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Abstract. Many foraging microorganisms rely upon cellular transport networks to deliver nu-
trients, fluid and organelles between different parts of the organism. Networked organisms ranging
from filamentous fungi to slime molds demonstrate a remarkable ability to mix or disperse mole-
cules and organelles in their transport media. Here we introduce mathematical tools to analyze the
structure of energy efficient transport networks that maximize mixing and sending signals originating
from and arriving at each node. We define two types of entropy on flows to quantify mixing and
develop numerical algorithms to optimize the combination of entropy and energy on networks, given
constraints on the amount of available material. We present an in-depth exploration of optimal single
source-sink networks on finite triangular grids, a fundamental setting for optimal transport networks
in the plane. Using numerical simulations and rigorous proofs, we show that, if the constraint on
conductances is strict, the optimal networks are paths of every possible length. If the constraint is
relaxed, our algorithm produces loopy networks that fan out at the source and pour back into a single
path that flows to the sink. Taken together, our results expand the class of optimal transportation
networks that can be compared with real biological data, and highlight how real network morpholo-
gies may be shaped by tradeoffs between transport efficiency and the need to mix the transported
matter.
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1. Introduction. Work by Murray in the 1920s [20] first probed the idea that
vessels in biological transportation networks may optimize knowable target functions.
Murray hypothesized that blood vessels may have optimal radii are set by tradeoffs
between the need to minimize friction within the vessel (which favors large vessels),
and the energetic cost of maintaining the vessel (which penalizes large vessels). The
scalings and geometric relationships that he derived from this trade-off have found
some experimental support for the blood networks of animals [29] and water transport
networks of plants [18]. More recent theoretical work has extended the analysis of
single vessels or branch points to whole networks of vessels in which the sources and
sinks are prescribed but the network is given many choices for how to connect these
points [7, 11], added damage or fluctuations in source and sink strengths [14, 10], or
developed models for how feedbacks between flows and network growth allow such
optimal networks to be grown [12, 22].

Hundreds of thousands of species of microorganisms, including slime molds, water
molds and fungi rely on internal transportation networks. These networks have similar
functions – they continuously grow as the organism claims territory or searches for
hosts or resources. Within the network nutrients, fluid and cellular matter (including
nuclei and other organelles) are transported from sites of production or uptake to sites
of utilization. Minimization of friction, in conjunction with robustness to damage,
appears to underlie features of some of the foraging networks made for example by
wood rotting basidiomycete fungi [6] and slime molds [28]. However, organisms build
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networks with a tremendous diversity of morphologies that can not be explained
by friction minimization alone. Do these morphologies emerge from other physical
principles besides minimizing friction, from constraints on the pathways used to grow
the network, or from neutral differences in network morphology that do not affect the
organism’s fitness? We start from the position that to understand the extent of the
role that optimization plays in determining the structure of networks, we must first
understand what the optimal network is for a given target function. This approach
previously guided us to develop gradient-descent methods for optimizing networks for
arbitrary differentiable functions [9].

In this work we focus on a quantity with many points of non-differentiability:
the amount of mixing occurring within the network. This quantity, which is given
two different quantifications below, is non-differentiable in the conductances of the
network at any point where the flow in an edge goes to 0. Since the optimization
of the network requires searching over possible topologies for flow; i.e. reversing the
directions of flow on edges, we develop here a new numerical optimization method
that is adapted to deal with this pervasive non-differentiability.

Why are might real networks seek to maximize mixing? Three kinds of mixing
seem to be relevant to network-forming microorganisms:

1. In fungal networks cellular growth occurs at the periphery of the network
through the continuous extension of hyphae at their tips, and in fast growing fungi,
such as the model organism Neurospora crassa growth requires the continuous supply
of nuclei and other organelles to the edge of the mycelium [16]. Within N. crassa nuclei
often take tortuous and multidirectional paths toward the tips, and the network is
known to be organized so that pairs of nuclei that start close together within the
mycelium are unlikely to be delivered to the same site of growth at the periphery,
potentially to stop deleterious mutations accumulating in one region of the fungus
[24].

2. Recent experiments in the dung fungus Coprinopsis cinerea show large swathes
of the network responding to the external threat of predatory nematode worms. When
nematode grazing is detected in one part of the fungal network, a suite of defense
chemicals is expressed, not just at the site of grazing, but spreading in multiple
directions through the network [21]. Spreading out nematoxin production may prepare
other parts of the network for further attacks or enable the cost of labor to be spread
through the network [23].

3. Plasmodial slime molds, such as Physarum polycephalum live in heterogeneous
environments containing patches of nutrients [4]. The network remodels globally
when it discovers a new nutrient source, and it is thought that individual tubes in the
network respond to a cue carried within the flow carried within the network [5]. A
global response to this cue requires that it be dispersed through the entire network.

We model the signals within the network as being passively transported by the
flows. In Section 2 we define an entropy of mixing of the transported signals in a flow
network. In Section 3 we describe a numerical method for choosing the conductances
within the network, and in Section 4 we show simulation results. A highlight result
is that for small values of the parameter, γ, which represents the penalty of dividing
one edge into two, the optimal networks become a set of paths linking source and
sink. We prove why paths are favored, and analytically expose the set of possible
path optima in Section 5.

2. Mathematical model and mixing entropies.
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Fig. 1: Conductance network κij with each node and edge conductance labeled. The
source is at node 1, the bottom-left corner, and the sink is at node 25, the top right
corner.

2.1. Movement of signals through a flow network. Our mathematical
model for the biological transportation network consists of a network (graph) with
nodes (vertices) N , enumerated 1, 2, . . . , N , and edges E . The nodes are arranged on
a regular triangular lattice, so that each vertex in the interior is linked by equal length
edges to 6 neighbors (we write n(i) for the set of neighbors of i). The conductance of
the edge (i, j) is denoted by κij . Fluid (protoplasm) is continually pushed through the
network by pressure differences between the nodes. In our model the ultimate origin
of these pressure differences are flows into and out of the network via diametrically
opposite nodes. Signals are carried along by this bulk flow of fluid.

Definition 2.1. The rate of fluid entering or exiting the network at i ∈ N is the
boundary flow at node i, and is denoted Qi.

Boundary flow Qi > 0 corresponds to fluid entering the network through node i (i.e.
the node is a source), and Qi < 0 corresponds to fluid exiting the network at node
i (i.e. the node is a sink). The total volume of fluid contained in the network is
constant, so total inflows and outflows must be balanced:

∑
iQi = 0. The boundary

flows in turn engender flows, qij , on the edges. Flows must also be balanced on each
node in the network, a fact that is known as Kirchhoff’s first law of circuits:

Definition 2.2. A flow is called compatible with regards to the boundary flows
Qi if

∑
j∈n(i) qij = Qi for all i ∈ N .

For any set of boundary flows, there are typically multiple compatible flows on the
network. The flow we are interested in, called the physical flow, is the unique
compatible flow that minimizes the dissipation:

Definition 2.3. For a conductance network κij, the dissipation D from flows
qij is the rate at which work must be done to maintain the fluid flows on all edges of

the network: D(qij) =
∑
ij

q2
ij

κij
.

The flow that minimizes the dissipation can be derived from Kirchhoff’s first and
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second laws [8], which introduce a pressure variable that is defined on each node in
the network:

Proposition 2.4. Kirchoff’s second law for circuits Let κij be a connected
conductance network with nodes N and edges E. Let Q be boundary flows such that∑
iQi = 0. Let qij be the physical flows of this network. Then there exists pi ∈ R,

called the pressure at node i, such that qij = κij(pi − pj).
We can compute the pressures by defining a vector of pressures p = {pi}i∈N , a vector
of boundary flows Q = {Qi}i∈N and the network Laplacian ∆κ, a |N | × |N | matrix
with entries

(2.1) ∆κ,ij =

{
−κij if i 6= j∑
j κij if i = j

Then conservation of mass at each node (Proposition 2.4) is equivalent to solving

(2.2) ∆κp = Q.

