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ERGODICITY OF SUBLINEAR MARKOVIAN SEMIGROUPS\ast 

CHUNRONG FENG\dagger AND HUAIZHONG ZHAO\ddagger 

Abstract. In this paper, we study the ergodicity of an invariant sublinear expectation of
sublinear Markovian semigroups. For this, we first develop an ergodic theory of an expectation
preserving map on a sublinear expectation space. Ergodicity is defined as any invariant set in which
either itself or its complement has 0 capacity. We prove, under a general sublinear expectation space
setting, the equivalent relation between ergodicity and the corresponding transformation operator
having simple eigenvalue 1, and also with Birkhoff-type strong law of large numbers if the sublinear
expectation is regular. For a sublinear Markov process, we prove that its ergodicity is equivalent to
the Markovian semigroup having eigenvalue 1, and the eigenvalue is simple in the space of bounded
measurable functions. As an example we show that G-Brownian motion \{ Bt\} t\geq 0 on the unit circle
has an invariant expectation and is ergodic if and only if \BbbE ( - (B1)2) < 0. Moreover, it is also proved
in this case that the invariant expectation is regular and the canonical stationary process has no
mean-uncertainty under the invariant expectation.
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Brownian motion, mean-uncertainty, fully nonlinear PDEs

AMS subject classifications. 60H10, 60J65, 37H05, 37A30

DOI. 10.1137/20M1356518

1. Introduction. Let (\Omega ,\scrF , P ) be a probability space. The measure theoretical
ergodic theory deals with a measure preserving map \theta : (\Omega ,\scrF ) \rightarrow (\Omega ,\scrF ) such that
\theta P = P . Recall that the measurable dynamical system \{ \theta n\} n\in \BbbN on (\Omega ,\scrF , P ) is
called ergodic if any invariant set A \in \scrF , i.e., \theta  - 1A = A, has either full measure
or zero measure. Ergodicity describes the indecomposable property of the system
(cf. Walters [41]). The well-known result of Birkhoff's theorem says that a dynamical
system is ergodic if and only if, in the long run, the time average of a function along
its trajectory is the same as the spatial average on the entire space with respect to
the stationary measure (Birkhoff [2], von Neumann [39, 40]).

Due to the spreading nature of random forcing, ergodicity is an important common
feature of stochastic systems. It has aroused enormous interests of mathematicians
(cf. Da Prato and Zabczyk [8], Durrett [12], Feng and Zhao [21]). For a Markovian ran-
dom dynamical system, it is well known that 1 is a simple eigenvalue of the Markovian
semigroup if and only if the stochastic system is ergodic, and is a unique eigenvalue
on the unit circle and is simple if and only if the stochastic system is weakly mixing.
The latter statement is equivalent to the Koopman--von Neumann theorem. Recently,
the ergodic theory for periodic measures was obtained, in which it was proved that
the Markovian semigroup has eigenvalues, \{ ei 2m\pi 

\tau t\} m\in \BbbZ for a \tau > 0, on the unit circle
apart from the eigenvalue 1 (Feng and Zhao [21]). Moreover, invariant measures of
quasi-periodic stochastic systems were observed in Feng, Qu, and Zhao [19].
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ERGODICITY OF SUBLINEAR MARKOVIAN SEMIGROUPS 5647

On a completely different topic, the concept of sublinear expectation is central
in probability and statistics under uncertainty, measures of risk, and superhedging in
finance (Artzner et al. [1], Chen and Epstein [6], El Karoui, Peng, and Quenez [15],
Follmer and Schied [23]). A coherent risk measure, which is defined as a real-valued
(monetary value) functional with properties of constant preserving (cash invariance),
monotonicity, convexity, and positive homogeneity, is equivalent to a sublinear ex-
pectation. A systematic stochastic analysis of nonlinear/sublinear expectation and
G-Brownian motion has been given in the substantial work of Peng [34, 35, 36].

It is clear now that the corresponding partial differential equations (PDEs) of
G-diffusions are fully nonlinear parabolic PDEs. They provide us with the Markovian
semigroup of G-diffusion processes (Peng [34, 35, 36]). It is noted that fully nonlinear
PDEs have been intensively studied in literature, e.g., in Cafarelli and Cabre [3],
Krylov [30, 31], and Lions [32, 33]. More recently, the viscosity solution of path-
dependent fully nonlinear PDEs has been of great interest (Ekren, Touzi, and Zhang
[13, 14], Peng [37]). However, study of the dynamical properties of long time behavior
of G-diffusion processes is still missing. In this context, an ergodic theory under
the sublinear expectation setting will be key to this study. Our results will give the
invariant properties, equilibrium, and statistical property of the stochastic systems
under uncertainty.

It is worth noting that economists have already observed ``nonlinearities"" in the
behavior of real-world trading in financial markets due to heterogeneity of expectation-
formation processes (Cutler, Poterba, and Summers [7], De Long et al. [10], Frankel
and Froot [24], Greenwood and Shleifer [26], Williams [42]). Potentially biased beliefs
of future price movements drive the decision of stock-market participants and create
ambiguous volatility. Using sublinear expectations and G-Brownian motions to model
ambiguity has been attempted in the mathematical finance literature; see, e.g., Chen
and Epstein [6] and Epstein and Ji [17].

In this paper, we will go beyond the measure space framework to study an ergodic
theory in a nonlinear functional setting. The lack of the dominated convergence and
the Riesz representation adds a lot of difficulty to the analysis. But the topology
of a sublinear expectation space is still rich enough for us to define the ergodicity.
We will establish its equivalence with the indecomposable property and characteri-
zation in terms of spectrum of transformation operators. We will prove the law of
large numbers (LLN) also implies ergodicity, but the converse holds under a regularity
assumption. This setup is a natural framework for the ergodicity of invariant expecta-
tion of continuous time sublinear Markovian semigroups such as that of G-diffusions.

It is noted here that the convergence of the LLN we study in this paper is in
the pathwise sense quasi-surely. Convergence of the LLN in the sense of distribution
was obtained by Peng [36] for independent and identically distributed (i.i.d.) random
variable sequences. But an i.i.d. random variable sequence may not be stationary in
nonadditive probability settings (Feng, Wu, and Zhao [20]). On the other hand, in
our theory the independence assumption is not needed. Thus the LLN in the ergodic
sense we study here and Peng's LLN for i.i.d. random variable sequences have different
conclusions under different assumptions.

We study Markovian stochastic dynamical systems with noise over a sublinear
expectation space. A canonical sublinear expectation space with an expectation pre-
serving map is constructed from an invariant expectation by the nonlinear Kolmogorov
extension theorem onto the lifted path space. There is a natural expectation preserv-
ing dynamical system on the canonical sublinear expectation space. The ergodicity
of the stochastic system is then given by that of the canonical system. Its equivalence
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5648 CHUNRONG FENG AND HUAIZHONG ZHAO

with a spectral property of the Markovian semigroup is also established.
As an example we show that the G-Brownian motion Bt =

\surd 
t\xi on the unit circle,

where \xi has normal distribution N(0, [\sigma 2, \=\sigma 2]), has an ergodic invariant expectation
if and only if \sigma 2 > 0. Moreover, the invariant expectation and its extension on the
canonical path space are regular, so a Birkhoff-type LLN holds. It is also noted that
the canonical stationary process, which is the process corresponding to the large time
behavior, has no mean-uncertainty under the invariant expectation.

This paper is the first paper to study the ergodic theory on a sublinear expectation
space. This study is very general in order to include both discrete time and continuous
time cases. Extending ideas of this paper on the discrete time case, ergodicity for
capacity---especially upper probability---has been obtained in Feng, Wu, and Zhao
[20]. Inspired by this work, the ergodicity of upper expectations generated from
periodic measures has also been obtained (Feng, Qu, and Zhao [18]).

2. Dynamical systems on sublinear expectation spaces and ergodicity.
We first briefly recall the concept of sublinear expectation for convenience. Let (\Omega ,\scrF )
be a measurable space, and let \scrD be the linear space of all \scrF -measurable real-valued
functions. In particular, the indicator functions of any \scrF -measurable sets which will
be used in this paper are included in \scrD .

Definition 2.1 (cf. Peng [36]). A sublinear expectation \BbbE is a functional \BbbE : \scrD \rightarrow 
\BbbR satisfying

(i) monotonicity:

\BbbE [X] \geq \BbbE [Y ] if X \geq Y ;

(ii) constant preserving:

\BbbE [c] = c for c \in \BbbR ;

(iii) subadditivity: for each X,Y \in \scrD ,

\BbbE [X + Y ] \leq \BbbE [X] + \BbbE [Y ];

(iv) positive homogeneity:

\BbbE [\lambda X] = \lambda \BbbE [X] for \lambda \geq 0.

The triple (\Omega ,\scrD ,\BbbE ) is called a sublinear expectation space.

The ergodicity concept in the sublinear situation is very subtle due to the absence
of the linearity for functionals. The essence of the ergodicity is indecomposibility of
dynamical systems. However, unlike in the classical ergodic theory, a set A satisfying
\BbbE IA = 1 does not imply \BbbE IAc = 0 as the sublinear expectation \BbbE only satisfies

\BbbE IA + \BbbE IAc \geq 1.(2.1)

In fact it is quite possible that \BbbE IA = 1 and \BbbE IAc = 1. As a consequence, it is not
viable to extend the classical definition of ergodicity, which says that any invariant
set A has either probability 0 or 1 to \BbbE IA = 0 or 1 in the sublinear case.

The nonadditivity also creates a lot of technical difficulty in the analysis of its
dynamics due to the lack of many important analysis tools such as dominated con-
vergence and the Riesz representation. But the topology of a sublinear expectation
space is still rich enough for us to define the ergodicity in which the indecomposibility
is the most important property to survive. This is in line with the classical definition

D
ow

nl
oa

de
d 

10
/0

7/
21

 to
 1

29
.2

34
.0

.2
11

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERGODICITY OF SUBLINEAR MARKOVIAN SEMIGROUPS 5649

in measure theoretical ergodic theory. We observe that three different forms of er-
godicity in terms of invariant sets, spectrum of transformation operators, and strong
LLN are still equivalent under the sublinear expectation setting with slightly stronger
functionals satisfying the regularity given below. Without assuming conditions (iii)
and (iv) in Definition 2.1, it is still not clear how one can define ergodicity in line
with indecomposibility.

The representation result (Artzner et al. [1], Delbaen [9], Follmer and Schied [22])
says that there exists a family of linear expectations \{ E\theta : \theta \in \Theta \} defined on \scrD such
that

\BbbE [X] = sup
\theta \in \Theta 

E\theta [X].

If it is assumed further that
(2.2)
\BbbE [Xi] \rightarrow 0 for each sequence of measurable functions such that Xi(\omega ) \downarrow 0 for each \omega ,

by the Daniell--Stone theorem, the following representation as upper integrals holds:
there exists a family of \sigma -additive probability measures \scrP on (\Omega ,\scrF ) such that

\BbbE [X] = sup
P\in \scrP 

EP [X].(2.3)

The representation as upper integrals is not essential to proceed with our theory.
We only need this in the proof of the LLN from the ergodicity. We introduce the
regularity of the following form.

Definition 2.2. The functional \BbbE [\cdot ] is said to be regular if, for any An \in \scrF ,
An \downarrow \emptyset , we have \BbbE [IAn

] \downarrow 0.

Remark 2.3. (i) Definition 2.2 is equivalent to saying that if, for any An \in \scrF ,
An \downarrow A and \BbbE IA = 0, we have \BbbE [IAn ] \downarrow 0. This can be seen from

| \BbbE [IAn ] - \BbbE [IA]| \leq \BbbE [IAn\setminus A].

(ii) A similar condition to that of Definition 2.2 in the capacity setting was also
used in the literature; see, e.g., Cerreia-Vioglio, Maccheroni, and Marinacci [4], where
this was called continuous.

(iii) In Lemma 4.1 and Proposition 4.5, we will prove that the semigroup and the
invariant expectation for G-Brownian motion on S1 are regular.

(iv) The main results of this section are the relationships of ergodicity (E), the
simpleness of eigenvalue 1 of the transformation operator Ut on the bounded and
measurable function space (SE), and the law of large numbers (LLN). We prove (E)
\Leftarrow \Rightarrow (SE) \Leftarrow (LLN) without the regular condition, which is needed only in the proof
of (E) \Rightarrow (LLN).

Now we introduce a measurable transformation \theta : \Omega \rightarrow \Omega that preserves the
sublinear expectation \BbbE , i.e.,

\theta \BbbE = \BbbE .(2.4)

Here \theta \BbbE is defined as

\theta \BbbE [X(\cdot )] = \BbbE [X(\theta \cdot )] for any X \in \scrD .

Set the transformation operator U1 : \scrD \rightarrow \scrD by

U1\xi (\omega ) = \xi (\theta \omega ), \xi \in \scrD .
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5650 CHUNRONG FENG AND HUAIZHONG ZHAO

Then expectation preserving of \theta is equivalent to

\BbbE [U1\xi ] = \BbbE [\xi ] for any \xi \in \scrD .

Define \theta n = \theta \circ \theta \circ \cdot \cdot \cdot \circ \theta , n \in \BbbN . Then \{ \theta n\} n\in \BbbN forms a family of measurable
transformations from (\Omega ,\scrF ) to itself and satisfies the expectation preserving property
and the semigroup property:

\theta m+n = \theta m \circ \theta n for n,m \in \BbbN .(2.5)

Thus \{ \theta n\} n\in \BbbN is a dynamical system on (\Omega ,\scrD ,\BbbE ) and preserves the sublinear expec-
tation. In the following S = (\Omega ,\scrD ,\BbbE , \{ \theta n\} n\in \BbbN ) denotes the dynamical system.

We say that a statement holds quasi-surely if it is true for all \omega \in \Omega \setminus A for a set
A with \BbbE [IA] = 0 and v-almost surely (v-a.s.) if it is true for all \omega \in \Omega \setminus A for a set
A with \BbbE [ - IA] = 0.

If a set B \in \scrF satisfies

\theta  - 1B = B,(2.6)

then we say the set B is invariant with respect to the transformation \theta . First we
prove the following result.

Theorem 2.4. If \theta : \Omega \rightarrow \Omega is a measurable expectation preserving transforma-
tion of the sublinear expectation space (\Omega ,\scrD ,\BbbE ), then the statements

(i) any invariant measurable set B \in \scrF with respect to \theta satisfies either \BbbE IB = 0
or \BbbE IBc = 0;

(ii) if B \in \scrF and \BbbE I\theta  - 1B\bigtriangleup B = 0, then either \BbbE IB = 0 or \BbbE IBc = 0;
(iii) for every A \in \scrF with \BbbE IA > 0, we have \BbbE I(\bigcup \infty 

n=1 \theta  - nA)c = 0;

(iv) for every A,B \in \scrF with \BbbE IA > 0 and \BbbE IB > 0, there exists n \in \BbbN + such that
\BbbE I(\theta  - nA\cap B) > 0,

have the following relations: (i) and (ii) are equivalent; (iii) implies (iv); (iv) im-
plies (i). Moreover, if \BbbE is regular, then (ii) implies (iii) and all four statements are
equivalent.

In (ii) above, \cdot \bigtriangleup \cdot means the symmetric difference. The proof of this theorem is
postponed to the appendix. The result is similar to that in classical ergodic theory,
but it needs to deal with issues due to the lack of additivity of probability. It is crucial
to establish relations of these four statements, especially their equivalence when \BbbE is
regular under the sublinear expectation setting. We will see that the combination
of sublinearity and statement (i) enables us to establish the ergodic theory. We now
discuss statement (i) more closely. Note that if the set B is invariant, then it is easy
to see that \theta  - 1(Bc) = Bc. Thus in the case that 0 < \BbbE IB \leq 1 and 0 < \BbbE IBc \leq 1,
we could study \theta by studying two simpler transformations \theta | B and \theta | Bc separately.
On the contrary, if \BbbE IB = 0 and \BbbE IBc = 1, we only need to study \theta | Bc . Similarly,
if \BbbE IB = 1 and \BbbE IBc = 0, we only need to study \theta | B . In the latter two cases, the
transformation is indecomposable. However, it is noted that \BbbE IB = 0 implies \BbbE IBc = 1
and \BbbE IBc = 0 implies \BbbE IB = 1. With the above observations, we give the following
definition.

