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Abstract

Performing a large number of spatial measurements enables high-resolution photoacous-
tic imaging without specific prior information. However, the acquisition of spatial measure-
ments is time-consuming, costly, and technically challenging. By exploiting nonlinear prior in-
formation, compressed sensing techniques in combination with sophisticated reconstruction
algorithms allow reducing the number of measurements while maintaining high spatial reso-
lution. To this end, in this work we propose a multiscale factorization for the wave equation
that decomposes the measured data into a low-frequency factor and sparse high-frequency
factors. By extending the acoustic reciprocity principle, we transfer sparsity in the measure-
ment domain into spatial sparsity of the initial pressure, which allows the use of sparse re-
construction techniques. Numerical results are presented that demonstrate the feasibility of
the proposed framework.

Keywords: photoacoustic tomography, image reconstruction, limited data, wave equation,
cost reduction, compressed sensing, multiscale factorization.

AMS: 45Q05, 65T60, 94A08, 92C55

1 Introduction

Photoacoustic tomography (PAT) is an emerging imaging technique that combines the high reso-
lution of ultrasound imaging with the high contrast of optical tomography [52]. As illustrated in
Figure 1.1, in PAT a semi-transparent sample is illuminated by short pulses of optical energy, which
induces an acoustic pressure wave p : R3× [0,∞)→ R, which depends on spatial position x ∈ R3
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and time t ≥ 0. The initial pressure distribution f : R3 → R is proportional to the internal light ab-
sorption characteristics of the sample and provides valuable diagnostic information. Detectors
located on a measurement surface S that (partially) surrounds the sample measure the acoustic
pressure from which the initial pressure distribution is recovered. Throughout the following, we
denote by Wf := p|S×[0,∞) the restriction of the acoustic pressure to the measurement surface.

Exact reconstruction formulas for recovering the initial pressure are available for complete data
for specific surfaces S, see for example, [15, 19, 18, 24, 35, 36, 43]. E�cient reconstruction schemes
in PAT that take into account acoustic attenuation or variable speed of sound have also been
developed [1, 3, 4, 27, 30, 32, 33, 51]. Di�erent types of detectors such as linear or circular detectors
recording integrals of the acoustic pressure have been investigated [6, 53]. In this paper, we
consider the constant sound speed case and address the issue of compressed sensing to reduce
the amount of data while maintaining high spatial resolution.

optical illumination  induced acoustic waves

(at absorbing structures)

detect and reconstruct 

S

Figure 1.1: Basic principles of PAT. Left: A sample object is illuminated with short optical pulses.
Middle: The optical energy is absorbed in the sample, causing inhomogeneous heating and in-
ducing a subsequent acoustic pressure wave. Right: Acoustic sensors located outside the sample
detect the pressure signals, from which an image of the interior is generated. In this work, we
develop a specific compressed sensing method that allows to reduce the number of spatial mea-
surements while maintaining a high spatial resolution.

1.1 Compressed sensing PAT

Acoustic signals in PAT o�er a large bandwidth. Therefore, high spatial resolution can be achieved
by collecting a su�ciently large number of measurements [25], as predicted by Shannon’s sam-
pling theorem. In practice, however, collecting a large number of spatial measurements requires
either a large number of parallel data acquisition channels or a large number of sequential mea-
surements. This either increases the cost and technical complexity of the system or significantly
increases measurement time. Several approaches have been proposed to speed up data acquisi-
tion in PAT. For example, a phase contrast method was developed in [44] where a reconstruction
of the initial pressure can be obtained from projections of the acoustic pressure which can be
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collected rapidly. In the present work, we use compressed sensing techniques [8, 14, 20, 21] to
reduce the number of measurements in PAT while maintaining high spatial resolution. One of the
main challenges in compressed sensing is the development of sophisticated image reconstruc-
tion algorithms. In PAT, such CS techniques have been developed in [26, 28, 5]. Here, we develop
a novel image reconstruction strategy based on multiscale factorization of the wave equation
that is universally applicable to compressed sensing PAT (CSPAT).

Compressed sensing reconstruction techniques rely on sparsity of the signals to be reconstructed.
In PAT, one feasible approach is to express the initial pressure in an appropriate basis. The use
of such a strategy leads to a coupled forward model whose solution can be numerically chal-
lenging. As an alternative, strategies that apply a time-domain transformation to sparsify PAT
data have been proposed in [49, 26]. These methods have been demonstrated to reconstruct the
high-frequency content of the original pressure very accurately from a significantly reduced set
of measurements. However, the proposed di�erential operators used as sparsifying transforms
suppress low-frequency information, resulting in low-frequency artifacts in the reconstruction. In
addition to sparsity, the second main component of compressed-sensing reconstruction involves
conditions for the subsampled forward matrix that enable linear convergence rates. Necessary
and su�cient conditions in a general Hilbert space framework have been derived in [21]. Stable
uniform recovery of all su�ciently sparse elements is commonly based on the restricted isom-
etry property [7]. While in this paper we focus on the sparsity issue, recovery conditions in the
context of PAT are briefly discussed in Subsection 4.4.

1.2 Main Contributions

In this work, we develop the concept of multiscale time transforms and multiscale factoriza-
tion for CSPAT. We apply multiscale transforms in the time domain, which split the data into a
low-frequency component and several high-frequency components. The basic idea of the pro-
posed reconstruction scheme is to use the acoustic reciprocity principle to show that there is
a one-to-one correspondence between the transformed data in the time domain and spatially
transformed initial pressure. This factorization allows the use of sparse recovery techniques for
the high-frequency part of the initial pressure, while the low-frequency part can be inverted using
standard methods.

To be more specific, for a mother wavelet function ψ : R → R we set vj(t) = 2jψ(2jt) for j ≥ 1

and denote by v0 a function that contains the missing low-frequency content. This could be,
for example, the associated scaling function of the mother wavelet. We then explicitly derive
associated functions uj : R2 → R such that for any initial pressure we have the reciprocal relation

W(f ~x uj) = vj ~t (Wf) for all j ∈ N . (1.1)

The latter identity is then used with compressed sensing data in place of classical data Wf .
Based on (1.1), we develop a reconstruction strategy to recover a multiscale decomposition of
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the initial pressure consisting of several sparse high-frequency parts and a smooth version of
the initial pressure distribution f . Figure (1.2) shows a phantom f , pressure data Wf , and the
corresponding multiscale factors vj ~t (Wf) (top) and f ~x uj (bottom).