So long as every connected component of a physical network has one node with a
defined pressure, the pressures are uniquely solvable, otherwise they are solvable up
to a single additive constant per connected component[8]. When the conductance
network is connected and the pressure at node i is known: pi = P , we add P to Qi
and construct the invertible matrix ∆̃κ by adding 1 to ∆κ,ii.

We now consider the mixing produced by the flows within the network. Our
flow network model contains all of the scenarios for mixing described in Section 1.
The signals passing through the network could represent genetically diverse nuclei
(scenario 1), or chemical cues (scenarios 2 and 3). Our model does not need to
represent the entire network, it could represent the portion of network that supplies a
single hyphal tip. This supply network would be linked to supply networks for other
tips, and acquires signals, randomly at each node from these other networks1. Signals
are made up of blobs: either molecules or organelles. We compile a list of the nodes
visited by each signal blob: call the t-th node visited by a signal, xt. Then xt is a
random walk, with transition probability:

(2.3) Tij ≡ P (xt+1 = j|xt = i) =
qij∑

k∈n(i): qik>0 qik −Qi1Qi<0
.

that is, the flow of signal from i to j is simply proportional to the total flow along
the edge (i, j). Effectively we assume that signal is uniformly dispersed in the flowing
protoplasm, ignoring any physical effects such as diffusion [17] that move signals
independently of flows. When the signal reaches a sink node it may exit the modeled
network (with the exit probability proportional to −Qi, so

∑
j Tij ≤ 1).

A signal introduced at node i travels along the network following the flow. At each
node with multiple possible outward flows, the signal chooses one outflow probabilis-
tically. Signals therefore perform a type of random walk down the pressure gradient.
There are two senses in which signals may be considered to mix on the network: 1.
Given the node i at which it originates we are interested in the number of nodes that
the signal visits before exiting the network. 2. Alternately, given a node j, we are
interested in the number of different sites of origin that signals passing through j may

1Signals can be transferred between supply networks without flow between them, since motor
protein trafficking (of nuclei) or diffusion (of chemical cues) provide alternate transport mechanisms.
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have. To quantify either form of diversity, we must focus on the probability that a
signal originating at node i ever visits a node j defined by:

(2.4) Pij = P (xt = j for some t ≥ 0 | x0 = i).

The entries of Pij from a N ×N matrix. To calculate this matrix from the transition
probabilities T , note that the probability of getting from i to j by following exactly n
edges is (Tn)ij . Hence, P =

∑N−1
n=0 T

n (note that TN = 0, because a signal can visit
at most N nodes before exiting the network and signals can not visit the same node
twice). Alternatively by summing the geometric progression:

(2.5) P = (I − T )−1 ,

where I is the N ×N identity matrix.

2.2. Defining mixing entropies. We define two types of information entropy
on the flows qij . The first is a measure of the accumulation of signals at every node in
the network and the second represents the dispersal of signals throughout the network.
We call the two entropies, respectively, total receiver entropy (or total mixing
entropy) and total sender entropy. Let fi be the total flow through node i, i.e.
fi =

∑
j∈n(i):qij>0 qij + Qi1Qi>0. The rate at which fluid flows from i to j is then

q̃ij = Pijfi. We refer to this as the flow from i to j. We assume that the rate at which
a signal is produced at a node is proportional to the total flow through that node.
This assumption certainly makes sense if our signal consists of new nuclei that are
generated by divisions within the protoplasm, since the flow through a node will be
proportional to the rate at which nuclei pass through it. For other signal production
scenarios (such as when the signal is produced in response to predation), we can
arrive at this assumption if we assume that product of the new signal is rate-limited
by a component that is contained within the protoplasm, so signal production rate
is proportional to rate of protoplasm cleared through the node in unit time. Under
this assumption the relative proportions of signals received at node j from upstream
nodes i are the same as the relative proportions of q̃ij .

In our model each site in the network can send signals to other sites in the network,
and any point in the network may potentially receive signals from any other point. We
cannot tell ahead of time which nodes will provide the useful signals, so we consider
all nodes as possible sources of signals. We also make no assumption about sites
where diversity needs to be maximized (this is in contrast to [24], in which genetic
diversity was considered only at hyphal tips), so we consider all of the possible nodes
that signals can reach within the network when computing the mixing entropy.

To compute the entropy of the distribution of signals arriving at i we define the
probability distribution on up-stream nodes of i:

(2.6) Pi(j) =
q̃ji
Ni

where Ni ≡
∑

j:q̃ji>0

q̃ji ,

effectively forming a new matrix from q̃ij in which all columns are normalized to
sum to 1. We may define the local receiver entropy at node i as the Shannon
information entropy of Pi: H(Pi) = −

∑
j Pi(j) log (Pi(j)). We consider the total

flow through i as a measure of the “importance” of the node [13]. In our model,
the diversity of signals is more important at high traffic nodes than at low traffic
nodes. This principle is useful mathematically, since it ensures that rearrangements
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of very low conductance edges don’t greatly affect the overall mixing associated with a
network. At the same time, the weighting is intended to reflect the relative biological
importance of nodes within the network – a node with high flow supplies a greater
volume of cytoplasm to the rest of the network, so it is more important that all of
the signals (whether cues or nucleotypes) are present at the node. Hence the total
receiver entropy is:

(2.7) H =
∑
i

fiH(Pi).

Similar to [27] H represents the conditional entropy associated with choosing a re-
ceiving node at random with probability proportional to fi and then conditioned on
our choice of node i we chose a sending node at random via the distribution Pi.

2.3. Set restrictions of the entropy. Our proofs in Section 5 often require
that we partition N into subsets of nodes. It is convenient to be able to evaluate
the contributions of each subset to the total network entropy. We define restricted
entropies for subsets F ⊂ N as follows: For all i ∈ F define PFi(j) =

q̃ji∑
k∈F q̃ki

if

j ∈ F and PFi(j) = 0 otherwise.

Definition 2.5. The local negative mixing entropy restricted to F is defined to
be

(2.8) H(PFi) = −
∑

j∈F :q̃ji>0

PFi(j) log (PFi(j))

and the total mixing entropy restricted to F is

(2.9) HF =
∑
i∈F

fiH(PFi) .

2.4. Sending entropy on flows. It may also be important for the network to
spread out signals to as many downstream nodes as possible. We define an entropy
for the places that can be reached by a new signal originating at a node within the
network. Specifically, instead of taking the mass distribution of incoming flows and
normalizing them to a probability distribution, we use the out-going flows. That is we
define the probability distribution of nodes that can be reached by a signal introduced
at node i:

(2.10) P ′i(j) =
q̃ij∑

j:q̃ij>0 q̃ij
.

This is equivalent to normalizing the matrix q̃ so that all rows sum to 1. We define
the local sending entropy at node i to be the Shannon information entropy [25]
of the distribution P ′i:

(2.11) H(P ′i) = −
∑
j

P ′i(j) log(P ′i(j)) .

and we define the total sending entropy of the entire network to be the weighted sum
of the node entropies:

(2.12) H ′ =
∑
i

fiH(P ′i) .
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2.5. Equivalence of receiving and sending entropies. Although the en-
tropies H and H ′ offer alternate representations of the mixing that occurs within the
network, they are linked by an equivalence principle:

Theorem 2.6. Let qij be a flow network compatible with boundary flows Qi. Let
q′ij and Q′i be the flow network and boundary flows obtained from qij and Qi by re-
versing the flows, i.e. q′ij = −qij and Q′i = −Qi. Then H ′(qij) = H(q′ij) .

Proof. Notice that reversing the flows doesn’t affect the flow strengths of nodes
within the network because

fi =
∑

j:qij>0

qij + |Qi|1Qi<0 =
∑

j:qij<0

|qij |+ |Qi|1Qi>0(2.13)

=
∑

j:q′ij>0

|q′ij |+ |Q′i|1Q′
i<0 .(2.14)

The equivalence principle boils down to proving the statement q̃ij = q̃′ji where q̃′ij is
the flow from node i to node j in the flow-reversed network. We derive this equality by
comparing the probability of a signal path xt: t = 0, 1, . . . , T under the flow qij with
the probability of the reversed path x′t ≡ xT−t: t = 0, 1, . . . , T under the reversed flow
q′ij : since |qij | = |q′ij | it follows that Tijfi = T ′jifj and so T ′ji = fi

fj
Tij . We multiply

the probability of the path xt by the strength of the starting node, fx0
, to obtain

fx0

∏T−1
t=0 Txtxt+1 , and rewrite via a telescoping product:

(2.15) fx0

T−1∏
t=0

Txtxt+1 = fxT

T∏
t=0

fxt
fxt+1

Txtxt+1 = fxT

T∏
t=0

T ′xt+1xt = fxT

T∏
t=0

T ′x′
tx

′
t+1
.