Definition 2.5. Let (\Omega ,\scrD ,\BbbE ) be a sublinear expectation space. An expectation
preserving transformation \theta of (\Omega ,\scrD ,\BbbE ) is called ergodic if any invariant measurable
set B \in \scrF satisfies either \BbbE IB = 0 or \BbbE IBc = 0.
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Theorem 2.6. If (\Omega ,\scrD ,\BbbE ) is a sublinear expectation space and the measurable
map \theta : \Omega \rightarrow \Omega is expectation preserving, then the following statements are equivalent:

(i) The map \theta is ergodic.
(ii) Whenever \xi : \Omega \rightarrow \BbbR (or \BbbC ) is measurable, bounded quasi-surely, and U1\xi =

\xi , then \xi is constant quasi-surely.
If \BbbE is regular, then (i) and (ii) are equivalent to statement (iii).

(iii) Whenever \xi : \Omega \rightarrow \BbbR (or \BbbC ) is measurable and U1\xi = \xi quasi-surely, then \xi 
is constant quasi-surely.

Proof. It is trivial to see that (iii)\Rightarrow (ii).
(ii)\Rightarrow (i) Consider A \in \scrF as an invariant set. Note that IA is bounded measurable

and satisfies U1IA = IA quasi-surely. Thus IA is constant quasi-surely. So IA = 0 or
1. If IA = 0 quasi-surely, then \BbbE IA = 0. If IA = 1 quasi-surely, then IAc = 1 - IA = 0
quasi-surely, so \BbbE IAc = 0. That is to say either \BbbE IA = 0 or \BbbE IAc = 0. Thus \theta is
ergodic.

(i)\Rightarrow (iii) Now we assume \BbbE is regular. Let \theta be ergodic, let \xi be measurable, and
let U1\xi = \xi quasi-surely. We assume \xi to be real-valued since if \xi is complex-valued,
then we can consider the real and imaginary parts separately. We will prove \xi is a
constant. For a number \alpha \in \BbbR , define A\alpha = \{ \omega : \xi (\omega ) > \alpha \} and Ac

\alpha = \{ \omega : \xi (\omega ) \leq \alpha \} .
Note that \xi (\theta \omega ) = \xi (\omega ) quasi-surely and (\theta  - 1A\alpha ) \bigtriangleup A\alpha \subset \{ \omega : \xi (\theta \omega ) \not = \xi (\omega )\} , and
we have \BbbE I(\theta  - 1A\alpha )\bigtriangleup A\alpha 

= 0. By assumption that \theta is ergodic and by Theorem 2.4, we
know that \BbbE [IA\alpha 

] = 0 or \BbbE [IAc
\alpha 
] = 0. Thus \BbbE [IA\alpha 

] = 0 or 1. Let J := \{ \alpha : \BbbE [IA\alpha 
] = 0\} .

By the regular property of \BbbE , we have

0 = \BbbE [I\{ \omega :\xi (\omega )=\infty \} ] = \BbbE [I\cap \infty 
n=1An

] = lim
n\rightarrow \infty 

\BbbE [IAn
].

Thus there exists n \in \BbbN such that \BbbE [IAn
] = 0, that is, n \in J , which implies J \not = \emptyset .

So set \alpha \ast = inf J and immediately \alpha \ast \in J by monotone (increasing) convergence
of sublinear expectation. Hence for any \alpha > \alpha \ast , we have \BbbE [IA\alpha ] = 0, and for any
\alpha < \alpha \ast , we have \BbbE [IA\alpha 

] = 1 and \BbbE [IAc
\alpha 
] = 0 by ergodicity. By monotone (increasing)

convergence of sublinear expectation again, we have \BbbE [I\{ \omega : \xi (\omega )<\alpha \ast \} ] = 0. Combining
\BbbE [I\{ \omega : \xi (\omega )>\alpha \ast \} ] = 0 and the subadditivity of \BbbE , we have \BbbE [I\{ \omega : \xi (\omega )\not =\alpha \ast \} ] = 0. Thus \xi 
is constant quasi-surely.

From the proof (i)\Rightarrow (iii), we can see that the regular assumption is used to prove
J \not = \emptyset . But if \xi is bounded quasi-surely, this is true automatically. So we do not need
the regular assumption to obtain the equivalence of (i) and (ii).

We now give the definition of the strong law of large numbers (SLLN).

Definition 2.7. A dynamical system S = \{ \Omega ,\scrF ,\BbbE , (\theta n)n\in \BbbN \} is said to satisfy
the strong law of large numbers (SLLN) if, for any bounded measurable function \xi ,
there exists a constant c such that

lim
N\rightarrow \infty 

1

N

N - 1\sum 
n=0

\xi (\theta n\omega ) = c quasi-surely.(2.7)

Remark 2.8. (i) The SLLN in general may have random limit. But here we are
interested in the relationship between the SLLN and ergodicity. So in this paper, we
define the SLLN in a strong sense in which the limit is constant.

(ii) In fact, it will be shown that the ergodicity and the SLLN are equivalent if \BbbE 
is regular. Without the regularity assumption, the SLLN still implies ergodicity, but
it is not clear whether the converse is true. Thus, unlike the classical case, the SLLN
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5652 CHUNRONG FENG AND HUAIZHONG ZHAO

may not be used as the definition of the ergodicity of the dynamical system \{ \theta n\} n\in \BbbN 
unless it is regular.

Let Lb(\scrF ) be the space of all \scrF -measurable real-valued functions such that
sup\omega \in \Omega | X(\omega )| < \infty . Since U11 = 1 by definition of U1, it is obvious that 1 is an
eigenvalue of U1 : Lb \rightarrow Lb. The following result is almost obvious, but fundamental.

Theorem 2.9. If S satisfies the SLLN, then the eigenvalue 1 of U1 on Lb is
simple and \^\theta is ergodic.

Proof. Consider \xi satisfying
U1\xi = \xi ,

and \xi is a bounded measurable random variable. Thus by the SLLN assumption,
we have that \xi is constant quasi-surely. Therefore the eigenvalue 1 of U1 is simple.
Finally, by Theorem 2.6, \theta is ergodic.

We now investigate the converse part of Theorem 2.9. For this we study the
Birkhoff ergodic theorem under sublinear expectation. Before doing this, we need the
following lemma. The expectation preserving property of \theta is not required in Lemmas
2.10 and 2.12.

Lemma 2.10 (maximal ergodic lemma). Let \xi \in L1(\Omega ), \xi j(\omega ) = \xi (\theta j\omega ), and
S0 = 0,

Sk(\omega ) = \xi 0(\omega ) + \cdot \cdot \cdot + \xi k - 1(\omega ) for k \geq 1,(2.8)

Mk(\omega ) = max
0\leq j\leq k

Sj(\omega ).(2.9)

Then for k \geq 1,
\BbbE [\xi I\{ Mk(\omega )>0\} ] \geq 0.

Proof. The proof is similar to that in the case of linear expectation given by
Garsia [25], and so is omitted here.

We say that a random variable \xi has no mean-uncertainty under \BbbE if \BbbE [\xi ] =
 - \BbbE [ - \xi ]. Define the space for some p \geq 1, Lp(\Omega ) := \{ \xi \in \scrD : \BbbE | X| p <\infty \} ,

\scrH p := \{ \xi \in Lp(\Omega ) : \xi has no mean-uncertainty\} 

and
\scrH p

\BbbC := \{ \xi \in Lp
\BbbC (\Omega ) : \xi has no mean-uncertainty\} .

We have the following lemma which will be used later. Note here that we do not need
the regularity assumption.

Lemma 2.11. The space \scrH p (and \scrH p
\BbbC ) is a Banach space.

Proof. First note \scrH p (\scrH 2
\BbbC ) is a linear subspace of Lp(\Omega ) (Lp

\BbbC (\Omega )). We only need
to prove the real-valued random variable case. To see this, assume \xi 1, \xi 2 \in Lp(\Omega )
satisfy

\BbbE [\xi 1] =  - \BbbE [ - \xi 1], \BbbE [\xi 2] =  - \BbbE [ - \xi 2];

then by the sublinearity of \^\BbbE 

\BbbE [\xi 1 + \xi 2] \leq \BbbE [\xi 1] + \BbbE [\xi 2] =  - \BbbE [ - \xi 1] - \BbbE [ - \xi 2] \leq  - \BbbE [ - (\xi 1 + \xi 2)].

So
\BbbE [\xi 1 + \xi 2] + \BbbE [ - (\xi 1 + \xi 2)] \leq 0.
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But
\BbbE [\xi 1 + \xi 2] + \BbbE [ - (\xi 1 + \xi 2)] \geq 0.

Therefore
\BbbE [\xi 1 + \xi 2] + \BbbE [ - (\xi 1 + \xi 2)] = 0,

i.e., \xi 1 + \xi 2 has no mean-uncertainty. Since \xi 2 has no mean-uncertainty, neither
does  - \xi 2. Thus from what we have proved, we conclude that \xi 1  - \xi 2 has no mean-
uncertainty.

Consider \lambda 1, \lambda 2 > 0. Note that \BbbE [\lambda 1\xi 1] = \lambda 1\BbbE [\xi 1] and \BbbE [ - \lambda 1\xi 1] = \lambda 1\BbbE [ - \xi 1]. Thus
if \xi 1 has no mean-uncertainty, then neither does \lambda 1\xi 1. Similarly if \xi 2 has no mean-
uncertainty, then neither does \lambda 2\xi 2. Then by what we have proved, \lambda 1\xi 1+\lambda 2\xi 2 has no
mean-uncertainty. Now when \lambda 1 > 0, \lambda 2 < 0, if \xi 1 and \xi 2 have no mean-uncertainty,
then \lambda 1\xi 1 and  - \lambda 2\xi 2 have no mean-uncertainty. Hence \lambda 2\xi 2 has no mean-uncertainty.
Thus \lambda 1\xi 1+\lambda 2\xi 2 have no mean-uncertainty. This claim is also true for \lambda 1 < 0, \lambda 2 > 0,
and \lambda 1, \lambda 2 < 0. Therefore \lambda 1\xi 1 + \lambda 2\xi 2 \in \scrH p.

Assume \xi n \in \scrH p is a Cauchy sequence and with the limit \xi \in Lp(\Omega ), i.e.,

lim
n\rightarrow 0

\BbbE | \xi  - \xi n| p = 0.(2.10)

Then we show that \xi also has no mean-uncertainty. In fact,

\BbbE [\xi ] \leq \BbbE [\xi  - \xi n] + \BbbE [\xi n]
= \BbbE [\xi  - \xi n] - \BbbE [ - \xi n]
\leq \BbbE [\xi  - \xi n] + \BbbE [ - \xi + \xi n] - \BbbE [ - \xi ].

Then, letting n \rightarrow \infty , we know the first two terms in the above will go to 0 because
of (2.10). Thus \BbbE [\xi ] \leq  - \BbbE [ - \xi ]. But \BbbE [\xi ] \geq  - \BbbE [ - \xi ], so \BbbE [\xi ] =  - \BbbE [ - \xi ], i.e., \xi has no
mean-uncertainty so that \xi \in \scrH p.

The following result is an extension of the Birkhoff ergodic theorem to the case of
sublinear expectation with the regularity assumption and the representation as upper
integrals. Let \scrI \subset \scrF be the collection of such sets A such that \BbbE I(\theta  - 1A)\bigtriangleup A = 0. It
is easy to check that \scrI is a \sigma -field and X \in \scrI if and only if X(\theta \omega ) = X(\omega ) quasi-
surely. Therefore, for any \xi \in L1(\Omega ) and each P \in \scrP , as EP [\xi | \scrI ] is \scrI -measurable,
so EP [\xi | \scrI ](\omega ) = EP [\xi | \scrI ](\theta \omega ) quasi-surely. Define \=\xi \ast , \xi \ast to be \scrI -measurable random
variables such that

\xi \ast \leq EP [\xi | \scrI ] \leq \=\xi \ast ,

quasi-surely for each P \in \scrP . The proof of the following lemma is given in the appen-
dix.

Lemma 2.12. Assume \BbbE is regular and has the representation as upper integrals.
Then for any \xi \in Lb and \epsilon > 0,

\=\xi (\omega ) := lim sup
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

\xi (\theta m\omega ) \leq \=\xi \ast (\omega ) + \epsilon , v-a.s.(2.11)

and

\xi (\omega ) := lim inf
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

\xi (\theta m\omega ) \geq \xi \ast (\omega ) - \epsilon , v-a.s.(2.12)

and \=\xi (\omega ) and \xi (\omega ) satisfy \=\xi (\theta \omega ) = \=\xi (\omega ) and \xi (\theta \omega ) = \xi (\omega ).
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5654 CHUNRONG FENG AND HUAIZHONG ZHAO

We use the notation of capacities from Chen [5] and Denis, Hu, and Peng [11].
Under the assumption of the representation as upper integrals, we define a pair (\BbbV , v)
of capacities by

\BbbV (A) := sup
P\in \scrP 

P (A) = \BbbE [IA], v(A) := inf
P\in \scrP 

P (A) =  - \BbbE [ - IA] for any A \in \scrF ,

which are called upper probability and lower probability. A set function \mu : \scrF \rightarrow [0, 1]
is called continuous if limn\rightarrow \infty \mu (An) = \mu (A) when either An \uparrow A or An \downarrow A (Cerreia-
Vioglio, Maccheroni, and Marinacci [4]).

We need the following lemma from Cerreia-Vioglio, Maccheroni, and Marinacci [4].

Lemma 2.13. Let v be a continuous lower probability on (\Omega ,\scrF ). If v is \theta -invariant,
then for any bounded \scrF -measurable random variable \xi ,

v

\Biggl( \Biggl\{ 
\omega : lim

n\rightarrow \infty 

1

n

n - 1\sum 
k=0

\xi (\theta k(\omega )) exists

\Biggr\} \Biggr) 
= 1.

This tells us that if \BbbE is regular and \theta -invariant, then limn\rightarrow \infty 
1
n

\sum n - 1
k=0 \xi (\theta 

k(\omega ))
exists quasi-surely for any bounded measurable random variable \xi .

Theorem 2.14. Assume \BbbE is regular, is \theta -invariant, and has the representation
as upper integrals. If the dynamical system S is ergodic, then the SLLN holds and the
constant in (2.7) satisfies c \in [ - \BbbE ( - \xi ),\BbbE (\xi )].

Proof. As \theta is \BbbE preserving, then it is v-preserving. Moreover, if \BbbE is regular, by
Lemma 2.13, we know that \=\xi (\omega ) := limn\rightarrow \infty 

1
n

\sum n - 1
m=0 \xi (\theta 

m\omega ) exists quasi-surely for
any bounded measurable random variable \xi and \=\xi (\omega ) satisfies \=\xi (\theta \omega ) = \=\xi (\omega ). As the
dynamical system S is ergodic, so \=\xi = c is a constant. The SLLN is proved.

On the other hand, for any P \in \scrP , EP [\xi | \scrI ] is \scrI -measurable, so EP [\xi | \scrI ](\omega ) =
EP [\xi | \scrI ](\theta \omega ) quasi-surely. As S is ergodic, by Theorem 2.6, EP [\xi | \scrI ] is constant quasi-
surely. Thus for any P \in \scrP and any bounded measurable random variable \xi ,

EP [\xi | \scrI ] = EP (\xi ) \leq \BbbE (\xi )

and

 - EP [ - \xi | \scrI ] =  - EP ( - \xi ) \geq  - \BbbE ( - \xi )

quasi-surely. Thus we can take \=\xi \ast = \BbbE [\xi ] and \xi \ast =  - \BbbE [ - \xi ] and use Lemma 2.12 to
get

 - \BbbE [ - \xi ] - \epsilon \leq \=\xi (\omega ) := lim
n\rightarrow \infty 

1

n

n - 1\sum 
m=0

\xi (\theta m\omega ) \leq \BbbE [\xi ] + \epsilon , v-a.s.

As \=\xi = c is a constant, it is obvious that c \in [ - \BbbE ( - \xi ),\BbbE (\xi )].