Figure 1.2: Top: Data Wf (left) and convolved pressure data vj ~tWf on the three lowest scales.
Bottom: Initial pressure f and convolved initial pressure f ~x uj on the same scales. According
to the acoustic reciprocal principle (1.1), the convolved pressure data belong to the convolved
initial data for which we have sparsity, and for which we use compressed sensing reconstruction.

The concept of sparsifying temporal transforms for CSPAT was initially developed in [49, 26] in
two and three spatial dimensions. These earlier approaches use one-dimensional sparsifying
transforms which filter out low-frequency components, thereby leading to low-frequency arti-
facts in the reconstruction. By considering an additional low-frequency component as well, the
proposed multiscale scheme naturally overcomes this drawback of a single multiscale transform.
Another solution concerning the missing low-frequency component was proposed in [28], where
we suggested jointly reconstructing the original pressure and a sparsified version based on the
second time derivative. However, the present approach seems more natural and more accessible
to a rigorous mathematical analysis.

1.3 Outline

The remainder of the paper is organized as follows. In Section 2 we provide required background
of PAT and derive a dual form of the acoustic reciprocal principle. In Section 3 we derive a mul-
tiscale factorization for the wave equation. The application to CSPAT is presented in Section 4.
Numerical examples are presented in Section 5. The paper ends with a brief summary and out-
look in Section 6.
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2 Photoacoustic tomography

In this section, we provide the background required from PAT and derive a reciprocal version of
the acoustic reciprocity principle that will be useful for our later analysis.

2.1 Wave equation model

Throughout, we consider PAT with constant speed of sound. The acoustic pressure is modeled
as a function p : Rd× [0,∞)→ R, which satisfies the following initial value problem for the wave
equation

ptt (x, t)−∆p (x, t) = 0 for (x, t) ∈ Rd × (0,∞) , (2.1)

p (x, 0) = f (x) for x ∈ Rd , (2.2)

pt (x, 0) = 0 for x ∈ Rd . (2.3)

Here f ∈ C∞(Rd) is the initial pressure distribution, which for simplicity we assume to be a
smooth function. Notice that in the actual application of PAT the cases d = 2 and d = 3 spatial
dimensions are relevant [6, 17, 18, 34, 52].

Continuous PAT data consist of time-resolved acoustic pressure restricted in space to a smooth
detection surface S ⊆ Rd. The continuous domain PAT forward operator is given by

W : C∞(R3)→ C∞(S × (0,∞)) : f 7→Wf = p
∣∣
S×(0,∞)

. (2.4)

The corresponding complete data inverse problem is to solve the operator equation Wf = g

from possible noisy information. In the last two decades, many methods, including exact recon-
struction formulas and iterative methods for di�erent geometries, variable and constant sound
speed, and di�erent detector types have been developed; see [47] for a recent review. Clearly,
only discrete data can be collected in practice. We will present both standard discrete sampling
and compressed sensing strategies in Section 4.

2.2 Acoustic reciprocal principle

Compressed sensing reconstruction techniques are typically based on sparsity of the unknown
signals to be reconstructed. To achieve sparsity in PAT, we use the acoustic reciprocity principle
in combination with sparse temporal transformations. The acoustic reciprocal principle states
that the time-domain manipulation of photoacoustic data corresponds to a spatial convolution
of the initial pressure with a radial function. An explicit form of the acoustic reciprocal principle
has been proved first for three spatial dimensions in [29] and extended to arbitrary dimensions
in [23].
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Proposition 1 (Acoustic reciprocal principle of [23]). Let u ∈ L1(Rd) be a compactly supported
radial function of the form u = ū (‖ · ‖) and set

Ru : R→ R : t 7→

ū(t) if d = 1

ωd−2

∫∞
|t| ū(s)

(
s2 − t2

)(d−3)/2
sds if d > 1 ,

(2.5)

where ωd−2 denotes the volume of the (d − 2)-dimensional unit sphere Sd−2. Then, for every
f ∈ C∞(Rd) we have

∀(x, t) ∈ Rd × (0,∞) : W (u~x f) (x, t) = ((Ru)~t Wf) (x, t) . (2.6)

Here ~x denotes the spatial convolution in Rd and ~t denotes the one-dimensional convolution
applied in the second component.

This lemma serves as the basis for the derived multiscale factorization for the wave equation
and the resulting sparse reconstruction strategy. In fact, we use the following dual version where
we prescribe the temporal filter v instead of the spatial filter u.

Proposition 2 (Acoustic reciprocal principle, dual version). Let v : R→ R be an even function with
su�cient decay such that v ◦

√
| · | ∈ Cd(d−1)/2e(R) and define

R] v : Rd → R : x 7→


(−1)(d−1)/2
√
πd−1

((
1
2t

∂
∂t

)(d−1)/2
v
)
(‖x‖) for d odd

2(−1)(d−2)/2
√
πd

∫∞
‖x‖

( 1
2t

∂
∂t)

d/2
v(t)√

t2−‖x‖2
tdt for d even .

(2.7)

Then, for every f ∈ C∞(Rd),

∀(x, t) ∈ Rd × (0,∞) : v ~t (Wf) (x, t) = W
(

(R] v)~x f
)

(x, t) . (2.8)

Proof. The proof is given in Appendix A.

Note that the assumption v ◦
√
| · | ∈ Cd(d−1)/2e(R) is made so that the derivatives in (2.7) are

well-defined in the classical sense.

3 Multiscale factorizations of the wave equation

Based on the acoustic reciprocal principle, in this section we derive convolution factorizations
for PAT. For that purpose, we fist recall some results for convolutional frames. Then we intro-
duce convolutional frame decompositions in Subsection 3.2, which are used to derive multiscale
factorizations in Subsection 3.3.
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3.1 Convolutional frames

Let Λ be an at most countable index set and consider a family (uλ)λ∈Λ of functions in L2(Rd) ∩
L1(Rd). According to the convolution theorem we have f ~x uλ = F−1

d ((Fdf) · (Fduλ)) for all
f ∈ L2(Rd). Moreover, f ~x uλ is well defined almost everywhere and satisfies f ~x uλ ∈ L2(Rd).
Here and in the following we denote by Fdf(ξ) :=

∫
Rd f(x)e−ix·ξ dx for ξ ∈ Rd the d-dimensional

Fourier transform and F−1
d its inverse. We write u∗(x) := u(−x) for u ∈ L2(Rd) and note that

Fdu
∗ = [Fdu], where [ · ] denotes complex conjugation.