For any nodes i and j in the network, we can sum over the probability of all possible
paths i to j in the regular network and j to i in the flow-reversed network to obtain:
q̃ij = fiPij = fjP

′
ji = q̃′ji. Hence the distributions P ′i(j) for the flow network qij are

equal to the distributions Pi(j) for the network q′ij , so H ′i(qij) = Hi(q
′
ij) leading to

the required result.

The physical flow on the network (see Proposition 2.4) can be reversed by reversing
the sources and sinks in the network; that is, replacing a source with inflow Qi by a
sink with outflow Qi, and conversely. In the cases that we will analyze in this paper,
the sources and sinks are matched in number and strength (e.g. a single source and
single sink at opposite corners of a square grid network); so a network that optimizes
receiving entropy can be transformed into a network that optimizes sending entropy
simply by rotating the source into the sink and conversely. For this reason, we do
not have to develop separate results for the two entropies. We focus on analyzing the
receiving entropy, which we refer to simply as mixing entropy henceforth.

2.6. Mathematical formulation of the optimization problem. Building
and using flow networks requires energy investment; an organism’s optimal network
will reflect tradeoffs between mixing effectiveness and the cost of the network. The
cost has two components: each edge in the network must be built and maintained,
and the fluid transported within the network dissipates energy due to friction. The
two cost components play slightly different roles in our optimization, we incorporate
the first cost via a holonomic constraint, and the second via a penalty.

Murray [20] posited that the cost of a maintaining a vessel is either proportional
to its volume or surface area. Since all of the vessels in our networks have the same
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length, and the Hagen-Poiseuille law states that conductance is proportional to the
fourth power of the radius, these scenarios correspond respectively to the cost of an

edge being proportional to κ
1/2
ij or to κ

1/4
ij . We constrain the cost the total material

available to the network, requiring
∑
κγij = C where 0 < γ < 1 is a constant, whose

effect on network morphology will be explored [7, 9, 2].
To incorporate the cost of dissipation in our optimization, we formulate it as a

minimization problem:
(2.16)

Find: arg min{Θ(κij) ≡ −H(κij) + cD(κij) : κij ≥ 0 ∀(i, j) ∈ E ,
∑

κγij = C}.

We refer to Θ as the mixing-dissipation cost (abbreviated: CMD). Since the
set of allowed conductances is compact, we know that the minimizer exists. The
constant c represents the relative priority to the network of minimizing dissipation
over maximizing mixing. Along with γ it is one of the main parameters that we
explore in this work. We stretch our notation to refer to the minimum value of Θ for
a given value of c as Θ(c).

Lemma 2.7. The minimal mixing-dissipation cost is a concave function of c. That
is, for c1, c2 ≥ 0: Θ(tc1 + (1− t)c2) ≥ tΘ(c1) + (1− t)Θ(c2) for all 0 ≤ t ≤ 1.

Proof. Set c3 = tc1 + (1− t)c2, and let κi be a minimizer of −H+ ciD; i = 1, 2, 3.
Then

−tH(κ1) + tc1D(κ1)− (1− t)H(κ2) + (1− t)c2D(κ2) ≤ −tH(κ3) + tc1D(κ3)

−(1− t)H(κ3)

+(1− t)c2D(κ3)

= −H(κ3)

+ (tc1 + (1− t)c2)D(κ3).(2.17)

To finish formulating the optimization problem we restrict the set of network
topologies that we are searching over: Let G be an unweighted undirected network
with nodes N and edges E . Choosing E allows us to constrain e.g. the maximum
degree of the nodes in our optimal network. Our optimal network is restricted to
be a subnetwork of G: we refer to G as the ambient network. For the purposes
of this study we will assume that the network is planar (this assumption is almost
certainly true for slime mold networks, but is less valid in fungal networks, where
hyphae often crossover without connecting to each other). In this paper we restrict to
regular triangular networks, in which all of the edges in the ambient network have the
same length. We do not think that our results are sensitive to the choice of (regular)
ambient network: we have for example, reproduced all of the results discussed in this
paper with square grid ambient networks [19].

2.7. Invariance of optima to changing the material investment in the
network. Solutions of our optimization problem depend upon the value of C =∑
κγij . However, as c is increased from 0 to∞, the same sequences of optimal networks

are found, independent of C. For suppose that κij is a conductance network that solves

Eq. 2.16 with
∑
κγij = C. Then rescaling κ′ij =

(
C′

C

)1/γ

κij produces a new network

with
∑
κ′γij = C ′. The flows are unaltered in this network, so H(κ′ij) = H(κij).

However, dissipation is changed: D(κ′ij) =
(
C
C′

)1/γ
D. So the new network minimizes
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θ in Eq. 2.16 for the new dissipation weighting c′ =
(
C′

C

)1/γ

c. Sweeping through all

values c ≥ 0, with
∑
κγij = C, we generate in one-to-one correspondence all optimal

networks for c′ ≥ 0 with
∑
κγij = C ′. The choice of the value for C is therefore

arbitrary.

3. Numerical optimization. Chang and Roper [9] optimized networks for gen-
eral differentiable functions using gradient descent. However, the mixing entropy that
we seek to optimize here is non-differentiable wherever the flow through an edge is
equal to 0. It is necessary that the optimization algorithm be able to navigate through
such points, because as conductances are updated to maximize mixing entropy it is
often necessary to reverse the direction of flow on one or more edges. In Fig 2, we
show a contour map of varying two edge conductances within a network (the original
network is shown at top right, and networks with reversed flow bottom and left). The
landscape is tiled into watersheds, each watershed represents the set of entropies that
can be attained by varying the conductances without reversing the direction of flow
on any edge. Between the watersheds are ridgelines, and crossing a ridgeline reverses
the direction of flow on one or more edges. Within a watershed, gradient descent can
move the network toward the local optimum for the watershed, but deteriorates if the
local optimum is on the ridgeline.

Even differentiable functions like dissipation produce landscapes with many lo-
cal optima; accordingly, in [14] simulated annealing and diffusive rearrangements of
conductances were implemented to prevent networks from being trapped at unfavor-
able local optima. We follow a similar approach, by augmenting a gradient-based
search that is constrained to remain within a single watershed, with a perturbation
method that is designed to provide the network with alternate routes to explore, and
by intentional search over adjacent watersheds. We describe the three parts and their
integration below.

3.1. Part 1 of the optimization algorithm: Gradient-based local search.
We perform a gradient-based search, via MATLAB’s implementation of the interior-
point method in fmincon. Only edges with conductances larger than 10−4 at the
initial state are optimized with smaller conductances treated as constant so that the
dimension of the search space is not unnecessarily large. To ensure the search is not
challenged to cross the ridges that divide different flow topologies, we enforce the sign
of flow in each edge via a set of non-linear constraints on the conductances. Although
fmincon is capable of calculating the derivative of Θ numerically within a watershed,
we accelerate the algorithm by computing the gradient analytically using Lagrange
multipliers to encode all of the relationships between conductance, flow, transition
probabilities and mixing entropy:

We rewrite the array κij as |E|-entry vector. The function Θ (from Eqn. 2.16)
that we are seeking to optimize is built up from κij via a chain of dependencies

(3.1) κij 7−→ pi Z=⇒ fi Z=⇒ Tij 7−→ Pij Z=⇒ q̃ij 7−→ Nj Z=⇒ H.

