 ≤ ξ ≤ ξn,k. Among these choices, the one which naturally ensures the Karush-
Kuhn-Tucker condition (in the discrete setting, see (43), and in the limit) is ξn,k = max{ξn,k−1, |Jun,kK|},
which indeed appears in (39).

Remark 4.3 The cohesive model we consider is related to adhesive models, see e.g. [25, 26, 27, 6, 28, 29]
where, roughly speaking, the interface energy is of the form∫

K

vJuK2 dH1,
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for 0 ≤ v ≤ 1, while the dissipation on the interface is usually of the form

α

∫
K

|v̇| dH1,

for some α > 0. Here v plays, in some sense, the role of our internal variable ξ, however, note that v is
monotone non-increasing in time. In this setting the incremental problem for v reads

vk ∈ argmin

{∫
K

v JukK2 dH1 + α

∫
K

(vk−1 − v) dH1 : v ≤ vk−1

}
.

By the monotonicity constraint and by convexity with respect to v, we have vk < vk−1 if and only if
JukK2 > α. Hence the interface behaves elastically below the threshold α1/2. Therefore the mechanical
behaviour is quite different from ours. To make it more clear, note that our energy can be written in the
form

1
2

∫
K

cξJuK2 dH1 +

∫
K

ψd(ξ) dH1,

where cξ → +∞ for ξ → 0+ and in general ψd is non-linear. From the mathematical point of view the
singularity of cξ and the non-linearity of ψd are major sources of technical difficulties.

.

4.2 Equilibrium and compactness

Define vn,k = (un,k − un,k−1)/τn for k = 1, .., n, and also ḟn,k = (fn,k − fn,k−1)/τn. For k ≥ 0 we write
the first term of Jn,k(un,k) as

1
2τ
−2
n ‖un,k − 2un,k−1 + un,k−2‖2L2 = 1

2

∥∥∥∥un,k − un,k−1

τn
− un,k−1 − un,k−2

τn

∥∥∥∥2

L2

= 1
2‖vn,k − vn,k−1‖2L2 .

Since Jn,k is Fréchet differentiable, by minimality of un,k in (39) the following Euler-Lagrange equation
is easily obtained:

τ−1
n ρ 〈vn,k − vn,k−1, φ〉+ η〈∇vn,k,∇φ〉+ µ〈∇un,k,∇φ〉 − (fn,k, φ)U + ∂uΨ(un,k, ξn,k−1)[φ] = 0, (41)

for all φ ∈ U and k = 1, ..., n. Moreover, by Remark 4.2 we have also

τ−1
n ρ 〈vn,k − vn,k−1, φ〉+ η〈∇vn,k,∇φ〉+ µ〈∇un,k,∇φ〉 − (fn,k, φ)U + ∂uΨ(un,k, ξn,k)[φ] = 0, (42)

for every φ ∈ U , and k = 1, ..., n. Finally, for every k = 1, ..., n we have

|Jun,kK| ≤ ξn,k, (ξn,k − ξn,k−1)(|Jun,kK| − ξn,k) = 0, |ξn,k − ξn,k−1| ≤ |Jun,kK− Jun,k−1K|, (43)

H1-a.e. on K.
We introduce un and vn as the piece-wise affine interpolant of un,k and vn,k, respectively, in the points

tn,k, for k ≥ 0. Namely

un(t) := un,k−1 + (t− tn,k−1)τ−1
n (un,k − un,k−1), for t ∈ [tn,k−1, tn,k),

vn(t) := vn,k−1 + (t− tn,k−1)τ−1
n (vn,k − vn,k−1), for t ∈ [tn,k−1, tn,k),

ξn(t) := ξn,k−1 + (t− tn,k−1)τ−1
n (ξn,k − ξn,k−1), for t ∈ [tn,k−1, tn,k).

Clearly, u̇n,k(t) = vn,k for t ∈ (tn,k, tn,k+1). Let us also introduce the piece-wise constant left-continuous
interpolant u]n, v]n and ξ]n, i.e.

u]n(t) := un,k v]n(t) := vn,k ξ]n(t) := ξn,k for t ∈ (tn,k−1, tn,k]. (44)

We are ready to prove the first a-priori estimates on un and ξn.

Proposition 4.4 Let ξ̄ > 0 and (un, ξn) be given by (39). Under the assumptions of Theorem 3.2 the
sequence (un, ξn) is bounded in W 1,2(0, T ;U×Ξ) while the sequence vn is bounded in W 1,2(0, T ;U∗). More
precisely, there is a constant C > 0, independent of τn and ξ̄, such that

‖un‖W 1,2(0,T ;U) + ‖ξn‖W 1,2(0,T ;Ξ) + ‖vn‖W 1,2(0,T ;U∗) ≤ C. (45)

Moreover for any 1 ≤ p <∞ there is a constant C > 0, independent of τn and ξ̄, such that

‖un‖W 1,∞(0,T ;L2(Ω)) + ‖ξn‖W 1,2(0,T ;Lp(K)) + ‖vn‖L∞(0,T ;L2(Ω)) ≤ C. (46)
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Proof. We denote by C a generic positive constant, independent of n and ξ̄, which might change from
line to line. By (42) with φ = un,k − un,k−1 = τnvn,k we get, for k ≥ 1,

ρ〈vn,k − vn,k−1, vn,k〉+ τnη‖∇vn,k‖2L2 + µ〈∇un,k,∇(un,k − un,k−1)〉 =

= τn (fn,k, vn,k)U − τn ∂uΨ(un,k, ξn,k)[vn,k].

Recalling (24) we have |∂wψ(JuK, ξ)[JφK]| ≤ ψ̂′(0) |JφK|, hence by continuity of the traces we get

|∂uΨ(un,k, ξn,k)[vn,k]| ≤
∫
K

|∂wψ(Jun,kK, ξn,k)[Jvn,kK]| dH1 ≤ ψ̂′(0) ‖Jvn,kK‖L1 ≤ C‖∇vn,k‖L2 . (47)

Hence

ρ〈vn,k − vn,k−1, vn,k〉+ τnη‖∇vn,k‖2L2 + µ〈∇un,k,∇(un,k − un,k−1)〉 − τnC‖∇vn,k‖L2 ≤ τn (fn,k, vn,k)U .

Using the scalar inequality 1
2ηd

2−Cη ≤ ηd2−Cd for the second and forth term and the identity 〈a−b, a〉 =
1
2‖a‖

2
L2 − 1

2‖b‖
2
L2 + 1

2‖a− b‖
2
L2 for the first and third term in the left-hand side, we obtain

ρ
(

1
2‖vn,k‖

2
L2 − 1

2‖vn,k−1‖2L2 + 1
2‖vn,k − vn,k−1‖2L2

)
+ 1

2τnη‖∇vn,k‖
2
L2 − τnCη+

+ µ
(

1
2‖∇un,k‖

2
L2 − 1

2‖∇un,k−1‖2L2 + 1
2‖∇(un,k − un,k−1)‖2L2

)
≤ τn (fn,k, vn,k)U .

Let us fix m ∈ {1, ..., n}. Taking the sum of the previous estimate for k = 1, ...,m we get, after neglecting
and re-arranging few terms,

1
2ρ‖vn,m‖

2
L2 + 1

2η

∫ mτn

0

‖∇v]n‖2L2 dt+ 1
2µ‖∇un,m‖

2
L2 ≤

≤ 1
2ρ‖vn,0‖

2
L2 + 1

2µ‖∇un,0‖
2
L2 +

∫ mτn

0

(f ]n, v
]
n)U dt+ CηT. (48)

Since f ∈W 1,2(0, T ;U∗), we write∫ mτn

0

(f ]n, v
]
n)U dt =

m∑
k=1

(fn,k, un,k − un,k−1)U = −
m−1∑
k=0

(fn,k+1− fn,k, un,k)U − (fn,0, u0)U + (fn,m, un,m)U ,

which is estimated from above by

‖ḟ‖L1(U∗)‖u]n‖L∞(0,T ;U) + ‖fn,0‖U∗‖u0‖U + ‖fn,m‖U∗‖un,m‖U ≤ C‖u]n‖L∞(0,T ;U). (49)

Then, going back to (48), we obtain for every m = 1, ..., n

‖un,m‖2U = ‖∇un,m‖2L2 ≤ C(1 + ‖u]n‖L∞(0,T ;U)),

and thus u]n is bounded in L∞(0, T ;U). Since the right-hand side of (48) is bounded it follows that also v]n
is bounded in L∞(0, T ;L2(Ω)). Thus (for m = n) we obtain that v]n is bounded in L2(0, T ;U). Recalling
that u̇n = v]n we conclude that un is bounded in W 1,∞(0, T ;L2(Ω)) and in W 1,2(0, T ;U).

Let us go back to (42) and write it as

η〈∇vn,k,∇φ〉+ µ〈∇un,k,∇φ〉 − (fn,k, φ) + ∂uΨ(un,k, ξn,k)[φ] = 〈τ−1
n ρ(vn,k − vn,k−1),−φ〉.