Definition 3 (Convolutional frame). We call a family u = (uλ)λ∈Λ ⊆ (L2(Rd) ∩ L1(Rd))Λ a convo-
lutional frame in Rd, if there are constants A,B > 0 such that

f ∈ L2(Rd) : A ‖f‖22 ≤
∑
λ∈λ
‖f ~x uλ‖22 ≤ B ‖f‖

2
2 . (3.1)

If u is a convolutional frame, we name A, B the frame bounds and call

(a) Tu : L2(Rd)→ `2(Λ, L2(Rd)) : f 7→ (uλ ~x f)λ∈Λ analysis operator,

(b) T∗u : `2(Λ, L2(Rd))→ L2(Rd) : (fλ)λ∈Λ 7→
∑

λ∈Λ u
∗
λ ~x fλ synthesis operator,

(c) T∗uTu : L2(Rd)→ L2(Rd) : f 7→
∑

λ∈Λ u
∗
λ ~x uλ ~x f frame operator.

Finally, we call u tight if T∗uTu = I.

Note that `2(Λ, L2(Rd)) is a Hilbert space with inner product 〈a, b〉Λ :=
∑

λ∈Λ 〈aλ, bλ〉 and corre-
sponding norm ‖ · ‖ Λ. Using the analysis operator, we can write the defining identity (3.1) in the
form A ‖f‖22 ≤ ‖Tuf‖2Λ ≤ B ‖f‖22. Hence the right inequality in (3.1) states that Tu : L2(Rd) →
`2(Λ, L2(Rd)) is well defined an bounded, whereas the left inequality states thatTu has a bounded
Moore-Penrose inverse T+

u : `2(Λ, L2(Rd))→ L2(Rd). Further note that T∗u is the adjoint of Tu.

Lemma 4 (Characterization of convolutional frames). For any family u = (uλ)λ∈Λ of functions in
L2(Rd) ∩ L1(Rd), the following statements are equivalent:

(i) u is a convolutional frame with frame bounds A,B.

(ii) The identity A ≤
∑

λ∈Λ |Fduλ|
2 ≤ B holds almost everywhere.

Proof. The convolution theorem and the isometry property of Fourier transform imply that (3.1)
holds if and only if for all f ∈ L2(Rd) we have

A

∫
Rd

|Fdf(ξ)|2 dξ ≤
∫
Rd

|Fdf(ξ)|2
∑
λ∈λ
|Fduλ(ξ)|2 dξ ≤ B

∫
Rd

|Fdf(ξ)|2 dξ .

This, in turn, is equivalent to the fact that Item (ii) holds.

In particular, u is tight if and only if
∑

λ∈Λ |Fduλ|
2 = 1 holds almost everywhere.
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Lemma 5 (and definition of a dual convolutional frame). Let u = (uλ)λ∈Λ and w = (wλ)λ∈Λ be
two convolutional frames in Rd. The following statements are equivalent:

(i) The identity
∑

λ∈Λ [Fdwλ] · (Fduλ) = 1 holds almost everywhere.

(ii) The reproducing formula ∀f ∈ L2(Rd) : T∗wTuf =
∑

λ∈Λw
∗
λ ~x (uλ ~x f) = f holds.

If (i) and (ii) hold, we call (wλ)λ∈Λ a dual convolutional frame to (uλ)λ∈Λ.

Proof. The linearity and continuity of the Fourier transform together with the convolution theo-
rem show that (ii) is equivalent to (Fdf) ·

∑
λ∈Λ(Fdw

∗
λ) · (Fduλ) = Fdf for all f ∈ L2(Rd). Because

Fdw
∗
λ = [Fdwλ] this implies the desired equivalence.

In particular, Item (i) in Lemma 5 is satisfied if w is taken as the canonical dual convolutional
frame u+ := (u+λ)λ∈Λ which is defined by

∀λ ∈ Λ: Fdu
+
λ :=

Fduλ∑
µ∈Λ |Fduµ|

2 . (3.2)

In this case, Tu+ = T+
u is the Moore-Penrose inverse of the analysis operator Tu.

3.2 Convolution factorization

The following concept is central for this paper.

Definition 6 (Convolution factorization of the wave equation). Let Λ be an at most countable
index set and consider families u = (uλ)λ∈Λ ∈ (L2(Rd))Λ and v = (vλ)λ∈Λ ∈ (L2(R))Λ. We call
the pair (u,v) a convolution factorization for W if the following hold:

(CFD1) (uλ)λ∈Λ is a convolutional frame of L2(Rd),

(CFD2) (vλ)λ∈Λ is a convolutional frame of L2(R),

(CFD3) ∀f ∈ C∞c (Rd) : W(uλ ~x f) = vλ ~t (Wf).

Given a convolution factorization (u,v) for W and data g = Wf , the commutation relation (CFD3)
shows that it is su�cient to solve each equation Wfλ = vλ ~t g. These equations now involve
the unknowns fλ = uλ ~x f containing specific prior information that we can exploit for inver-
sion. Moreover, we will later show that the same identity holds for any spatial sampling scheme,
allowing its application to CSPAT. In [2] it is shown that W is injective when restricted to Lp(Rd)
with p ≤ 2d/(d− 1). Thus, if (u,v) is a convolution factorization and uλ~x f has su�cient decay,
then we have the reproduction formula

f =
∑
λ∈Λ

u∗λ ~x W
−1(vλ ~t (Wf)) (3.3)
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Indeed, the factorization identity (3.3) is the reason why we call a pair (u,v) satisfying (CFD1)-
(CFD3) a convolutional factorization.

As the main theoretical result, in this paper we construct explicit convolution factorizations for
the PAT forward operator. For that purpose, recall

R] v : Rd → R : x 7→


(−1)(d−1)/2
√
πd−1

((
1
2t

∂
∂t

)(d−1)/2
v
)
(‖x‖) for d odd

2(−1)(d−2)/2
√
πd

∫∞
‖x‖

( 1
2t

∂
∂t)

d/2
v(t)√

t2−‖x‖2
tdt for d even ,

and the dual version of the acoustical reciprocal principle v ~t (Wf) = W
(
(R] v)~x f

)
stated

in Proposition 2.