Remark 2.15. An SLLN with c \in 
\bigl[ \int 

\Omega 
\xi dv,

\int 
\Omega 
\xi dV

\bigr] 
in the case of an upper and

lower probability setup was obtained in Feng, Wu, and Zhao [20], where
\int 
\Omega 
\xi dv,

\int 
\Omega 
\xi dV

are Choquet integrals. It is noted that the bound obtained in Theorem 2.14 is better
as [ - \BbbE ( - \xi ),\BbbE (\xi )] \subset 

\bigl[ \int 
\Omega 
\xi dv,

\int 
\Omega 
\xi dV

\bigr] 
. This can be easily seen due to the well-known
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fact that from the definition of the Choquet integral,\int 
\Omega 

\xi dV =

\int \infty 

0

V (\omega : \xi (\omega ) \geq t)dt+

\int 0

 - \infty 

\biggl( 
V (\omega : \xi (\omega ) \geq t) - 1

\biggr) 
dt

=

\int \infty 

0

sup
P\in \scrP 

P (\omega : \xi (\omega ) \geq t)dt+

\int 0

 - \infty 

\biggl( 
sup
P\in \scrP 

P (\omega : \xi (\omega ) \geq t) - 1

\biggr) 
dt

\geq sup
P\in \scrP 

\int \infty 

0

P (\omega : \xi (\omega ) \geq t)dt+ sup
P\in \scrP 

\int 0

 - \infty 

\biggl( 
P (\omega : \xi (\omega ) \geq t) - 1

\biggr) 
dt

\geq sup
P\in \scrP 

\biggl[ \int \infty 

0

P (\omega : \xi (\omega ) \geq t)dt+

\int 0

 - \infty 

\biggl( 
P (\omega : \xi (\omega ) \geq t) - 1

\biggr) 
dt

\biggr] 
= sup

P\in \scrP 

\int 
\Omega 

\xi dP

= \BbbE (\xi ).

Similarly one can prove that \int 
\Omega 

\xi dv \leq  - \BbbE ( - \xi ).

3. Sublinear Markovian systems and their ergodicity: The general set-
ting. Consider a measurable space (\Omega ,\scrF ) with similar notation such as \scrD = Lb(\scrF )
in section 2. Let (\Omega ,\scrD ,\BbbE ) be a sublinear expectation space where \BbbE [\cdot ] is a sublinear
expectation on Lb(\scrF ). Denote by Cb,lip(\BbbR d) the space of real-valued bounded Lip-
schitz continuous functions on \BbbR d, and by Cb(\BbbR d) the space of real-valued bounded
continuous functions on \BbbR d. We denote by Lb(\scrB (\BbbR d)) the space of \scrB (\BbbR d)-measurable
real-valued functions defined on \BbbR d such that supx\in \BbbR d | \varphi (x)| <\infty . Let \xi \in (Lb(\scrF ))\otimes d

be given. The sublinear distribution of \xi under \BbbE [\cdot ] is defined by

T [\varphi ] := \BbbE [\varphi (\xi )], \varphi \in Lb(\scrB (\BbbR d)).

This distribution T [\cdot ] is again a sublinear expectation defined on Lb(\scrB (\BbbR d)). Denote
by S(d) the collection of symmetric d \times d matrices and by S+(d) the collection of
positive definite symmetric d\times d matrices.

Consider a family of sublinear expectations parameterized by t \in \BbbR +:

Tt : Lb(\scrB (\BbbR d)) \rightarrow Lb(\scrB (\BbbR d)), t \geq 0.

Definition 3.1 (Peng [34]). The operator Tt is called a sublinear Markov semi-
group if it satisfies the following:

(m1) For each fixed (t, x) \in \BbbR +\times \BbbR d, Tt[\varphi ](x) is a sublinear expectation defined on
Lb(\scrB (\BbbR d)).

(m2) T0[\varphi ](x) = \varphi (x).
(m3) Tt[\varphi ](x) satisfies the following Chapman semigroup formula:

(Tt \circ Ts)[\varphi ] = Tt+s[\varphi ], t, s \geq 0.

There are many examples of sublinear Markov semigroups. We list some of them
here, though they are already known, for completeness and to aid in understanding
the problem we address here.
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5656 CHUNRONG FENG AND HUAIZHONG ZHAO

Example 3.2 (Lions [32, 33]). Consider the Hamilton--Jacobi--Bellman equation:

(3.1)

\left\{       
\partial 

\partial t
u = sup

v\in V

\left\{   
d\sum 

i,j=1

aij(x, v)
\partial 2

\partial xi\partial xj
u+

d\sum 
i=1

bi(x, v)
\partial 

\partial xi
u

\right\}   ,

u(0, \cdot ) = \varphi (\cdot ) \in Cb(\BbbR d).

Here a : \BbbR d\times \BbbR k \rightarrow S(d) and b : \BbbR d\times \BbbR k \rightarrow \BbbR d are bounded and uniformly continuous
functions, uniformly Lipschitz in x, and V is a closed and bounded subset of \BbbR k. Under
the notion of viscosity solutions, this equation has a unique solution u(t, x) in Cb(\BbbR d)
with initial value \varphi . Set

(Tt\varphi )(x) := u(t, x), x \in \BbbR d.

This defines a sublinear Markov semigroup.

Example 3.3 (Peng [36]). Let G : S(d) \rightarrow \BbbR be a given sublinear function which
is monotonic on S(d). Then there exists a bounded, convex, and closed subset

\sum 
\subset 

S+(d) such that

G(A) = sup
B\in 

\sum 
\biggl[ 
1

2
tr(AB)

\biggr] 
for A \in S(d).

Define \Omega = C0(\BbbR +,\BbbR d), the space of all \BbbR d-valued continuous functions (\omega t)t\in \BbbR + ,
with \omega 0 = 0, equipped with the distance

\rho (\omega 1, \omega 2) :=

\infty \sum 
i=1

2 - i

\biggl[ 
max
t\in [0,i]

| \omega 1
t  - \omega 2

t | \wedge 1

\biggr] 
with \scrF = \scrB (C0(\BbbR +,\BbbR d)). Let

Lip(\Omega ) := \{ \varphi (\omega t1 , \omega t2 , . . . , \omega tm) for anym \geq 1, t1, t2, . . . , tm \in \BbbR +, \varphi \in Cb,Lip((\BbbR d)m)\} .

Then the G-normal distribution N(\{ 0\} \times 
\sum 

) on (\Omega , Lip(\Omega )) exists, i.e., there exists a
d-dimensional random vector X on a sublinear expectation space (\Omega ,\scrD ,\BbbE ) satisfying

aX + b \=X =d
\sqrt{} 
a2 + b2X for a, b \geq 0,

where \=X is an independent copy of X and G(A) = \BbbE [ 12 \langle AX,X\rangle ]. It was proved in
Theorem 2.5 in Chapter VI in Peng [36] that there exists a weakly compact family of
probability measures \scrP on (\Omega ,\scrB (\Omega )) such that

\BbbE [X] = max
P\in \scrP 

EP [X] for X \in Lip(\Omega ).

Its canonical path is G-Brownian motion \{ Bt\} t\geq 0 on a sublinear expectation space
(\Omega ,\scrD ,\BbbE ) satisfying the following:

(i) B0(\omega ) = 0.
(ii) For each t, s \geq 0, the increment Bt+s  - Bt is N(\{ 0\} \times s

\sum 
) distributed and

independent of (Bt1 , Bt2 , . . . , Btn) for each n \in \BbbN and 0 \leq t1 \leq t2 \leq \cdot \cdot \cdot \leq tn \leq t.
For each fixed \varphi \in Cb,Lip(\BbbR d), the function

u(t, x) := \BbbE \varphi (x+Bt), (t, x) \in [0,\infty )\times \BbbR d,(3.2)
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is the viscosity solution of the G-heat equation

\partial 

\partial t
u = G(D2u), u(0, \cdot ) = \varphi (\cdot ).(3.3)

Then (Tt\varphi )(x) = u(t, x) defines a semilinear Markovian semigroup.

Example 3.4 (Peng [36]). Let \{ Bt\} t\geq 0 be a k-dimensional G-Brownian motion on
the sublinear expectation space (\Omega ,\scrD ,\BbbE ), and let b : \BbbR d \rightarrow \BbbR d, \sigma : \BbbR d \rightarrow \BbbR d\times k,
and h : \BbbR d \rightarrow \BbbR d\times k\times k be global Lipschitz functions. Here G : S(d) \rightarrow \BbbR is a given
sublinear function which is monotonic on S(d). Consider the stochastic differential
equations on \BbbR d driven by the G-Brownian motion B,

dXt = b(Xt)dt+

k\sum 
i,j=1

hij(Xt)d\langle Bi, Bj\rangle t +
k\sum 

i=1

\sigma j(Xs)dB
j
t ,(3.4)

with initial condition Xt = x. Here \langle \cdot , \cdot \rangle \cdot is the mutual variation process. Define
F : S(d)\times \BbbR d \times \BbbR d \rightarrow S(d) with

Fij(A, p, x) =
1

2
\langle A\sigma i(x), \sigma j(x)\rangle + \langle p, hij(x) + hji(x)\rangle .(3.5)

Then Tt\varphi (x) = \BbbE \varphi (Xt) =: u(t, x) satisfies

\partial 

\partial t
u = G(F (D2u,Du, x)) + bDu(3.6)

and defines a sublinear Markovian semigroup for \varphi \in Cb,lip(\BbbR d).

In this section, we will give the construction of a canonical dynamical system on a
path space under the assumption of the existence of invariant sublinear expectations
of Markovian semigroups. Then we follow the standard philosophy in the literature
to define the ergodicity of the canonical dynamical system as the ergodicity of the
stochastic dynamical systems (cf. Da Prato and Zabczyk [8]). The invariant sublinear
expectation has not been studied much in the literature. As far as we know, so
far there is only one work (Hu et al. [27]) on the existence of invariant sublinear
expectation for G-diffusion processes if the system is sufficiently dissipative.

First, we give the definition of an invariant expectation of sublinear Markovian
semigroups as a natural extension of invariant measures.

Definition 3.5. An invariant sublinear expectation \~T : Lb(\scrB (\BbbR d)) \rightarrow \BbbR is a
sublinear expectation satisfying

( \~TTs)(\varphi ) = \~T (\varphi ) for any \varphi \in Lb(\scrB (\BbbR d)),

where Ts, s \geq 0 is a sublinear Markov semigroup.

Define \Omega \ast = C(\BbbR ,\BbbR d), the space of all \BbbR d-valued continuous functions (\omega \ast 
t )t\in \BbbR 

equipped with the distance

\rho (\omega \ast 1, \omega \ast 2) :=

\infty \sum 
i=1

2 - i

\biggl[ 
max

t\in [ - i,i]
| \omega \ast 1

t  - \omega \ast 2
t | \wedge 1

\biggr] 
(3.7)

with \scrF \ast = \scrB (C(\BbbR ,\BbbR d)). Moreover, set \^\Omega = (\BbbR d)( - \infty ,+\infty ) as the space of all \BbbR d-valued
functions on ( - \infty ,+\infty ), \^\scrF = \scrB (\^\Omega ) as the smallest \sigma -field containing all cylindrical
sets of \^\Omega , and \^\scrD as the linear space of all \^\scrF -measurable real-valued functions.
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Given a sublinear Markov semigroup Tt, t \geq 0, and the invariant sublinear
expectation \~T [\cdot ], we can define the family of finite-dimensional sublinear distribu-

tions of the canonical process (\omega t)t\in \BbbR \in \Omega under a sublinear expectation \BbbE \~T [\cdot ] on
((\BbbR d)m, Lb(\scrB [(\BbbR d)m])) as follows. For each integer m \geq 1, \varphi \in Lb(\scrB [(\BbbR d)m]) and
t1 < t2 < \cdot \cdot \cdot < tm, we successively define functions \varphi i \in Lb(\scrB [(\BbbR d)(m - i)]), i =
1, . . . ,m, by

\varphi 1(x1, . . . , xm - 1) := Ttm - tm - 1
[\varphi (x1, . . . , xm - 1, \cdot )](xm - 1),

\varphi 2(x1, . . . , xm - 2) := Ttm - 1 - tm - 2
[\varphi 1(x1, . . . , xm - 2, \cdot )](xm - 2),

...

\varphi m - 1(x1) := Tt2 - t1 [\varphi m - 2(x1, \cdot )](x1).

We now consider two different setups. The first one is to consider \varphi m := \~T [\varphi m - 1(\cdot )]
and

\BbbE \~T [\varphi (\^\omega t1 , \^\omega t2 , . . . , \^\omega tm)] := T
\~T
t1,t2,...,tm [\varphi (\cdot )] := \varphi m.

In fact, T
\~T
t = \~T for t \geq 0, and T

\~T
t1,t2,...,tm [\varphi (\cdot )] is a sublinear expectation defined on

Lb(\scrB [(\BbbR d)m]). Denote

\~\scrE (\varphi (\^\omega 0)) = \~T [\varphi ] for any \varphi \in Lb(\scrB (\BbbR d));

then
\~\scrE (\varphi (\^\omega t)) = \~\scrE (\varphi (\^\omega 0)) = \~T [\varphi ] for any \varphi \in Lb(\scrB (\BbbR d)).

For an ordered set of distinct real numbers \BbbI = \{ t1, t2, . . . , tm\} , let \BbbI \prime = \{ t\pi 1
, t\pi 2

,
. . . , t\pi m

\} be a permutation of \BbbI so that t\pi 1
< t\pi 2

\cdot \cdot \cdot < t\pi m
. Define

T
\~T
t1,t2,...,tm\varphi (x1, x2, . . . , xm) = T

\~T
t\pi 1

,t\pi 2
,...,t\pi m

\varphi (x\pi 1
, x\pi 2

, . . . , x\pi m
).

The second setup is to set \varphi m(x) := Tt1 [\varphi m - 1(\cdot )](x) for t1 \geq 0 following Peng [34].
Then

\BbbE x[\varphi (\^\omega t1 , \^\omega t2 , . . . , \^\omega tm)] := T x
t1,t2,...,tm [\varphi (\cdot )] := \varphi m(x),

and T x
t1,t2,...,tm [\cdot ] defines a sublinear expectation.

Set

L0( \^\scrF ) := \{ \varphi (\^\omega t1 , \^\omega t2 , . . . , \^\omega tm) for any m \geq 1, t1, t2, . . . , tm \in \BbbR , \varphi \in Lb(\scrB [(\BbbR d)m])\} .

It is clear that L0( \^\scrF ) is a linear subspace of Lb( \^\scrF ). Denote by Lp
0(
\^\Omega ) the completion

of L0( \^\scrF ) under the norm (\BbbE \~T [| \cdot | p])
1
p , p \geq 1. Define the space

Lipb,cyl(\^\Omega )

:= \{ \varphi (\^\omega t1 , \^\omega t2 , . . . , \^\omega tm) for any m \geq 1, t1, t2, . . . , tm \in \BbbR , \varphi \in Cb,Lip((\BbbR d)m)\} ,

and define Lp
G(

\^\Omega ) as the completion of Lipb,cyl(\^\Omega ) under the norm | | \cdot | | Lp
G
= (\BbbE \~T [| \cdot | p])

1
p .

From Denis, Hu, and Peng [11], we know that the completions of Cb(\^\Omega ) and Lipb,cyl(\^\Omega )

under the norm | | \cdot | | Lp
G
are the same, and Lp

G(
\^\Omega ) \subset Lp

0(
\^\Omega ). Here Cb(\^\Omega ) is defined in

a similar way to Lipb,cyl(\^\Omega ), but replacing Cb,Lip((\BbbR d)m) by Cb((\BbbR d)m).
It was already known that there exists a unique sublinear expectation \BbbE x with

finite-dimensional expectation \BbbE x = T x
t1,t2,...,tm , m \in \BbbN , by applying the nonlinear
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Kolmogorov extension theorem [34]. For our purposes, by applying Kolmogorov's

theorem again, there exists a unique sublinear expectation \BbbE \~T on L1
0(
\^\Omega ) such that

\BbbE \~T [Y ] = T
\~T
t1,t2,...,tm [\varphi (\cdot )]

for any m \geq 1, t1, t2, . . . , tm \in \BbbR , Y \in L0( \^\scrF ) with Y (\^\omega ) = \varphi (\^\omega t1 , \^\omega t2 , . . . , \^\omega tm),
\varphi \in Lb(\scrB [(\BbbR d)m]).

