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Abstract. In piecewise-deterministic Markov processes (PDMPs) the state of a finite-dimensional
system evolves continuously, but the evolutive equation may change randomly as a result of discrete
switches. A running cost is integrated along the corresponding piecewise-deterministic trajectory up
to the termination to produce the cumulative cost of the process. We address three natural questions
related to uncertainty in cumulative cost of PDMP models: (1) how to compute the Cumulative
Distribution Function (CDF) of the cumulative cost when the switching rates are fully known; (2)
how to accurately bound the CDF when the switching rates are uncertain; and (3) assuming the
PDMP is controlled, how to select a control to optimize that CDF. In all three cases, our approach
requires posing a system of suitable hyperbolic partial differential equations, which are then solved
numerically on an augmented state space. We illustrate our method using simple examples of tra-
jectory planning under uncertainty for several 1D and 2D first-exit time problems. In the Appendix,
we also apply this method to a model of fish harvesting in an environment with random switches in
carrying capacity.
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1. Introduction. Piecewise-deterministic Markov processes (PDMPs) provide
a powerful formalism for modeling discrete random changes in a global environment.
That formalism is particularly useful when the number of deterministic modes of the
global environment is relatively small and there is a high fidelity statistical charac-
terization of mode-to-mode switching rates. Such processes arise in a broad range
of applications, especially in the biological sciences [39]. For example, they can be
used to model keratin network formation [9], SIRS epidemic spread [35], genetic net-
works [40], and predator-prey systems [10,17,32]. In other disciplines, applications of
PDMPs include models of fatigue crack growth [15], financial contagion [19], manu-
facturing processes [1,11,37,42], sustainable development, economic growth & climate
change [30,31], and path-planning under uncertainty [4, 13,27,45].

In this paper we focus on a computational framework for quantifying uncertainty
in outcomes of PDMPs due to random switching times and possible uncertainty in
switching rates. If a PDMP system is controlled in real time, we also show that this
uncertainty of outcomes can be actively managed.

In our PDMP models, the full state of the system is described by a continuous
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component x ∈ Ω ⊂ Rd and a discrete component i ∈M = {1, . . . ,M} that represents
the current deterministic “mode”. Starting from the initial configuration (x, i), the
evolution of continuous component y(t) is defined by a (mode-dependent) ODE

y′(t) = f(y(t),m(t)) = fm(t)(y(t)), (1.1)

y(0) = x ∈ Ω,

m(0) = i ∈M,

while the switches in mode m(t) are based on a continuous-time Markov process on
M. Using λij to denote the rate of (i→ j) switching, we can write

lim
τ→0

P(m(t+ τ) = j |m(t) = i)

τ
= λij , ∀t ≥ 0, i ∈M, j ∈M\{i}. (1.2)

Here, we focus on exit-time problems, in which the process stops as soon as the system
reaches a compact exit set Q ⊂ Ω. Due to the random mode-switches, the exit-time
Tx,i = min{t ≥ 0 |y(t) ∈ Q} is also random, which makes it somewhat harder to
approximate the distribution for our main object of study – the cumulative cost of
the PDMP J (x, i).

In addition to mode-dependent dynamics f : Ω × M → Rd, we also include
a mode-dependent running cost C : Ω ×M → (0,+∞) and exit cost q : Q ×M →
[0,+∞). To simplify the notation, we will also sometimes use the mode as a subscript:

Ci(x) = C(x, i), fi(x) = f(x, i), qi(x) = q(x, i), etc.

We will assume that qi’s are continuous in x, while Ci’s and fi’s are bounded and
piecewise Lipschitz continuous. The cumulative cost is then formally defined as

Ji(x) = J (x, i) =

∫ Tx,i

0

C
(
y(t),m(t)

)
dt + q

(
y
(
Tx,i

)
,m
(
Tx,i

))
. (1.3)

We will generally assume that Ω is a closed set and the process can continue on
∂Ω\Q, but if the dynamics forces us to leave Ω before reaching Q, this will result
in J = +∞. We note that the notion of cumulative cost is much more common in
controlled PDMPs, where it is used to select criteria for control optimization. But
we also consider J in this simpler uncontrolled case to focus on a single measurable
outcome of the process.

We develop our approach in this general setting, but our numerical experiments
highlight that studying J is far from trivial even if C ≡ 1, q ≡ 0, and Q = ∂Ω,
yielding J (x, i) = Tx,i, the time until we reach the boundary. For a motivating
example, consider a “sailboat” traveling with unit speed on an interval Ω = [0, 1]
and subject to random mode (wind direction) switches. We will assume that it is
moving rightward in mode 1 and leftward in mode 2, the time intervals between mode
switches are independent exponentially distributed random variables with rate λ, and
the process terminates as soon as the boat reaches Q = {0, 1}. While we describe
this example in terms of sailboat navigation, similar “velocity jump processes” are
also often used to model dispersal in biological systems [33, 38]. But in contrast to
our approach, the main focus there is on equations describing the evolving density
of dispersing cells or organisms rather than on the distribution of some performance
measure J for individual organisms. Another distinction is our assumption that each
individual path terminates on reaching some exit set Q – this introduces additional
structure, which we later leverage to obtain efficient numerical methods.



UNCERTAINTY IN PIECEWISE-DETERMINISTIC MARKOV PROCESSES 3

Throughout the paper, we take an exploratory approach, focusing on derivation
of equations and numerical methods as well as instructive test problems rather than
proofs of convergence or realistic applications. To streamline the presentation, we
illustrate our methods on simple “first-exit time” problems1 in 1D and 2D similar
to the sailboat example described above. But in the Appendix we show how the
same approach is useful more broadly (with general Ci’s and fi’s) by considering fish
harvesting in an environment with random switches in carrying capacity.