Theorem 7 (Construction of convolution factorizations). Let (vλ)λ∈Λ ∈ L2(R)Λ be a convolu-
tional frame consisting of even functions vλ with su�cient decay such that such that vλ ◦

√
| · | ∈

Cd(d−1)/2e(R) and let (v+λ)λ∈Λ be its canonical dual and set uλ := R] vλ.

(a) The pair ((uλ)λ∈Λ, (vλ)λ∈Λ) is a convolutional frame decomposition for W.

(b) The canonical dual of (uλ)λ∈Λ is given by (R] v+λ)λ∈Λ.

(c) For all f ∈ C∞c (Rd), the factors fλ = uλ ~x f satisfy

f =
∑
λ∈Λ

u+λ ∗ fλ , (3.4)

Wfλ = vλ ~t Wf . (3.5)

Hence any f ∈ C∞c (Rd) can be recovered from data Wf by first solving equation (3.5) for fλ
and then evaluating the series (3.4).

Proof. To show Item (a) we verify (CFD1)-(CFD3) from Definition 6. Item (CFD1) is satisfied because
(vλ)λ∈Λ ∈ L2(R)Λ is a convolutional frame according to the made assumptions. Item (CFD3)
follows from the acoustic reciprocal principle Proposition 1. It remains to verify Item (CFD2),
namely that the family (uλ)λ∈Λ ∈ L2(R)Λ is a convolutional frame. For that purpose, recall
that RR] vλ = vλ where R denotes the Radon transform of a radial function. According to
the Fourier slice theorem we have FdR

] vλ = F1vλ. Therefore
∑

λ∈Λ|FdR
] vλ|2 =

∑
λ∈Λ|F1vλ|2

which implies that (R] vλ)λ∈Λ is a convolutional frame according to Lemma 4. Moreover, we have
F1v

+
λ = F1vλ/

∑
λ∈Λ |F1vλ|2 and therefore

FdR
] v+λ = F1v

+
λ =

F1vλ∑
λ∈Λ |F1vλ|2

=
FdR

] vλ∑
λ∈Λ

∣∣FdR] vλ
∣∣2 ,

which shows that (R] v+λ)λ∈Λ is the canonical dual of (R] vλ)λ∈Λ which is Item (b). Finally, Item (c)
follows Items (a), (b) and the definitions of a CDF and a dual frame.
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Remark 8. In particular, Theorem 7 states that (u+λ)λ∈Λ is a convolutional frame, which implies
that

∑
λ∈Λ ‖u+λ ∗ fλ‖

2 is finite. This in turn shows that the series in (3.4) is absolutely convergent
in L2(Rd). Besides the condition that (vλ)λ∈Λ is a convolutional frame, this only requires that vλ
is contained in Cd(d−1)/2e(R) and has su�cient decay for every λ ∈ Λ. These conditions will be
fulfilled for the particular choices made in the numerical results.

3.3 Multiscale factorization

As shown in the previous subsection, a convolution factorization decomposes the original image
reconstruction problem into multiple reconstruction problems, one for every convolved initial
pressure uλ ~x f .The next basic idea is to take (uλ)λ∈Λ as a multiscale system to be able to take
sparsity into account.

For given u ∈ L2(Rd) ∩ L1(Rd) consider the scaled versions

uj : Rd → R : x 7→ 2jd u
(
2jx
)

for j ≥ 1 . (3.6)

According to the scaling property of the d-dimensional Fourier transform we have Fduj(ξ) =

Fdu(2−jξ). Assume that Fdu has essential support
{
ξ ∈ Rd | b0 ≤ ‖ξ‖ ≤ 2b0

}
, where b0 > 0 is the

essential bandwidth. Then, the Fourier transform Fduj has essential support
{
ξ ∈ Rd | 2j−1b0 ≤

‖ξ‖ ≤ 2jb0
}

. The union over all j ≥ 1 covers all frequencies except the low frequencies contained
in the ball B0 =

{
ξ ∈ Rd | ‖ξ‖ < b0

}
. In order to obtain a convolutional frame with reasonable

constants we therefore select another function u0 ∈ L2(Rd) such that Fdu0 covers frequencies
in b0.

Definition 9 (Multiscale convolution decomposition). Let u0, u ∈ L2(Rd) ∩ L1(Rd) and define uj
for j ≥ 1 by (3.6). We call the family (uj)j∈N a multiscale convolution decomposition in L2(Rd) if
it forms a convolutional frame. For f ∈ L2(Rd), we refer to u0 ~x f as the low-frequency factor
and to uj ~x f for j ≥ 1 as the high-frequency factor at scale j.

According to Lemma 4 and the scaling property of the Fourier transform, the family u = (uj)j∈N

is a multiscale decomposition if and only if there are constants A,B > 0 such that

A ≤
∑
j∈N
|Fduj(ξ)|2 ≤ B for almost every ξ ∈ Rd . (3.7)

Moreover, the canonical dual frame u+ = (u+j )j∈N of u is given by the Fourier representation
Fdu

+
j := Fduj/

∑
k∈N |Fduk|

2 for j ∈ N. In the one-dimensional case, we denote a multiscale
decomposition by (vj)j∈N.

Definition 10 (Multiscale factorization of the wave equation). We call a pair (u,v) a multiscale
factorization of W if (u,v) is a convolutional frame decomposition such that u = (uj)j∈N and
v = (vj)j∈N are multiscale decompositions in L2(Rd) and L2(R), respectively.
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From Theorem 7 we immediately get the following.

Theorem 11 (Construction of multiscale factorizations). Let v = (vj)j∈N be a multiscale decom-
position in L2(R) consisting of even functions with su�cient decay, let v+ be its canonical dual
and define u := (R] vj)j∈N. Then the following holds

(a) The pair (u,v) is a multiscale factorization for W.

(b) The canonical dual (u+j )j∈N of u has the Fourier representation

Fdu
+
j (ξ) =

F1vj(‖ξ‖)∑
j∈N |F1vj(‖ξ‖)|2

. (3.8)

(c) For all f ∈ C∞c (Rd) the factors fj := uj ~x f satisfy

f =
∑
j∈N

u+j ~x fj (3.9)

Wfj = vj ~t Wf . (3.10)

Hence any f ∈ L2(Rd) can be recovered from Wf by first solving (3.10) and then evaluating
the series (3.9).

Proof. Follows from Theorem 7.