Following the idea in [34], we can also define the conditional expectation. Define
\^\Omega t := \{ \^\omega \in \^\Omega : \^\omega s \equiv \^\omega t for any s \geq t\} and \^\scrF t := \scrB (\^\Omega t). Let X \in L0( \^\scrF ) be given as

X = \varphi (\^\omega t1 , . . . , \^\omega tn , \^\omega tn+1
, . . . , \^\omega tn+m

), t1 < \cdot \cdot \cdot < tn < \cdot \cdot \cdot < tn+m,

where \varphi \in Lb(\scrB [(\BbbR d)n+m]). Without loss of generality, we may assume tn = t. The

conditional expectation under \^\scrF t denoted by \BbbE \~T [\cdot | \^\scrF t] : L0( \^\scrF ) \rightarrow L0( \^\scrF t) is defined by

\BbbE \~T [X| \^\scrF t] := \Phi (\^\omega t1 , \^\omega t2 , . . . , \^\omega tn),(3.8)

where \Phi (x1, . . . , xn) := T xn
tn+1 - tn,...,tn+m - tn [\varphi (x1, . . . , xn, \cdot )]. Similar to Proposition

5.1 in [34], this can also be extended to Lp
0(
\^\Omega ).

Now we write the canonical process and associated \sigma -field as

\^Xt(\^\omega ) = \^\omega t, \^\omega \in \^\Omega , t \in \BbbR .(3.9)

The process \^Xt, t \in \BbbR , is Markovian in the sense that for h > 0

\BbbE \~T [\varphi ( \^X(t+ h))| \^\scrF t] = T
\^X(t)

h \varphi .(3.10)

Now we introduce a group of invertible measurable transformations

\^\theta t\^\omega (s) = \^\omega (t+ s), t, s \in \BbbR .

Then it is easy to see that for any \varphi \in L1
0(
\^\Omega ),

\BbbE \~T [\varphi ( \^X)] = \BbbE \~T [\varphi (\^\theta t \^X)],

i.e.,
\^\theta t\BbbE 

\~T = \BbbE \~T .

Thus \^\theta t is an expectation preserving (or distribution preserving) transformation. Thus

S
\~T = (\^\Omega , \^\scrD , (\^\theta t)t\in \BbbR ,\BbbE 

\~T ) defines a dynamical system, called the canonical dynamical

system associated with Tt, t \geq 0, and \~T , \^\theta t preserving the expectation \BbbE \~T for any
function \varphi \in L1

0(
\^\Omega ). The group \^\theta t, t \in \BbbR , induces a group of linear transformations

Ut, t \in \BbbR , either on the real space L2
0(
\^\Omega , \^\scrD ,\BbbE \~T ) or the complex-valued function space

L2
0,\BbbC (

\^\Omega , \^\scrD ,\BbbE \~T ), by formula

Ut\xi (\^\omega ) = \xi (\^\theta t\^\omega ), \xi \in L2
0(\^\Omega ) (or L

2
0,\BbbC (\^\Omega )), \^\omega \in \^\Omega , t \in \BbbR .

Definition 3.6. A dynamical system S
\~T = (\^\Omega , \^\scrD , \^\theta t,\BbbE 

\~T ) is said to be continuous
if for any \xi \in L2

0(
\^\Omega ) (or L2

0,\BbbC (
\^\Omega )),

lim
t\rightarrow 0

Ut\xi = \xi in L2
0(
\^\Omega ) (or L2

0,\BbbC (
\^\Omega )).

D
ow

nl
oa

de
d 

10
/0

7/
21

 to
 1

29
.2

34
.0

.2
11

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5660 CHUNRONG FENG AND HUAIZHONG ZHAO

Denote

B(x, \delta ) = \{ y \in \BbbR d : | y  - x| < \delta \} .

Definition 3.7. A stochastic process \^X(t), t \in \BbbR , on (\^\Omega , \^\scrD ,\BbbE \~T ) is said to be
stochastically continuous if, for any \delta > 0,

lim
t\downarrow s

\BbbE \~T [I\{ | \^X(t) - \^X(s)| \geq \delta \} ] = 0.

Definition 3.8. A sublinear Markov semigroup Tt, t \geq 0, is said to be stochasti-
cally continuous if

Tt(x,B
c(x, \delta )) := \BbbE x[IBc(x,\delta )( \^Xt)] \downarrow 0, as t\rightarrow 0 for any x \in \BbbR d, \delta > 0.

Theorem 3.9. If a Markov semigroup Tt, t > 0, is stochastically continuous, then

lim
t\rightarrow 0

Ttf(x) = f(x) for all f \in Cb(\BbbR d), x \in \BbbR d.

Proof. For any f \in Cb(\BbbR d), let \epsilon > 0, \delta > 0 be such that

| f(x) - f(y)| < \epsilon , provided | x - y| < \delta .

So

| Ttf(x) - f(x)| 
= | \BbbE x[f( \^X(t))] - \BbbE x[f( \^X(0))]| 
\leq \BbbE x| f( \^X(t)) - f( \^X(0))| 
= \BbbE x| (f( \^X(t)) - f( \^X(0)))I\{ | \^X(t) - \^X(0)| <\delta \} | + \BbbE x| (f( \^X(t)) - f( \^X(0)))I\{ | \^X(t) - \^X(0)| \geq \delta \} | 
\leq \epsilon + 2| | f | | \infty \BbbE x[I\{ | \^X(t) - \^X(0)| \geq \delta \} ].

Since Tt is stochastically continuous, we have limt\rightarrow 0 Ttf(x) = f(x).

Proposition 3.10. Let Tt, t \geq 0, be a sublinear Markov semigroup, and let \~T
be the invariant expectation. If the corresponding canonical process \^X(t), t \in \BbbR , on
(\^\Omega , \^\scrD ,\BbbE \~T ) is stochastically continuous, then the dynamical system S

\~T is continuous,
i.e.,

lim
s\rightarrow t

Us\xi = Ut\xi , \xi \in L2
G(

\^\Omega ).(3.11)

Proof. First we check (3.11) for all \xi \in Lipb,cyl(\^\Omega ), i.e., for all \xi of the form

\xi = f(\^\omega t1 , \^\omega t2 , . . . , \^\omega tm),

where f \in Cb,Lip(\scrB [(\BbbR d)m]), t1 < t2 < \cdot \cdot \cdot < tm. Let \epsilon > 0, \delta > 0 be such that

| f(x1, . . . , xm) - f(y1, . . . , ym)| < \epsilon , provided | xi  - yi| < \delta , i = 1, . . . ,m.
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Then

\BbbE \~T | Ut\xi  - Us\xi | 2

= \BbbE \~T | f(\^\omega (t1 + t), . . . , \^\omega (tm + t)) - f(\^\omega (t1 + s), . . . , \^\omega (tm + s))| 2

= \BbbE \~T | f( \^X(t1 + t), . . . , \^X(tm + t)) - f( \^X(t1 + s), . . . , \^X(tm + s))| 2

\leq \BbbE \~T
\Bigl[ 
| f( \^X(t1 + t), . . . , \^X(tm + t)) - f( \^X(t1 + s), . . . , \^X(tm + s))| 2

I\{ | \^X(ti+t) - \^X(ti+s)| <\delta for any i=1,...,m\} 

\Bigr] 
+\BbbE \~T

\Bigl[ 
| f( \^X(t1 + t), . . . , \^X(tm + t)) - f( \^X(t1 + s), . . . , \^X(tm + s))| 2

I\{ | \^X(ti+t) - \^X(ti+s)| \geq \delta for some i=1,...,m\} 

\Bigr] 
\leq \epsilon + 2| | f | | 2\infty 

m\sum 
i=1

\BbbE \~T
\Bigl[ 
I\{ | \^X(ti+t) - \^X(ti+s)| \geq \delta \} 

\Bigr] 
.

Since \^Xt is stochastically continuous, (3.11) follows for all \xi \in Lipb,cyl(\^\Omega ).

For any \xi \in L2
G(

\^\Omega ), there exists \xi n \in Lipb,cyl(\^\Omega ) such that for any \epsilon > 0, there
exists N > 0 such that for any n \geq N , we have

\BbbE \~T | \xi n  - \xi | 2 < \epsilon 

9
.

Now for the fixed N , there exists a \delta > 0,

\BbbE \~T | Ut\xi N  - Us\xi N | 2 < \epsilon 

9
, when | t - s| < \delta .

Therefore

\BbbE \~T | Ut\xi  - Us\xi | 2 \leq 3
\Bigl[ 
\BbbE \~T | Ut\xi  - Ut\xi N | 2 + \BbbE \~T | Ut\xi N  - Us\xi N | 2 + \BbbE \~T | Us\xi N  - Us\xi | 2

\Bigr] 
\leq 3

\Bigl[ 
\BbbE \~T | \xi  - \xi N | 2 + \BbbE \~T | Ut\xi N  - Us\xi N | 2 + \BbbE \~T | \xi N  - \xi | 2

\Bigr] 
< \epsilon .

The proposition is proved.

Remark 3.11. When we discuss the ergodicity of G-Brownian motion on S1, we
can show that \^X has a continuous modification which is also stochastically continuous
in Proposition 4.5.

Proposition 3.12. Let Tt, t \geq 0, be a stochastically continuous Markov semi-
group, and let \~\scrE satisfy (2.2). Then the corresponding canonical process \^X(t), t \in \BbbR ,
on (\^\Omega , \^\scrD ,\BbbE \~T ) is stochastically continuous.

Proof. Assume that Tt, t \geq 0, is stochastically continuous; then for any t > s and
\delta > 0, we have

\BbbE \~T [I\{ | \^X(t) - \^X(s)| \geq \delta \} ] = \BbbE \~T
\Bigl[ 
\BbbE \~T [I\{ | \^X(t) - \^X(s)| \geq \delta \} | \scrF s]

\Bigr] 
= \BbbE \~T [Tt - s( \^X(s), Bc( \^X(s), \delta ))]

= \~\scrE [Tt - s( \^X(s), Bc( \^X(s), \delta ))]
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5662 CHUNRONG FENG AND HUAIZHONG ZHAO

by the Markov property. Note here that the conditional expectation can be defined
in the Markovian case, as we already explained in (3.8) (Peng [34]). Since Tt, t \geq 0,
is stochastically continuous and \~\scrE satisfies (2.2), we have

lim
t\downarrow s

\BbbE \~T [I\{ | \^X(t) - \^X(s)| \geq \delta \} ] = 0.

Mirrored by the discrete case discussed in section 2, we can give the following
definitions.

Definition 3.13. A set A \in \^\scrF is said to be invariant with respect to S
\~T =

(\^\Omega , \^\scrD , \^\theta t,\BbbE 
\~T ) if, for any t \in \BbbR , \^\theta  - 1

t A = A.

Definition 3.14. The invariant expectation \~T is said to be ergodic with respect
to the Markov semigroup Tt, t \geq 0, if its associated canonical dynamical system

S
\~T = (\^\Omega , \^\scrD , \^\theta t,\BbbE 

\~T ) is ergodic, i.e., any invariant set A satisfies either \BbbE \~T [IA] = 0 or

\BbbE \~T [IAc ] = 0.

Since Ut1 = 1 by the definition of Ut, it is obvious that 1 is an eigenvalue of
Ut : Lb( \^\scrF ) \rightarrow Lb( \^\scrF ). Similarly to the proof of Theorem 2.6, we can prove the
following theorem.

Theorem 3.15. The continuous dynamical system S
\~T is ergodic if and only if

the eigenvalue 1 of Ut on Lb( \^\scrF ) is simple.

Definition 3.16. A dynamical system S
\~T = (\^\Omega , \^\scrD , (\^\theta t)t\in \BbbR ,\BbbE 

\~T ) is said to satisfy
the SLLN if, for any bounded measurable function \xi , there exists a constant c such
that

lim
T\rightarrow \infty 

1

T

\int T

0

Ut\xi dt = c quasi-surely.(3.12)

Theorem 3.17. If S
\~T satisfies the SLLN, then the eigenvalue 1 of Ut on Lb( \^\scrF )

is simple and S
\~T is ergodic.

Proof. The proof is similar to that of Theorem 2.9.

Now let us prove the converse part of Theorem 3.17 under the regularity assump-
tion.

Theorem 3.18. Assume the eigenvalue 1 of Ut on Lb( \^\scrF ) is simple and \BbbE \~T is

regular. Then the dynamical system S
\~T satisfies the SLLN, and the constant in (3.12)

satisfies c \in [ - \BbbE \~T ( - 
\int 1

0
Ut\xi dt),\BbbE 

\~T (
\int 1

0
Ut\xi dt)].

Proof. Assume 1 is a simple eigenvalue of Ut on Lb( \^\scrF ). For an arbitrary h > 0,
\xi \in Lb( \^\scrF ), \xi \geq 0, define

\xi h =

\int h

0

Us\xi ds

and consider \^\theta h a fixed expectation preserving transformation on \^\Omega . Then

1

n

n - 1\sum 
k=0

\xi h(\^\theta 
k
h(\^\omega )) =

1

n

\int nh

0

Us\xi (\^\omega )ds,

and as \BbbE \~T is regular, by Theorem 2.14 we have

 - \BbbE \~T [ - \xi h] \leq lim
n\rightarrow \infty 

1

n

\int nh

0

Us\xi ds =: \=\xi \ast h \leq \BbbE \~T [\xi h] quasi-surely.
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For arbitrary T \geq 0, let nT = [Th ] be the maximal nonnegative integer less than or

equal to T
h . Then nTh \leq T \leq (nT + 1)h and quasi-surely

nT
(nT + 1)h

1

nT

\int nTh

0

Us\xi ds \leq 
1

T

\int T

0

Us\xi ds \leq 
nT + 1

nTh

1

nT + 1

\int (nT+1)h

0

Us\xi ds.

Thus,

lim
T\rightarrow \infty 

1

T

\int T

0

Us\xi ds =
1

h
\=\xi \ast h quasi-surely.

In particular, it follows that \=\xi \ast h = h\=\xi \ast 1 . But it is easy to see that

Uh
\=\xi \ast h = \=\xi \ast h.

Thus

Uh
\=\xi \ast 1 = \=\xi \ast 1 for all h \geq 0.

However, from the assumption, \=\xi \ast 1 should be a constant quasi-surely. So

 - \BbbE \~T

\biggl[ 
 - 
\int 1

0

Ut\xi dt

\biggr] 
=  - \BbbE \~T [ - \=\xi \ast 1 ] \leq \=\xi \ast 1 = \BbbE \~T [\=\xi \ast 1 ] \leq \BbbE \~T [\xi 1] = \BbbE \~T

\biggl[ \int 1

0

Ut\xi dt

\biggr] 
.

This proves that the dynamical system S
\~T satisfies the SLLN.

Proposition 3.19. If \varphi \in Lb(\scrB (\BbbR d)) satisfies Tt\varphi = \varphi , Tt( - \varphi ) =  - \varphi and
| \varphi (\^\omega (0))| 2 has no mean-uncertainty, then \xi \in L2

0 given by

\xi (\^\omega ) = \varphi (\^\omega (0)), \^\omega \in \^\Omega ,

satisfies Ut\xi = \xi quasi-surely.

Proof. Note that

Ut\xi (\^\omega ) = \xi (\^\theta t\^\omega ) = \varphi (\^\theta t\^\omega (0)) = \varphi (\^\omega (t)).

So the condition that Ut\xi = \xi , quasi-surely, is equivalent to

\varphi (\^\omega (t)) = \varphi (\^\omega (0)) quasi-surely

and therefore

\varphi ( \^X(t)) = \varphi ( \^X(0)) quasi-surely,(3.13)

where \^X(t), t \in \BbbR , is the canonical process. To prove (3.13), note that

\BbbE \~T | \varphi ( \^X(t)) - \varphi ( \^X(0))| 2

\leq 2\BbbE \~T
\bigl[ 
 - \varphi ( \^X(t))\varphi ( \^X(0))

\bigr] 
+ \BbbE \~T | \varphi ( \^X(t))| 2 + \BbbE \~T | \varphi ( \^X(0))| 2.