Where a single arrow 7−→ represents a function of the immediately preceding variable
and Z=⇒ represents a function of more than one of the variables to the left. All of the
relationships between variables are described in Section 2. Although it is possible to
carry derivatives through this list of compositions, the overhead from isolating and
using several derivatives of arrayed functions with respect to arrayed variables, makes
the gradient computation forbiddingly slow [19]. Instead we follow a similar approach
to [8] and use Lagrange multipliers to enforce all of the functional relationships that



10 C. MENTUS AND M. ROPER

Fig. 2: Landscape of the mixing entropy. Original network is shown at top right.
We systematically perturb the two conductances: κ8,12 and κ5,9. At some critical
perturbation of the conductances, the flows q8,11 and q6,9 are respectively reversed
(reversed flows are circled in the network plots). The landscape of mixing entropy
(middle) has ridge lines where the flow is reversed.

are embodied in Eq. (3.1). Eq. (3.1) then becomes a road-map for the order in which
we solve for each of the Lagrange multipliers in our system. The constrained version
of Eq. (2.16), omitting the dissipation, becomes:

Θ =
∑
i∈N

fi
∑

j:q̃ji>0

q̃ji
Ni

log

(
q̃ji
Ni

)
−
∑
i∈N

αi

Ni − ∑
j:q̃ji>0

q̃ji

− ∑
i,j∈N

γij (q̃ij − fiPij)

−
∑
ij∈N

µij

(
δij −

(
Pij −

∑
l∈N

TilPlj

))
−
∑
i

∑
j∈n(i)

λij

(
Tij −

qij1qij>0

fi

)
(3.2)

−
∑
i∈N

βi

fi − ∑
j∈n(i)

qij1qij>0 + |Qi|1Qi<0

−∑
i

νi

Qi − ∑
j∈n(i)

κij(pi − pj)

 .

For our gradient descent, we make use of the derivative:

∂Θ

∂κab
=λab

1qab>0 (pa − pb)
fa

+ λba
1qba>0(pb − pa)

fb
(βa(pa − pb)1qab>0 + βb(pb − pa)1qba>0)

+ (νa − νb)(pa − pb)− c(pa − pb)2.(3.3)
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In which we have made use of the derivatives compiled in Appendix A to calculate
the derivative of the dissipation.

Our working algorithm uses the above gradients, along with two further trans-
formations. First, we require that all conductances be non-negative. We ensure this
by representing our network in terms of log conductances, defined by: κij = exp(κ̃ij).
Additionally we want to ensure that the total material investment in the network
remains constant; i.e. to ensure

∑
κγij = C. In [8] this constraint was added via

an additional Lagrange multiplier, but this method guaranteed that the constraint
is satisfied only at leading order in the step size. Hence, here we simply rescale the

conductances: κij 7→
(

C∑
(i,j) κ

γ
ij

) 1
γ

κij after each perturbation. Both transformations

need to be considered when calculating the derivatives. For the rescaling we get:

∂

∂κij

(
C1/γκab∑

κγcd

)
=

C1/γ

(
∑
κγcd)

1/γ

(
δ(ab),(ij) −

κabκ
γ−1
ij∑
κγcd

)
(3.4)

To turn derivatives with respect to κij into derivatives with respect to κ̃ij we pre-
multiply them by ∂κab

∂κ̃ij
= δaiδbjκij .

3.2. Part 2 of the optimization algorithm: Redistributing material.
Similar to dissipation-minimizing networks [14] our optimization algorithm has many
local optima in which source and sink are sparsely connected. To find the true global
optimum, our algorithm includes a step for redistributing material within the net-
work, in a way that presents the algorithm with a range of paths of different lengths
between source and sink. However, although [14] previously redistributed material
by diffusing it on the graph, we found this method tends to short circuit the net-
work by introducing much shorter paths between source and sink. The appearance of
these paths is catastrophic for the optimization algorithm, since they are attracting
local optima but far from the global optima [19]. Since our algorithm does not send
conductances exactly to zero, we define a threshold conductance κc, and say that an
edge (as well as the vertices that it connects) is in the support of the network if its
conductance exceeds κc. In practice we found that a value κc = 2× 10−2 worked for
all of the simulations shown in this paper.

We redistribute material using a network growth step, which adds spurs of material
from the network’s support. Our algorithm takes the form of a set of operators:
Growup-right(κij) where “up-right” in the subscript can be replaced with the “up-
left”, “down-left” or “down-right” to denote the direction in which material is added.
Growth in the up-right direction adds edges that link nodes in the support to nodes
not in the support that are upwards and right of them. Each step of the growth
algorithm concatenates growth in two non-parallel directions. In practice we did not
find it necessary to include right or left growth. We will describe the up-right growth
step: other growth steps can be derived from this step by symmetry.

1. First locate up-right edges in the triangle grid for which the top-right node is
outside of the support of the network and the bottom-left node is inside the
support.

2. Add positive conductance to each of these edges to form a new network
κup-right (Fig. 3b). Each new edge is assigned conductance equal to the av-
erage conductance of the edges from the support adjacent to its bottom-left
node in the set of bottom-left nodes identified in 1.

3. In κup-right locate the nodes which are top right nodes of edges in the support.
Call this set the top-right nodes (Fig. 3c).
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(a) (b) (c) (d) (e)

Fig. 3: Sequence of steps performed to construct κup-right from an initial network κ
shown in (a). (b) blue edges are added up-rightwards from a (bottom) node in the
support of the network to a (top) node outside of the support of the network. (c)
We identify top-right nodes (blue circles) whose bottom left edges have non-zero
conductance following the first step. (d) Add leftwards (orange) and down-rightwards
(green) edges if they complete triangles with edges in the current support. (e) Our
optimization scheme applies the up-right growth algorithm twice.

4. For every top-right node i, if i is the apex of a triangle whose base and up-
right edge lie in the support of κup-right, complete this triangle with an up-left
edge whose conductance is the arithmetic mean of the other two edges. For
every top-right node i that is the left vertex of an inverted triangle, whose
up-left and up-right edges lie in the support of κup-right, complete the triangle
with a horizontal edge whose conductance is the arithmetic mean of the other
two edges (Fig 3d).

3.3. Part 3 of the optimization algorithm: changing flow directions.
Part 1 of our optimization algorithm can reliably locate local optima while respecting
the directions of flow on every edge (i.e. the flow topology). To find the true global op-
timum we search systematically over adjacent topologies. To do this, we take one edge
within the network, and find the smallest increase and decrease in the conductance
of the edge that will change the direction of flow in at least one other edge within the
network. To find the smallest change in conductance, we use the Sherman-Morrison
formula [26], which allows us to calculate an explicit expression for the conductance
change necessary to reverse the flow in any edge of the network (Eq. B.4). Given
a causal edge (a, b), Eq. B.4 enables us to compute a set of perturbations tabuv to
κab to reverse the flow on any edge (u, v). We filter these perturbations to keep only
perturbations in which κab is not allowed to become too small (in practice a threshold
of 10−3 gives good results), to prevent this part of the algorithm getting stuck en-
gineering and then re-engineering flow reversals on edges that already have very low
conductance. This method was used to find the set of flow changes shown in Fig. 2.

3.4. Synthesis of parts, initialization and termination. We initialize the
algorithm by assigning each edge within the ambient network an U(0, 1) conductance,
and then scaling all conductances to ensure

∑
κγij = C. A single step of the algorithm

consists of running all three of its parts sequentially. Part 1 locates a locally optimal
network that respects the flow directions given to it, while the random choice of
growth directions in Part 2 and of causal conductances in Part 3 stochastically alters
the topology of the network. We compare the local optima arrived at the end of
consecutive Part 1’s; if the new local optimum has a lower value of Θ than the old,
we keep it, otherwise we revert to the old optimum.

Our descent step uses the MATLAB optimization function fmincon using the
interior-point algorithm with 1000 max iterations, with flow directions constrained on
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all edges with non-negligible conductance (see below), and with analytically computed
derivative. Our growth step requires first picking a single direction in which to grow
the network: up-left, up-right, down-left or down-right. To ensure that every direction
is sampled, we sequentially step through a permutation of all 4 growth directions,
choosing a new permutation every 4 steps.