Alternatively, we have the following result that avoids computing the canonical dual.

Corollary 12 (Multiscale reconstruction). Let (vj)j∈N ∈ (L2(R))N be a multiscale decomposition,
assume that vj are even functions in Cd(d−1)/2e(R) with su�cient decay and set uj := R] vj . Then,
for all f ∈ C∞c (Rd), the factors fj = uj ~x f satisfy

Φ~x f =
∑
j∈N

u∗j ~x fj (3.11)

Wfj = vj ~t Wf , (3.12)

with Φ := F−1
d

(∑
j∈N |Fduj |

2
)

.

Proof. Similar to the proof of Theorem 7.

Note that the series in (3.9) and (3.11) are both absolutely convergent in L2(Rd); see Remark 8.
From Corollary 12 it follows that any function f ∈ C∞c (Rd) can be recovered from data Wf by
means of the following consecutive steps:

� Solve equation (3.12) for fj ,

� Evaluate the series on the right hand side of (3.11),

11



� Solve the deconvolution problem (3.11) for f .

Since (vλ)λ∈Λ is a convolution frame, FdΦ is bounded away from zero and thus the deconvolution
problem (3.11) is stably solvable for the unknown f . Because the inversion of the wave equation
is likewise stable in the full data case, (3.12) can be stably solved for fj as well. However, in
the compressed sensing case, this is not the case and we have to incorporate additional prior
information to solve these equations.

From Theorem 11 we also conclude that the following reasonable strategy can be implemented
for CSPAT. Given wave data Wf = g can be divided into a low-frequency part v0 ~t g and a
high-frequency part

∑
j≥1 vj ~t g. For the low-frequency part, a standard reconstruction can

be employed without any need for regularization. The high-frequency part on the other hand
can be reconstructed using CS recovery algorithms. The final fusion is then performed using
the dual filters u+j . An advantage of approaches based on Theorem 11 or Corollary 12 is that they
directly lead to sparse elements, while the latter approach requires repeated application of frame
analysis and synthesis during iterative CS recovery algorithms.

Remark 13 (Examples for multiscale decompositions). Possible multiscale decompositions can be
constructed via a dyadic translation invariant wavelet frame, which names a convolutional frame
(ψj)j∈Z where ψj := 2jψ(2j( · )) for a so-called mother wavelet ψ : R → R. If we define vj := ψj

for j ≥ 1 and select v0 such that |F1v0|2 =
∑

j≤0 |F1ψj |2 we obtain a multiscale decomposition
(uj)j∈N. Alternatively, for the low resolution filter we can take any other function v0 such that
|F1v0|2+

∑
j≥1 |F1ψj |2 is bounded and away from zero by reasonable constants. Several examples

of dyadic translation invariant wavelet frames can be extracted from classical wavelet analysis
[11, 38].

Feasible multiscale decompositions can be constructed via a dyadic translation invariant wavelet
frame, which denotes a convolutional frame (ψj)j∈Z where ψj := 2jψ(2j( · )) is defined by a
so-called mother wavelet ψ : R → R. If we set vj := ψj for j ≥ 1 and choose v0 such that
|F1v0|2 =

∑
j≤0 |F1ψj |2 we obtain a multiscale decomposition (uj)j∈N. More precisely, [9, Theo-

rem 1] implies that if the family (2−j/2ψj( · − 2−jk))j,k∈Z is a wavelet frame of L2(R), then (uj)j∈Z

is a multiscale decomposition. Alternatively, for the low-resolution filter, we can take any other
function v0 such that |F1v0|2 +

∑
j≥1 |F1ψj |2 is bounded away from zero by a proper constant.

Numerous examples of dyadic translation-invariant wavelet frames can thus be extracted from
a classical wavelet analysis [11, 38]. Among many others, examples of the generating mother
wavelet ψ = v0 are the Mexican-Hat wavelet, the Shannon wavelet, the Spline wavelet or the
Meyer wavelet. For our numerical simulations, we use the Mexican-Hat wavelet as an arbitrary
choice.
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4 Application to compressed sensing PAT

In this section, we extend the multiscale factorization to the case of compressed sensing data in
PAT. We also derive a corresponding sparse recovery scheme.

4.1 Sampling the wave equation

In the implementation of any PAT setup, the acoustic data can only be acquired for a finite number
of sample points, which we denote by z` ∈ S for ` ∈ {1, . . . , n}. Note that we do not discretize
the temporal variable, since temporal samples can easily be recorded at a rate well above the
Nyquist sampling rate.

Definition 14 (Sampled PAT forward operator). Let W be the continuous PAT forward operator
defined in (2.4). For sampling points z1, . . . , zn ∈ S, we set

Sn : C∞(S × (0,∞))→ (C∞(0,∞))n : g 7→ (g(z`, · ))`=1,...,n (4.1)

Wn : C∞c (Rd)→ (C∞(0,∞))n : f 7→ SnWf = (Wf(z`, · ))`=1,...,n . (4.2)

We call Sn the regular sampling scheme and Wn = SnW the (regularly) sampled PAT forward
operator corresponding to the n-tuple (z`)`=1,...,n of spatial sampling points.

The fundamental question of classical sampling theory in the context of PAT is to find “simple”
and “reasonable” sets X to which the initial pressure belongs, and corresponding conditions on
the sampling points under which the sampled dataWnf uniquely and stably determine the initial
pressure distribution f ∈ X. For equidistant detectors located on the boundary of a circular disk
D ⊆ R2, explicit sampling conditions for PAT have been derived in [25]. Roughly speaking, these
results state that any function f ∈ C∞0 (D) whose Fourier transform f̂(ξ) is su�ciently small
for ‖ξ‖ ≥ b0, where b0 is the essential bandwidth, can be stably recovered from sampled PAT
data Wnf , provided that the sampling condition n ≥ 2R0b0 is satisfied (for a precise statement,
see [25]). Sampling theory for other tomographic inverse problems is treated, for example, in
[50, 31, 16, 13, 41, 42].