By the Markovian property and the assumptions that Tt\varphi = \varphi , Tt( - \varphi ) =  - \varphi , and
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| \varphi (\^\omega (0))| 2 has no mean-uncertainty, we have

\BbbE \~T
\Bigl[ 
 - \varphi ( \^X(t))\varphi ( \^X(0))

\Bigr] 
= \BbbE \~T

\biggl[ 
\BbbE \~T
\Bigl[ 
 - \varphi ( \^X(t))\varphi ( \^X(0))| \^\scrF 0

\Bigr] \biggr] 
\leq \BbbE \~T

\biggl[ \bigl( 
 - \varphi ( \^X(0))

\bigr) +\BbbE \~T
\Bigl[ 
\varphi ( \^X(t))| \^\scrF 0

\Bigr] 
+
\bigl( 
 - \varphi ( \^X(0))

\bigr)  - \BbbE \~T
\Bigl[ 
 - \varphi ( \^X(t))| \^\scrF 0

\Bigr] \biggr] 
= \BbbE \~T

\Bigl[ \bigl( 
 - \varphi ( \^X(0))

\bigr) +
(Tt\varphi )( \^X(0)) +

\bigl( 
 - \varphi ( \^X(0))

\bigr)  - 
(Tt
\bigl( 
 - \varphi ))( \^X(0)

\bigr) \Bigr] 
= \BbbE \~T

\Bigl[ \bigl( 
 - \varphi ( \^X(0))

\bigr) +
\varphi ( \^X(0)) +

\bigl( 
 - \varphi ( \^X(0))

\bigr)  - \bigl(  - \varphi ( \^X(0))
\bigr) \Bigr] 

= \BbbE \~T
\bigl[ 
 - | \varphi ( \^X(0))| 2

\bigr] 
=  - \BbbE \~T | \varphi ( \^X(0))| 2.

Note also that
\BbbE \~T | \varphi ( \^X(t))| 2 = \BbbE \~T | \varphi ( \^X(0))| 2.

So

\BbbE \~T | \varphi ( \^X(t)) - \varphi ( \^X(0))| 2 \leq  - 2\BbbE \~T | \varphi ( \^X(0))| 2 + 2\BbbE \~T | \varphi ( \^X(0))| 2 = 0.

Thus
\BbbE \~T | \varphi ( \^X(t)) - \varphi ( \^X(0))| 2 = 0.

It follows that
| \varphi ( \^X(t)) - \varphi ( \^X(0))| = 0 quasi-surely.

The result is proved.

Lemma 3.20. Assume that \xi \in L2
0 satisfies Ut\xi = \xi quasi-surely. Then for an

arbitrary random variable \~\xi \in L2
0 which is \^\scrF [ - t,t]-measurable, t \geq 0, we have

\BbbE \~T
\bigm| \bigm| \bigm| \BbbE \~T

\bigl[ 
Ut

\~\xi | \^\scrF [0,0]

\bigr] 
 - \xi 
\bigm| \bigm| \bigm| 2 \leq 10\BbbE \~T | \xi  - \~\xi | 2.

Proof. First we have for the sublinear expectation, for t \geq 0, that

\BbbE \~T
\bigm| \bigm| \bigm| \BbbE \~T

\bigl[ 
Ut

\~\xi | \^\scrF [0,0]

\bigr] 
 - \xi 
\bigm| \bigm| \bigm| 2

\leq 2\BbbE \~T
\bigm| \bigm| \bigm| \BbbE \~T

\bigl[ 
Ut

\~\xi | \^\scrF [0,0]

\bigr] 
 - U - t

\~\xi 
\bigm| \bigm| \bigm| 2 + 2\BbbE \~T | U - t

\~\xi  - \xi | 2

= 2\BbbE \~T
\bigm| \bigm| \bigm| \BbbE \~T

\bigl[ 
Ut

\~\xi | \^\scrF 0

\bigr] 
 - \BbbE \~T

\bigl[ 
U - t

\~\xi | \^\scrF 0

\bigr] \bigm| \bigm| \bigm| 2 + 2\BbbE \~T | U - t
\~\xi  - U - t\xi | 2

= 2\BbbE \~T
\bigm| \bigm| \bigm| \BbbE \~T

\bigl[ 
Ut

\~\xi | \^\scrF 0

\bigr] 
 - \BbbE \~T

\bigl[ 
U - t

\~\xi | \^\scrF 0

\bigr] \bigm| \bigm| \bigm| 2 + 2\BbbE \~T | \~\xi  - \xi | 2,

where we have used that \^X is a Markov process, that Ut
\~\xi and U - t

\~\xi are, respectively,
\^\scrF [0,2t]- and \^\scrF 0-measurable, and that Ut is the \BbbE \~T -preserving transformation.

By Jensen's inequality and sublinearity of \BbbE \~T , we have\bigm| \bigm| \bigm| \BbbE \~T
\bigl[ 
Ut

\~\xi | \^\scrF 0

\bigr] 
 - \BbbE \~T

\bigl[ 
U - t

\~\xi | \^\scrF 0

\bigr] \bigm| \bigm| \bigm| 2 \leq 
\bigm| \bigm| \bigm| \BbbE \~T

\Bigl[ 
| Ut

\~\xi  - U - t
\~\xi | 
\bigm| \bigm| \^\scrF 0

\Bigr] \bigm| \bigm| \bigm| 2
\leq \BbbE \~T

\Bigl[ 
| Ut

\~\xi  - U - t
\~\xi | 2
\bigm| \bigm| \^\scrF 0

\Bigr] 
.
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Moreover, it follows from the \BbbE \~T -preserving property of Ut that

\BbbE \~T

\biggl[ 
\BbbE \~T
\Bigl[ 
| Ut

\~\xi  - U - t
\~\xi | 2
\bigm| \bigm| \^\scrF 0

\Bigr] \biggr] 
= \BbbE \~T

\Bigl[ \bigm| \bigm| Ut
\~\xi  - U - t

\~\xi 
\bigm| \bigm| 2\Bigr] 

= \BbbE \~T
\Bigl[ \bigm| \bigm| U2t

\~\xi  - \~\xi 
\bigm| \bigm| 2\Bigr] 

\leq 2\BbbE \~T
\Bigl[ \bigm| \bigm| U2t

\~\xi  - U2t\xi 
\bigm| \bigm| 2\Bigr] + 2\BbbE \~T

\Bigl[ \bigm| \bigm| U2t\xi  - \~\xi 
\bigm| \bigm| 2\Bigr] 

= 2\BbbE \~T
\Bigl[ \bigm| \bigm| \~\xi  - \xi 

\bigm| \bigm| 2\Bigr] + 2\BbbE \~T
\Bigl[ \bigm| \bigm| \xi  - \~\xi 

\bigm| \bigm| 2\Bigr] 
\leq 4\BbbE \~T | \~\xi  - \xi | 2.

The result follows.

Now we are ready to prove the converse part of Proposition 3.19.

Proposition 3.21. If \xi \in L2
0(
\^\Omega ) and Ut\xi = \xi , then there exists \varphi \in Lb(\scrB (\BbbR d))

such that Tt\varphi = \varphi , Tt( - \varphi ) =  - \varphi , and \xi (\^\omega ) = \varphi (\^\omega (0)) quasi-surely.

Proof. For \xi \in L2
0(
\^\Omega ), by definition of L2

0(
\^\Omega ), there exists a sequence \{ \~\xi n\} of

\scrF [ - nt,nt]-measurable elements of Lb( \^\scrF ) such that

\BbbE \~T | \~\xi n  - \xi | 2 \rightarrow 0 as n\rightarrow \infty .

Thus by Lemma 3.20,

lim
n\rightarrow \infty 

\BbbE \~T [Unt
\~\xi n| \scrF [0,0]] = \xi in L2

0.

Moreover, there exists \varphi n \in L2
\BbbC (\BbbR d, \~T ) such that

\BbbE \~T [Unt
\~\xi n| \scrF [0,0]] = \varphi n( \^X(0)) quasi-surely.

Thus
lim
n\rightarrow \infty 

\varphi n( \^X(0)) = \xi in L2
0(\^\Omega ).

By the Borel--Cantelli lemma (Denis, Hu, and Peng [11]), we can choose a quasi-surely
convergent subsequence, still denoted by \varphi n( \^X(0)). Now we define

\varphi (x) =

\biggl\{ 
limn\rightarrow \infty \varphi n(x) if the limit exists,
0 otherwise.

Then \xi = \varphi ( \^X(0)). It follows from Ut\xi = \xi that

\varphi ( \^X(t)) = Ut\varphi ( \^X(0)) = \varphi ( \^X(0)).

By using conditional expectations, we have

(Tt\varphi )( \^X(0)) = \BbbE \~T [\varphi ( \^X(t))| \scrF 0] = \BbbE \~T [\varphi ( \^X(0))| \scrF 0] = \varphi ( \^X(0))

and

(Tt( - \varphi ))( \^X(0)) = \BbbE \~T [ - \varphi ( \^X(t))| \scrF 0] = \BbbE \~T [ - \varphi ( \^X(0))| \scrF 0] =  - \varphi ( \^X(0)).

The proof is complete.
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5666 CHUNRONG FENG AND HUAIZHONG ZHAO

Theorem 3.22. Assume the Markov chain Tt has an invariant expectation \~T .

Let \^X be the canonical processes on the canonical dynamical system (\^\Omega , \^\scrD , \^\theta t,\BbbE 
\~T )

and stochastically continuous. Then the following two statements have the relation
that (i) implies (ii):

(i) If Tt\varphi = \varphi , Tt( - \varphi ) =  - \varphi , \varphi \in Lb(\scrB (\BbbR d)) for any t \geq 0, then \varphi is constant,
\~T -quasi-surely.

(ii) \~T is ergodic.
Moreover, if we assume further that for any \varphi \in Lb(\scrB (\BbbR d)), | \varphi ( \^X(0))| 2 has no mean-
uncertainty, then (i) and (ii) are equivalent.

Proof. The theorem can be proved easily by Theorem 3.15 and Propositions 3.19
and 3.21.

4. Ergodicity of \bfitG -Brownian motion on the unit circle. As an example,
we consider a G-Brownian motion on the unit circle S1 = [0, 2\pi ] defined by X(t) =
x+ Bt mod 2\pi , where B is a one-dimensional G-Brownian motion such that B1 has
normal distribution N(0, [\sigma 2, \sigma 2]). Here \sigma 2 \geq \sigma 2 are constants. See Example 3.3 for
the definition of the G-Brownian motions. For \varphi \in Cb,lip(S

1), set

Tt\varphi (x) = u(t, x) = \BbbE \varphi (X(t)).(4.1)

Then u is a viscosity solution of the following fully nonlinear PDE (Peng [35, 36]):

\partial 

\partial t
u =

1

2
\sigma 2u+xx  - 1

2
\sigma 2u - xx, u| t=0 = \varphi , x \in S1.(4.2)

If we assume \sigma 2 > 0, according to Krylov [30, 31], or Peng [36], when t > 0, u(t, x) is
C1,2 in (t, x), thus a classical solution for any t > 0. In fact, we can extend the solution
to the case when \varphi is bounded and measurable and obtain a classical solution for any
t > 0. Before we give this result, we need the following lemma about the regularity
of Tt.

Lemma 4.1. Assume \sigma 2 > 0. For Tt defined in (4.1) we have, for any t > 0,
An \in \scrB (S1) such that for An \downarrow \emptyset , we have (TtIAn

)(x) \downarrow 0.

Proof. From Denis, Hu, and Peng [11], we know that for any function \varphi \in 
Lb(\scrB (S1)),
(4.3)
Tt\varphi (x) = \BbbE \varphi (X(t))

= sup
\theta 2
\cdot \in \{ adapted processes with values in [\sigma 2,\sigma 2]\} 

E

\biggl[ 
\varphi 

\biggl( 
x+

\int t

0

\theta sdWs mod 2\pi 

\biggr) \biggr] 
,

where W. is the classical Brownian motion on \BbbR 1, W0 = 0, and E is the linear
expectation with respect to W.. Denote \scrF t = \sigma \{ Ws : 0 \leq s \leq t\} . Note that, by

Theorem 3.4.6 in Karatzas and Shreve [29],
\int t

0
\theta sdWs is in law a Brownian motion

with time \~\theta 2t =
\int t

0
\theta 2sds, i.e., there exists a standard Brownian motion \~W such that\int t

0
\theta sdWs = \~W\~\theta 2

t
, where \~\theta 2t is a stopping time with respect to the filtration \scrG s = \scrF \tau (s),

where \tau (s) = inf\{ t \geq 0 : \~\theta 2t > s\} . Note that \sigma 2 \leq \theta 2. \leq \=\sigma 2 and \sigma 2 > 0, so \~\theta 2t is strictly
increasing in t, and we have \tau (s) = inf\{ t \geq 0 : \~\theta 2t \geq s\} . Define \~\tau := \tau (\sigma 2t). It is easy

to see that \~\tau \leq t and
\int \~\tau 

0
\theta sdWs = \~W\~\theta 2

\~\tau 
= \~W\sigma 2t, which is a Brownian motion with

D
ow

nl
oa

de
d 

10
/0

7/
21

 to
 1

29
.2

34
.0

.2
11

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERGODICITY OF SUBLINEAR MARKOVIAN SEMIGROUPS 5667

respect to \scrG \sigma 2t = \scrF \~\tau . Therefore

E

\biggl[ 
\varphi 

\biggl( 
x+

\int t

0

\theta sdWs mod 2\pi 

\biggr) \biggr] 
= E

\Biggl[ 
E

\Biggl[ 
\varphi 

\Biggl( 
x+

\int \~\tau 

0

\theta sdWs +

\int t

\~\tau 

\theta sdWs mod 2\pi 

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \scrF \~\tau 

\Biggr] \Biggr] 

= E

\left[  E \biggl[ \varphi \biggl( x+ y +

\int t

\~\tau 

\theta sdWs mod 2\pi 

\biggr) \biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 
y=

\int \~\tau 
0

\theta sdWs

\right]  
= E

\left[  E \biggl[ \varphi \biggl( x+ y +

\int t

\~\tau 

\theta sdWs mod 2\pi 

\biggr) \biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 
y= \~W\sigma 2t

\right]  
=

\int 2\pi 

0

p(\sigma 2t, y)E

\biggl[ 
\varphi 

\biggl( 
x+ y +

\int t

\~\tau 

\theta sdWs mod 2\pi 

\biggr) \biggr] 
dy

= E

\biggl[ \int 2\pi 

0

p(\sigma 2t, y)\varphi 

\biggl( 
x+ y +

\int t

\~\tau 

\theta sdWs mod 2\pi 

\biggr) 
dy

\biggr] 
= E

\biggl[ \int 2\pi 

0

p(\sigma 2t, y)\varphi (x+ y + z mod 2\pi )dy| z=\int t
\~\tau 
\theta sdWs

\biggr] 
= E

\Bigl[ 
E[\varphi (x+ z + \~W\sigma 2t mod 2\pi )]| z=\int t

\~\tau 
\theta sdWs

\Bigr] 
,(4.4)

where p(\cdot , \cdot ) is the heat kernel of Brownian motion \~W\cdot on S
1 starting at position 0 at

time 0. In fact,

E[\varphi (x+ z + \~W\sigma 2t mod 2\pi )]

=

\int 
S1

p(\sigma 2t, y  - x - z mod 2\pi )\varphi (y)dy

=
\sum 
k\in \BbbZ 

\int 2\pi 

0

1\sqrt{} 
2\pi \sigma 2t

e
 - (x+z mod 2\pi  - y - 2k\pi )2

2\sigma 2t \varphi (y)dy.

So for any An \in \scrB (S1), using inequality (a - b)2 \geq 1
2a

2  - b2, we have

E[IAn(x+ z + \~W\sigma 2t mod 2\pi )]

=
\sum 
k\in \BbbZ 

\int 2\pi 

0

1\sqrt{} 
2\pi \sigma 2t

e
 - (x+z mod 2\pi  - y - 2k\pi )2

2\sigma 2t IAn
(y)dy

\leq 
\int 2\pi 

0

IAn(y)
1\sqrt{} 

2\pi \sigma 2t
e

(x+z mod 2\pi  - y)2

2\sigma 2t

\sum 
k\in \BbbZ 

e
 - (2k\pi )2

4\sigma 2t dy

\leq Leb(An)
1\sqrt{} 

2\pi \sigma 2t
e

(2\pi )2

2\sigma 2t
1

1 - e
 - \pi 2

\sigma 2t

.(4.5)

Note the upper bound of (4.5) is independent of x, z, and \theta \cdot , so it follows from (4.3)
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5668 CHUNRONG FENG AND HUAIZHONG ZHAO

and (4.4) that

(TtIAn
)(x)

= sup
\theta 2
\cdot \in \{ adapted processes with values in [\sigma 2,\sigma 2]\} 

E
\Bigl[ 
E[IAn

(x+ z + \~W\sigma 2t mod 2\pi )]| z=\int t
\tau 
\theta sdWs

\Bigr] 
\leq Leb(An)

1\sqrt{} 
2\pi \sigma 2t

e
(2\pi )2

2\sigma 2t
1

1 - e
 - \pi 2

\sigma 2t

\rightarrow 0,

since Leb(An) \rightarrow 0 as n\rightarrow \infty .