We then count the number of times that during a successful step Θ decreased by
less than 10−2. When this count reaches 4 we terminate the algorithm. Otherwise
we allow the algorithm to run for 50 iterations. Usually the stopping criterion is
reached in fewer than 15 steps. We tested that our algorithm reliably (i.e. in more
than half of runs) located the theoretically obtained optimal network when c = 0.05.
Our algorithm constrains all conductances to be be positive, through the use of the
coordinate transformation κij = exp(κ̃ij). In practice, the local optima located by our
algorithm use only a subset of the edges in the ambient network. We disregard edges
with small conductances (in practice any edges with conductance less than 2× 10−4):
specifically the directions of flow on these edges are not considered when constraining
flow directions in part 1 or when determining the perturbations that cause flows to
switch in part 3.

After the algorithm terminates we perform a final filtering step to deal with the
fact that our gradient search is somewhat slow at removing edges from the network
or redistributing material between high conductance edges. To filter, we set all edges
with conductance ≤ 10−3 to 10−9, re-scale all edges so that the material cost of the
network stays the same and then run our gradient-search with 10000 max iterations.

Most of our simulations involve sweeps over c−values (see Section 4), typically
involving 100-200 replicate networks whose c values are close enough that we expect
them to be topologically equivalent. We can further boost coverage since any local
optimum, κ̂ discovered by our algorithm at c = ĉ can be compared with local optima
for different values of c by tracing the line: θ̂ = −H(κ̂) + cD(κ̂). We form the
envelope of these straight lines (Fig. 6). At any value of c, we identify the network
that produces the straight line on which (c,Θ(c)) lies as the global optimal network
for that value of c.

4. Results from numerical optimization.

4.1. Optimal networks are paths for small values of γ. We first studied
the effect of fixing the value of c and constructing optimal networks over a range
of values for γ. We found that at each value of c the number of loops in the path
increased with γ (cf. dissipation minimizing networks, which form loops only when
γ > 1 [11, 7]). At physiologically relevant values of γ (γ ≈ 0.45 − 0.5) the globally
optimal networks are simple loopless paths linking source to sink.

4.2. Length of optimal networks increases with c. We noticed that in Fig.
4 changing c changes the number of edges in the network. To investigate the effect of
c more systematically, we performed a numerical sweep of c values, holding γ = 0.45
fixed. All of the optimal networks were simple paths. As c increases, the globally
optimal network systematically explored all path lengths from N2 − 1 (a path that
visits every node exactly once), to 2N − 1; (the shortest path linking source to sink).
Fig. 6 shows the complete Θ(c) trace, including for the networks included in Fig. 5.
The numerically obtained Θ(c) is piecewise linear, with slope discontinuities at each
c-value where the length of the optimal network increases by one.

5. Optimal path networks. Our numerical results from Section 4 highlight
three properties of optimal networks: that they are simple paths at small and mod-
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Fig. 4: Numerically computed optimal networks on a 5 × 5 triangular grid for three
different values of c (rows) and four different values of γ (columns). At sufficiently
small values of γ (in particular for γ = 0.45 at each assayed value of c), optimal
networks are all paths from source to sink. Increasing γ progressively adds loops to
the network. Increasing c increases the number of nodes visited by the network.

Fig. 5: Selected optimal networks for γ = 0.45, on a 5×5 triangular grid, for increasing
values of c (values given above each panel), are all paths with decreasing lengths.
Every possible length of path between 24 and 9 edges is obtained. The networks
shown are the magenta points in Figure 6.

erate values of γ, that the path length decreases as c increases, and that for small
values of c the simple path visits every vertex in the network. In this section we will
rigorously state and prove theorems justifying these properties.

We will first prove separate results for mixing and for dissipation. We will show
that the optimal network for mixing (that is, without considering the cost of dissipa-
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Fig. 6: Optimal mixing-dissipation costs for networks on 5 × 5 grid, with γ = 0.45
and K = 24. The c-domain is divided into subintervals [.01, c25,24], [cm+1,m, cm,m−1]
for m = 9, 10, . . . , 24 and [c10,9, 7] (cm,n is defined in Section 5), and 100 locally
optimal networks are generated within each subinterval. Global optima are derived
is described in Section 3.4. Selected globally optimal networks (magenta points) are
plotted in Fig. 5.

tion) is a tour – a path that visits every node in the network from source to sink.
Then given only the flows on a network, we bound its dissipation. Second, we will
consider optimization among path (i.e. loopless) networks, showing that as the cost
of dissipation is increased, the length of the optimal path network decreases mono-
tonically in length in steps of 1, from the tour to a geodesic (shortest path). Finally
we show that among all networks, over many different values for the dissipation pen-
alty factor c, the optimal network is a path for all sufficiently small γ. We start by
introducing a notation for paths of different lengths, assuming that conductances are
uniform, i.e. the same on each edge within the path, which is favored for minimizing
dissipation.

Definition 5.1. Say that a path from source to sink has length m if it visits
exactly m nodes. We use the notation τm to denote any uniform conductance path
of length m. Further, we call τ|N |, the path that visits every node in the ambient
network, a tour.

5.1. The optimal network for mixing is a tour.

Theorem 5.2. Suppose that qij is a flow network with node-set N , and |N | = n.
Then the maximum possible total mixing entropy is log(n!), and this maximum is
attained only for a path that visits all n nodes exactly once.

The intuitive interpretation of this result is that all of the nodes in the network can be
ordered by their pressures, pi. Signals from node i can reach node j only if pi > pj . An
optimal mixing configuration is one in which signals from node i reach all downstream
j with probability 1, which requires that the downstream network is a path that visits
each downstream node in turn.

Proof. Let x = {xt}t≥0 be the random walk on the flow network defined in Section
2. Let Vk ⊂ N be the set of nodes v that receive signals from exactly k nodes: that



16 C. MENTUS AND M. ROPER

is, Vk = {u ∈ N : # {v : Pvu > 0} = k}.
For a subset of nodes S ⊂ N we say that x hits S, if for some t ∈ Z≥0 xt ∈ S. Let

k ≥ 1 such that Vk is non-empty. Let u 6= v ∈ Vk. A signal x can not visit more than
one node in Vk for, if x hits both v1 and v2 ∈ Vk, and WLOG pv1 > pv2 , then for any
u ∈ N with Puv1 > 0, we must also have Puv2 > 0. So {u : Puv2 > 0} ( {u : Puv2 > 0},
which is impossible since v1, v2 ∈ Vk implies both of these sets contain k elements.

Let v ∈ Vk. Then H(Pv) ≤ log(k) because there are exactly k nodes u with
q̃uv > 0. This inequality, together with

∑
v∈Vk fk ≤ 1 gives us the lower bound on H:

(5.1)
∑
i∈N

fiH(Pi) =

n∑
k=1

∑
v∈Vk

fvHv ≤
n∑
k=1

log(k) = log(n!).

We show that the only network with n nodes attaining the maximal entropy is a
path. For the path, labeling the nodes 1, 2, . . . , n in the order in which they are
visited from source to sink we find for 1 ≤ i < j ≤ n, q̃ij = 1. Therefore the
probability distribution of signals Pi is the uniform distribution on i atoms and has
entropy Hi = log(i). Hence, H =

∑n
i=1 fiHi = log(n!).

Conversely, if qij 6= τn, then there must be at least one k ∈ {1, 2, . . . n} such that
Vk = ∅. In this case, H differs from log(n!) by at least log(k).

Corollary 5.3. Let qij be a flow network on nodes N and ∅ 6= F ⊂ N with
|F| = m. Then HF ≤ log(m!).

To deduce the corollary, we treat the probabilities PFi in the same fashion as we
treated the probabilities Pi in the proof of Theorem 5.2.

5.2. Dissipation in a network can be bounded given the flows on the
network. The dissipation, D, for a network is a function both of its conductances
κij and its flows qij . However, we can bound the dissipation based on the qij , alone,
given only the constraint that

∑
ij κ

γ
ij = C.

Theorem 5.4. Murray’s law. Let qij be a network of flows, then if
∑
ij κ

γ
ij =

C, the smallest possible dissipation in the network is:

(∑
ij q

2γ
γ+1
ij

)1+ 1
γ

C
1
γ

.