As (vn,k − vn,k−1) ∈ L2(Ω) the duality between U and U∗ is represented by the L2 scalar product, thus
taking the supremum with respect to ‖φ‖U ≤ 1 and using again (24) we get

ρ‖τ−1
n (vn,k − vn,k−1)‖U∗ ≤ η‖∇vn,k‖L2 + µ‖∇un,k‖L2 + C‖fn,k‖U∗ + C.

Hence, by the boundedness of un and fn, we get∫ T

0

‖v̇n‖2U∗ dt ≤ C ′
∫ T

0

‖∇u̇n‖2L2 + ‖∇un‖2L2 + ‖fn‖2U∗ + 1 dt < C̄,

and thus v̇n is bounded in L2(0, T ;U∗).
It remains to prove the compactness of the internal variable ξn. By (43) we have |ξn,k − ξn,k−1| ≤

|Jun,kK− Jun,k−1K| a.e. in K. Then, by the embedding of H1/2(K) in Lp(K) (for any 1 ≤ p <∞) and the
continuity of traces we have

‖ξn,k − ξn,k−1‖Lp ≤ ‖Jun,kK− Jun,k−1K‖Lp ≤ C‖un,k − un,k−1‖U .

It follows that ξn is bounded in W 1,2(0, T ;Lp(K)).

Remark 4.5 By (48), the initial data enter into the estimates (45) and (46) only by means of the L2-
norms of v0 e ∇u0.
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4.3 Improved compactness

We are now ready to refine the estimates provided by the last Proposition, in view of the proof of Theorem
3.3. To this aim we introduce the notation wn,k := (vn,k − vn,k−1)/τn = v̇n,k.

Proposition 4.6 Under the assumptions of Theorem 3.3 there exists C > 0 (independent of ξ̄ and n)
and τ̄ > 0 (depending on ξ̄) such that for τn < τ̄ we have

‖vn‖L∞(0,T ;U) + ‖v̇n‖L∞(0,T ;L2(Ω)) ≤ C. (50)

Proof. Step I. Choosing φ = vn,k − vn,k−1 = τnwn,k the Euler-Lagrange equation (42) provides, for
every k = 1, ..., n,

τnρ 〈wn,k, wn,k〉+ η〈∇vn,k,∇vn,k −∇vn,k−1〉+ µ〈∇un,k,∇vn,k −∇vn,k−1〉+
+ ∂uΨ(un,k, ξn,k)[vn,k − vn,k−1] = 〈fn,k, vn,k − vn,k−1〉,

and for every k = 2, ..., n

τnρ 〈wn,k−1, wn,k〉+ η〈∇vn,k−1,∇vn,k −∇vn,k−1〉+ µ〈∇un,k−1,∇vn,k −∇vn,k−1〉+
+ ∂uΨ(un,k−1, ξn,k−1)[vn,k − vn,k−1] = 〈fn,k−1, vn,k − vn,k−1〉.

We have un,−1 = u0 − τnv0 and we set vn,−1 = vn,0 − τnw0, where w0 is the function appearing in (29).
Then, for k = 1 the above identity reads

τnρ〈w0, wn,1〉+ η〈∇vn,0,∇vn,1 −∇vn,0〉+ µ〈∇un,0,∇vn,1 −∇vn,0〉
+ ∂uΨ(un,0, ξn,0)[vn,1 − vn,0] = 〈fn,0, vn,1 − vn,0〉,

which holds true thanks to hypothesis (29). Hence, taking the difference of the two identities above gives,
for every k = 1, ..., n,

τnρ 〈wn,k − wn,k−1, wn,k〉+ η‖∇vn,k −∇vn,k−1‖2L2(Ω) + τnµ〈∇vn,k,∇vn,k −∇vn,k−1〉+
+ ∂uΨ(un,k, ξn,k)[vn,k − vn,k−1]− ∂uΨ(un,k−1, ξn,k−1)[vn,k − vn,k−1]

= τn〈ḟn,k, vn,k − vn,k−1〉. (51)

In the sequel we will employ the visco-elastic term to control the interface integral (by Poincaré and trace
inequalities) writing

η‖∇vn,k −∇vn,k−1‖2L2(Ω) ≥
∫
K

cηJvn,k − vn,k−1K2 dH1. (52)

Now we argue a.e. on K in order to write the cohesive term in a more convenient way. Remember that
0 < ξ̄ ≤ ξn,k. Denote cn,k = cξn,k

= ψ̂′(ξn,k)/ξn,k, then by (37) we can write

∂uΨ(un,k, ξn,k)[vn,k − vn,k−1]− ∂uΨ(un,k−1, ξn,k−1)[vn,k − vn,k−1] =

=

∫
K

(cn,kJun,kK− cn,k−1Jun,k−1K) Jvn,k − vn,k−1K dH1.

In order to estimate the above integral it is useful to factor out a velocity term, writing

(cn,kJun,kK− cn,k−1Jun,k−1K) = αn,kJun,k − un,k−1K = τnαn,kJvn,kK,

where αn,k is defined in the following way: if Jun,kK = Jun,k−1K then αn,k = cn,k = cξn,k
; if Jun,kK 6=

Jun,k−1K then

αn,k =
cn,kJun,kK− cn,k−1Jun,k−1K

Jun,k − un,k−1K
.

In particular, for k = 0 we have αn,0 = cn,0 = cξn,0
, because Jv0K = 0 and thus Jun,0K = Jun,−1K. In this

way we can always write

∂uΨ(un,k, ξn,k)[vn,k − vn,k−1]− ∂uΨ(un,k−1, ξn,k−1)[vn,k − vn,k−1] =

=

∫
K

τnαn,kJvn,kKJvn,k − vn,k−1K dH1, (53)
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for every k = 1, ..., n. Let c̄ = cξ̄ > 0, β > 0 be the constant appearing in (12), and

m = max{k : ξn,k ≤ ξc}, ᾱn,k =

{
αn,k if k < m,

−β if k ≥ m.
(54)

We define τ̄ := cη/(β + c̄) and γ := (ψ̂′(0) + ξcβ)2/ξ2
c cη. We claim that for τn < τ̄ and for every index

k = 1, ..., n it holds, a.e. on K,

cηJvn,k − vn,k−1K2 + τnαn,kJvn,kKJvn,k − vn,k−1K ≥
≥ 1

2τnᾱn,k Jvn,kK2 − 1
2τnᾱn,k−1Jvn,k−1K2 − τ2

nγ Jvn,kK2. (55)

The proof of the above estimate is contained in the next step.

Step II. First, we prove that
− β ≤ αn,k ≤ c̄ = cξ̄. (56)

Note that cn,k ≤ cn,k−1 as ξn,k ≥ ξn,k−1 > 0 and ψ̂′(ξn,k) ≤ ψ̂′(ξn,k−1). In the case ξn,k = ξn,k−1 we
have cn,k = cn,k−1 = αn,k, hence −β < 0 ≤ cn,k ≤ cn,0 ≤ c̄ by the monotonicity of cn,k. In the case
ξn,k > ξn,k−1 we have |Jun,kK| = ξn,k > ξn,k−1 ≥ Jun,k−1K. Assume that Jun,kK = ξn,k > 0 (the case
Jun,kK = −ξn,k is similar), hence Jun,kK − Jun,k−1K > 0. The upper bound in (56) is easily achieved
because cn,kJun,kK ≤ cn,k−1Jun,kK, hence

αn,k =
cn,kJun,kK− cn,k−1Jun,k−1K

Jun,kK− Jun,k−1K
≤ cn,k−1 ≤ c̄.

Let us discuss the lower bound in (56). Suppose first ξn,k ≤ ξc. As Jun,kK = ξn,k we have cn,kJun,kK =

ψ̂′(ξn,k) while cn,k−1Jun,k−1K ≤ cn,k−1ξn,k−1 = ψ̂′(ξn,k−1). Moreover ψ̂′(ξn,k) − ψ̂′(ξn,k−1) ≤ 0 and
Jun,kK− Jun,k−1K ≥ ξn,k − ξn,k−1. Therefore by (12) we have

αn,k =
cn,kJun,kK− cn,k−1Jun,k−1K

Jun,kK− Jun,k−1K
≥ ψ̂′(ξn,k)− ψ̂′(ξn,k−1)

Jun,kK− Jun,k−1K
≥ ψ̂′(ξn,k)− ψ̂′(ξn,k−1)

ξn,k − ξn,k−1
≥ −β.

Suppose now ξn,k ≥ ξc and ξn,k−1 < ξc. We have Jun,kK = ξn,k ≥ ξc and Jun,k−1K ≤ ξn,k−1 and thus

Jun,kK− Jun,k−1K ≥ ξc − ξn,k−1. Note that ψ̂′(ξn,k) = ψ̂′(ξc) = 0. As in the previous case we write

αn,k =
cn,kJun,kK− cn,k−1Jun,k−1K

Jun,kK− Jun,k−1K
≥ ψ̂′(ξn,k)− ψ̂′(ξn,k−1)

Jun,kK− Jun,k−1K
≥ ψ̂′(ξc)− ψ̂′(ξn,k−1)

ξc − ξn,k−1
≥ −β.

If ξn,k−1 ≥ ξc then trivially αn,k = 0. Hence (56) is achieved.