In section 2, we explain how the CDF for J can be computed by solving a
system of coupled linear PDEs. Our equations can be interpreted as a PDMP-adapted
version of the Kolmogorov Backward Equation generalized to handle arbitrary running
costs rather than just time. Another related approach is the previous development of
numerical methods for the Liouville-Master Equation in [5]. We also derive simpler
recursive difference equations to compute the CDF for a discrete analog of our setting
– a random route-switching process on a graph.

In most real world applications, all switching rates (λij) will be known only ap-
proximately and it is necessary to bound the results of this modeling uncertainty.
In section 3, we show how bounds on these switching rates can be used to bound the
CDF of J . Interestingly, it turns out that it is easier to compute tight bounds if the
switching rates are not assumed to be constant in time.

In many applications, the focus is on optimally controlling PDMPs (affecting
the dynamics in each deterministic mode), with the notion of optimality typically
based on the average-case outcomes (e.g., minimizing the expected total cost). Once
a control is fixed, the same uncertainty quantification tools covered in sections 2
and 3 become relevant. Moreover, the control can also be selected to manage the
uncertainty, providing some robustness guarantees or minimizing the probability of
undesirable outcomes. Following the latter idea, we introduce a method for optimizing
the CDF of controlled PDMP models in section 4. We conclude by discussing further
extensions and limitations of our approach in section 5.

2. Computing the CDF. Before discussing the methods for approximating
the CDF for the randomly switching process described in section 1, we first consider
the same challenge for Markov-style switching on a graph in section 2.1, turning to a
continuous version in section 2.2. Numerical methods for the latter are then described
in section 2.3 and illustrated by computational experiments in section 2.4.

2.1. Discrete PDMPs. We start by reviewing a simple model of deterministic
routing on a directed graph with a finite node set X = {x1, . . . ,xN}, a set of directed
edges E ⊂ X × X, and a target set Q ⊂ X. We will assume that K : X × X →
(0,+∞] specifies the known cost of possible “steps” (i.e., node-to-node transitions)
with K(x,x′) = +∞ iff (x,x′) 6∈ E. A route on this graph can be specified in feedback
form by a mapping F : X → X such that (x, F (x)) ∈ E ∀x ∈ X. Given a starting
position y0 = x ∈ X, a path can be defined by a sequence yn+1 = F (yn), terminating
as soon as yn ∈ Q. We will further assume that the terminal cost charged at that
point is specified by q : Q → [0,+∞). If the path enters Q after n̄(x) steps, its
cumulative cost can be expressed as

J (x) =

n̄(x)−1∑

n=0

K
(
y
n
,y

n+1

)
+ q

(
y
n̄(x)

)
,

1
To ensure computational reproducibility, our full code for all examples is available at

https://github.com/eikonal-equation/UQ PDMP

https://github.com/eikonal-equation/UQ_PDMP
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Fig. 1: Fully discrete PDMP with M = 2 modes and N = 6 nodes. In mode 1 the motion is
always to the right; in mode 2 the motion is always to the left. The exit set is Q = {x

1
,x

6
}.

with J (x) = +∞ if the path remains forever in X \Q, which can happen if a route
specified by F contains loops. The recursive relationship among J values makes it
easy to recover all of them by solving a linear system

J (x) = K (x, F (x)) + J (F (x)) , ∀x ∈ X \Q;

J (x) = q(x), ∀x ∈ Q. (2.1)

We will now consider a version of the problem with a total of M different routes
F1, . . . , FM , each of them with its own pair of running and terminal costs (Ki, qi)
defined on the same graph. These routes are equivalent to the modes in a PDMP. To
simplify the notation, we will use Ki(x) as a shorthand for Ki (x, Fi(x)) . We define
a random route-switching process by assuming that there is a chance of switching to
another route after each step. That is, if the current route is Fi, the probability pij
of switching to Fj after the next step is known a priori for all i, j ∈M = {1, . . . ,M}.
The number of steps is now a random variable, along with the cost paid for all future
steps. In defining the new random cumulative cost Ji(x), we note that the subscript
only encodes the initial route used in the first step as we depart from x. It is easy to
see that ui(x) = E [Ji(x)] should satisfy a recursive relation

ui(x) = Ki(x) +

M∑

j=1

pijuj (Fi(x)) , ∀x ∈ X \Q, i ∈M;

ui(x) = qi(x), ∀x ∈ Q, i ∈M. (2.2)

It is worth noting that this system of MN linear equations lacks the nice causal
property that we enjoyed in the deterministic (single route) case. There we knew
that a finite J (x) implied that the path from x prescribed by F included no loops
and reached Q in a finite number of steps. As a result, the part of system (2.1)
corresponding to such finite J ’s was always triangular up to a permutation. The
same is clearly not true for the multi-route case of (2.2), where loops can easily arise
as a result of random route-switching.

We note that this process can be also interpreted as a Markov chain on an ex-
tended graph. One would create M copies of the original graph (on the nodes xin)
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with each route (or mode) Fi represented as a separate “layer” and inter-layer tran-
sitions governed by pij ’s. Figure 1 illustrates one such example with two modes and
associated probabilities p11, p12, p21, and p22. In the special case of Ki ≡ 1 and qi ≡ 0
for all i ∈M, the above equations for ui’s are simply describing the mean hitting time
for the set Q×M. However, we are interested in more general costs and would also
like to compute the full CDFs wi(x, s) = P(Ji(x) ≤ s) for each Ji. It is easy to show
that these functions must satisfy a recursive relationship

wi(x, s) =

M∑

j=1

pij wj

(
Fi(x), s−Ki(x)

)
, ∀x /∈ Q, i ∈M, s > 0; (2.3)

with the initial and boundary conditions

wi(x, s) =

{
0, if (x /∈ Q, s ≤ 0) or (x ∈ Q, s < qi(x)) ;

1, if x ∈ Q, s ≥ qi(x).
(2.4)

We will assume that the range of s values of interest is S = [0, S], where S is some
constant specified in advance.