This Theorem is equivalent to Murray’s law [8]: it is based on assigning each edge
the conductance that minimizes the overall network dissipation.

Proof. Fixing flows, we minimize the total dissipation over conductances obeying
the building constraint

∑
κγij = C. That is we minimize the overall function:

(5.2) D(κij) =
∑
ij

q2
ij

κij
+ λ

∑
ij

κγij − C


where the Lagrange multiplier λ maximizes the dissipation and we restrict to edges
on which qij 6= 0. The minimization of D is performed on a compact set (κij ≥ 0 and∑
ij κ

γ
ij = C) so the minimum certainly exists. Since D → ∞ whenever κij = 0 so

the optimal value of D occurs at an interior point within this set. So at the minimum
point:

(5.3) 0 =
∂D

∂κab
= − q

2
ab

κ2
ab

+ λγκγ−1
ab
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solving this equation yields κab ∝ q
2
γ+1

ab (Murray’s law), and we find our constant of
proportionality by imposing the constraint

∑
ab κ

γ
ab = C:

(5.4) κab = C1/γ q
2
γ+1

ab(∑
ij q

2γ
γ+1

ij

)1/γ
.

Substituting for κab in the dissipation yields the required inequality.

5.3. Strong nodes and path-like networks. Our main results will concern
networks that are close to paths; for example path networks that have low conductance
excursions adjoined to some of the path nodes. How much do these additions affect
the network’s mixing entropy? Thinking more generally, we consider networks in
which some edges are strong, and others are weak (we will define strong and weak)
and bound the contribution of the weak nodes to the network entropy.

Definition 5.5. Let 1, 2, . . . , N be a labelling of the nodes in the network G in
decreasing order of total flow fi (that is; f1 ≥ f2 ≥ · · · ≥ fN ). Select 0 < δ < 1 which
will be referred to as the dominance factor. Let k = min{i : δfi > fi+1}. The
nodes 1, 2, . . . , k are referred to as the strong nodes above dominance factor δ,
denoted Fδ.

Theorem 5.6. Let ε > 0 and let qij be a flow network on an ambient network
G with nodes N . Then there exists δ > 0, depending only on G, such that
|H −HFδ | < ε. In addition, δ may be chosen such that for each node i ∈ Fδ the
nodes adjacent to the largest magnitude in-flow at i and the largest magnitude out-
flow at i are also strong nodes. That is, if u, v ∈ n(i) are such that qui = maxj∈n(i) qji
and qiv = maxj∈n(i) qij then u, v ∈ Fδ.

Proof. Let δ > 0 be a dominance factor and, for shorthand, take F = Fδ to be
the strong nodes in N over dominance factor δ. By the triangle inequality, we bound
the difference

(5.5) |H −HFδ | ≤
∑
i∈F

fi |Hi −HFδi|+

∣∣∣∣∣∣
∑
i 6∈Fδ

fiHi

∣∣∣∣∣∣ .
First we bound the first sum on the right-hand side, a sum over the absolute difference
between the different mixing entropies. Let i ∈ Fδ and j 6∈ F . Then

(5.6) Pi(j) =
q̃ji∑

k 6∈Fδ q̃ki +
∑
k∈Fδ q̃ki

<
fiδ

fi
< δ.

PFδi is obtained by omitting fewer than N = |N | states from Pi, each with probability
less than δ, and then renormalizing to give a new probability distribution. Since

entropy is uniformly continuous on the simplex
{∑N

i=1 pi = 1, pi ≥ 0
}

, we can choose

δ so that |Hi −HFi| < ε
2N so

∑
i∈F fi |Hi −HFi| < ε

2 .
We now bound the magnitude of the second term on the right-hand side. HFδi

is an entropy of a random variable taking on less than N = |N | values. Therefore
|HFi| < logN . The total flow through each node, fi ≤ δ for all i 6∈ Fδ. Hence, we
have

(5.7)

∣∣∣∣∣∣
∑
i 6∈Fδ

fiHi

∣∣∣∣∣∣ <
∑
i 6∈Fδ

δ logN < N δ logN.
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And so we can choose δ so that the second term is bounded by ε
2 . To complete the

proof, note that the magnitudes of the largest in- and out-flows are ≥ fi
deg i ≥

fi
K where

K is the largest degree of a node in G. Thus, so long as δ < 1
K the nodes connected

to the largest in- and out-flows of degree i have total flows > 1
K fi > δfi meaning they

are also strong nodes.

We refer to the network formed by linking the nodes Fδ up using the edges carrying
the maximum inflow and outflow at each node as the strong network, and re-use
notation by using Fδ to represent the strong network.

5.4. Optimization of Θ over paths. Anticipating our proof in Section 6 that
optimal networks are paths for sufficiently small γ, we start by restricting our op-
timization to paths. When restricted to path networks Θ(c) = minm(−H(τm) +
cD(τm)), i.e. Θ is the lower envelope of straight lines. We first ask, if c is varied,
does the sequence of Θ-minimizing paths always recapitulate Fig. 5; i.e. start with
a tour (at vanishingly small c) and end at large, finite c with a geodesic, with the
intermediate states being paths whose length increases by 1, at finite and predictable
c values. We can rationalize this sequence as follows: For a uniform conductance path
of length m each edge carries flow 1, and has conductance (C/(m − 1))1/γ , so the
total dissipation is D(τm) = C−1/γ(m − 1)1+1/γ , which increases monotonically in
m. Increasing c increases the relative strength of dissipation to mixing in Θ. Mixing
favors tours and, more generally, paths that visit as many nodes as possible, while
dissipation favors shorter paths. At each c, the optimal path length emerges from the
balance of these two competing effects.

Two paths of different lengths: τm and τn, give rise to straight lines c 7→ −H(τm)+
cD(τm) and c 7→ −H(τn) + cD(τn), with different slopes. Denote the point of inter-
section between the lines by cm,n:

(5.8) K−
1
γ cm,n =

log(n!)− log(m!)

(n− 1)1+ 1
γ − (m− 1)1+ 1

γ

=
log(Γ(n+ 1))− log(Γ(m+ 1))

(n− 1)1+ 1
γ − (m− 1)1+ 1

γ

.

Lemma 5.7. The point of intersection cm,n is monotonic decreasing in both m
and n, for m,n ≥ 2.

Proof. Let xm = (m− 1)1+ 1
γ , then:

(5.9) cm,n =
log
(

Γ
(

2 + x
γ
γ+1
n

))
− log

(
Γ
(

2 + x
γ
γ+1
m

))
xn − xm

.

So cm,n is the slope of the secant from (xm, f(xm)) to (xn, f(xn)) where f(x) =

log
(

Γ
(

2 + x
γ
γ+1
n

))
. Since f is an increasing function we need to show it is concave

in order to show that these secant slopes decrease as either xn or xm increases.

Given f = log(u(x)) where u(x) = Γ
(

2 + x
γ
γ+1

)
we have that

(5.10) f ′′(x) =
u′′(x)u(x)− (u′(x))2

(u(x))2
.

To show that f is concave, we then need that u′′u − (u′)2 < 0. To compute these
derivatives recall d

dxΓ = ΓΨ0 where Ψ0 is the digamma function. The trigamma

function Ψ1 is defined to be Ψ′0, and so d2

dx2 Γ = (Ψ2
0 + Ψ1)Γ. Pulling these results
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together, we obtain:

(5.11) u′′u− u′2 = γ

(
1

γ + 1

)2

x−
2
γ+1

(
γΨ1 − x−

γ
γ+1 Ψ0

)
Γ2

Let z = x
γ
γ+1 + 2. Then z is an increasing function of x and visa versa. Since all of

the other multipicative terms in the expression u′′u−u′2 are positive we only need to

show that γΨ1 − x−
γ
γ+1 Ψ0 is negative for all z = x

γ
γ+1
n + 2 = n− 1 + 2 ≥ 3. We have

γΨ1 − x−
γ
γ+1 Ψ0 ≤ Ψ1 − x−

γ
γ+1 Ψ0 = Ψ1(z)− 1

z − 2
Ψ0(z) ,

≤ 1

z
+

1

z2
+

1

z(z − 2)
− log z

z − 2
,

=

(
1− 2

z2
− log z

)
1

z − 2
.