The following lemma is vitally important. It is the strong Feller property in the
classical case of linear probability space. But in the sublinear setting, it is not clear
whether or not this holds in general. The proof of this result is quite involved where
the regularity of Tt (Lemma 4.1) plays an important role.

Lemma 4.2. Assume \sigma 2 > 0 and \varphi \in Lb(\scrB (S1)). Then for any t > 0, u(t, x) =
Tt\varphi (x) given by (4.1) is C1,2 and a classical solution of (4.2).

Proof. Consider \varphi \in Lb(\scrB (S1)). First note there exists an increasing sequence of

simple functions \varphi 
(1)
n \uparrow \varphi with | | \varphi (1)

n | | \infty \leq | | \varphi | | \infty . Thus by the monotone convergence
of sublinear expectation we know that

u(1)n (t, x) = \BbbE \varphi (1)
n (x+Bt) \uparrow \BbbE \varphi (x+Bt) = u(t, x).

Denote

\varphi (1)
n =

2n\sum 
i=1

xiIA1
i
,

where \{ A1
i \} are Borel sets on S1. By a standard result (cf. Taylor [38]), there exists

a finite number of open intervals whose union is denoted by B0
i such that A1

i \bigtriangleup B0
i

can be sufficiently small. Define

\varphi (2)
n =

2n\sum 
i=1

xiIB0
i
.

Then

| \BbbE \varphi (2)
n (x+Bt) - \BbbE \varphi (1)

n (x+Bt)| \leq 
2n\sum 
i=1

| xi| \BbbE IA1
i\bigtriangleup B0

i
(x+Bt).

As the Brownian motion is nondegenerate (\sigma 2 > 0), so by Lemma 4.1, the expectation
\BbbE IA1

i\bigtriangleup B0
i
(x+Bt) can be sufficiently small since the Lebesgue measure of A1

i \bigtriangleup B0
i is

sufficiently small. Thus u
(2)
n (t, x) = \BbbE \varphi (2)

n (x+Bt) is sufficiently close to u
(1)
n (t, x).

Now note that one can easily find an increasing (or decreasing) sequence of con-
tinuous functions to approximate IB0

i
. Thus there exists an increasing sequence of

continuous functions \varphi 
(3)
nm \uparrow \varphi 

(2)
n as m \rightarrow \infty with | | \varphi (3)

nm| | \infty \leq | | \varphi (2)
n | | \infty . By the

monotone convergence theorem,

u(3)nm(t, x) = \BbbE \varphi (3)
nm(x+Bt) \uparrow u(2)n (t, x).

Summarizing above, we conclude there exists a sequence of continuous functions \varphi n

such that
un(t, x) = \BbbE \varphi n(x+Bt) \rightarrow u(t, x) = \BbbE \varphi (x+Bt).
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For any given \delta > 0, by Krylov's result of the regularity of fully nonlinear parabolic
PDEs of nondegenerate type (Krylov [30, 31]), we know that

| Dtun(\delta , x)| + | Dxun(\delta , x)| \leq M

for a constantM > 0 independent of n and x. Thus the sequence un(\delta , x) = (T\delta \varphi n)(x)
of continuous functions is equicontinuous. Thus its limit u(\delta , x) = (T\delta \varphi )(x) is continu-
ous in x. As Tt\varphi = Tt - \delta T\delta \varphi , by Krylov's result again, we can see that u(t, x) = Tt\varphi (x)
given by (4.1) is C1,2 in (t, x) for any t > 0.

Theorem 4.3. Let Tt be the Markovian semigroup defined by (4.1) with the G-
Brownian motion on the unit circle S1 = [0, 2\pi ] with normal distribution N(0, [\sigma 2t, \sigma 2t]),
where \sigma 2 \geq \sigma 2 > 0 are constant. Then

\~T\varphi =
1

2\pi 

\int 2\pi 

0

(T\delta \varphi )(x)dx, \varphi \in Lb(\scrB (S1)), \delta > 0,(4.6)

is independent of \delta > 0 and is the unique invariant expectation of Tt, t \geq 0. Moreover,
Tt\varphi \rightarrow \~T\varphi as t\rightarrow \infty .

Proof. For each \varphi \in Lb(\scrB (S1)), define m(\varphi ) as integral of \varphi with respect to the
Lebesgue measure (normalized)

m(\varphi ) =
1

2\pi 

\int 2\pi 

0

\varphi (x)dx.(4.7)

Set

T\sigma 
t \varphi (x) =

\int 2\pi 

0

p\sigma (t, x, y)\varphi (y)dy

and

T
\sigma 
t \varphi (x) =

\int 2\pi 

0

p\sigma (t, x, y)\varphi (y)dy,

where p\sigma and p\sigma , the density of the transition probabilities of Brownian motions \sigma W\cdot 
and \sigma W\cdot , respectively, are given by

p\sigma (t, x, y) =
\sum 
k\in \BbbZ 

1\surd 
2\pi \sigma 2t

e - 
(x - y - 2k\pi )2

2\sigma 2t(4.8)

and

p\sigma (t, x, y) =
\sum 
k\in \BbbZ 

1\sqrt{} 
2\pi \sigma 2t

e
 - (x - y - 2k\pi )2

2\sigma 2t .(4.9)

Here W. is the classical Brownian motion on S1. These standard Poisson summation
formulae of heat kernels can be obtained using Fourier analysis or stochastic methods
(cf. Elworthy [16]). It is easy to see that if \varphi is convex, then T\sigma 

t \varphi (x) is a convex
function of x for each t and Tt\varphi (x) = T\sigma 

t \varphi (x). If \varphi is concave, then Tt\varphi (x) = T
\sigma 
t \varphi (x),

which is a concave function of x for each t. Moreover, it is well known that the
Lebesgue measure is the invariant measure of Brownian motion on S1 (cf. Proposition
4.5 and the corollary of Theorem 4.6 in Chapter V in [28]), so

mT
\sigma 
t \varphi = m\varphi , mT \sigma 

t \varphi = m\varphi for t \geq 0,
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5670 CHUNRONG FENG AND HUAIZHONG ZHAO

and as t\rightarrow \infty , for any x \in [0, 2\pi ]

T
\sigma 
t \varphi (x) \rightarrow m\varphi , T \sigma 

t \varphi (x) \rightarrow m\varphi .

Thus if \varphi is convex or concave,

mTt\varphi = m\varphi ,(4.10)

and as t\rightarrow \infty , for any x \in [0, 2\pi ]

Tt\varphi (x) \rightarrow m\varphi .(4.11)

Now we consider \varphi being a polynomial function defined in [0, 2\pi ]. It is well known
that there exist a convex function \varphi 1 and a concave function \varphi 2 such that \varphi = \varphi 1+\varphi 2.
By the sublinearity of Tt, we have

Tt\varphi 1(x) - Tt( - \varphi 2)(x) \leq Tt\varphi (x) \leq Tt\varphi 1(x) + Tt\varphi 2(x).(4.12)

It follows from the linearity of m that

mTt\varphi \leq mTt\varphi 1 +mTt\varphi 2 = m\varphi 1 +m\varphi 2 = m(\varphi 1 + \varphi 2) = m\varphi 

and

mTt\varphi \geq mTt\varphi 1  - mTt( - \varphi 2) = m\varphi 1  - m( - \varphi 2) = m(\varphi 1 + \varphi 2) = m\varphi .

So (4.10) holds true for any polynomial function \varphi . It then follows from an approxima-
tion argument using the Weierstrass theorem that (4.10) is also true for \varphi \in C([0, 2\pi ]).

Moreover, for any polynomial function \varphi , as above \varphi = \varphi 1 + \varphi 2, \varphi 1 is convex,
and \varphi 2 is concave, we have that when t\rightarrow \infty ,

Tt\varphi 1(x) + Tt\varphi 2(x) \rightarrow m\varphi 1 +m\varphi 2 = m(\varphi 1 + \varphi 2) = m\varphi 

and

Tt\varphi 1(x) - Tt( - \varphi 2(x)) \rightarrow m\varphi 1  - m( - \varphi 2) = m(\varphi 1 + \varphi 2) = m\varphi .

Thus (4.11) holds for any polynomial \varphi .
Now we consider \varphi \in C([0, 2\pi ]). First note that by the Weierstrass approximation

theorem, for any \epsilon > 0, there exists a polynomial \~\varphi such that supx\in [0,2\pi ] | \~\varphi (x)  - 
\varphi (x)| < 1

3\epsilon . So | Tt \~\varphi (x) - Tt\varphi (x)| < 1
3\epsilon for any x, t and | m \~\varphi (x) - m\varphi (x)| < 1

3\epsilon . On the
other hand, for such \~\varphi , there exists R > 0 such that for any t \geq R, | Tt \~\varphi (x) - m \~\varphi | < 1

3\epsilon .
Thus for t \geq R,

| Tt\varphi (x) - m\varphi | \leq | Tt\varphi (x) - Tt \~\varphi (x)| + | Tt \~\varphi (x) - m \~\varphi | + | m \~\varphi  - m\varphi | < \epsilon .(4.13)

This leads to (4.11) for any \varphi \in C([0, 2\pi ]).
Now consider \varphi \in Lb(\scrB (S1)). By Lemma 4.2, for any \delta > 0, (T\delta \varphi )(x) is continu-

ous in x. Applying (4.11) for continuous function, we have

Tt\varphi = Tt - \delta T\delta \varphi \rightarrow m(T\delta \varphi ) = (mT\delta )\varphi as t\rightarrow \infty .

So the last statement of the theorem is verified. But Tt\varphi is independent of \delta , and then
m(T\delta \varphi ) is independent of \delta > 0, which means m(T\delta 1) = m(T\delta 2) for any \delta 1, \delta 2 > 0.
Define \~T : Lb(\scrB (S1)) \rightarrow \BbbR 1:

\~T\varphi = (mT\delta )\varphi , \delta > 0.
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Then for any t \geq 0,
\~TTt\varphi = mT\delta Tt\varphi = mTt+\delta \varphi = \~T\varphi .

Thus \~T is an invariant expectation. The uniqueness follows from the convergence of
Tt\varphi .

Remark 4.4. (i) From the proof, we can see that when \varphi \in C([0, 2\pi ]), \~T\varphi =
1
2\pi 

\int 2\pi 

0
\varphi (x)dx.

(ii) We do not attempt to give the result in Theorem 4.3 in broad terms, e.g.,
of Brownian motions on a compact manifold. Here we only show such a result as an
example. More general cases will be treated in future publications.

As we have proved the invariant expectation \~T of G-Brownian motion on S1

exists, we can follow the procedure in section 3 to construct the canonical process \^X
and the canonical dynamical system on the path space.

Applying Theorem 3.22, in the following we prove that the G-Brownian motion
on the unit circle is ergodic. First, we need the following proposition, where the no
mean-uncertainty condition needed in Theorem 3.22 is proved in (ii) below. Recall
\Omega \ast = C(\BbbR ,\BbbR d) with the topology given in (3.7).

Proposition 4.5. Consider the G-Brownian motion on the unit circle S1 =
[0, 2\pi ] with normal distribution N(0, [\sigma 2t, \sigma 2t]), where \sigma 2 \geq \sigma 2 > 0. The following
results hold:

(i) The stationary process \^X defined in (3.9) has a continuous modification \~X
and is stochastically continuous.

(ii) For each \varphi \in Lb(\scrB (S1)), \varphi ( \~X(0)) has no mean-uncertainty with respect to
the invariant expectation \~\scrE .

(iii) There exists a weakly compact family of probability measures \scrP on (\Omega \ast ,\scrB (\Omega \ast ))
such that

\^\BbbE \~T [\xi ] = sup
P\in \scrP 

EP [\xi ], \xi \in Lipb,cyl(\Omega 
\ast ).

(iv) The invariant expectation \~T is regular.
(v) Define, for each \xi \in \scrB (\Omega \ast ), the upper expectation

\BbbE \ast [\xi ] = sup
P\in \scrP 

EP [\xi ].(4.14)

For any Fn \in \scrB (\Omega \ast ) such that IFn
\downarrow 0, then \BbbE \ast [IFn

] \downarrow 0. Thus \BbbE \ast is regular.

Proof. (i) Note that by the sublinear expectation representation theorem, for the

sublinear expectation \BbbE \~T on (\^\Omega , L1
0(
\^\Omega )), there exists a family of linear expectations

\{ E\theta : \theta \in \Theta \} such that

\BbbE \~T [X] = sup
\theta \in \Theta 

E\theta [X], X \in L1
0(\^\Omega ).(4.15)

Note further that if \{ \varphi n\} \infty n=1 \subset Cb,Lip((S
1)m) satisfies \varphi n \downarrow 0, then by an argument

similar to that in the proof of Lemma 3.3 of Chapter I in Peng [36],

\BbbE \~T [\varphi n(\^\omega t1 , \^\omega t2 , . . . , \^\omega tm)] \downarrow 0 as n\rightarrow \infty ,

and it follows from (4.15) that

\BbbE \~T [\varphi n(\^\omega t1 , \^\omega t2 , . . . , \^\omega tm)] = sup
\theta \in \Theta 

E\theta [\varphi n(\^\omega t1 , \^\omega t2 , . . . , \^\omega tm)].
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5672 CHUNRONG FENG AND HUAIZHONG ZHAO

But for each \theta \in \Theta , E\theta is controlled by \BbbE \~T . Thus E\theta [\varphi n(\^\omega t1 , \^\omega t2 , . . . , \^\omega tm)] \downarrow 0 as
n\rightarrow \infty . So by the Daniell--Stone theorem (cf. Peng [36]), there is a unique probability
measure Q\{ t1,t2,...,tm\} on ((S1)m,\scrB ((S1)m)) such that

E\theta [\varphi n(\^\omega t1 , \^\omega t2 , . . . , \^\omega tm)] = EQ\{ t1,t2,...,tm\} [\varphi n(\^\omega t1 , \^\omega t2 , . . . , \^\omega tm)].

Denote \scrT = \{ t = \{ t1, t2, . . . , tm\} : t1 < t2 < \cdot \cdot \cdot < tm,m \in \BbbN \} . Thus we have a family
of finite-dimensional distributions \{ Qt, t \in \scrT \} . It is easy to check that \{ Qt, t \in \scrT \} 
is consistent. By Kolmogorov's consistency theorem, there is a probability measure
Q on (\^\Omega , \^\scrF ) such that \{ Qt, t \in \scrT \} is the finite-dimensional distribution of Q. The
probability distribution Q is unique since by the Daniell--Stone theorem its finite-
dimensional distribution is unique, so the uniqueness of Q follows from the monotone
class theorem. It is now clear that E\theta [X] = EQ[X] for any X \in Lipb,cyl(\^\Omega ). Thus it
follows from (4.15) that

\BbbE \~T [X] = sup
Q\in \scrP e

EQ[X], X \in Lipb,cyl(\^\Omega ),

where \scrP e is a family of probability measures on (\^\Omega ,\scrB (\^\Omega )). Define the associated
capacity

\^c(A) := sup
Q\in \scrP e

Q(A), A \in \scrB (\^\Omega ),

and the upper expectation of each \scrB (\^\Omega )-measurable real-valued function X which
makes the following definition meaningful:

\^\BbbE \~T [X] = sup
Q\in \scrP e

EQ[X].