We have the impression that sampling theory in PAT has not yet received as much attention as
it would deserve. It is both of practical relevance and of mathematical interest. However, only
a few special cases exist in which it has actually been solved. Since the correct sampling of the
forward operator is, in a sense, the starting point of our compressive approach, we would like
to discuss this topic in some more detail here. To our knowledge, [25] is the earliest reference
explicitly dealing with the sampling of the PAT operator W. The analysis presented there applies
to the case where the measurement surface is a circle in 2D. The derivation closely follows the
presentation of the sampling theory for the 2D Radon transform in [40, Section III.3]. The main
step in this approach is to estimate the essential support of the 2D Fourier transform of Wf , see
[25, Theorem 6]. In particular, 2D sampling schemes based on classical Shannon sampling theory
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are derived. Using non-uniform sampling theory [37], one could derive non-uniform sampling
schemes from the support estimate. Such studies in the context of PAT would be an interesting
line of research. Furthermore, the extension of the approach to the case of general detection
surfaces as well as to higher dimensions seems to be interesting. We mention at this point a
recent work [39] along this line, based on microlocal analysis.

4.2 Compressive sampling

In order to reduce the number of detectors while maintaining spatial resolution, CSPAT has been
investigated in several works [5, 22, 26, 48, 49]. The basic idea is to use general linear measure-
ments of the form

yj = 〈aj ,Wn(f)〉 =

n∑
i=1

aj,i(Wn(f))i for j ∈ {1, . . . ,m} . (4.3)

Here aj are measurement vectors with entries aj,i, and Am,n := (aj,i)j,i ∈ Rm×n is the mea-
surement matrix. The term compressed sensing refers to the fact that the number of measure-
ments m is to be chosen much smaller than the number of initial sampling points n. Therefore,
y = Am,nWnf is a highly underdetermined linear system of equations and can only be solved
with additional information on the unknown to be recovered.

For a systematic treatment, we introduce the following notation.

Definition 15 (Generalized PAT sampling). For sampling points z1, . . . , zn ∈ S, measurement matrix
Am,n ∈ Rm×n and subspace X ⊆ C∞c (Rd) we call

(a) Am,nSn a generalized sampling scheme;

(b) Am,nWn = Am,nSnW CSPAT forward operator;

(c) Am,nSn a complete sampling scheme for X, if the restriction Am,nSnW|X is injective.

The results of [25] basically show that Sn provides a complete sampling scheme on the space V =

VR0,b0 of all functions supported in a disk of radius R0 and having a essential bandwidth b0 given
n ≥ 2R0b0 equally distributed sampling points. This implies that for any invertible matrix Am,n

the composition Am,nSn is also a complete sampling scheme on VR0,b0 . We are not aware of any
available results if the generalized sampling scheme cannot be written in the form BSm, where
Sm is a regular sampling scheme and B ∈ Rm×m is invertible. The question for which spaces
general sampling matrices provide complete sampling schemes seems to be an interesting line
of open research. Anyway, in this paper we study the case where Am,nWn is not injective on the
linear subspace X and develop a nonlinear reconstruction approach based on `1-minimization.
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4.3 Multiscale reconstruction for CSPAT

Let Wn = SnW be a regularly sampled PAT forward operator with sampling points z1, . . . , zn ∈ S.
We suppose that the regular sampling scheme Sn is complete for a subspace Xn ⊆ C∞c (Rd).
Moreover, let Am,n ∈ Rm×n be a measurement matrix with m < n such Am,nSn is not complete
on Xn. This means that Am,nWn is not injective on Xn and therefore cannot be uniquely inverted.
Our aim is to nevertheless to recover f ∈ Xn from data y = Am,nWnf by using suitable prior
information.

In the following, we describe how a multiscale factorization for the wave equation can be used
to recover the initial pressure from CSPAT data. The main ingredient of the approach is that
the factorizations of Theorem 11 and Corollary 12 for the full wave equation generalize to the
compressed sensing setup. We formulate here only one such extension based on Corollary 12
because we will use this version for the actual numerical implementation.

Proposition 16 (Multiscale CSPAT decomposition). Let (u,v) be a multiscale factorization of W
and set Φ := F−1

d

(∑
j∈N |Fduj |

2). For all f ∈ C∞c (Rd) the factors fj = uj ~x f satisfy

Φ~x f =
∑
j∈N

(R] vj) ∗ fj (4.4)

(Am,nWn)fj = vj ~t (Am,nWnf) . (4.5)

Proof. This follows from Corollary 12 by using that Am,nSn acts in the spatial variable and there-
fore commutes with the temporal convolution.

4.4 Proposed multiscale reconstruction

Consider the situation as stated in Subsection 4.3. Based on the factorization of Corollary 16, we
propose the following scheme for reconstructing an initial pressure from CSPAT data :

Algorithm 17 (Reconstruction of the initial pressure f from CSPAT data Am,nWnf ).

(S1) Solve equation (4.5) for fj as described below.

(S2) Evaluate the series on the right hand side of (4.4).

(S3) Solve the deconvolution problem (4.4) for f .

Since (vj)j∈N is a convolutional frame, FdΦ is bounded away from zero and therefore the decon-
volution problem (4.4) in step (S3) is stably solvable. However, since Am,nWn is not injective,
solving (4.5) in step (S1) requires the use of available prior information. The proposed solution
procedure is described in the following Remark 18.

Remark 18 (Solution of step (S1)). Reasonable prior information di�ers for the low-frequency
factor f0 and the high-frequency factors fj for j ≥ 1. Therefore, we recover the low-frequency
factor and the high-frequency factors in di�erent ways.
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� Low-frequency factor: Assuming that the low-frequency filter v0 has essential bandwidth
in b0, then low-frequency factor f0 = u0 ~x f also has essential bandwidth b0. This means
that the Fourier transform Fdf0(ξ) is su�ciently small for ‖ξ‖ ≥ b0. Therefore, classical
sampling theory in the context of PAT [25] suggests that m regular samples are su�cient to
recover f0 = u0 ~x f as solution of

min
h∈Xn

‖h‖2 such that Am,nWnh = y0 . (4.6)

We will use (4.6) when Am,n ∈ Rm×n is a either a subsampling matrix or random sensing
matrix.

� High-frequency factors: Under the assumption that the Fourier transform F1v(ω) is neg-
ligible in a suitable sense if |ω| is outside the interval [b0, 2b0], then the Fourier transforms
Fdu(ξ) of high-frequency factors are negligible outside the ring Dj :=

{
ξ ∈ Rd | 2j−1b0 ≤

‖ξ‖ ≤ 2jb0
}

. However, if we perform compressive sampling, then Am,nWn is not injective
on the space of all functions whose Fourier transform is essentially supported in Dj , and
therefore (4.4) cannot be uniquely inverted without additional prior information. As we can
observe from Figure 1.2, the high-frequency factors fj = uj ~x f are sparse in the spatial
domain. Therefore, in this work, we propose to use `1-minimizing solutions

min
h∈Xn

‖h‖1 such that Am,nWnh = yj . (4.7)

Here ‖h‖1 :=
∑

i∈Z2 |h(xi)| the `1-norm of h with discrete samples xi ∈ R2.