Based on the general properties of CDFs, all wi’s are monotone non-decreasing
and upper-semicontinuous 2 in s. Moreover, the positivity of Ki’s ensures the explicit
causality of this system: in (2.3) each wi(x, s) can only depend on wi(x

′, s′) if s′ < s.
Thus, the system can be solved in a single sweep (from the initial conditions at s = 0,
“upward” in s).

Still, it can be useful to precompute s0
i (x) = inf{s | wi(x, s) > 0} and w0

i (x) =

wi

(
x, s0

i (x)
)

by computations on X alone. Intuitively, s0
i (x) can be thought of as the

minimum attainable cost starting in mode i at position x, and w0
i (x) is the probability

of attaining said cost. It is easy to see that s0
i satisfies the recursive system:

s0
i (x) = Ki(x) + min

j∈M
s.t. pij>0

{
s0
j (Fi(x))

}
, ∀x ∈ X \Q, i ∈M;

s0
i (x) = qi(x), ∀x ∈ Q, i ∈M. (2.5)

solvable by the standard Dijkstra’s method in O(MN log(MN)) operations.
The values of w0

i (x) can also be found in the process of computing s0
i (x). If

I(x) ⊂M is the arg min set in (2.5), then

w0
i (x) =

∑

j∈I(x)

pijw
0
j (Fi(x)) , ∀x ∈ X \Q, i ∈M;

w0
i (x) = 1, ∀x ∈ Q, i ∈M. (2.6)

Numerically solving Equations (2.5) and (2.6) can be advantageous because they
are computed on the lower-dimensional domain X ×M instead of X ×M×S. This
information can then be used as initial/boundary conditions to solve (2.3) on a smaller
subset of X ×M×S.

2
In addition, the finite size of X guarantees that all wi’s are piecewise-constant in s. This can

be used to construct a finite time algorithm for solving (2.3) exactly despite the fact that s is a
continuous variable. We do not include this algorithm here due to space constraints and to keep
the focus on the continuous-time setting, where discretizing s and approximating wi’s is generally
unavoidable.
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2.2. Continuous PDMPs. We are now interested in extending our results from
the discrete case to continuous settings. The PDMP model described in section 1 is
based on continuous in time and space evolution of the state y(t) and continuous
in time Markov chain governing the changes in mode m(t). Here, we start with a
somewhat simpler version, in which this Markov chain is discretized in time, while
the state evolution is continuous. Choosing some small fixed time interval τ > 0, we
assume that the system starting in mode m(0) = i ∈ M and state y(0) = x ∈ Ω \Q
evolves according to an ODE y′(t) = fi(y(t)) with no random switches until the time

τx,i = min (τ, min {t |y(t) ∈ Q}) ,
at which point a switch to another mode may occur. The process is repeated (starting
from x̃ = y(τx,i) and a possibly new mode j, integrating the ODE over the time
interval of length τx̃,j , etc.) and the running cost is accumulated until y(t) enters a
compact exit set Q.

We define natural analogs for operators used to pose the graph routing problem
in the previous subsection:

Fi(x) = x+

∫ τx,i

0

fi(y(t)) dt = y
(
τx,i
)
, (2.7)

Ki(x) =

∫ τx,i

0

Ci(y(t)) dt, (2.8)

where Ci : Ω→ (0,+∞) is the running cost for that mode. We define the probability
of switching to each mode j at the end of time interval of length τx,i by requiring
consistency with the continuous in time Markov process described in (1.2). In the
latter, there could be multiple mode transitions over the time τx,i, and here we simply
use the probability of finishing this time interval in mode j:

pij(τx,i) = P(m(τx,i) = j |m(0) = i).

We compute these probabilities using a transition rate matrix Λ =
(
λij
)
, where λij ’s

encode the rate of (i→ j) switching for i 6= j, while the diagonal elements are defined
by λii = −∑j 6=i λij . The evolution of the probability matrix P (t) =

(
pij(t)

)
is then

given by an ODE
d

dt
P (t) = P (t)Λ, P (0) = I,

and it follows that P (τx,i) = exp(Λτx,i). Finally, if y(τx,i) ∈ Q, we assume that the
PDMP will immediately terminate with an exit cost of qj

(
y(τx,i)

)
, where j is the

final mode after a possible last transition.
With this notation in hand, we can define the same functions characterizing the

random cumulative cost: ui, wi, s
0
i , and w0

i will all satisfy the same recursive formulas
already defined on a graph in the previous subsection. The only caveat is that pij ’s
will need to be replaced by pij(τx,i). Since τ and τx,i are equivalent except on a small
neighborhood of Q, in the following sections we will slightly abuse the notation by
referring to τ to simplify the formulas.

The original setting of section 1 (with continuous in time Markov chain for mode
switching) can be obtained from the above in the limit by letting τ → 0. A standard
argument based on a Taylor series expansion shows that the expected costs ui(x) =
E[Ji(x)] formally satisfy a system of linear PDEs:

∇ui(x) · fi(x) + Ci(x) +
∑

j 6=i

[
λij
(
uj(x)− ui(x)

)]
= 0 (2.9)
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with boundary conditions ui(x) = q(x, i) on Q × M. We omit the derivation of
(2.9) for the sake of brevity but use a similar approach below to derive a system
of PDEs satisfied by the cumulative distribution functions wi(x, s). The first order
approximations of the transition probabilities are:

pij(τ) = 1− e−λijτ + o(τ) = λijτ + o(τ), j 6= i

pii(τ) = 1−
∑

j 6=i

λijτ + o(τ). (2.10)

The first-order approximation of the dynamics in (2.7) is

Fi(x) = x+ τfi(x) + o(τ), (2.11)

and the first-order approximation of the running cost in (2.8) is

Ki(x) =

∫ τ

0

Ci(y(t))dt = τCi(x) + o(τ), (2.12)