Next, we prove that for τn < τ̄ and for k ≤ m (see (54)) it holds

cηJvn,k − vn,k−1K2 + τnαn,kJvn,kKJvn,k − vn,k−1K ≥ 1
2τnαn,k Jvn,kK2 − 1

2τnαn,k−1 Jvn,k−1K2. (57)

Let us start writing

τnαn,kJvn,kKJvn,k − vn,k−1K = 1
2τnαn,k Jvn,kK2 − 1

2τnαn,k Jvn,k−1K2 + 1
2τnαn,k Jvn,k − vn,k−1K2

≥ 1
2τnαn,k Jvn,kK2 − 1

2τnαn,k−1 Jvn,k−1K2 + 1
2τn(αn,k−1 − αn,k)Jvn,k−1K2+

− 1
2τnβ Jvn,k − vn,k−1K2.

For τn < cη/β, the last term is clearly controlled by 1
2cηJvn,k − vn,k−1K2. We will prove that for τn <

cη/(β + c̄) we have

1
2cηJvn,k − vn,k−1K2 + 1

2τn(αn,k−1 − αn,k)Jvn,k−1K2 ≥ 0, (58)

which implies (57). It is not restrictive to assume that Jvn,k−1K 6= 0, otherwise there is nothing to prove.
By (56) we have αn,k−1 − αn,k ≥ −β − c̄. We distinguish two cases:

Jvn,kK Jvn,k−1K ≤ 0 and Jvn,kK Jvn,k−1K > 0.

In the first case, for τn < cη/(β + c̄) we have

cηJvn,k − vn,k−1K2 + τn(αn,k−1 − αn,k)Jvn,k−1K2 ≥ cη Jvn,k−1K2 − τn(β + c̄)Jvn,k−1K2 ≥ 0.
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The proof of the second case is more delicate. We will show that (αn,k−1 − αn,k) ≥ 0, which implies (58)
and concludes the proof of (57). Assume that Jvn,k−1K > 0, so that Jvn,kK > 0 (the case Jvn,k−1K < 0 is
treated similarly); under this assumption

−ξn,k−2 ≤ Jun,k−2K < Jun,k−1K < Jun,kK ≤ ξn,k ≤ ξc.

Note that strict inequalities hold because speeds are strictly positive, while the latter inequality holds
because k ≤ m (see (54)). We need to further distinguish four cases.

1. If ξn,k−2 = ξn,k−1 = ξn,k then we have trivially cn,k−2 = cn,k−1 = cn,k and thus αn,k−1 = αn,k.

2. If ξn,k−2 < ξn,k−1 < ξn,k then Jun,k−1K = ξn,k−1 and Jun,kK = ξn,k, whereas Jun,k−2K ≤ ξn,k−2.

Then cn,k−1Jun,k−1K = ψ̂′(ξn,k−1) and cn,k−2Jun,k−2K ≤ ψ̂′(ξn,k−2), thus

αn,k−1 =
cn,k−1Jun,k−1K− cn,k−2Jun,k−2K

Jun,k−1 − un,k−2K
≥ ψ̂′(ξn,k−1)− ψ̂′(ξn,k−2)

ξn,k−1 − Jun,k−2K

≥ ψ̂′(ξn,k−1)− ψ̂′(ξn,k−2)

ξn,k−1 − ξn,k−2
,

while

αn,k =
ψ̂′(ξn,k)− ψ̂′(ξn,k−1)

ξn,k − ξn,k−1
,

and the inequality αn,k−1 − αn,k ≥ 0 follows by the concavity of ψ̂′ on [0, ξc].

3. If ξn,k−2 = ξn,k−1 < ξn,k then −ξn,k−1 ≤ Jun,k−2K < Jun,k−1K ≤ ξn,k−1 while Jun,kK = ξn,k. Then
cn,k−1 = cn,k−2 and we can write

αn,k−1 =
cn,k−1Jun,k−1K− cn,k−2Jun,k−2K

Jun,k−1 − un,k−2K
= cn,k−1.

Since Jun,kK = ξn,k > 0 by the monotonicity of cn,k we get

αn,k =
cn,kJun,kK− cn,k−1Jun,k−1K

Jun,k − un,k−1K
≤ cn,k−1Jun,kK− cn,k−1Jun,k−1K

Jun,k − un,k−1K
= cn,k−1.

We conclude αn,k−1 ≥ αn,k.

4. The case ξn,k−2 < ξn,k−1 = ξn,k actually does not occur because Jun,kK ≤ ξn,k = ξn,k−1 = Jun,k−1K
and thus Jvn,kK ≤ 0.

The proof of (58) is achieved, and (57) follows.
Let us now analyse the case k ≥ m+ 1. We will prove that

cηJvn,k − vn,k−1K2 + τnαn,kJvn,kKJvn,k − vn,k−1K ≥− 1
2τnβ Jvn,kK2 + 1

2τnβ Jvn,k−1K2 − τ2
nγ Jvn,kK2. (59)

Before proceeding note that cn,kJun,kK = 0 for every k > m. Note also that for k = m+1 and k = m+2
estimate (57) could fail, since it may happen that αn,k = 0 and αn,k−1 < 0 (this is related to the loss of

concavity of ψ̂′ in ξc). On the contrary, for k > m+ 2 we have αn,k−1 = αn,k = 0.

We first show that for k > m we have αn,k ≤ ψ̂′(0)/ξc. Indeed, assume that Jun,kK > ξc (the case
Jun,kK < −ξc is treated in a similar way) and note that cn,kJun,kK = 0. If Jun,k−1K ≥ ξc then trivially
cn,k−1Jun,k−1K = 0 and αn,k = 0. If 0 ≤ Jun,k−1K ≤ ξc then cn,k−1Jun,k−1K ≥ 0 and thus

αn,k =
cn,kJun,kK− cn,k−1Jun,k−1K

Jun,k − un,k−1K
≤ 0

(remember that Jvn,kK > 0). If Jun,k−1K ≤ 0 then cn,k−1Jun,k−1K ≤ 0 and −cn,k−1Jun,k−1K ≤ ψ̂′(ξn,k−1) ≤
ψ̂′(0); since in this case Jun,k − un,k−1K ≥ ξc we conclude that

αn,k =
cn,kJun,kK− cn,k−1Jun,k−1K

Jun,k − un,k−1K
≤ ψ̂′(0)

ξc
. (60)
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We now turn back to (59) and estimate separately the terms

1
2cηJvn,k − vn,k−1K2 + τn(αn,k + β)Jvn,kKJvn,k − vn,k−1K,

1
2cηJvn,k − vn,k−1K2 − τnβJvn,kKJvn,k − vn,k−1K.

For the first we use the algebraic inequality 1
2cηs

2 + bs ≥ 1
4cηs

2 − c, with c = b2/cη, which provides

1
2cηJvn,k − vn,k−1K2 + τn(αn,k + β)Jvn,kKJvn,k − vn,k−1K ≥ 1

4cηJvn,k − vn,k−1K2 − τ2
nγJvn,kK

2,

since by (60)

(αn,k + β)2

cη
≤ (ψ̂(0) + ξcβ)2

ξ2
c cη

= γ.

For the second term, we write instead

−τnβJvn,kKJvn,k − vn,k−1K = − 1
2τnβ Jvn,kK2 + 1

2τnβ Jvn,k−1K2 − 1
2τnβ Jvn,k − vn,k−1K2.

Once again the last term is balanced by 1
2cηJvn,k − vn,k−1K2 for τn < cη/β. In conclusion (59) follows.

We now conclude the proof of the claim (55). Recalling (54), inequality (57) implies that, for k < m,
we have

cηJvn,k − vn,k−1K2 + τnαn,kJvn,kKJvn,k − vn,k−1K ≥
≥ 1

2τnᾱn,k Jvn,kK2 − 1
2τnᾱn,k−1Jvn,k−1K2 − τ2

nγ Jvn,kK2.

The same inequality holds for k ≥ m + 1, thanks to (59). It remains to consider the case k = m. Since
αn,m ≥ −β = ᾱn,m and αn,m−1 = ᾱn,m−1, by (57) we have

cηJvn,m − vn,m−1K2 + τnαn,mJvn,mKJvn,m − vn,m−1K ≥
≥ 1

2τnαn,m Jvn,mK2 − 1
2τnαn,m−1Jvn,m−1K2

≥ − 1
2τnβ Jvn,mK2 − 1

2τnαn,m−1Jvn,m−1K2 − τ2
nγ Jvn,mK2.

= 1
2τnᾱn,m Jvn,mK2 − 1

2τnᾱn,m−1Jvn,m−1K2 − τ2
nγ Jvn,mK2.