We can infer uniqueness of (4.7) based on recovery conditions of compressed sensing. Such
results also imply stable recovery in the case of approximately sparse signals and noisy data,
with (4.7) replaced by relaxed versions. The standard condition that guarantees stable recovery of
sparse signals is the restricted isometry property (RIP). The RIP guarantees uniform recovery of all
su�ciently sparse signals [7], which is unexpected for the specific sampling matrices considered
here, where compressive measurements are performed only in the spatial dimension. In such
a situation, we can resort to the results of [21], dealing with the reconstruction of individual
elements. A detailed error analysis for CSPAT with Algorithm 17 using (4.6) for the low resolution
factor and (4.7) for the high resolution factors is an interesting line of future research and beyond
the scope of this paper.

5 Numerical experiments

In this section, we present details on the implementation of the sparse reconstruction scheme
from CSPAT measurements presented in Section 4. In our numerical experiments, we consider
the two-dimensional case when the initial pressure is supported in the circular disk in R2 with
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radius 0.9 and the measurements are performed in the unit sphere S1. This situation occurs in
PAT with integrating line detectors [6, 19, 45].

Figure 5.1: Left: Initial pressure on a square grid of side length 2. The detectors are equidistantly
distributed on the black circle. Right: Full data.

5.1 Numerical implementation

For all presented numerical implementations, we represent f by its discrete values (f(xi))i on a
Cartesian grid of side length 2 at nodes xi = i 2/Nx for i in{−Nx/2, . . . , Nx/2−1}2 withNx = 100.
The space Xn is taken as the space of all piecewise bilinear functions with nodes at xi whose
values vanish outside the disk of radius 0.9. We implement Wn and Am,n with n = 300 and
m = 75 as described below. We assume that f is sampled at the Nyquist rate such that the
maximal Bandwidth is given by Ω := Nx(π/2). Note that the fully sampled PAT forward operator
Wn satisfies the classical sampling conditions. The measurement matrix Am,n corresponds to a
subsampling factor of 4.

� Sampled PAT forward operator and adjoint: The discretization of Wn is based on the
Fourier representation Fd p(ξ, t) = cos(‖ξ‖ t)Fdf(ξ) for the solution of the wave equation
(2.1)-(2.3). For the numerical computations, we replace the Fourier transform by the discrete
Fourier transform on the square grid of side length 4 with spatial nodes xi = i 2/Nx for
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i ∈ {−Nx, . . . , Nx − 1}2 and frequency nodes ξk = kΩ/Nx for k ∈ {−Nx, . . . , Nx − 1}2.
Here, the bandwidth Ω and the spatial sampling step size 2/Nx satisfy the Nyquist condition
2/Nx = π/Ω and the larger numerical domain [−2, 2]× [−2, 2] is chosen to avoid boundary
e�ects. We then define the discrete fully sampled PAT forward operator Wn by nearest
neighbor interpolation at the detector locations. The adjoint W∗

n is numerically computed
using the backprojection algorithm described in [6].

� Multiscale filters: The high-frequency filters vj for≥ 1 are chosen as Mexican Hat wavelets

vj(t) := 8 · 2j(1− (2j8t)2) exp

(
−(8 · 2jt)2

2

)
and the corresponding low-frequency temporal filter v0 is taken as the Gaussian kernel
v0(t) := 8 exp(−(8t)2/2). The width of the filter v0 has been chosen such that v0 ~x f can
be recovered from n = 75 samples according to classical sampling theory. For the high-
frequency components vj~x f with j ≥ 1 this is not the case, and therefore we use sparsity
as outlined in Section 4. The spatial filters uj = R] vj are computed analytically by eval-
uating (2.7) with d = 2 and v = vj . For j ≥ 2, the essential support vj lies outside the
considered frequency regime [−Ω,Ω] and therefore we restrict to the three filters v0, v1, v2

for the numerical simulations. All temporal and spatial convolutions are replaced by dis-
crete convolutions computed via the discrete Fourier transform.

� Measurement matrix: For the measurement matrix Am,n ∈ Rm×n we consider two choices.
First, we takeAm,n as uniform subsampling matrix which has entries aj,i = 1 if j = 4(i−1)+1

and aj,i = 0 otherwise. Second we take Am,n as Gaussian random matrix where each entry
aj,i is the realization of an independent Gaussian random variables with zero mean.

The initial pressure used for the numerical simulations, the corresponding fully sampled data as
well as the subsampled and the Gaussian measurement data are shown in Figure 5.1. The filtered
data for the subsampling scheme are shown in the left column of Figure 5.2 and the filtered data
for the Gaussian measurements are shown in the left column of Figure 5.3.

5.2 Reconstruction results

Following the strategy proposed in Section 4 (see Algorithm 17 and Remark 18), we recover the
initial phantom via the following three steps:

� First recover the factors uj ~x f from data yj = vj ~x (Am,nWnf). For that purpose, we use
the Landweber iteration for recovering the low-frequency factor u0 ~x f and the iterative
soft thresholding algorithm

∀k ∈ N : hk+1 = softsλ

(
hk − sW∗

nA
∗
m,n

(
Am,nWnh

k − yj
))
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Figure 5.2: Left: The convolved data yj = vj ~t (Am,nWnf) for j = 0, 1, 2 where Am,n is the sub-
sampling matrix with subsampling factor 4. Right. Corresponding reconstructions of convolved
initial pressure uj ~x f using the Landweber method (for j = 0) and iterative soft thresholding
(for j = 1, 2).

for recovering the sparse high-frequency factors u1~xf , u2~xf . Here softsλ f = sign(f) max{|f |−
sλ, 0} is the soft thresholding operation, s is the step size and λ is the regularization pa-
rameter.

� Second we evaluate fconv :=
∑2

j=0 u
∗
j ~x fj .