Plugging in our approximations (2.10), (2.11), and (2.12) into the recursive rela-
tionship in Equation (2.3) and then Taylor expanding wi gives:

wi(x, s) =
(
1−

∑

j 6=i

λijτ
)
wi
(
Fi(x), s− τCi(x)

)
+
∑

j 6=i

λijτwj
(
Fi(x), s− τCi(x)

)
+ o(τ)

(2.13)

wi(x, s) = wi

(
Fi(x), s− τCi(x)

)
+ τ

∑

j 6=i

λij
[
wj(x, s)− wi(x, s)

]
+ o(τ)

0 = τ∇wi(x, s) · fi(x)− τCi(x)
∂w

∂s
(x, s) + τ

∑

j 6=i

λij
[
wj(x, s)− wi(x, s)

]
+ o(τ),

where ∇ =
(

∂
∂x1

, ∂
∂x2

, ..., ∂
∂xd

)
denotes the gradient in the spatial coordinates. Divid-

ing both sides by τ and then taking the limit as τ → 0, we obtain a linear PDE for
each mode i:

∇wi(x, s) · fi(x)− Ci(x)
∂wi
∂s

(x, s) +
∑

j 6=i

λij
[
wj(x, s)− wi(x, s)

]
= 0. (2.14)

The above derivation is only formal since it assumes that wi’s are sufficiently smooth.
In reality, they will be often non-differentiable and even discontinuous at isolated
points; nevertheless, these value functions can be still interpreted as weak (viscosity)
solutions [21], which can be approximated numerically by discretizing (2.13).
This system of PDEs satisfies the initial/boundary conditions:

wi(x, 0) =

{
1, ∀x ∈ Q s.t. q(x, i) = 0,

0, otherwise,
(2.15)

wi(x, s) =

{
1, ∀x ∈ Q s.t. q(x, i) ≤ s,
0, ∀x ∈ Q s.t. q(x, i) > s.

(2.16)

The above conditions are sufficient when Q = ∂Ω or if Ω is invariant under all vector
fields fi. All of our examples considered in the next sections fall in this category.
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But more generally, if vector fields are such that a trajectory might leave Ω prior to
reaching Q, one could treat this event as an immediate failure, essentially imposing
wi(x, s) = 0 for all x 6∈ Ω and all s ∈ R.

As in the discrete case of section 2.1, it can be useful to precompute the minimum
attainable cost to use as initial/boundary conditions when solving (2.14). From the
discrete case we recall that s0

i (x) = inf{s | wi(x, s) > 0} denotes the minimal cost
possible when starting from position x in mode i assuming that transitions between
modes can occur whenever desired. In the continuous case these transitions can occur
without delay, and therefore s0

i (x) = s0
j (x) for all i and j in M, so we will replace

all of these with s0(x). (Also, unlike in the discrete case, it is entirely possible that
wi(x, s

0(x)) = 0 for all i. The cost of s0(x) might be attainable only through perfectly
timed transitions, which in the continuous case would happen with probability zero.)
A formal Taylor series expansion of (2.5) yields the following differential equation and
boundary conditions for s0(x):

min
i

{
Ci(x) +∇s0(x) · fi(x)

}
= 0, x ∈ Ω \Q;

s0(x) = min
i
{qi(x)} , x ∈ Q. (2.17)

We are also interested in the probability w0
i (x) of attaining that minimal cost

s0(x) when starting from mode i and position x. If we denote the argmin set of
(2.17) as I(x), then w0

i (x) formally satisfies the following system:

0 = ∇w0
i (x) · fi(x) +

∑

j 6=i

λij

[
w0
j (x)− w0

i (x)
]
, x ∈ Ω \Q, i ∈ I(x);

w0
i (x) = 1, x ∈ Q, i ∈ I(x);

w0
i (x) = 0, x ∈ Ω, i 6∈ I(x). (2.18)

Once s0(x) and w0
i (x)’s are known, the computation of wi’s can be restricted to{

(x, s) | s ∈ (s0(x), S]
}
, solving PDEs (2.14) with “initial” conditions wi(x, s

0(x)) =

w0
i (x).

Remark 2.1 (Related work on Liouville-Master Equation). An approach
similar to the one presented in this section can be used to derive PDEs for the time-
dependent joint PDMP-state CDF on Ω×M. The initial conditions to those PDEs
would be based on a specific initial configuration (x0, i0) or, more generally, on a
specific initial joint CDF on Ω×M. This is precisely the setting in [5], where a finite-
difference numerical method for the “Liouville-Master Equation” was developed and
tested for the special case of d = 1. If one is willing to increase the dimension of the
problem, this can be viewed as a more general approach than ours (since J can be
viewed as just another component of the continuous state variable). But the need
to solve PDEs separately for different (x0, i0)-specific initial conditions is a serious
drawback. Moreover, computing the time-dependent joint CDF seems more suitable
for finite-horizon PDMPs (where the process terminates after a pre-specified time T )
rather than in our setting (where the process terminates as soon as it reaches Q ⊂ Ω).

2.3. Numerics for CDF computation. We will approximate the domain Ω
with a rectangular grid of points {xk} with grid spacing ∆x, where k = (k1, . . . , kd)
is a multi-index and xk = (k1∆x, . . . , kd∆x). We will also approximate the second
argument of the CDF with regularly spaced points sn = n∆s.
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We will derive equations for a grid-function Wn
i,k ≈ wi(xk, sn), with W 0

i,k values
determined by the initial conditions (2.15). To simplify the discussion, we assume
that both ∂Ω and Q are grid-aligned, with boundary values prescribed by (2.16).