Step III. We now go back to (51) and estimate the other terms. For the inertial one we write

τnρ〈wn,k − wn,k−1, wn,k〉 = 1
2τnρ‖wn,k‖

2
L2(Ω) − 1

2τnρ‖wn,k−1‖2L2(Ω) + 1
2τnρ‖wn,k − wn,k−1‖2L2(Ω)

= 1
2τnρ‖v̇n,k‖

2
L2(Ω) − 1

2τnρ‖v̇n,k−1‖2L2(Ω) + 1
2τnρ‖v̇n,k − v̇n,k−1‖2L2(Ω), (61)

whereas

τnµ〈∇vn,k,∇vn,k −∇vn,k−1〉 = 1
2τnµ‖vn,k‖

2
U − 1

2τnµ‖vn,k−1‖2U + 1
2τnµ‖vn,k − vn,k−1‖2U . (62)

The power term reads

τn〈ḟn,k, vn,k − vn,k−1〉 = τ2
n〈ḟn,k, v̇n,k〉. (63)

For convenience, let us introduce the notation

[vn,k]K =

∫
K

ᾱn,k Jvn,kK2 dH1

(we recall that −β ≤ ᾱn,k ≤ c̄). By (52), (53), and (55) we can write

η‖∇vn,k −∇vn,k−1‖2L2(Ω) + ∂uΨ(un,k, ξn,k)[vn,k − vn,k−1]− ∂uΨ(un,k−1, ξn,k−1)[vn,k − vn,k−1]

≥ cη
∫
K

Jvn,k − vn,k−1K2 + (cn,kJun,kK− cn,k−1Jun,k−1K) Jvn,k − vn,k−1K dH1

≥ 1
2τn

∫
K

ᾱn,k Jvn,kK2 − ᾱn,k−1Jvn,k−1K2 dH1 − τ2
nγ

∫
K

Jvn,kK2 dH1

= 1
2τn[vn,k]K − 1

2τn[vn,k−1]K − τ2
nγ‖Jvn,kK‖2L2(K). (64)
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Recalling (16) and that −β ≤ ᾱn,k, we have

c‖Jvn,kK‖2L2(K) ≤ 1
2µ‖vn,k‖

2
U − β‖Jvn,kK‖2L2 ≤ µ‖vn,k‖2U + [vn,k]K .

Therefore, using (61-64), equation (51) (divided by τn) yields, for k = 1, . . . , n,

1
2

(
ρ‖v̇n,k‖2L2(Ω) + µ‖vn,k‖2H1 + [vn,k]K

)
− 1

2

(
ρ‖v̇n,k−1‖2L2(Ω) + µ‖vn,k−1‖2H1 + [vn,k−1]K

)
≤ τn(ḟn,k, v̇n,k)L2(Ω) + τnγ ‖Jvn,kK‖2L2(K)

≤ 1
2τn

1

ργ′
‖ḟn,k‖2L2 + τnγ

′ 1
2 (ρ‖v̇n,k‖2L2 + µ‖vn,k‖2H1 + [vn,k]K),

where γ′ = 2γ/c. Remember that vn,−1 = vn,0 − τnw0, hence v̇n,0 = w0 and Jvn,0K = 0; by Gronwall
inequality we conclude that there exists γ′′ > 0 such that for every 1 ≤ k ≤ n and for τn ≤ τ̄ = cη/(β+ c̄)
it holds

ρ‖v̇n,k‖2L2(Ω) + µ‖vn,k‖2H1 + [vn,k]K ≤ γ′′(ρ‖v̇n,0‖2L2(Ω) + µ‖vn,0‖2H1 + [vn,0]K) + γ′′‖f‖2W 1,2(0,T ;L2) ≤ C0.

Note that γ′′ depends only on γ = (ψ̂′(0) + ξcβ)2/ξ2
c cη, in particular it is independent of ξ̄. Note also that

the upper bound C0 is independent of ξ̄ since [vn,0]K = 0. Invoking again (16) the thesis follows.

Remark 4.7 As far as the initial data, the constant C appearing in (50) depends only on the L2-norms
of w0 e ∇v0.

4.4 Existence

In this section we pass to the limit as τn → 0, or equivalently as n → +∞, to obtain an evolution (u, ξ)
which solves the system (26) and which enjoys good compactness properties.

Theorem 4.8 Let ξ̄ > 0 and ξ0 ≥ ξ̄ a.e. on K.
Under the assumptions of Theorem 3.2 there exists an evolution (u, ξ) ∈ W 1,2(0, T ;U × Ξ) with u̇ ∈

W 1,2(0, T ;U∗) such that for a.e. t ∈ (0, T )
ρü(t) + ∂uF(t, u(t), ξ(t)) + ∂vR(u̇(t)) = 0, in U∗,

ξ̇(t)(ξ(t)− |Ju(t)K|) = 0, ξ̇(t) ≥ 0, and |Ju(t)K| ≤ ξ(t), a.e. in K,

u(0) = u0, u̇(0) = v0, ξ(0) = ξ0.

(65)

Moreover for any 1 ≤ p <∞ there exists a constant C > 0, independent of ξ̄, such that

‖u‖W 1,2(0,T ;U) + ‖ξ‖W 1,2(0,T ;Ξ) + ‖u‖W 2,2(0,T ;U∗) ≤ C, (66)

‖u‖W 1,∞(0,T ;L2(Ω)) + ‖ξ‖W 1,2(0,T ;Lp(K)) ≤ C. (67)

Under the stronger assumptions of Theorem 3.3 there exists also C > 0, independent of ξ̄, such that

‖u̇‖L∞(0,T ;U) + ‖ü‖L∞(0,T ;L2(Ω)) ≤ C. (68)

Proof. Step I. Let us prove (66)-(68). By Proposition 4.4 we know that (up to subsequences) (un, ξn) ⇀
(u, ξ) in W 1,2(0, T ;U ×Ξ) and vn ⇀ v in W 1,2(0, T ;U∗). It follows that un(tn) ⇀ u(t) in U if tn → t and
thus u]n(t) ⇀ u(t) in U , because u]n(t) = un(tn,kn+1) for t ∈ (tn,kn , tn,kn+1]. Since u̇n(t) = v]n(t), Lemma
A.1 and the embedding of U in U∗ yield

‖u̇n(t)− vn(t)‖U∗ = ‖v]n(t)− vn(t)‖U∗ ≤ Cτ1/2
n , u̇n ⇀ u̇ in L2(0, T,U∗).

Since vn ⇀ v in L2(0, T,U∗), it follows that u̇ = v in U∗. Then, inequality (66) follows from (45) by weak
lower semi-continuity of the norms. Upon extracting a further subsequence (non-relabelled) we get also
inequality (67) from (46) and inequality (68) from (50).

Being un(0) = u0, ξ(0) = ξ0, and vn(0) = v0, it is easy to check that the initial conditions in (65) are
satisfied.

Step II. Let us first check the Karush-Kuhn-Tucker conditions for ξ, partially adapting the proof of [22,
Theorem 5.8]. Since ξn ⇀ ξ in W 1,2(0, T ;L2(K)) we have ξn(t) ⇀ ξ(t) in L2(K) for every t ∈ [0, T ]. We
also have un(t) ⇀ u(t) in H1(Ω), thus by the compact embedding of the traces we get Jun(t)K → Ju(t)K
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in L2(K) for all t ∈ [0, T ]. Moreover, un is bounded in L∞(0, T ;H1(Ω)) and thus JunK is bounded
in L∞(0, T ;L2(K)). Thus, by dominated convergence, we obtain that JunK → JuK in L2(0, T ;L2(K)).
Moreover, since JunK is bounded in W 1,2(0, T ;L2(K)) invoking Lemma A.1 we have that Ju]nK → JuK in
L2(0, T ;L2(K)).

From (43) for a.e. t ∈ (0, T ) we have

ξ̇n(t) ≥ 0, |Ju]n(t)K| ≤ ξ]n(t), ξ̇n(t)(|Ju]n(t)K| − ξ]n(t)) = 0.

As ξn is monotone non-decreasing it turns out, by weak convergence, that ξ is monotone non-decreasing.
Since un and ξn are affine interpolant, from |Ju]n(t)K| ≤ ξ]n(t) we easily get |Jun(t)K| ≤ ξn(t). Hence, by
weak convergence, |Ju(t)K| ≤ ξ(t). As a consequence ξ̇(t)(|Ju(t)K| − ξ(t)) ≤ 0 for a.e. t ∈ (0, T ) and a.e. in
K; thus, to conclude the proof of the Karush-Kuhn-Tucker condition, it will be enough to show that∫ T

0

〈ξ̇(t), |Ju(t)K| − ξ(t)〉 dt ≥ 0. (69)

We aim to pass to the limit the identity∫ T

0

〈ξ̇n(t), |Ju]n(t)K|〉 dt =

∫ T

0

〈ξ̇n(t), ξ]n(t)〉 dt.

Since, Ju]nK→ JuK (strongly) in L2(0, T ;L2(K)) and ξ̇n ⇀ ξ̇ in L2(0, T ;L2(K)) we get∫ T

0

〈ξ̇n(t), |Ju]n(t)K|〉 dt→
∫ T

0

〈ξ̇(t), |Ju(t)K|〉 dt; (70)

in order to conclude (69), it suffices to prove that

lim inf
n→+∞

∫ T

0

〈ξ̇n(t), ξ]n(t)〉 dt ≥ lim inf
n→+∞

∫ T

0

〈ξ̇n(t), ξn(t)〉 dt ≥
∫ T

0

〈ξ̇(t), ξ(t)〉 dt,

where, in the first inequality, we have used the fact that ξ̇n ≥ 0 and ξ]n ≥ ξn. By Lions-Magenes lemma
(see e.g. [33, Lemma 1.2 Ch. III §1] ) we have∫ T

0

〈ξ̇n(t), ξn(t)〉 dt = 1
2‖ξn(T )‖2L2 − 1

2‖ξ0‖
2
L2 .