On the space Lipb,cyl(\^\Omega ), \BbbE 
\~T = \^\BbbE \~T . Consider the canonical process \^X on (\^\Omega , L1

0(
\^\Omega ),

\BbbE \~T , \^\theta t). For t \geq s, by the conditional expectation,

\^\BbbE \~T ( \^X(t) - \^X(s))4

= \BbbE \~T ( \^X(t) - \^X(s))4

= \BbbE \~T [\BbbE \~T [( \^X(t) - \^X(s))4| \scrF s]]

= \BbbE \~T [Tt - s\varphi (y)| y= \^X(s)]

\leq c| t - s| 2,(4.16)

where \varphi (y) = (y - \^X(s))4, and c > 0 is a constant independent of t and s. Then by the
Kolmogorov continuity theorem for sublinear expectations (Theorem 1.36, Chapter
VI, Peng [36]), the process \^X has a continuous modification, denoted by \~X, such that
\^c( \~Xt \not = \^Xt) = 0. Note that for any \delta > 0,

\^\BbbE \~T ( \^X(t) - \^X(s))4 \geq \^\BbbE \~T [( \^X(t) - \^X(s))4I\{ | \^X(t) - \^X(s)| >\delta \} ] \geq \delta 4\^\BbbE \~T I\{ | \^X(t) - \^X(s)| >\delta \} ,

so

\^\BbbE \~T I\{ | \^X(t) - \^X(s)| >\delta \} \leq \delta  - 4\^\BbbE \~T ( \^X(t) - \^X(s))4.

Thus the stochastic continuity follows from (4.16).
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(ii) Now we prove for any \varphi \in Lb(\scrB (S1)) that \varphi ( \~X(0)) has no mean-uncertainty.
We follow the 3-step approximation procedure of using a sequence of continuous func-
tions to approximate \varphi . Note the no mean-uncertainty of \varphi ( \~X(0)) when \varphi \in Cb(S

1)
follows from (4.6) and the fact that \~T is a Lebesgue integral in this case automatically.
Adopting the same notation as in the proof of Lemma 4.2, consider the increasing se-

quence of continuous functions \varphi 
(3)
nm \uparrow \varphi (2)

n , whenm\rightarrow \infty . First note by Remark 4.4(i)
that

\~\scrE ( - \varphi (3)
nm( \~X(0))) =  - \~\scrE (\varphi (3)

nm( \~X(0))).(4.17)

By Lemma 2.11, we have that \varphi 
(2)
n ( \~X(0)) has no mean-uncertainty,

\~\scrE ( - \varphi (2)
n ( \~X(0))) =  - \~\scrE (\varphi (2)

n ( \~X(0))).(4.18)

But

| \~\scrE (\varphi (2)
n ( \~X(0))) - \~\scrE (\varphi (1)

n ( \~X(0)))| \leq 
r\sum 

i=1

| xi| \~\scrE (IA1
i\bigtriangleup B0

i
( \~X(0)))(4.19)

and

| \~\scrE ( - \varphi (2)
n ( \~X(0))) - \~\scrE ( - \varphi (1)

n ( \~X(0)))| \leq 
r\sum 

i=1

| xi| \~\scrE (IA1
i\bigtriangleup B0

i
( \~X(0))),(4.20)

so \varphi 
(1)
n ( \~X(0)) has no mean-uncertainty. As \varphi 

(1)
n \uparrow \varphi , by Lemma 2.11 again, \varphi ( \~X(0))

has no mean-uncertainty,

\~\scrE ( - \varphi ( \~X(0))) =  - \~\scrE (\varphi ( \~X(0))).

(iii) In the following we will find a weakly compact family of probability measures
\scrP on (\Omega \ast ,\scrB (\Omega \ast )) such that the upper expectation (4.14) gives a sublinear expectation
on \scrP on (\Omega \ast ,\scrB (\Omega \ast )) with finite-dimensional expectation of \varphi (\omega \ast 

t1 , \omega 
\ast 
t2 , . . . , \omega 

\ast 
tm), t1 <

t2 < \cdot \cdot \cdot < tm, to be T
\~T
t1,t2,...,tm\varphi for \varphi \in Lb(\scrB ((S1)m)).

For each Q \in \scrP e, let Q \circ \~X - 1, which is a probability measure on (\Omega \ast ,\scrB (\Omega \ast ))
induced by \~X from Q, and set \scrP 1 = \{ Q \circ \~X - 1 : Q \in \scrP e\} . Then, similarly to (4.16),
we have

\^\BbbE \~T ( \~X(t) - \~X(s))4 = \^\BbbE \~T ( \^X(t) - \^X(s))4 \leq c| t - s| 2, t, s \in \BbbR .

Applying the moment criterion for the tightness of Kolmogorov--Chentsov type, we
conclude that \scrP 1 as a family of probability measures on (\Omega \ast ,\scrB (\Omega \ast )) is tight. Denote
by \scrP = \=\scrP 1 the closure of \scrP 1 under the topology of weak convergence. Then \scrP is
weakly compact. Note that

\^\BbbE \~T [\xi ] = sup
P\in \scrP 1

EP [\xi ], \xi \in Lipb,cyl(\Omega 
\ast ).

For each \xi \in Lipb,cyl(\Omega 
\ast ), from Lemma 3.3 of Chapter I in [36], we get \^\BbbE \~T [| \xi  - (\xi \wedge 

N) \vee ( - N)| ] \downarrow 0 as N \rightarrow \infty . So

\^\BbbE \~T [\xi ] = sup
P\in \scrP 

EP [\xi ], \xi \in Lipb,cyl(\Omega 
\ast ).
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5674 CHUNRONG FENG AND HUAIZHONG ZHAO

(iv) For any An \in \scrB (S1) such that IAn
\downarrow 0, then by (4.6) and Lemma 4.1, we

have \~T [IAn
] \downarrow 0, i.e., \~T is regular.

(v) For \scrP given in (iii), we define the associated G-capacity

c\ast (F ) := sup
P\in \scrP 

P (F ), F \in \scrB (\Omega \ast ),

and upper expectation for each \scrB (\Omega \ast )-measurable real-valued function \xi which makes
the following definition meaningful:

\BbbE \ast [\xi ] := sup
P\in \scrP 

EP [\xi ].

On Lipb,cyl(\Omega 
\ast ), \BbbE \ast = \^\BbbE \~T and as \scrP is a weakly compact family of probability measures

on (\Omega \ast ,\scrB (\Omega \ast )), we have for any continuous \xi n and \xi n \downarrow 0, \BbbE \ast [\xi n] \downarrow 0 as n\rightarrow \infty . Now
consider for any Fn \in \scrB (\Omega \ast ), such that IFn

\downarrow 0. Define

Cn =

\biggl\{ 
\omega \in \Omega \ast : \rho (\omega , Fn) \leq 

1

n

\biggr\} 
, Dn =

\biggl\{ 
\omega \in \Omega \ast : \rho (\omega , Fn) <

2

n

\biggr\} 
.

Moreover, define

\xi n(\omega ) = n[min\{ \rho (\omega ,Dc
n), \rho (Cn, D

c
n)\} ].

Then it is easy to see that \xi n(\omega ) is continuous in \omega \in \Omega \ast and IFn
\leq \xi n. As when

\xi n \downarrow 0, we have that \BbbE \ast [\xi n] \downarrow 0; thus as n\rightarrow \infty , it follows that \BbbE \ast [IFn
] \downarrow 0.

From the result of Proposition 4.5 and Proposition 3.10, we can conclude that the
canonical dynamical system generated by the semigroup of the G-Brownian motion
on the unit circle is continuous.

Theorem 4.6. The invariant expectation of the G-Brownian motion on the unit
circle S1 = [0, 2\pi ] with normal distribution N(0, [\sigma 2t, \sigma 2t]), where \sigma 2 \geq \sigma 2 > 0 are
constant, is ergodic.

Proof. Consider \varphi \in Lb(\scrB (S1)) with Tt\varphi = \varphi and Tt( - \varphi ) =  - \varphi , t \geq 0. From the
convergence result that as t \rightarrow \infty , Tt\varphi \rightarrow \~T\varphi in Theorem 4.3, it is easy to see that
\varphi = \~T\varphi , so \varphi is constant. By Theorem 3.22, the invariant expectation is ergodic.

Remark 4.7. Following the regularity result of \BbbE \ast in Proposition 4.5, and the
ergodicity results for the G-Brownian motion on the unit circle, it follows that the
SLLN holds by Theorem 3.18.

Inspired by Theorem 3.22, we observe that the study of the ergodicity of the
invariant expectation \~T is equivalent to the study of the spectrum of the semigroup
Tt on the space of Lb(\scrB (\BbbR d)). It is noted that due to the constant preserving property
of the sublinear expectation, the sublinear semigroup Tt on Lb(\scrB (\BbbR d)) has eigenvalue
1. Theorem 3.22 says that ergodicity is equivalent to 1 being a simple eigenvalue of
Tt on Lb(\scrB (\BbbR d)) as | \varphi (X(0))| 2 has no mean-uncertainty.

Now we consider the relation of the eigenvalues of Tt and its infinitesimal generator
\BbbG . First assume 1 is a simple eigenvalue of Tt. Recall \BbbG (u) = 1

2\sigma 
2u+xx  - 1

2\sigma 
2u - xx and

u(t, x) = Tt\varphi (x) satisfying (4.2). It is easy to see that \BbbG (c) = 0 for any constant
c. This suggests that 0 is an eigenvalue of the generator \BbbG in the space of twice
differentiable functions. However, if \varphi is continuous and a viscosity solution of \BbbG (\varphi ) =
0, it is easy to see that Tt\varphi = \varphi . So \varphi is constant. This means 0 is a simple eigenvalue
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of\BbbG . Conversely, now assume 0 is a simple eigenvalue of\BbbG . Consider \varphi as a continuous
function satisfying Tt\varphi = \varphi . As Tt\varphi is a solution of (4.2), so \BbbG (\varphi ) = 0. Thus \varphi is a
constant due to the spectrum assumption of \BbbG . This correspondence is also true for
sublinear Markovian semigroups and their infinitesimal generators in general cases.

From the above discussions, our result shows that as the G-Brownian motion on
the unit circle is ergodic, so 0 is a simple eigenvalue of the corresponding infinitesimal
generator \BbbG (\cdot ). In fact, we can prove this result analytically without referring to the
result of ergodicity.

Proposition 4.8. Let a continuous function \varphi be a viscosity solution of

1

2
\sigma 2\varphi +

xx  - 1

2
\sigma 2\varphi  - 

xx = 0, x \in [0, 2\pi ], \varphi (0) = \varphi (2\pi ).(4.21)

If \sigma 2 > 0, then \varphi is constant.

Proof. Let \psi be a C2 function on [0, 2\pi ] such that \psi \geq \varphi and \psi (x) = \varphi (x) at
certain x \in [0, 2\pi ] with \psi \prime \prime (x) \not = 0. Then 1

2\sigma 
2\psi \prime \prime (x)+  - 1

2\sigma 
2\psi \prime \prime (x) - \geq 0. It is then

obvious that

\sigma 2\psi \prime \prime (x) - \leq \sigma 2\psi \prime \prime (x)+.(4.22)

If \psi \prime \prime (x) < 0, then \psi \prime \prime (x) - > 0 and \psi \prime \prime (x)+ = 0. This contradicts (4.22). Thus
\psi \prime \prime (x) \geq 0, so \psi is locally a convex function near x.

Similarly, let \~\psi be a C2 function on [0, 2\pi ] such that \~\psi \leq \varphi and \~\psi (x) = \varphi (x) at
certain x \in [0, 2\pi ] with \~\psi \prime \prime (x) \not = 0. Then 1

2\sigma 
2 \~\psi \prime \prime (x)+  - 1

2\sigma 
2 \~\psi \prime \prime (x) - \leq 0. It is then

obvious that

\sigma 2 \~\psi \prime \prime (x)+ \leq \sigma 2 \~\psi \prime \prime (x) - .(4.23)

If \~\psi \prime \prime (x) > 0, then \~\psi \prime \prime (x)+ > 0 and \~\psi \prime \prime (x) - = 0. This contradicts (4.23). Thus
\~\psi \prime \prime (x) \leq 0 and \~\psi is locally a concave function near x.

A function \varphi that satisfies the above two properties must be a linear function.
Now from the periodic boundary of \varphi , we conclude easily that \varphi is a constant.

Remark 4.9. The condition \sigma 2 > 0 is crucial for Proposition 4.8. Otherwise, any
smooth concave periodic function \varphi with period 2\pi satisfies (4.21) since \varphi +

xx = 0. In
that case, Brownian motion (degenerate) on S1 fails to be ergodic. So Theorem 4.6
can be stated as follows.

Theorem 4.10. The invariant expectation of the G-Brownian motion on the unit
circle S1 = [0, 2\pi ] with normal distribution N(0, [\sigma 2t, \sigma 2t]), where \sigma 2 \geq \sigma 2 are con-
stant, is ergodic if and only if \sigma 2 > 0.

Appendix A. Proofs of Theorem 2.4 and Lemma 2.12.

Proof of Theorem 2.4. (i)\Rightarrow (ii) Assume B \in \scrF and \BbbE I\theta  - 1B\Delta B = 0. Define

B\infty =

\infty \bigcap 
n=0

\infty \bigcup 
i=n

\theta  - iB.(A.1)

Then it is easy to see that

\theta  - 1B\infty =

\infty \bigcap 
n=0

\infty \bigcup 
i=n+1

\theta  - iB = B\infty .

D
ow

nl
oa

de
d 

10
/0

7/
21

 to
 1

29
.2

34
.0

.2
11

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5676 CHUNRONG FENG AND HUAIZHONG ZHAO

Thus B\infty is an invariant set. By the assumption, we have

\BbbE IB\infty = 0 or \BbbE IBc
\infty 

= 0.(A.2)

Note that for any n \in N

\theta  - nB \bigtriangleup B \subset 
n - 1\bigcup 
i=0

(\theta  - (i+1)B \bigtriangleup \theta  - iB)

=

n - 1\bigcup 
i=0

\theta  - i(\theta  - 1B \bigtriangleup B).

So by the monotonicity and subadditivity of \BbbE and the expectation preserving property
of \theta ,

\BbbE I\theta  - nB\bigtriangleup B \leq \BbbE I\bigcup n - 1
i=0 \theta  - i(\theta  - 1B\bigtriangleup B)

\leq \BbbE 

\Biggl[ 
n - 1\sum 
i=0

I\theta  - i(\theta  - 1B\bigtriangleup B)

\Biggr] 

\leq 
n - 1\sum 
i=0

\BbbE I\theta  - i(\theta  - 1B\bigtriangleup B)

=

n - 1\sum 
i=0

\BbbE I\theta  - 1B\bigtriangleup B

= 0.(A.3)

Moreover \Biggl( \infty \bigcup 
i=1

\theta  - iB

\Biggr) 
\bigtriangleup B \subset 

\infty \bigcup 
i=1

(\theta  - iB \bigtriangleup B).(A.4)

Thus it follows from (A.3) and (A.4) that

\BbbE I(\bigcup \infty 
i=n \theta  - iB)\bigtriangleup B \leq \BbbE I\bigcup \infty 

i=0(\theta 
 - iB\bigtriangleup B)

\leq 
\infty \sum 
i=0

\BbbE I\theta  - iB\bigtriangleup B

= 0.

From the above we have

\BbbE I(\bigcup \infty 
i=n \theta  - iB)\setminus B = 0(A.5)

and

\BbbE IB\setminus 
\bigcup \infty 

i=n \theta  - iB = 0.(A.6)

But note that as n\rightarrow \infty ,

I(B\setminus 
\bigcup \infty 

i=n \theta  - iB) \uparrow I(B\setminus 
\bigcap \infty 

n=1

\bigcup \infty 
i=n \theta  - iB) = IB\setminus B\infty .
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So by the monotone (increasing) convergence of sublinear expectation (see [34] and
[11]), we have that as n\rightarrow +\infty ,

\BbbE IB\setminus 
\bigcup \infty 

i=n \theta  - iB \rightarrow \BbbE IB\setminus B\infty .

Thus it follows from (A.6) that

\BbbE IB\setminus B\infty = 0.(A.7)

Moreover

I(
\bigcup \infty 

i=n \theta  - iB)\setminus B \downarrow IB\infty \setminus B .

It then follows by applying the monotonicity of sublinear expectation and (A.5) that

\BbbE IB\infty \setminus B = 0.

Note that the regularity condition is not needed here. Thus

\BbbE IB\infty \bigtriangleup B = 0.