Equation (2.3) is then naturally interpreted as a recipe for a semi-Lagrangian dis-
cretization using a pseudo-timestep of length τ . To obtain the first-order scheme, we
can use the linear approximations (2.11-2.12) in formula (2.13), yielding the following
equation at each gridpoint xk ∈ Ω, mode i ∈M, and cost threshold sn:

Wn
i,k =

M∑

j=1

pij(τ)Wj

(
xk + τfi(xk), sn − τCi(xk)

)
, (2.19)

where Wj : Ω × R → R is the result of interpolating the grid-function Wn
j,k in both

x and s variables, and the pij ’s are defined as in (2.10). In our implementation, all
Wj ’s are defined by multi-linear interpolation, but more sophisticated interpolation
techniques (e.g., based on ENO/WENO [46]) may be used instead to decrease the nu-
merical viscosity. More accurate approximations of Fi and Ki could be also employed
to increase the formal order of accuracy of the discretization. For fully deterministic
processes, similar semi-Lagrangian schemes have been proven to converge under the
grid refinement to a discontinuous viscosity solution on all compact sets not contain-
ing the discontinuity [7]. While we do not attempt to prove this here, our numerical
experiments indicate that the same holds true in piecewise-deterministic problems.

Our update formula (2.19) is only valid when xk + τfi(xk) remains in Ω. With
grid-aligned ∂Ω, a rather conservative sufficient condition for this is

τ ·max
i

{
max
x

{
|f(x, i)|

}}
≤ ∆x. (2.20)

Furthermore, we would like to ensure that our updates are causal, that is the right

hand side of (2.19) depends only upon the Wn
′

values with n′ < n. While not strictly
necessary, this ensures that the updates for each mode are uncoupled, speeding up
the computation. A sufficient condition for this is

τ ·min
i

{
min
x

{
C(x, i)

}}
≥ ∆s. (2.21)

The inequality (2.20) is only needed if we want to use the same τ at all grid
points instead of selecting a smaller time step near ∂Ω only. But if this τ -uniformity
is desired, satisfying both (2.20) and (2.21) requires

∆s

min{C} ≤
∆x

max{|f |} . (2.22)

We note that, even though the above restriction looks similar to a Courant-Friedrichs-
Lewy (CFL) condition, it is not needed to guarantee the stability (semi-Lagrangian
discretizations are unconditionally stable), but simply to ensure the causality (and
hence the efficiency) of our discretization.

Under certain conditions, (2.19) may be also re-interpreted as a finite differences
discretization of the PDE (2.14). To give a concrete example, suppose that d = 1, and
the domain Ω = [0, 1] is approximated by a grid of regularly spaced points denoted
xk = k∆x. Furthermore, suppose that there is a mode i where Ci ≡ 1, and fi(xk) =
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fik > 0. If we choose τ = ∆s, then (2.19) for n+ 1 becomes:

Wn+1
i,k =

M∑

j=1

pij(∆s)Wj(xk + fik∆s, sn)

= Wi(xk + fik∆s, sn) +
∑

j 6=i

λij∆s
[
Wj(xk + fik∆s, sn)−Wi(xk + fik∆s, sn)

]

= Wn
i,k +

fik∆s

∆x

(
Wn
i,k+1 −Wn

i,k

)
+
∑

j 6=i

λij∆s
(
Wj −Wi

)
(xk + fik∆s, sn);

fik

[
Wn
i,k+1 −Wn

i,k

∆x

]
−
[
Wn+1
i,k −Wn

i,k

∆s

]
+
∑

j 6=i

λij
(
Wj −Wi

)
(xk + fik∆s, sn) = 0,

(2.23)
which is a consistent first-order finite differences discretization of (2.14). Further-
more, in this 1D example, the CFL condition for this discretization is exactly (2.22).
The scheme (2.23) is monotone (and thus stable [18]) whenever this CFL condition
is satisfied. It is important to note that the summands in (2.23) are evaluated at
xk + fik∆s (and therefore are convex combinations of Wn values at xk and xk+1).
Evaluating those terms at the naive choice of xk would result in a non-monotone
discretization, which is in fact unstable.

To compute the minimum attainable cost s0(x) and the probability w0(x) of
attaining it, we use first-order semi-Lagrangian discretizations of (2.17) and (2.18).
For d = 1, the discretized equations for s0(x) are

s0(xk) = min
i

{
Ci(xk)

∆x

|fi(xk)| + s0 (xk′
)}

, xk 6∈ Q;

s0(xk) = min
i
{qi(xk)} , xk ∈ Q; (2.24)

where

k′ =

{
k + 1, fi(xk) > 0;

k − 1, fi(xk) < 0.

In 1D, this system of equations can be solved efficiently with two iterative “sweeps” –
first increasing and then decreasing in k. In higher space dimensions, it can be solved
in O(MN log(N)) time using a Dijkstra-like method.

In the process of solving for s0(x), we also solve (2.18) using a first-order semi-
Lagrangian scheme. Using I(xk) to denote the argmin set of (2.24), the values of w0

i

are initialized according to

w0
i (xk) =

{
1, xk ∈ Q, i ∈ I(xk);

0, otherwise.

Whenever the value of s0(xk) is updated, we simultaneously update w0
i according to

w0
i (xk) =

{
w0
i

(
xk′
)

+ ∆x
|fi(xk)|

∑
j 6=i λij

[
w0
j

(
xk′
)
− w0

i

(
xk′
)]
, i ∈ I(xk);

0, i 6∈ I(xk).
(2.25)
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Fig. 2: Minimum cost s
0
(x) and probability w

0
i (x) of attaining that minimum cost. Subfig-

ures (A) and (B) are for Example 1 and (C) and (D) are for Example 2. Graphs of w
0
i are

shown in blue for i = 1 and in red for i = 2.

(A) (B) (C) (D)

Fig. 3: CDF for a particle starting at initial position x, in Mode 1 (blue) and Mode 2 (red).
In Subfigures (A) and (C), the initial condition is x = 0.30 while in Subfigures (B) and (D)
the initial condition is x = 0.70. Subfigures (A) and (B) are for Example 1 and (C) and (D)
are for Example 2.