Since ξn(T ) ⇀ ξ(T ) in L2(K) we have

lim inf
n→+∞

∫ T

0

〈ξ̇n(t), ξn(t)〉 dt ≥ lim inf
n→+∞

1
2‖ξn(T )‖2L2 − 1

2‖ξ0‖
2
L2

≥ ‖ξ(T )‖2L2 − 1
2‖ξ0‖

2
L2 =

∫ T

0

〈ξ̇(t), ξ(t)〉 dt. (71)

The claim and the Karush-Kuhn-Tucker conditions are proved.

Step III. We prove that ξn → ξ strongly in L2(0, T ;L2(K)) (using the argument of [21, Lemma 4.14]):
since ξ̇ ξ = ξ̇ |JuK| and ξ̇n ξ

]
n = ξ̇n |Ju]nK| a.e. in (0, T ), using (70) and arguing as in (71) for every time

t ∈ (0, T ) we can write

1
2‖ξ(t)‖

2
L2 = 1

2‖ξ0‖
2
L2 +

∫ t

0

〈ξ̇(r), |Ju(r)K|〉 dr

= 1
2‖ξ0‖

2
L2 + lim

n→∞

∫ t

0

〈ξ̇n(r), |Ju]n(r)K|〉 dr

= 1
2‖ξ0‖

2
L2 + lim

n→∞

∫ t

0

〈ξ̇n(r), ξ]n(r)〉 dr

≥ 1
2‖ξ0‖

2
L2 + lim sup

n→∞

∫ t

0

〈ξ̇n(r), ξn(r)〉 dr ≥ lim sup
n→∞

1
2‖ξn(t)‖2L2 .

On the other hand, ξn(t) ⇀ ξ(t) in L2(K) for every t ∈ (0, T ), thus ‖ξ(t)‖2L2 ≤ lim infn→+∞ ‖ξn(t)‖2L2 . It
follows that ‖ξn(t)‖L2 → ‖ξ(t)‖L2 and thus ξn(t)→ ξ(t) in L2(K). We conclude by dominated convergence
because ξn is bounded in L∞(0, T ;L2(K)). It follows that ξ]n → ξ strongly in L2(0, T ;L2(K)).
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Step IV. From (42) for every 0 ≤ t1 < t2 < T we get∫ t2

t1

(ρv̇n(t), φ)U + 〈µ∇u]n(t) + η∇u̇n(t),∇φ〉 − (f ]n(t), φ)U + ∂uΨ(u]n(t), ξ]n(t))[φ] dt = 0, (72)

for every variation φ ∈ U . As v̇n ⇀ v̇ = ü in L2(0, T ;U∗) we have∫ t2

t1

(ρv̇n(t), φ)U dt→
∫ t2

t1

(ρv̇(t), φ)U dt =

∫ t2

t1

(ρü(t), φ)U dt .

Since u]n is bounded in L∞(0, T ;U) (cf. Proposition 4.4) and u]n(t) ⇀ u(t) in U , we infer∫ t2

t1

〈µ∇u]n(t),∇φ〉 dt→
∫ t2

t1

〈µ∇u(t),∇φ〉 dt .

Since un ⇀ u in W 1,2(0, T ;U) and f ]n → f in L2(0, T ;U∗) we get immediately that∫ t2

t1

〈η∇u̇n(t),∇φ〉 − (f ]n(t), φ)U dt→
∫ t2

t1

〈η∇u̇(t),∇φ〉 − (f(t), φ)U dt .

Let us see that

lim
n→+∞

∫ t2

t1

∂uΨ(u]n(t), ξ]n(t);φ) dt =

∫ t2

t1

∂uΨ(u(t), ξ(t);φ) dt. (73)

From the previous steps, we know that Ju]nK → u and ξ]n → ξ in L2(0, T ;L2(K)). Thus, we extract a
subsequence (non-relabelled) such that the convergence of Ju]nK and ξ]n holds pointwise H1-a.e. on K and
a.e. on (0, T ). Recalling that ξn ≥ ξ0 ≥ ξ̄ > 0, we infer that a.e. in K × [0, T ] it holds

∂uψ(Ju]nK, ξ]n; JφK) = ∂uψ(Ju]nK, ξ]n)JφK→ ∂uψ(JuK, ξ)JφK = ∂uψ(JuK, ξ; JφK), (74)

where we have used the continuity of ∂uψ away from (0, 0). Finally, by the fact that JunK ≤ ξn, we also
get the bound

|∂uψ(JunK, ξn)| ≤ ψ̃′(ξn) ≤ ψ̃′(0),

so that (73) follows by dominated convergence.
In conclusion, taking the limit in (72) we get∫ t2

t1

(ρü(t), φ)U + 〈µ∇u(t) + η∇u̇(t),∇φ〉 − (f(t), φ)U + ∂uΨ(u(t), ξ(t);φ) dt = 0,

and by arbitrariness of t1 and t2 we obtain the equilibrium equation.

5 Proofs of the main results

We fix a small parameter ξ̄ε > 0 with ξ̄ε → 0+ for ε→ 0+. We truncate (from below) the initial condition
ξ0 with ξ̄ε in order to gain regularity on the energy and then on the solution uε. In a second step we will
pass to the limit as ε→ 0+ to obtain a solution to the original Cauchy problem.

Invoking Theorem 4.8 we get the following result.

Corollary 5.1 Assume (H1), (H2), let (u0, ξ0) ∈ U × Ξ with |Ju0K| ≤ ξ0, let v0 ∈ L2(Ω), and let
f ∈ W 1,2(0, T ;U∗). Then for every ε > 0 there exists an evolution (uε, ξε) ∈ W 1,2(0, T ;U × Ξ) with
u̇ε ∈W 1,2(0, T ;U∗) such that for a.e. t ∈ (0, T )

ρüε(t) + ∂uF(t, uε(t), ξε(t)) + ∂vR(u̇ε(t)) = 0, in U∗,

ξ̇ε(t)(ξε(t)− |Juε(t)K|) = 0, ξ̇ε(t) ≥ 0, and |Juε(t)K| ≤ ξε(t), a.e. in K,

uε(0) = u0, u̇
ε(0) = v0, ξ

ε(0) = ξ̂ε0 = max{ξ̄ε, ξ0}.

(75)

Moreover, for every 1 ≤ p <∞ there exists a constant C > 0, independent of ε > 0, such that

‖uε‖W 1,2(0,T ;U) + ‖ξε‖W 1,2(0,T ;Ξ) + ‖uε‖W 2,2(0,T ;U∗) ≤ C,
‖uε‖W 1,∞(0,T ;L2(Ω)) + ‖ξε‖W 1,2(0,T ;Lp(K)) ≤ C. (76)
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5.1 Solutions with higher time regularity

Assume now the additional hypotheses (H3) and (H4), and that f ∈ W 1,2(0, T ;L2(Ω)). We want to
show the counterpart of Corollary 5.1 for solutions with higher regularity. Assume that the initial data
u0, v0 ∈ U , ξ0 ∈ Ξ, satisfy Jv0K = 0 on K, |Ju0K| ≤ ξ0 on K. First of all, note that, even if the initial data
(u0, v0, ξ0) enjoy the equilibrium condition (29), i.e.,

ρw0 + ∂uF(t, u0(t), ξ0(t)) + ∂vR(v0) 3 0,

in general the same condition does not hold for the regularized initial data u0, v0, ξ̂
ε
0, therefore, in order

to apply Proposition 4.6 we have first to modify u0, v0, ξ̂
ε
0 in a suitable way. To this aim, let w0 ∈ L2(Ω)

be the function appearing in condition (29). We define

vε0 := v0,

uε0 ∈ argmin {F(0, u, ξ̂ε0) + 〈η∇vε0,∇u〉+ 〈ρw0, u〉, u ∈ U}, (77)

ξε0 := max{ξ̂ε0, |Juε0K|}.