Here we made use of the inequalities [15] Ψ0(z) ≥ log z − 1
z , and Ψ1(z) ≤ 1

z + 1
z2 [15]

for all z > 0. The last line is < 0 for all z ≥ 3, proving the lemma.

Theorem 5.8. When Θ is optimized among paths, on a triangular ambient grid
with n nodes, and c is increased from 0, the optimal path decreases in length by 1 at
predictable values of c: cn,n−1, cn−1,n−2, cn−2,n−3 . . .. That is: τn for c < cn,n−1,
τn−1 for cn,n−1 < c < cn−1,n−2, τn−2 for cn−1,n−2 < c < cn−2,n−3 and so on.

Proof. The theorem follows directly from the monotonicity property proven in
Lemma 5.7. We have already shown that the tour τn is the optimal path at c = 0.
As c is increased, the line Θ(τn) intersects with all lines Θ(τm) for m < n, at cn,m.
Because of monotonicity, the smallest of these points of intersection is cn,n−1. Thus
τn is the optimal path for c < cn,n−1. Θ(τn−1) intersects with all lines Θ(τm) for
m < n at cn−1,m. The first point of intersection is cn−1,n−2. So τn−1 is replaced by
τn−2, and in turn by τn−3 and so on.

6. All optimal networks are paths for sufficiently small γ. Now we prove
that for cm+1,m < c < cm,m−1, networks with a unit source-sink pair optimizing
H + cD are approximately paths of length m in the limit as γ → 0. Our proof works
for any subinterval of (cm+1,m, cm,m−1). The parameter 0 < σ < 1 represents the
fraction of [cm+1,m, cm,m−1] covered by the subinterval. We can also represent the
subinterval by cm+1,m + ρ < c < cm−1,m − ρ, where ρ = 1

2 (1− σ)(cm−1,m − cm+1,m).

Theorem 6.1. Let G be an ambient network with a single unit-flow source and
sink. Let m be a possible length of a path in G connecting the source to the sink. Let
0 < σ < 1. We claim that there exists ε > 0 and Γ > 0 such that if δ > 0 and Fδ
is the network of strong nodes such that |HFδ −H| < ε provided by by Theorem 5.6,
and the material cost exponent γ < Γ, then for any cm+1,m + ρ < c < cm,m−1 − ρ the
network Fδ is a path of length m.

Proof. We can simplify the calculations in our proof by appealing to the result
from Section 2.7, that the sequence of optimizers is identical as c is varied for any
value of C. Accordingly we consider the special case C = m − 1. For this choice of
material cost C, D(τn) = (m − 1)−1/γ(n − 1)1+1/γ . Then the computation of Θ on
paths is is drastically simplified:

(6.1) D(τn)→

 0 if n < m
m− 1 if n = m
∞ if n > m .
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− log(m− 1)!

− logm!

− log(m+ 1)!

cm,m−1cm,m−1 − ρcm+1,m + ρ

Θ

Θ (τm+1)

Θ (τm−1)

Θ (τm)

c

Fig. 7: Θ-against-c loci for the simple paths τm−1 (dotted, black), τm (dashed, black),
τm (solid, gray), in the limit as γ → 0.

The Θ loci of τm−1, τm, τm+1 are shown in Fig. 7. Define ρ as above, for the fixed
material cost C = m−1. Let Γ be such that we can choose ε with Θ(τm)+ε < Θ(τm±1)
for all cm+1,m + ρ < c < cm,m−1 − ρ and γ < Γ. Let qij be a flow on G with the
specified source and sink. According to Theorem 5.6, we can define δ > 0 a dominance
factor and Fδ a network of strong nodes such that |H(Fδ)−H (qij)| < ε. Fδ has no
leaf nodes except, potentially, the source and the sink. Suppose Fδ contains n nodes.
Then by Euler’s topological formula, it must contain n − 1 + F edges, where F is
the number of faces in the network (given the constraints on Fδ, F = 0 if and only
if Fδ is a path). Hence −H(Fδ) ≥ log n!. Each edge must carry, at minimum,
flow δn−1+F . Accordingly, the dissipation in the network can be bounded below by

D∗(n) = δ2(n−1+F )
(
n−1+F
m−1

)1/γ

by Theorem 5.4. D∗(n) → ∞ as γ → 0 if n + F >

m. Since networks with bounded dissipation exist, the optimal network must have
n+F ≤ m. We can then compare the strong network with τm−1, and τm. If n ≤ m−1,
by Corollary 5.3, Θ(Fδ) ≥ −H(Fδ) ≥ − log n! ≥ − log(m − 1)! = limγ→0 Θ(τm−1).
This implies that Θ(qij) > Θ(τm), and so qij is in fact sub-optimal. Therefore n = m.
Since n+ F ≤ m, F = 0, i.e. Fδ is a path of length m.

By choice of ε, Fδ can approximate F arbitrarily closely in Θ. Since our convergence
result can be made uniform in ε over the interval cm+1,m + ρ < c < cm,m−1 − ρ, it
follows that F converges to some path τm, as γ → 0, except possibly at the points
cm,m−1. Our proof method does not provide us with a way to prove convergence at
these points, but based on our numerical simulations, we think it is likely that as
γ → 0 there are simply two optima, τm and τm−1, with indistinguishable Θ values at
these crossover c-values.

7. Discussion. We introduced and analyzed theoretically and by numerical sim-
ulations two measures of mixing quality on networks, one measuring the diversity of
places within a network that may be reached by cues originating within that network
(sender entropy), and the other reflecting the diversity of cues that are received at
each point within the network (receiver entropy). Happily, we were able to show that
sender entropy for a network is equivalent to the receiver entropy on the same net-
work if flows are reversed, allowing us to focus on optimizing just one kind of entropy
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within this paper. The mixing entropy quantifies the diversity of signals, which may
include cues, genotypes and nutrients present at each point within the network: it is
important to determine which type of mixing an network may be prioritizing before
comparing it to theoretical calculations. Importantly, while at small γ optimizing
either entropy will produce identical networks, at biologically relevant values of γ,
which type of mixing is most important to the network influences important features
of its organization, such as the placement of loops.

We proved that in the single source-single sink geometry, the optimal networks
converge to simple paths joining source to sink, with the path length determined by the
different priorities that the network gives to mixing (which favors long paths) and to
dissipation (which favors short paths). Intriguingly, our numerical simulations suggest
that there is a finite value of γ, which for our 5 × 5 ambient grids is approximately
0.45, at which optimal networks transition from loopy structures to simple path (see
Fig. 4). However, it is hard to guarantee that the network does not contain weak
edges that do not show up in Fig. 5. Our optimization algorithm enforces positivity of
conductance on all edges, only to filter low conductance edges at the end. Accordingly
it is not readily able to distinguish between small, but finite conductances that vanish
only as γ → 0, and a bifurcation that removes edges at a finite value of γ, so we must
be cautious about interpreting the disappearance of loops at finite γ as evidence of a
phase transition in the network, analogous to the disappearance of loops at γ = 1 for
dissipation-minimizing networks [7].

We have narrowly focused on the case where there is only one source and one
sink within the network, allowing us to rigorously validate our numerical results.
However, our numerical optimization method is equally applicable to networks with
multiple sources and sinks, and it is possible to explore for example the conditions
under which a network that is transporting material from a pair of sources to a pair
of sinks, will determine to maintain two separate flows, or bring these flows together
[19]. In particular, determining whether real network forming organisms such as fungi
and slime molds have mixing-optimizing networks will require that we properly model
the locations of the sources and sinks that drive their flows.