� As final reconstruction step we recover an approximation to f by deconvolution fconv with
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Figure 5.3: Left: The convolved data yj = vj~t (Am,nWnf) for j = 0, 1, 2 where Am,n is a Gaussian
random matrix with subsampling factor 4. Right. Corresponding reconstructions of convolved
initial pressure uj ~x f using the Landweber method (for j = 0) and iterative soft thresholding
(for j = 1, 2).

kernel Φ = F−1
d

∑2
j=0 |Fduj |

2. In this work we again use the iterative soft thresholding
algorithm for implementing the deconvolution.

The reconstructions of the convolved phantoms from the undersampled measurements are shown
in the right column in Figure 5.2 and those for the Gaussian measurements are shown in the right
column in Figure 5.3. The right column in Figure 5.4 shows the resulting reconstructions from un-
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Figure 5.4: Top: Reconstruction from sparse measurements y = Am,nWnf with subsampling
factor 4 using standard `1-minimization (left) and the proposed algorithm (right). Bottom: Same
for Gaussian measurements.

dersampled measurements and Gaussian measurements. The left column in Figure 5.4 shows the
corresponding reconstructions using standard `1-minimization using iterative soft thresholding
without the proposed multiscale sparsifying transforms. The relative `2 reconstruction errors
are 0.17 (sparse sampling) and 0.19 (Gaussian measurements) for the proposed method and 0.22

(both cases) for the standard `1-minimization. It is worth noting that the high-resolution pattern
is significantly better reconstructed for the proposed multiscale approach than for the standard
`1-minimization.

6 Conclusion

In this paper, we have derived multiscale factorizations of the wave equation. We have ap-
plied the multiscale factorization to CSPAT, where reconstructions are obtained from only a few
compressed-sensing measurements consisting of linear combinations of signals recorded by in-
dividual detectors. We have presented a novel multiscale reconstruction approach that utilizes
the acoustic reciprocity principle to achieve a multiscale decomposition of the desired output
pressure through application of a family of operators acting on acoustic data in the time do-
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main. In this way, sparsity of the desired initial pressure distribution is introduced for the high-
frequency scales. Our numerical results show that the proposed method improves the recon-
structions in the case of compressed sensing measurements.

In future work, we will improve and analyze the reconstruction algorithm associated to the multi-
scale factorization. In particular, we analyze the theoretical conditions for unique recovery. Other
interesting lines of future research is the extension of the proposed method to PAT with variable
sound speed as well as other tomographic image reconstruction modalities. During finalization of
the manuscript we found that in the context of Radon inversion with filtered backprojection, re-
lated multiscale factorizations have been proposed in [46, 10]. The combination of such results
with compressed sensing and more advanced reconstruction techniques seems an interesting
line of research.

In future work, we will improve and analyze the reconstruction algorithm associated with multi-
scale factorization. In particular, we will analyze the theoretical conditions for unique and stable
recovery. Other interesting directions of future research is the extension of the proposed method
to PAT with variable speed of sound as well as to other tomographic image reconstruction modal-
ities. During the finalization of the manuscript, we found that related multiscale factorizations
have been proposed in the context of Radon inversion with filtered backprojection ([46, 10]).
Combining such results with compressed sensing and more advanced reconstruction techniques
seems to be an interesting direction of further research.

A Proof of Proposition 2

According to Proposition 1 it is su�cient to show that R] v is a solution of the equation v = Ru.
Recalling the definition of R in (2.5) this amounts in showing that R] v = ū ◦ ‖ · ‖ satisfies the
integral equation v(t) = ωd−2

∫∞
|t| sū(s)(s2 − t2)(d−3)/2ds for t ∈ R. We note that (θ, t) 7→ Ru(t) is

the Radon transform of the radially symmetric function u. Therefore, there is exactly one radial
function satisfying the above integral equation. An explicit expression for the solution has been
given in [12]. Using elementary computation, a formula has been derived in [40, p. 23]. By slight
modification we obtain the following results.

Lemma 19. The solution u = ū ◦ ‖ · ‖ of the equation v = Ru is given by

∀r > 0: ū(r) :=
2 (−1)d−1

π(d−1)/2Γ((d− 1)/2)
Dd−1
r

∫ ∞
r

(t2 − r2)(d−3)/2v(t) t dt . (A.1)

Proof. In [40, p. 23] the identity Dd−1
r

∫∞
r (t2 − r2)(d−3)/2v(t)tdt = 2−1(−1)d−1ωd−2c(d)(d− 2)!ū(r)

has been derived with c(d) := 21−d ∫ 1
−1(1 − s2)(d−3)/2ds. Together with the identities ωd−2 =

2π(d−1)/2/Γ((d − 1)/2) and c(d) = 21−dπ1/2Γ ((d− 1)/2) /Γ(d/2) as well as Γ (d/2) Γ ((d− 1)/2) =

22−dπ1/2 (d− 2)! this yields the explicit solution formula (A.1).
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It remains to bring the right hand side of Equation (A.1) into the desired form. We do this sepa-
rately for the even-dimensional and the odd-dimensional case.

� If d is odd, we have

D(d−1)/2
r DrD

(d−3)/2
r

∫ ∞
r

(t2 − r2)(d−3)/2v(t) tdt

= (−1)(d−3)/2 ((d− 3)/2)!D(d−1)/2
r Dr

∫ ∞
r

v(t) t dt

= (−1)(d−1)/2 ((d− 3)/2)!

2
D(d−1)/2
r v(r) .

Together with Lemma 19, this gives (2.7) for d odd.

� If d is even, we first compute

Dr

∫ ∞
r

v(t)√
t2 − r2

tdt

= Dr

∫ ∞
r

(
∂t
√
t2 − r2

)
φ(t)dt

= −Dr

∫ ∞
r

√
t2 − r2

(
∂tφ(t)

)
dt

=

∫ ∞
r

1

2

1√
t2 − r2

(∂sφ(t))dt

=

∫ ∞
r

Dtφ(t)√
t2 − r2

tdt . (A.2)

Therefore

Dd/2
r D(d−2)/2

r

∫ ∞
r

(t2 − r2)(d−3)/2v(t) t dt

= (−1)(d−2)/2Γ((d− 1)/2)Dd/2
r

∫ ∞
r

(t2 − r2)−1/2 v(t) tdt

= (−1)(d−2)/2Γ((d− 1)/2)

∫ ∞
r

(
1
2t

∂
∂t

)d/2
v(t)

√
t2 − r2

t dt ,

where the last equality follows after (d/2)-times applying equality (A.2). This gives (2.7) for
d even.
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