Notice that the above minimization problem does not provide an initial datum uε0 which satisfies, in

general, the constraint |Juε0K| ≤ ξ̂ε0. To fix this issue we have updated the internal variable a posteriori.
We claim that the equilibrium condition (29) holds for the triple (uε0, v

ε
0, ξ

ε
0). To show this we will see that

uε0 is also a solution of the minimum problem

uε0 ∈ argmin {F(0, u, ξε0) + 〈η∇vε0,∇u〉+ 〈ρw0, u〉, u ∈ U}. (78)

To prove (78), as in Remark 4.2, it is sufficient to observe that thanks to the properties of the cohesive
potential, one has

ψ(Juε0K, ξε0) = ψ(Juε0K, ξ̂ε0), and ψ(JuK, ξ̂ε0) ≤ ψ(JuK, ξε0) ∀u ∈ U , (79)

so that

F(0, uε0, ξ
ε
0) + 〈η∇vε0,∇uε0〉+ 〈ρw0, u

ε
0〉 = F(0, uε0, ξ̂

ε
0) + 〈η∇vε0,∇uε0〉+ 〈ρw0, u

ε
0〉

≤ F(0, u, ξ̂ε0) + 〈η∇vε0,∇u〉+ 〈ρw0, u〉
≤ F(0, u, ξε0) + 〈η∇vε0,∇u〉+ 〈ρw0, u〉, (80)

for all u ∈ U , where we have used the minimality of uε0 in (77). Condition (78) follows, and we infer

〈ρw0, φ〉+ ∂uF(0, uε0, ξ
ε
0;φ) + 〈η∇vε0,∇φ〉 = 0. (81)

We have now to show that the new initial data introduced in (77) suitably converge to (u0, v0, ξ0). For
v0 there is nothing to prove, for u0 and ξ0 we have at disposal the following result:

Lemma 5.2 The energy functional

u 7→ F(0, u, ξ̂ε0) + 〈η∇vε0,∇u〉+ 〈ρw0, u〉,

Γ-converges, with respect to the weak topology of U , to the functional

u 7→ F(0, u, ξ0) + 〈η∇v0,∇u〉+ 〈ρw0, u〉.

The proof of this Lemma is straightforward and we drop the details; essentially, it is based on the fact that
the cohesive energy term Ψ(u, ξ̂ε0) (which is the only one involving ε) well behaves in the passage to the

limit. Indeed, ξ̂ε0 = max{ξ0, ξ̄ε} → ξ0 strongly in L2(Ω) and JuεK → JuK strongly in L2(K), by compact

embedding, when uε ⇀ u weakly in U . The convergence Ψ(uε, ξ̂
ε
0) → Ψ(u, ξ0) follows by continuity of Ψ

and by dominated convergence theorem.
Thanks to hypothesis (H4) the above functionals are strictly convex, so that by coercivity they admit

a unique minimizer. From the properties of Γ-convergence we readily see that

uε0 → u0 in U . (82)

Now, since again by compact embedding |JuεK| → |JuK| strongly in L2(K), we also easily obtain

ξε0 = max{ξ̂ε0, |Juε0K|} → ξ0 in L2(K), (83)

where we have used that ξ̂ε0 → ξ0 strongly in L2(K).
Finally, as a further consequence of the convergences above, the norms ‖uε0‖U , ‖vε0‖U , ‖ξε0‖L2(K) are

uniformly bounded as ε → 0. Therefore also the constants appearing in the right-hand side of estimates
(45), (46), and (50) are uniformly bounded (see Remark 4.5 and 4.7). We hence arrive to
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Corollary 5.3 Under the hypotheses of Corollary 5.1, suppose in addition (H3), (H4), and that f ∈
W 1,2(0, T ;L2(Ω)); moreover assume that u0, v0 ∈ U , ξ0 ∈ Ξ, satisfy Jv0K = 0 on K, |Ju0K| ≤ ξ0 on K,
and condition (29). Then for every ε > 0 there exists an evolution (uε, ξε) ∈ W 1,2(0, T ;U × Ξ) with
u̇ε ∈W 1,2(0, T ;U∗) satisfying

ρüε(t) + ∂uF(t, uε(t), ξε(t)) + ∂vR(u̇ε(t)) = 0, in U∗,

ξ̇ε(t)(ξε(t)− |Juε(t)K|) = 0, ξ̇ε(t) ≥ 0, and |Juε(t)K| ≤ ξε(t), a.e. in K,

uε(0) = uε0, u̇
ε(0) = v0, ξ

ε(0) = ξε0,

i.e., the conclusion of Corollary 5.1 with the initial data uε0, v
ε
0, ξ

ε
0 in (77). Moreover there is a constant

C > 0, independent of ε > 0, such that

‖u̇ε‖L∞(0,T ;H1(Ω)) + ‖üε‖L∞(0,T ;L2(Ω)) ≤ C. (84)

5.2 Proof of Theorem 3.2 and 3.3

By Lemma 2.6 the differential inclusion in the first equation of (26) in variational form reads

(ρü(t), φ)U + ∂uF(t, u(t), ξ(t);φ) + 〈η∇u̇(t),∇φ〉 ≥ 0, for every φ ∈ U , (85)

for a.e. t ∈ [0, T ].

Proposition 5.4 Along with the assumptions of Corollary 5.1, there exists (u, ξ) ∈ W 1,2(0, T ;U × Ξ)
such that, for a non-relabelled subsequence, as ε→ 0 it holds

uε ⇀ u weakly in W 2,2(0, T ;U∗) ∩W 1,2(0, T ;U) and weakly* in W 1,∞(0, T ;L2(Ω)),

ξε ⇀ ξ weakly in W 1,2(0, T ; Ξ). (86)

Moreover (u, ξ) is a solution to (26).

Proof. The convergences in (86) follow directly from the a-priori estimates (76). To prove that the couple
(u, ξ) satisfies (26) we argue as in Theorem 4.8 and show first that the Karush-Kuhn-Tucker conditions
hold, namely the second line in (26). Following Step II and Step III of the proof of Theorem 4.8 we easily
infer also that

ξε → ξ strongly in L2(0, T ;L2(K)). (87)

Let us turn to the first equation in (26), that is, we have to prove that for all φ ∈ U equation (85) holds
for a.e. t ∈ (0, T ). From (75) for every 0 ≤ t1 < t2 < T we have∫ t2

t1

(ρüε(t), φ)U + 〈µ∇uε(t) + η∇u̇ε(t),∇φ〉 − (f(t), φ)U + ∂uΨ(uε(t), ξε(t))[φ] dt = 0. (88)

Under (86) all the terms pass to the limit but the cohesive one. For this we show that

lim sup
ε→0

∫ t2

t1

∂uΨ(uε(t), ξε(t);φ) dt ≤
∫ t2

t1

∂uΨ(u(t), ξ(t);φ) dt.

Up to a (non-relabelled) subsequence, thanks to (87) we can assume that (JuεK, ξε) → (JuK, ξ) pointwise
almost everywhere in (0, T )×K. Using Lemma 2.5, Fatou’s Lemma, and Fubini’s Theorem, we get

lim sup
ε→0

∫ t2

t1

∂uΨ(uε(t), ξε(t);φ) dt = lim sup
ε→0

∫ t2

t1

∫
K

∂wψ(Juε(t)K, ξε(t); JφK) dH1 dt

≤
∫ t2

t1

∫
K

∂wψ(Ju(t)K, ξ(t); JφK) dH1 dt =

∫ t2

t1

∂uΨ(u(t), ξ(t);φ) dt.

In conclusion, taking the limsup in (88) we get∫ t2

t1

(ρü(t), φ)U + 〈µ∇u(t) + η∇u̇(t),∇φ〉 − 〈f(t), φ〉+ ∂uΨ(u(t), ξ(t);φ) dt ≥ 0

By arbitrariness of t1 and t2 we obtain the equilibrium inequality. Finally, since uε(0) = u0, ξε(0) = ξε0 →
ξ0 in Ξ, and vε(0) = v0, from (86) we easily infer that (u, ξ) satisfies the initial data.

We now aim to prove the same result for the solutions provided by Corollary 5.3. Notice that the same
proof of the previous proposition applies, up to show that the modified initial data (uε0, v

ε
0, ξ

ε
0) converge

to (u0, v0, ξ0); this is ensured by (82) and (83).
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Proposition 5.5 Under the assumptions of Corollary 5.3, there exists (u, ξ) ∈ W 1,2(0, T ;U × Ξ) such
that, for a not-relabelled subsequence, (86) holds and (u, ξ) is a solution to (26). Moreover

u ∈W 1,∞(0, T ;U) ∩W 2,∞(0, T ;L2(Ω)).

5.3 Energy balance

Before proceeding to the proof of the energy balance we need the following result.

Lemma 5.6 Let (u, ξ) be as in Proposition 5.4, then for a.e. t ∈ (0, T ) it holds

(ρü(t), u̇(t))U + ∂uF(t, u(t), ξ(t); u̇(t)) + 〈η∇u̇(t),∇u̇(t)〉 = 0. (89)

Proof. Since u belongs to W 1,2(0, T ;U), for a.e. t ∈ (0, T ) we have

lim
h→0

u(t+ h)− u(t)

h
= u̇(t) in H1(Ω).

By continuity of the traces we have also

lim
h→0

Ju(t+ h)K− Ju(t)K
h

= Ju̇(t)K in L2(K). (90)

Let t ∈ (0, T ) be such that (90) holds. By the regularity of u we have that u̇ ∈ U and thus

(ü(t),±u̇(t))U + ∂uF(t, u(t), ξ(t);±u̇(t)) + (∇u̇(t),±∇u̇(t)) ≥ 0 . (91)

We claim that
∂uF(u(t), ξ(t);−u̇(t)) = −∂uF(u(t), ξ(t); u̇(t)),

which, together with (91), concludes the proof. Since the elastic energy E is differentiable it is enough to
check

∂uΨ(u(t), ξ(t);−u̇(t)) = −∂uΨ(u(t), ξ(t); u̇(t)).