It is equally important when comparing optimal mixing networks with real biolog-
ical networks to pin down the value of γ for these networks. On theoretical grounds,
we expect real biological networks in which vessels are simple tubes to operate in a
range of γ from γ = 1/4 (when the cost of network upkeep is proportional to the
surface area of its vessels) to γ = 1/2 (when upkeep is proportional to vessel volume).
Although direct measurement of γ is impossible, the branching hierarchies of xylem
vessels in plants and some levels of cellular tubes in the slime mold Physarum poly-

cephalum obey Murray’s law (Theorem 5.4) [18, 1]. Specifically if Q ∝ κ
γ+1

2 , then∑
κ
γ+1

2 will be conserved between different levels of a hierarchical network. For sim-
ple tubes, we may assume the Hagen-Poiseuille law (that the conductance of a vessel
and its radius, a are related by κ ∝ a4), it follows that

∑
a2γ+2 is conserved.

In P. polycephalum,
∑
rα is conserved across different levels of the hierarchy, with

a range of α values between 2.5− 3.3 [1], corresponding to 0.27 < α < 0.65. α values
are similar for plants, but determining γ from vessel radii is complicated by the fact
that the xylem vessels (like the cords of mycorrhizal fungal networks) are constituted
of many smaller tubes. Suppose these tubes have radius A but individually obey the
Hagen-Poiseuille law, then: κ ∝ a2A2. The total number of tubes at the same level
in the hierarchy is reported to increase by a factor F ≈ 1.2 moving from larger to
smaller tubes [18]. Accordingly, since a decreases by a factor of 2−1/α when one tube
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splits into two then A ∝ a1−α2 +α
2 log2 F , and so α = (γ + 1)

(
2− α

2 + α
2 log2 F

)
. We

therefore estimate that the plants in [18] have γ values ranging from 0.8 for Fraxinus
pensylvanica (F = 1.2, α = 2.2) up to 1.4 for Campsis radicans (F = 1.4, α = 3).
So slime molds span the value of γ ≈ 0.5 at which our calculations show loops being
eliminated from the optimal network, while plant networks sit high above this value.

The optimal networks shown in Figure 4 for γ & 0.5, qualitatively resemble the
real structures of migrating slime mold networks, in which densely interconnected
‘fans’ of tubes are linked together by sparsely connected or even loopless networks
(see e.g. Fig. 1 in [3]). In future work, we plan to analyze the optimal loopy networks
found by our algorithm to determine why optimal mixing requires fans (loopy regions)
don’t appear throughout the network but are located only near the source, as well
as to understand how the tradeoffs between mixing and dissipation can be used to
predict the size of the fan relative to the total length of the network.

That real network forming organisms do not form tours may result from their γ
values being too high. However, even at low values of γ networks face other tradeoffs,
such as resistance to damage and or the need to minimize dissipation when the sources
and sinks fluctuate in strength [14]. An additional property that must be highlighted
for organisms such as fungi and slime molds that have indeterminate growth is that
organisms need to maintain their mixing while growth pushes sources and sinks ever
further apart. A tour can be extended indefinitely to include to an ever increasing
number of nodes by extending it node by node. However, this model of growth ex-
tends the network only by adding a single edge at a time, restricting growth to a
single growing tip and is an inefficient strategy for a fungus or other foraging organ-
ism, that must compete for space and resources with other organisms. The type of
network formed by a network is also shaped by the constraints on how it must form
this network. Fast foraging may favor growth in multiple directions simultaneously,
facilitated by the organism having multiple growing tips. Thus optimization prin-
ciples such as those developed in this paper only achieve true biological relevance
when linked to a set of rules that a growing organism can follow to attain the optima.
Such rules have been only recently elucidated for dissipation minimizing networks (see
e.g. [12]), leaving unmet the challenge of constructing rules to achieve more complex
objectives, including mixing.

Acknowledgments. We thank Karen Alim, Eleni Katifori and Sebastien Roch
for many useful discussions at a sequence of Square Meetings hosted by the American
Institute for Mathematics, where the idea for this project was developed.

Appendix A. Computation of derivatives of Θ.
To differentiate Θ we compute the all of intermediate variables appearing in

Eq.(3.1): i.e. pi, qij , fi, Tij , Pij , q̃ij and Ni. The pressures pi are first obtained by
solving Eqn. 2.2, using the Matlab function mldivide. We then solve a chain of
equations to obtain the Lagrange multipliers:

∂Θ
∂Ni

=0

−−−−→ α
∂Θ
∂q̃ab

=0

−−−−−→ γ
∂Θ
∂Pab

=0

−−−−−→ µ
∂Θ
∂Tab

=0

−−−−−→ λ
∂Θ
∂fa

=0
−−−−→ β

∂Θ
∂pa

=0
−−−−→ ν .(A.1)

First:

(A.2)
∂Θ

∂Na
=
∑
i

(
− q̃ia
N2
a

log

(
q̃ia
Na

)
− q̃ia
N2
a

)
− αa = 0.
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Second:

(A.3)
∂Θ

∂q̃ab
=

fb
Nb

log

(
q̃ab
Nb

)
+
fb
Nb

+ αb − γab = 0

Third:

(A.4)
∂Θ

∂Pab
= µab −

∑
i

µibTia + γabfa = 0

so:

(A.5) γab =

(∑
i

µibTia − µab

)
/fa

Fourth:

(A.6)
∂Θ

∂Tab
= −

∑
j∈N

µajPbj − λab = 0

Fifth:

(A.7)
∂Θ

∂fa
=

∑
j:q̃ja>0

q̃ja
Na

log

(
q̃ja
Na

)
+
∑
j∈N

γajPaj −
∑
j∈n(i)

λaj
qaj1qaj>0

f2
a

− βa = 0 .

Sixth, to calculate ∂Θ
∂pa

we make use of the results ∂
∂pa

qai = κai and ∂
∂pa

qia = −κia.
Thus:

∂Θ

∂pa
=
∑
j

κaj(νa − νj) +
∑
i∈n(a)

(βaκai1qai>0 − βiκai1qia>0)

+
∑
i∈n(a)

(
λai

κai1qai>0

fa
− λia

κai1qia>0

fi

)
= 0.(A.8)

Thus solving for the Lagrange multipliers νi requires solving a Poisson equation on
the network similar to Eqn. 2.2.

Appendix B. Finding adjacent flow topologies.
We assume that the network of non-zero conductances has a single connected com-

ponent, because although very small conductances are treated as negligible throughout
our algorithm, they remain large enough to keep the Laplacian rank complete. We
take the inverse of the version of the Laplacian defined in Section 2.1, ∆̃κ for the
initial network. We compute the directions of flow on each edge within the network
(edges with low flows are ignored). The set of networks with the same directions of
flow constitutes one of the watersheds shown in Fig 2. We systematically vary one
conductance κab within the network to find an adjacent watershed – i.e. a flow net-
work in which some subset of the non-negligible flows have been reversed. We find
the threshold values for κab at which one or more flow directions are reversed, by
appealing to the Sherman-Morrison formula [26] (we thank Eleni Katifori for bringing
the S.M. formula to our attention). Specifically, if the conductance in edge (a, b) is
increased to κab + t, then the Laplacian for the new network becomes

(B.1) ∆̃κ̃ij = ∆̃κij + t(ea − eb)(ea − eb)T .
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Then the Sherman-Morrison formula yields

∆̃−1
κ̃ij

=
(

∆̃κij + t(ea − eb)(ea − eb)T
)−1

= ∆̃−1
κij −

∆̃−1
κij t(ea − eb)(ea − eb)

T ∆̃−1
κij

1 + (ea − eb)T ∆̃−1
κij t(ea − eb)

.(B.2)

Given another edge (u, v), We wish to find a perturbation to κab such that the
flow along (u, v) is reversed. Let Ri be the ith row of ∆̃−1

κij , and dij be the i, j entry

of ∆̃κij . Then the pressure drop is given by:

(B.3) p̃u − p̃v = (Ru −Rv)Q−
t (dau − dav − dbu + dbv) (Ra −Rb)Q

1 + t (daa − dab − dba + dbb)
.

Therefore the pressure drop is a monotonic function of t so the the zero of this equation
is where the pressure reverses. Setting the left side to 0 we get the value t = tabuv at
which flow reversal occurs:

(B.4) tabuv
pu − pv

(dau − dav − dbu + dbv) (pa − pb)− (daa − dab − dba + dbb) (pu − pv)
.
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