These values of s0(x) and w0
i (x) are then used as initial/boundary conditions3 for

computing wi(x). This provides a speed improvement and also reduces the smearing
of wi’s discontinuities due to numerical viscosity.

2.4. Experimental Results. We illustrate our approach with three examples
of uncontrolled PDMPs on R and R2. In all of these, we assume Q = ∂Ω, C ≡ 1,
and q ≡ 0, ensuring that the cumulative cost J corresponds to the time to ∂Ω. For
simplicity, we will also assume uniform transition rates; i.e., λij = λ > 0 for all i 6= j.

Example 1: We start by considering a “sailboat” test problem described in
the introduction with Ω = [0, 1], Q = {0, 1}, M = 2, fi(x) = (−1)i+1, and symmetric
transition rates λ12 = λ21 = 2. For a fixed number N of gridpoints, we set ∆s =
∆x = 1

N−1 , as this is the largest value of ∆s that satisfies (2.22). Moreover, this
guarantees that no actual interpolation is necessary in (2.19), as Wj is only evaluated
at gridpoints. We note that solving these discretized equations is equivalent to finding
the CDF of a discrete PDMP such as the one pictured in Figure 1, except with a larger
number N of nodes. We solve this problem for s ∈ [0, 1], but also precompute s0(x)
and w0

i (x) (see Figure 2(A-B)) to reduce the computational domain for wi’s.

3
Since the graph of s

0
(x) is generally not grid aligned in Ω×S, such a domain restriction requires

either a use of “cut cells” just above s = s
0
(x) or a conservative “rounding up” of s

0
values. Our

implementation relies on the latter, which introduces additional O(∆s) errors.
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Fig. 4: Example 1: Equal speeds, with a symmetric transition rate λ = 2. Each subplot is a
snapshot of wi(x, s) = P(Ji(x) ≤ s) for a specific value of s. In Mode 1 (blue), the particle
moves to the right with speed 1. In Mode 2 (red), the particle moves to the left with speed
1. Computed on Ω× S = [0, 1]

2
with ∆x = ∆s = 0.001.

The key advantage of our approach is that it approximates the distribution J
for all starting configurations simultaneously. Once wi’s are computed, we can freeze
(x, i) and vary s to study the CDF. In Figure 3(A-B) this is illustrated for two start-
ing locations x = 0.3 and x = 0.7. But it might be even more revealing to fix a
particular deadline s and consider the probability of meeting it from all possible ini-
tial configurations. In Figure 4 we show such graphs of wi(x, s) for four different s
values. Geometric properties of these functions have a natural interpretation, which
we highlight focusing on mode 1 and s = 0.25 (the blue plot in the first subfigure).
First, regardless of mode switches, s = 0.25 is not enough time to exit if we start too
far from Q; so, w1 = w2 = 0 for all x ∈ (0.25, 0.75). Second, starting from x = 0.75
and moving right with speed one we will have just enough time to reach Q provided
we experience no mode switches, and if any switches occur the resulting time to target
will be higher. So, the jump discontinuity at x = 0.75 is precisely the probability of
zero mode switches occurring in s = 0.25 time units. (We note that this discontinuity
disappears in the last subfigure since s = 1.00 is enough time to reach Q with no mode
switches starting from any (x, i) ∈ Ω×M.) Finally, a similar argument explains the
behavior for starting positions on x ∈ (0, 0.25). Since we start in mode 1, the only
hope of meeting the s = 0.25 deadline is a quick switch to mode 2. Starting from
x = 0.25, a timely arrival would require an immediate mode switch, and since this
happens with probability zero, w1 is continuous at this point.

Of course, the probability of meeting a deadline is also significantly influenced
by the switching rates. While we do not illustrate this here, the same example is
repeated with a range of symmetric and asymmetric rates in Figure 7 of section 3.

Example 2: We modify the previous example by considering unequal speeds
of motion in different modes: f1 = 0.5 and f2 = −1. The CDFs for two starting
locations x = 0.3 and x = 0.7 are shown in Figure 3(C-D) while the plots of wi(x, s)
for four different values of s can be found in Figure 5. We note that in Mode 1,
interpolation is now necessary in (2.19), which results in numerical diffusion smoothing
out discontinuities, as can be seen in the right two subfigures. The absence of such
artifacts in the first two subfigures is an additional benefit of pre-computing s0(x) and
w0
i (x), shown in Figure 2(C-D), to reduce the computational domain for wi’s. E.g.,

for the first subfigure, all x ∈ [0.25, 0.875) have s0(x) > s = 0.25 and so are assigned
an exit probability of 0, removing the need of interpolating across discontinuities. In
contrast, at s = 0.75 all x have a nonzero probability of exiting, so interpolation
across the discontinuity at x = 0.625 is unavoidable.

Example 3: We now consider a 2D version of Example 1, with Ω = [0, 1]×[0, 1],
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Fig. 5: Example 2: Unequal speeds, with a transition rate λ = 2. Each subplot is a snapshot
of wi(x, s) = P(Ji(x) ≤ s) for a specifc value of s. In Mode 1 (blue), the particle moves
to the right with speed 1/2. In Mode 2 (red), the particle moves to the left with speed 1.
Computed on Ω× S = [0, 1]

2
with ∆x = ∆s = 0.001.

Q = ∂Ω, M = 4, and λ = 1. In all modes, the motion is with speed |f | = 1,
but the directions of motion differ: ←, ↑,→, and ↓ in modes 1, . . . , 4 respectively.
Numerical approximations of wi’s for different values of s are shown in Figure 6.
The distinct delineations between darker and lighter regions are analogous to the
discontinuities in the earlier one-dimensional cases. For example, given s < 0.5 and
starting positions along the line y = 0.5, a timely exit is only possible to the left
(via Mode 1) or to the right (via Mode 3). Therefore, cross sections of w1 and w3

along y = 0.5 at s = 0.25 in Figure 6 coincide with the one-dimensional graphs for
s = 0.25 in Figure 4. However, as we move closer to the corners of the domain, all
four modes have an effect on the probability of exit. For example, the region along
the diagonal near the top right corner of the w1 graph has higher exit probabilities
than surrounding regions because there are multiple possible timely-exit strategies.
These 2D phenomena become prevalent for higher s values.