We will argue pointwise in K. To this end, denote by K0(t) the subset of K where ξ(t) = 0. Consider a
sequence tn ↗ t such that

Ju(tn)K− Ju(t)K
tn − t

→ Ju̇(t)K a.e. on K.

Clearly |Ju(tn)K| ≤ ξ(tn) ≤ ξ(t) (a.e. on K and for every n ∈ N). By monotonicity of ξ and by the Karush-
Kuhn-Tucker conditions, a.e. on K0(t) we have |Ju(tn)K| ≤ ξ(tn) ≤ ξ(t) = 0 and |Ju(t)K| ≤ ξ(t) = 0,
then

ξ̇(t) = Ju̇(t)K = 0 a.e. on K0(t). (92)

Remember that

∂uΨ(u(t), ξ(t); u̇(t)) =

∫
K

∂wψ
(
Ju(t, l)K, ξ(t, l); Ju̇(t, l)K

)
dH1(l).

If l ∈ K \K0(t) then ξ(t, l) > 0; therefore the density ψ(·, ξ(t, l)) is differentiable in Ju(t, l)K and

∂wψ(Ju(t, l)K, ξ(t, l);−Ju̇(t, l)K) = −∂wψ(Ju(t, l)K, ξ(t, l); Ju̇(t, l)K).

On the contrary, if l ∈ K0(t) then |Ju(t, l)K| ≤ ξ(t, l) = 0 and the density ψ(·, ξ(t, l)) admits only directional
derivatives, however Ju̇(t, l)K = 0 by (92), and thus

∂wψ(Ju(t, l)K, ξ(t, l);−Ju̇(t, l)K) = −∂wψ(Ju(t, l)K, ξ(t, l); Ju̇(t, l)K) = 0.

The conclusion follows.

Lemma 5.7 The map t 7→ Ψ(Ju(t)K, ξ(t)) is absolutely continuous and

Ψ(u(t∗), ξ(t∗))−Ψ(u0, ξ0) =

∫ t∗

0

d
dtΨ(u(t), ξ(t)) dt =

∫ t∗

0

∂uΨ
(
u(t), ξ(t); u̇(t)

)
dt, (93)

for every t∗ ∈ [0, T ].
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Proof. The absolute continuity follows from the fact that both JuK and ξ belong to W 1,2(0, T ;L2(K))
together with the Lipschitz continuity of the cohesive energy density (see Lemma 2.3). It follows that the
map t 7→ Ψ(u(t), ξ(t)) is absolutely continuous; thus it is a.e. differentiable in (0, T ) and it is enough to
show that for a.e. t ∈ (0, T ) it holds

d
dtΨ(u(t), ξ(t)) = ∂uΨ

(
u(t), ξ(t); u̇(t)

)
. (94)

We devide the proof of (94) into two steps.
Step I. We claim that for a.e. t ∈ (0, T ) it holds

ξ̇(t) ≤ |Ju̇(t)K| a.e. in K, ξ̇(t) = |Ju̇(t)K| = 0 a.e. in K0(t) = {ξ(t) = 0}. (95)

The latter property has already been proved in Lemma 5.6. As for the former, let us first observe that by
the time regularity of JuK and ξ we have

Ju(t+ h)− u(t)K
h

→ Ju̇(t)K and
ξ(t+ h)− ξ(t)

h
→ ξ̇(t) (96)

as h→ 0 (strongly) in L2(K) for a.e. t ∈ (0, T ). Moreover, for a.e. t ∈ (0, T ) we have

ξ̇(t)(ξ(t)− |Ju(t)K|) = 0 and |Ju(t)K| ≤ ξ(t) a.e. on K. (97)

We fix t ∈ (0, T ) such that both t 7→ Ψ(u(t), ξ(t)) is differentiable and (96)-(97) hold.
We now prove the first condition in (95). Assume, by contradiction, that this does not hold and

ξ̇(t) > |Ju̇(t)K| in a set K ′ ⊂ K of positive measure. Then, by (96) and by convergence in measure there
exists h̄� 1 such that for every 0 < h ≤ h̄ we have

ξ(t+ h)− ξ(t) > |Ju(t+ h)− u(t)K| in L2(K ′′),

for some positive measured set K ′′ ⊂ K ′. Then, for every 0 < h ≤ h̄ a.e. on K ′′ we have

Ju(t+ h)K ≤ Ju(t)K + |Ju(t+ h)K− Ju(t)K| ≤ ξ(t) + |Ju(t+ h)K− Ju(t)K| < ξ(t+ h).

As a consequence of the Karush-Kuhn-Tucker condition ξ̇(t + h)(Ju(t + h)K − ξ(t + h)) = 0 we have
ξ̇(t + h) = 0 in L2(K ′′) for every 0 < h ≤ h̄. Thus, ξ(t + h) = ξ(t) in L2(K ′′) and this contradicts the
inequality ξ(t+ h)− ξ(t) > |Ju(t+ h)− u(t)K| ≥ 0.
Step II. We fix a sequence hn → 0+ (depending on t) such that

Ju(t+ hn)− u(t)K
hn

→ Ju̇(t)K and
ξ(t+ hn)− ξ(t)

hn
→ ξ̇(t) a.e. on K. (98)

Clearly

d
dtΨ(u(t), ξ(t)) = lim

n→+∞

∫
K

ψ
(
Ju(t+ hn)K, ξ(t+ hn)

)
− ψ

(
Ju(t)K, ξ(t)

)
hn

dH1.

Since ψ is Lipschitz continuous we can write∣∣∣∣∣ψ
(
Ju(t+ hn)K, ξ(t+ hn)

)
− ψ

(
Ju(t)K, ξ(t)

)
hn

∣∣∣∣∣ ≤ C

∣∣∣∣Ju(t+ hn)K− Ju(t)K
hn

∣∣∣∣ +

+ C

∣∣∣∣ξ(t+ hn)− ξ(t)
hn

∣∣∣∣ . (99)

The right-hand side converges strongly in L2(K) and thus by dominated convergence, in order to show
(94), it is enough to prove that

lim
n→+∞

ψ
(
Ju(t+ hn)K, ξ(t+ hn)

)
− ψ

(
Ju(t)K, ξ(t)

)
hn

= ∂wψ
(
Ju(t)K, ξ(t); Ju̇(t)K

)
a.e. in K. (100)

Denote K0(t) := {l ∈ K : ξ(t, l) = 0} and Kc(t) := {l ∈ K : ξ(t, l) ≥ ξc}. Let l ∈ K be such that (97)
and (98) hold.

If l 6∈ K0(t)∪Kc(t) then 0 < ξ(t, l) < ξc and thus, by Lemma 2.3, ψ is differentiable at (Ju(t, l)K, ξ(t, l))
and

lim
n→+∞

ψ
(
Ju(t+ hn, l)K, ξ(t+ hn, l)

)
− ψ

(
Ju(t, l)K, ξ(t, l)

)
hn

= ∂wψ
(
Ju(t, l)K, ξ(t, l)

)
Ju̇(t, l)K +

+ ∂ξψ
(
Ju(t, l)K, ξ(t, l)

)
ξ̇(t, l).
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By (25) we get (for |w| ≤ ξ 6= 0)

∂ξψ(w, ξ) = − 1
2

(
ψ̂′(ξ)

ξ

)′
(ξ − w)(ξ + w).

Thus, by (97)

∂ξψ
(
Ju(t, l)K, ξ(t, l)

)
ξ̇(t, l) = − 1

2

(
ψ̂′(ξ(t, l))

ξ(t, l)

)′
(ξ(t, l) + |Ju(t, l)K|)(ξ(t, l)− |Ju(t, l)K|) ξ̇(t, l) = 0 .

Hence (100) is proved.
If l ∈ K0(t) then ξ(t, l) = 0 and by (95) we have ξ̇(t, l) = |Ju̇(t, l)K| = 0. Remember that the cohesive

density ψ is no longer differentiable; however we have directional derivatives. Thus we write

ψ
(
Ju(t+ hn, l)K, ξ(t+ hn, l)

)
− ψ(0, 0) = ψ

(
Ju(t+ hn, l)K, ξ(t+ hn, l)

)
− ψ

(
Ju(t+ hn, l)K, 0

)
+

+ ψ
(
Ju(t+ hn, l)K, 0

)
− ψ

(
0, 0
)
. (101)

Let us first check that

lim
n→+∞

ψ
(
Ju(t+ hn, l)K, ξ(t+ hn, l)

)
− ψ

(
Ju(t+ hn, l)K, 0

)
hn

= 0. (102)

By monotonicity (see Lemma 2.3)

ψ̂(ξ(t+ hn, l)) ≥ ψ
(
|Ju(t+ hn, l)K|, ξ(t+ hn, l)

)
= ψ

(
Ju(t+ hn, l)K, ξ(t+ hn, l)

)
≥ ψ

(
|Ju(t+ hn, l)K|, 0

)
= ψ̂

(
|Ju(t+ hn, l)K|

)
= ψ

(
Ju(t+ hn, l)K, 0

)
Hence, by the monotonicity properties of ψ and the Lipschitz continuity of ψ̂ we get∣∣ψ(Ju(t+ hn, l)K, ξ(t+ hn, l)

)
− ψ

(
Ju(t+ hn, l)K, 0

)∣∣ = ψ
(
Ju(t+ hn, l)K, ξ(t+ hn, l)

)
− ψ

(
Ju(t+ hn, l)K, 0

)
≤ ψ̂(ξ(t+ hn, l))− ψ̂

(
|Ju(t+ hn, l)K|

)
≤ c

(
ξ(t+ hn, l)− |Ju(t+ hn, l)K|

)
.