Now recall (A.2). Consider the case that \BbbE IB\infty = 0. Note that

0 = \BbbE IB\setminus B\infty = \BbbE IB\setminus (B\cap B\infty )

= \BbbE [IB  - I(B\cap B\infty )]

\geq \BbbE [IB ] - \BbbE [I(B\cap B\infty )]

\geq \BbbE [IB ] - \BbbE [IB\infty ]

= \BbbE [IB ].

Hence

\BbbE [IB ] = 0.

Now consider the case that \BbbE IBc
\infty 

= 0. Note that

0 = \BbbE IB\infty \setminus B = \BbbE IBc\setminus (Bc\cap Bc
\infty )

= \BbbE [IBc  - IBc\cap Bc
\infty 
]

\geq \BbbE [IBc ] - \BbbE [IBc\cap Bc
\infty 
]

\geq \BbbE [IBc ] - \BbbE [IBc
\infty 
]

= \BbbE [IBc ].

Thus

\BbbE [IBc ] = 0.

Therefore the assertion (ii) is proved.
(iii)\Rightarrow (iv) Let \BbbE IA > 0 and \BbbE IB > 0. From (iii), we know that \BbbE I(\bigcup \infty 

n=1 \theta  - nA)c

= 0. It then follows, together with applying subadditivity and monotonicity of \BbbE ,
that

0 < \BbbE IB = \BbbE [IB\bigcap 
(
\bigcup \infty 

n=1 \theta  - nA) + IB
\bigcap 
(
\bigcup \infty 

n=1 \theta  - nA)c ]

\leq \BbbE [IB\bigcap 
(
\bigcup \infty 

n=1 \theta  - nA)] + \BbbE [IB\bigcap 
(
\bigcup \infty 

n=1 \theta  - nA)c ]

\leq \BbbE [I\bigcup \infty 
n=1(B

\bigcap 
\theta  - nA)] + \BbbE [I(\bigcup \infty 

n=1 \theta  - nA)c ]

= \BbbE [I\bigcup \infty 
n=1(B

\bigcap 
\theta  - nA)]

\leq 
\infty \sum 

n=1

\BbbE [IB\bigcap 
\theta  - nA].
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Thus it is obvious that there must exist n \in \BbbN such that \BbbE [I(B\bigcap 
\theta  - nA)] > 0. So (iv)

is proved.
(iv)\Rightarrow (i) Suppose that B \in \scrF and \theta  - 1B = B. If \BbbE IB > 0 and \BbbE IBc > 0, then by

assumption (iv) and invariant assumption of B,

0 < \BbbE [IBc
\bigcap 

\theta  - nB ] = \BbbE [IBc
\bigcap 

B ] = 0.

This is a contradiction, and thus \BbbE IB = 0 or \BbbE IBc = 0. So (i) is proved.
(ii)\Rightarrow (iii) This follows under the regularity assumption. Assume A \in \scrF and

\BbbE IA > 0. Set

A1 =

\infty \bigcup 
n=1

\theta  - nA.

It is easy to see that \theta  - 1A1 \subset A1 and \theta  - nA1 =
\bigcup \infty 

i=n+1 \theta 
 - iA. So \{ \theta  - nA1\} n\in \BbbN forms

a decreasing sequence of sets with limit

\theta  - nA1 \downarrow A\infty = lim sup
n

(\theta  - nA),(A.8)

where the notation A\infty is used in the same fashion as in the proof of (i)\Rightarrow (ii). It is
easy to see that

\theta  - 1A\infty = A\infty .

Thus

\BbbE I\theta  - 1A\infty \bigtriangleup A\infty = 0.

According to assumption (ii), we know that either \BbbE IA\infty = 0 or \BbbE IAc
\infty 

= 0. We claim
the case that \BbbE IA\infty = 0 is impossible. Otherwise, IA\infty = 0 quasi-surely. It then
follows that I\theta  - nA1

\downarrow IA\infty = 0 quasi-surely. So as \BbbE is regular, therefore \BbbE I\theta  - nA1
\rightarrow 0

as n \rightarrow \infty . However, by the expectation preserving property of \theta , the definition of
A1, and the monotonicity of \BbbE ,

\BbbE I\theta  - nA1
= \BbbE IA1 \geq \BbbE I\theta  - 1A = \BbbE IA > 0.

We have a contraction. Thus \BbbE IAc
\infty 

= 0 holds. Then it follows that \BbbE IAc
1
= 0 as

A\infty \subset A1, so (iii) is proved. It is then obvious that all four statements are equivalent
under the regularity condition.

Proof of Lemma 2.12. Recall that Sn is defined by (2.8). Let

\=\xi = lim sup
n\rightarrow \infty 

Sn

n
,

\epsilon > 0, and
D = \{ \omega : \=\xi (\omega ) > \=\xi \ast (\omega ) + \epsilon \} .

Our goal is to prove \BbbE [ - ID] = 0. Note that \=\xi (\theta \omega ) = \=\xi (\omega ), and \=\xi \ast (\theta \omega ) = \=\xi \ast (\omega )
quasi-surely, so D \in \scrI .

Define

\xi \ast (\omega ) = (\xi (\omega ) - \=\xi \ast (\omega ) - \epsilon )ID(\omega ),

S\ast 
n(\omega ) = \xi \ast (\omega ) + \cdot \cdot \cdot + \xi \ast (\theta \ast n - 1\omega ),
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M\ast 
n(\omega ) = sup\{ 0, S\ast 

1 (\omega ), . . . , S
\ast 
n(\omega )\} ,

Fn = \{ \omega :M\ast 
n(\omega ) > 0\} ,

and

F = \cup nFn =

\biggl\{ 
\omega : sup

k\geq 1

S\ast 
k

k
> 0

\biggr\} 
.

Since \xi \ast (\omega ) = (\xi (\omega )  - \=\xi \ast (\omega )  - \epsilon )ID(\omega ) and D = \{ \omega : lim supk\rightarrow \infty 
Sk

k > \=\xi \ast + \epsilon \} , it
follows that F = D. In fact, if \omega \in D, then supk\geq 1

Sk

k > \=\xi \ast + \epsilon , and by definition of

\xi \ast ,
S\ast 
k

k = Sk

k  - \epsilon  - \=\xi \ast . So supk\geq 1
S\ast 
k

k > 0, i.e., \omega \in F. Therefore D \subset F . If \omega /\in D,
then \xi \ast (\omega ) = 0. Note that D \in \scrI , so \xi \ast (\theta k\omega ) = 0 quasi-surely for all k. Therefore
S\ast 
k(\omega ) = 0 for all k, and so \omega /\in F . This tells us that F \subset D. Thus F = D.

Now applying the maximal ergodic theorem, we know that \BbbE [\xi \ast IFn
] \geq 0. But

\BbbE [\xi \ast IFn ] = \BbbE [(\xi \ast )+IFn  - (\xi \ast ) - IFn ]

\leq \BbbE [(\xi \ast )+IF  - (\xi \ast ) - IF + (\xi \ast ) - IF\setminus Fn
]

\leq \BbbE [\xi \ast IF ] + \BbbE [(\xi \ast ) - IF\setminus Fn
].

But \BbbE [(\xi \ast ) - IF\setminus Fn
] \downarrow 0 as n\rightarrow \infty because IF\setminus Fn

\downarrow 0 and \BbbE is regular. Thus

\BbbE [\xi \ast IF ] \geq 0.

However, it follows that

0 \leq \BbbE [(\=\xi  - \=\xi \ast  - \epsilon )ID] \leq \BbbE [(\=\xi  - \=\xi \ast )ID] + \BbbE [ - \epsilon ID]

= sup
P\in \scrP 

EP [(\=\xi  - \=\xi \ast )ID] + \BbbE [ - \epsilon ID]

= sup
P\in \scrP 

EP [EP [(\=\xi  - \=\xi \ast )ID| \scrI ]] + \BbbE [ - \epsilon ID]

= sup
P\in \scrP 

EP [EP [(\=\xi  - \=\xi \ast )| \scrI ]ID] + \BbbE [ - \epsilon ID]

= sup
P\in \scrP 

EP [[EP [\=\xi | \scrI ] - \=\xi \ast ]ID] + \epsilon \BbbE [ - ID]

\leq \epsilon \BbbE [ - ID].

Thus \BbbE [ - ID] \geq 0. On the other hand, \BbbE [ - ID] \leq 0. So \BbbE [ - ID] = 0, which is equivalent
to v(D) = 0. Thus we get (2.11). Define

\~D =

\biggl\{ 
\omega :  - lim inf

n\rightarrow \infty 

Sn

n
>  - \xi \ast + \epsilon 

\biggr\} 
.

Applying the above result to  - \xi , we can get v( \~D) = 0. Therefore (2.12) holds.

Acknowledgment. We are grateful to the anonymous referees for their con-
structive comments, which helped us to improve the paper substantially.

REFERENCES

[1] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, Coherent measures of risk, Math.
Finance, 9 (1999), pp. 203--228.

[2] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Natl. Acad. Sci. USA, 17 (1931), pp.
656--660.

D
ow

nl
oa

de
d 

10
/0

7/
21

 to
 1

29
.2

34
.0

.2
11

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5680 CHUNRONG FENG AND HUAIZHONG ZHAO

[3] L. A. Cafarelli and X. Cabre, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq.
Publ. 43, AMS, Providence, RI, 1995.

[4] S. Cerreia-Vioglio, F. Maccheroni, and M. Marinacci, Ergodic theorems for lower prob-
abilities, Proc. Amer. Math. Soc., 144 (2016), pp. 3381--3396.

[5] Z. J. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59
(2016), pp. 945--954.

[6] Z. J. Chen and L. G. Epstein, Ambiguity, risk and asset returns in continuous time, Econo-
metrica, 70 (2002), pp. 1403--1443.

[7] D. M. Cutler, J. M. Poterba, and L. H. Summers, Speculative dynamics and the role of
feedback traders, Amer. Econom. Rev., 80 (1990), pp. 63--68.

[8] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Math.
Soc. Lecture Note Ser. 229, Cambridge University Press, 1996.

[9] F. Delbaen, Coherent measures of risk on general probability space, in Advances in Finance and
Stochastics, Essays in Honour of Dieter Sondermann, K. Sandmann and P. J. Schonbucher,
eds., Springer-Verlag, Berlin, 2002, pp. 1--37.

[10] J. B. De Long, A. Shleifer, L. Summers, and R. Waldmann, Noise trader risk in financial
markets, J. Political Econ., 98 (1990), pp. 703--738.

[11] L. Denis, M. S. Hu, and S. G. Peng, Function spaces and capacities related to a sublinear
expectation: Applications to G-Brownian motion paths, Potential Anal., 34 (2011), pp.
139--161.

[12] R. Durrett, Probability: Theory and Examples, 3rd ed., Duxbury Press, 2004.
[13] I. Ekren, N. Touzi, and J. Zhang, Viscosity solutions of fully nonlinear parabolic path de-

pendent PDEs: Part I, Ann. Probab., 44 (2016), pp. 1212--1253.
[14] I. Ekren, N. Touzi, and J. Zhang, Viscosity solutions of fully nonlinear parabolic path de-

pendent PDEs: Part II, Ann. Probab., 44 (2016), pp. 2507--2553.
[15] N. El Karoui, S. G. Peng, and M. C. Quenez, Backward stochastic differential equations in

finance, Math. Finance, 7 (1997), pp. 1--71.
[16] K. D. Elworthy, The method of images for the heat kernel of S3, in Proceedings of Interna-

tional Conference on Stochastic Processes, Physics and Geometry, Ascona-Locarno, 1988,
S. Albeverio et al., eds., World Scientific, 1990, pp. 434--438.

[17] L. G. Epstein and S. Ji, Ambiguous volatility and asset pricing in continuous time, Rev.
Financ. Stud., 26 (2013), pp. 1740--1786.

[18] C. R. Feng, B. Y. Qu, and H. Z. Zhao, A sufficient and necessary condition of PS-ergodicity
of periodic measures and generated ergodic upper expectations, Nonlinearity, 33 (2020), pp.
5324--5354.

[19] C. R. Feng, B. Y. Qu, and H. Z. Zhao, Random quasi-periodic paths and quasi-periodic
measures of stochastic differential equations, J. Differential Equations, 286 (2021), pp.
119--163.

[20] C. R. Feng, P. Y. Wu, and H. Z. Zhao, Ergodicity of invariant capacities, Stochastic Process.
Appl., 130 (2020), pp. 5037--5059.

[21] C. R. Feng and H. Z. Zhao, Random periodic processes, periodic measures and ergodicity, J.
Differential Equations, 269 (2020), pp. 7382--7428.

[22] H. Follmer and A. Schied, Convex measures of risk and trading constraints, Finance Stoch.,
6 (2002), pp. 429--447.

[23] H. Follmer and A. Schied, Stochastic Finance, an Introduction in Discrete Time, Walter de
Gruyter, 2004.

[24] J. Frankel and K. Froot, Understanding the U.S. dollar in the eighties: The expectations
of chartists and fundamentalists, Econom. Rec. Special Issue, (1986), pp. 24--38.

[25] A. Garsia, A simple proof of E. Hopf's maximal ergodic theorem, J. Math. Mech., 14 (1965),
pp. 381--382.

[26] R. M. Greenwood and A. Shleifer, Expectations of returns and expected returns, Rev.
Financial Stud., 27 (2014), pp. 714--746.

[27] M. S. Hu, H. W. Li, F. L. Wang, and G. Zheng, Invariant and ergodic nonlinear expectations
for G-diffusion processes, Electron. Commun. Probab., 20 (2015), pp. 1--15.

[28] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd
ed., Elsevier, 1992.

[29] I. Karatzas and S. E. Shreve, Brownian Motions and Stochastic Calculus, 2nd ed., Springer-
Verlag, New York, 1991.

[30] N. V. Krylov, Some new results in the theory of nonlinear elliptic and parabolic equations,
in Proceedings of the International Congress of Mathematicians, Berkeley, CA, 1986, pp.
1101--1109.

[31] N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, Reidel, 1987.

D
ow

nl
oa

de
d 

10
/0

7/
21

 to
 1

29
.2

34
.0

.2
11

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERGODICITY OF SUBLINEAR MARKOVIAN SEMIGROUPS 5681

[32] P.-L. Lions, Optimal control of diffusion processes and Hamilton--Jacobi--Bellman equations.
Part 1: The dynamic programming principle and applications, Comm. Partial Differential
Equations, 8 (1983), pp. 1101--1174.

[33] P.-L. Lions, Optimal control of diffusion processes and Hamilton--Jacobi--Bellman equations.
Part 2: Viscosity solutions and uniqueness, Comm. Partial Differential Equations, 8
(1983), pp. 1229--1276.

[34] S. G. Peng, Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 26 (2005),
pp. 159--184.

[35] S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of It\^o type, in
The Abel Symposium 2005, Abel Symposia 2, Stochastic Analysis and Applications, F. E.
Benth et. al., eds., Springer-Verlag, 2007, pp. 541--567.

[36] S. G. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty. With Robust
Central Limit Theorem and G-Brownian Motion, Springer, 2019.

[37] S. G. Peng, Note on Viscosity Solution of Path-Dependent PDE and G-Martingales, preprint,
https://arxiv.org/abs/1106.1144, 2011.

[38] S. J. Taylor, Introduction to Measure and Integration, Cambridge University Press, 1973.
[39] J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Natl. Acad. Sci. USA, 18 (1932),

pp. 70--82.
[40] J. von Neumann, Physical applications of the ergodic hypothesis, Proc. Natl. Acad. Sci. USA,

18 (1932), pp. 263--266.
[41] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer-Verlag,

New York, 1982.
[42] J. C. Williams, Bubbles Tomorrow and Bubbles Yesterday, but Never Bubbles Today, Presen-

tation to the National Association for Business Economics, San Francisco, CA, September
9, 2013, http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.398.6106.

D
ow

nl
oa

de
d 

10
/0

7/
21

 to
 1

29
.2

34
.0

.2
11

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://arxiv.org/abs/1106.1144
http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.398.6106

	Introduction
	Dynamical systems on sublinear expectation spaces and ergodicity
	Sublinear Markovian systems and their ergodicity: The general setting
	Ergodicity of G-Brownian motion on the unit circle
	Appendix A. Proofs of Theorem 2.4 and Lemma 2.12
	Acknowledgment
	References