Remark 2.2 (Related models in biology). As noted in the introduction,
similar “velocity jump processes” are also used to model dispersal in biological systems
[33,38]. In that context, all dispersing agents perform long runs with constant velocity
but occasionally switch modes/directions. The usual approach is to derive a system
of PDEs governing the evolution of agent densities ρi(x, t) in corresponding modes
i ∈M. The symmetric unbounded case in 1D (i.e., Ω = R, M = 2, and λ12 = λ21) is
particularly well-studied, with the overall density ρ = ρ1 + ρ2 evolving according to
the “telegraph equation” [28]. Taking λ12 6= λ21, one can similarly model chemotaxis.
If Ω = R2 or R3, one could use a larger number of modes to describe many possible
directions of motion, with λij chosen to reflect a possible bias in switching (e.g., giving
preference to new directions more closely aligned with the preceding run – as is the
case for E. coli bacteria). Letting M → ∞, one can also directly model all possible
directions of motion by switching to integro-differential equations [38].

While our focus on a single performance measure J might be restrictive for many
of these applications, there are also some settings where it can be advantageous. For
example, if one assumes that agents are removed upon reaching Q, the number of
them still remaining by the time t could be in principle computed as

R(t) =
∑

i∈M

∫

Ω\Q
ρi(x, t)dx. (2.26)

But any change in ρi(x, 0) would make it necessary to re-solve a system of PDEs for
ρi(x, t)’s before reusing (2.26). Here we can offer a much more efficient method by
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w1 ← w2 ↑ w3 → w4 ↓

s = 0.25

s = 0.50

s = 0.75

s = 1.00

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6: Example 3: Mode switching in 2D with transition rates λ = 1. The particle moves
← in Mode 1, ↑ in Mode 2, → in Mode 3, and ↓ in Mode 4. Computed on Ω × S = [0, 1]

3

with ∆x = ∆y = ∆s = 0.01.

setting C ≡ 1 and q ≡ 0, computing wi’s from (2.14) only once, and then using an
alternative formula that works for all initial densities

R(t) =
∑

i∈M

∫

Ω\Q
ρi(x, 0) (1− wi(x, t)) dx. (2.27)

3. Bounds on CDF. We now turn to PDMPs with parameter uncertainty – in
addition to the inherent aleatoric uncertainty due to mode switches. In section 2, the
uncertainty of the outcome could be fully characterized by its CDF computed based
on the known transition rates between modes, λij ’s. Here, however, we consider the
case where we only know a range of potential λij values. There are two natural models
of epistemic uncertainty in this situation, and it is meaningful to consider the upper
and lower bounds on the CDF with each of them. We focus on a case where the true
transition rates are free to fluctuate within the given range and may take on different
values at different times. The upper and lower bounds on the CDF can be then found
by considering a nonlinear version of the coupled PDEs seen in section 2. This can
also be viewed as an optimal control problem, where the controller is either helping
or hindering the particle’s exit by choosing the transition rates adaptively.

The alternative model of epistemic uncertainty is to assume that all transition
rates remain fixed (though unknown) throughout the process. We provide some ex-
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perimental results for this case as well, though do not propose any computationally
efficient methods for finding sharp CDF bounds.

3.1. Deriving PDEs. We now extend the results of section 2.2 by considering
the case in which the transition rate matrix Λ = (λij) is not necessarily constant.
Suppose there are known aij , bij for each pair i 6= j, such that each λij may vary
in the interval 0 ≤ aij ≤ λij ≤ bij throughout the process. If L is the set of possi-
ble transition matrices satisfying these constraints, we will assume that Λ might be
changing but remains in L throughout the process. In this section, we will use Λi to
denote the i-th row of Λ, specifying all transition rates from mode i. We will also use
Li to denote the set of all allowable i-th rows satisfying the above constraints.

We compute an upper bound for wi, denoted w+
i , by taking its initial and bound-

ary conditions to be the same as wi, and adaptively selecting the Λi ∈ Li which
maximizes w+

i (x, s). Similarly, for the lower bound w−i we take the Λi ∈ Li which
minimizes w−i (x, s). Hence, for each mode i, the bounds w+

i and w−i satisfy the PDEs:

∇w+
i (x, s) · fi(x)− Ci(x)

∂w+
i

∂s
(x, s) + max

Λi∈Li

{∑

j 6=i

λij

[
w+
j (x, s)− w+

i (x, s)
]}

= 0;

(3.1)

∇w−i (x, s) · fi(x)− Ci(x)
∂w−i
∂s

(x, s) + min
Λi∈Li

{∑

j 6=i

λij

[
w−j (x, s)− w−i (x, s)

]}
= 0

(3.2)
with initial and boundary conditions (2.15) and (2.16). We note that, if aij = bij for
all i 6= j, there is no parametric uncertainty, each Li is a singleton, and the above
equations reduce to (2.14).

As with the computation of wi’s through (2.14), it can be helpful to precompute
the minimal attainable cost s0(x) and the probability w0

i (x) of achieving such a cost.
Since Λ is not constant, instead of having a probability of attaining the cost s0(x) we
have a lower bound w0,−

i (x) and an upper bound w0,+
i (x) for that probability. We

may compute s0(x) in precisely the same way as in (2.17) since that formula does not
depend on Λ at all. On the other hand, to compute w0,+

i (x) we must modify (2.18)
to account for the unknown (and possibly changing) Λ:

0 = ∇w0,+
i (x) · fi(x) + max

Λi∈Li

{∑

j 6=i

λij

[
w0,+
j (x)− w0,+

i (x)
]}

, x ∈ Ω \Q, i ∈ I(x);

w0,+
i (x) = 1, x ∈ Q, i ∈ I(x);

w0,+
i (x) = 0, x ∈ Ω, i 6∈ I(x).