Moreover, being ξ(t, l) = Ju(t, l)K = 0, we can write(
ξ(t+ hn, l)− |Ju(t+ hn, l)K|

)
hn

=

(
ξ(t+ hn, l)− ξ(t, l)

)
− |Ju(t+ hn, l)− u(t, l)K|
hn

→ ξ̇(t, l)−|Ju̇(t, l)K| = 0 .

Thus (102) is proved. Now, let us now consider the second line in (101); it is enough to write

lim
n→+∞

ψ
(
Ju(t+ hn, l)K, 0

)
− ψ

(
0, 0
)

hn
= ∂wψ

(
0, 0; Ju̇(t, l)K

)
= ψ̂′(0)|Ju̇(t, l)K| = 0.

Therefore, for a.e. l ∈ K0(t) it holds

lim
n→+∞

ψ
(
Ju(t+ hn, l)K, ξ(t+ hn, l)

)
− ψ

(
Ju(t, l)K, ξ(t, l)

)
hn

= ∂wψ
(
Ju(t, l)K, ξ(t, l); Ju̇(t, l)K

)
.

Finally, if l ∈ Kc(t) then ξ(t) ≥ ξc and ξ(t+ hn) ≥ ξc (since hn ≥ 0) and thus

ψ
(
Ju(t+ hn, l)K, ξ(t+ hn, l)

)
= ψ

(
Ju(t, l)K, ξ(t, l)

)
= ψ̂(ξc).

It follows that

lim
n→+∞

ψ
(
Ju(t+ hn, l)K, ξ(t+ hn, l)

)
− ψ

(
Ju(t, l)K, ξ(t, l)

)
hn

= ∂wψ
(
Ju(t, l)K, ξ(t, l); Ju̇(t, l)K

)
= 0.

The proof is concluded.

Proposition 5.8 Let (u, ξ) be as in Proposition 5.4, then for a.e. t∗ ∈ [0, T ] we have the energy identity

E(u(t∗)) + Ψ(u(t∗), ξ(t∗)) +K(u̇(t∗)) = E(u0) + Ψ(u0, ξ0) +K(v0)

+

∫ t∗

0

(f(t), u̇(t))U dt−
∫ t∗

0

η‖∇u̇(t)‖2L2 dt
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Proof. By Lions-Magenes lemma, e.g. [33, Lemma 1.2 Ch. III §1], we can write

1
2‖∇u(t∗)‖2L2 − 1

2‖∇u0‖2L2 =

∫ t∗

0

d
dt (

1
2‖∇u(t)‖2L2) dt =

∫ t∗

0

〈∇u(t),∇u̇(t)〉 dt.

Hence, by Lemma 5.7 we have

E(u(t∗)) + Ψ(u(t∗), ξ(t∗))− E(u0)−Ψ(u0, ξ0) =

∫ t∗

0

d
dt

(
1
2µ‖∇u(t)‖2L2 + Ψ(u(t), ξ(t))

)
dt

=

∫ t∗

0

µ〈∇u(t),∇u̇(t)〉+ ∂uΨ
(
u(t), ξ(t); u̇(t)

)
dt

=

∫ t∗

0

∂uF(u(t), ξ(t); u̇(t)) dt+

∫ t∗

0

(f(t), u̇(t))U dt.

Using again Lions-Magenes lemma, we get

1
2‖u̇(t∗)‖2L2 − 1

2‖u̇0‖2L2 =

∫ t∗

0

d
dt (

1
2‖u̇(t)‖2L2) dt =

∫ t∗

0

(ü(t), u̇(t))U dt.

Combining the previous two identities with

(ρü(t), u̇(t))U + ∂uF(t, u(t), ξ(t); u̇(t)) + 〈η∇u̇(t),∇u̇(t)〉 = 0,

proved in Lemma 5.6, we finally obtain the energy identity.

5.4 Strong solutions in polygonal domains

Following [13, §1.5.2], we introduce the Sobolev space

H̃1/2(K+) = {w ∈ H1/2(K) : w̄+ ∈ H1/2(∂Ω+)},

where w̄+ is the null extension of w on ∂Ω+. In a similar way we introduce H̃1/2(K−). Being K a

polygonal domain, H̃1/2(K+) = H̃1/2(K−). Therefore the notation W = H̃1/2(K) is well justified.

We endow W with the standard norm of H1/2(K) and denote by W∗ = H̃−1/2(K) the dual space.
By [13, Theorem 1.5.3.10] whenever σ ∈ L2(Ω;R2) with div σ ∈ L2(Ω) we can introduce the linear and
continuous Neumann operators

(σ+ν, ϕ)W = −(σ+ν+, ϕ)W := −
∫

Ω+

σ · ∇φ+ dx−
∫

Ω+

(div σ)φ+ dx,

(σ−ν, ϕ)W = (σ−ν−, ϕ)W :=

∫
Ω−

σ · ∇φ− dx+

∫
Ω−

(div σ)φ− dx,

where, in the left-hand side, (·, ·)W denotes the duality between W and its dual W∗, while, in the right-
hand side, φ± ∈ H1(Ω±) denote any liftings of the null extensions ϕ̄± ∈ H1/2(∂Ω±).

In a similar way, we consider also the spaces V± = H̃1/2(∂NΩ±) and the Neumann operators

(σν, ϕ)V± :=

∫
Ω±

σ · ∇φ± dx+

∫
Ω±

(div σ)φ± dx,

where φ± ∈ H1(Ω±) denote any liftings of the null extensions ϕ̄± ∈ H1/2(∂Ω±).
By Definition 3.1 the inclusion

ρü(t) + ∂uF(t, u(t), ξ(t)) + ∂vR(u̇) 3 0

in variational form reads

〈ρü(t), φ〉+ 〈µ∇u(t) + η∇u̇(t),∇φ〉+ ∂Ψ(u(t), ξ(t);φ) ≥ 〈f(t), φ〉, (103)

for all φ ∈ U . Choosing test functions φ ∈ H1
0 (Ω) we infer that, for a.e. t ∈ [0, T ],

〈ρü(t), φ〉+ 〈µ∇u(t) + η∇u̇(t),∇φ〉 = 〈f(t), φ〉. (104)
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We easily conclude that, for a.e. t ∈ [0, T ],

ρü(t)−∆(µu(t) + ηu̇(t)) = f(t) in H−1(Ω). (105)

Since f ∈ W 1,2(0, T ;L2(Ω)) and since u ∈ W 2,∞(0, T ;L2(Ω)) we get that ∆(µu(t) + ηu̇(t)) belongs to
L2(0, T ;L2(Ω)); in particular equation (105) holds in L2(Ω) and a.e. on Ω. Then we are allowed to define
the Neumann operators σ±(t)ν and σ(t)ν (see § 3.3). Since σ(t) = µ∇u(t) + η∇u̇(t) by (104) we have

(σ(t)ν, ϕ)V+ =

∫
Ω+

σ(t) · ∇φ+ + (div σ(t))φ+ dx

=

∫
Ω+

(µ∇u(t) + η∇u̇(t)) · ∇φ+ + (ρü(t)− f(t))φ+ dx = 0,

for every ϕ ∈ V = H̃1/2(∂NΩ+). Hence σ(t)ν = 0 in H̃−1/2(∂NΩ+). In a similar way, for every ϕ ∈ W =

H̃1/2(K)

(σ+ν, ϕ)W = −
∫

Ω+

(µ∇u(t) + η∇u̇(t)) · ∇φ+ + (ρü(t)− f(t))φ+ dx,

(σ−ν, ϕ)W =

∫
Ω−

(µ∇u(t) + η∇u̇(t)) · ∇φ− + (ρü(t)− f(t))φ− dx.

Therefore, for φ = φ+1Ω+ + φ−1Ω− by (104) we get

(σ−ν − σ+ν, ϕ)W =

∫
Ω

(µ∇u(t) + η∇u̇(t)) · ∇φ+ (ρü(t)− f(t))φdx = 0,

because JφK = 0; hence σ−ν = σ+ν in H̃−1/2(K).
It remains to prove that σ+(t)ν ∈ ∂wψ(Ju(t)K, ξ(t)). To this end we invoke [22, Theorem 7.8] where

an analogous result is proved. The thesis is achieved.
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Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica).

A Appendix

We provide here this useful classical Lemma.

Lemma A.1 Let u ∈ W 1,2(0, T ;X), where X is a Banach space, and let u]n be its piecewise constant
interpolant in the points tn,k = kT/n. Then ‖u]n(t)− u(t)‖X ≤ ‖u‖W 1,2(0,T ;X)τ

1/2 for every t ∈ [0, T ].
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