(3.3)

Similarly, to compute w0,−
i (x) we have:

0 = ∇w0,−
i (x) · fi(x) + min

Λi∈Li

{∑

j 6=i

λij

[
w0,−
j (x)− w0,−

i (x)
]}

, x ∈ Ω \Q, i ∈ I(x);

w0,−
i (x) = 1, x ∈ Q, i ∈ I(x);

w0,−
i (x) = 0, x ∈ Ω, i 6∈ I(x).

(3.4)

In both cases, I(x) is the argmin set of (2.17) as in (2.18).
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3.2. Calculating Bounds. For numerical computations of the bounds described
in section 3.1, we rely on a discretization similar to that presented in section 2.3. When
τ is small enough that the approximations in (2.10) can be made, this optimization
can be written recursively. For the CDF lower bound w−i (x, s), the semi-Lagrangian
scheme is

w−i (x, s) = w−i (x̃, s̃) + min
Λi∈Li

{
τ
∑

j 6=i

λij

[
w−j (x̃, s̃)− w−i (x̃, s̃)

]}
, (3.5)

where x̃ = Fi(x) and s̃ = s − τCi(x). Recall from (2.21) that Ci(x) > 0 so it is
always the case that s̃ < s. Therefore, w−i (x̃, s̃) has already been calculated and so
can be used in the computation of w−i (x, s).

For an efficient implementation of (3.5), the optimal Λ∗ ∈ L can be found ex-
plicitly. When minimizing w−i (x, s), we would naturally like to subtract as much as
possible and add as little as possible to w−i

(
Fi(x), s−τCi(x)

)
= w−i (x̃, s̃). Therefore,

[
w−j (x̃, s̃)− w−i (x̃, s̃)

]
≤ 0 =⇒ λ∗ij = bij ;

[
w−j (x̃, s̃)− w−i (x̃, s̃)

]
> 0 =⇒ λ∗ij = aij . (3.6)

For the the CDF upper bound w+
i , the scheme is similar modulo replacing min

with max in (3.5) and flipping the signs of inequalities in (3.6).

3.3. Experimental Results.

Example 4: CDF bounds and comparison to fixed-Λ CDFs. We now
generalize Example 1 from section 2.4 to consider epistemic uncertainty. Recall that
Ω = [0, 1], Q = ∂Ω, C ≡ 1, and q ≡ 0 so that the cumulative cost J corresponds to the
exit time, with M = 2 and fi = (−1)i+1. We will also assume that λij ∈ [1, 4] for all
i 6= j. In Figure 7 we display our results for a particle that starts moving rightward (in
Mode 1). The graphs shown in blue are the upper and lower bounds on the probability
of a timely exit (i.e., before a specific deadline s̄) for all initial positions x. The bounds
on CDF for two starting positions x̄ are shown in Figure 8. All of these bounds are
computed from (3.1) and (3.2) for the model of epistemic uncertainty where Λ = (λij)
is allowed to fluctuate within L. Under this model, these bounds are sharp since they
are computed by finding CDF-maximizing (and minimizing) sequences of Λ’s.

We can also compare the blue bounds to the corresponding timely-exit probabil-
ities for a process containing epistemic uncertainty via fixed and unknown (possibly
asymmetric) transition matrix Λ. The green curves shown in Figures 7 and 8 are
computed by repeatedly solving (2.14) for a coarse grid of specific Λ’s in L. It should
be noted that processes with this type of epistemic uncertainty are a subset of those
previously discussed, and so the blue bounds will definitely hold but will no longer
be sharp. This lack of sharpness is not surprising since changing the transition rate
can often result in a “better” (higher or lower – depending on the bound) probability
of timely exit. However, calculating tighter bounds for a “fixed-unknown-Λ” case is
computationally expensive. By inspection of the experimental data, it is clear that
such sharp bounds would have to be composed of many individual fixed-Λ CDFs.

4. Optimizing the CDF. The PDMPs considered in previous sections were
not controllable in any way. Since the dynamics are deterministic in every mode,
each random trajectory was fully described by the initial (state, mode) pair and the
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Fig. 7: Example 4: bounds on the probability of timely exit (starting in Mode 1) for four
different deadline values s̄. (Probabilities and bounds for starting in Mode 2 can be obtained
by a mirror symmetry relative to the line x = 0.5.) Blue bounds are produced under
the varying rates assumption by solving (3.1)-(3.2) for λ12, λ21 ∈ [1, 4]. Green curves are
produced under the fixed rates assumption by solving (2.14), each corresponding to a specific
(λ12, λ21) ∈ {1, 2, 3, 4}×{1, 2, 3, 4}. The darkest four curves are those associated with λ12 = 1,
the next four are those associated with λ12 = 2, and so on. Computed on Ω × S = [0, 1]

2

with ∆x = ∆s = 0.001.

discrete time sequence of mode switches. The goal was to develop efficient methods
for approximating the CDF of the cost accumulated up till termination. We now
turn to controlled PDMPs [20] – a modeling framework useful in a wide range of
applications, including production/maintenance planning [12], control of manufactur-
ing processes [1,11,37,42], multi-generational games [30], economic growth & climate
change modeling [31], trajectory optimization for emergency vehicles [4], preventing
the extraction of protected natural resources [13], and robotic navigation [27,45].

We start with expectation-optimal controls considered in the above references,
but then switch to selecting controls to manage the uncertainty in J and provide
some notion of robustness. Robust controls help practitioners to guard against both
modeling errors and prohibitively bad rare outcomes, which may result from random
switches. It might seem natural to mirror the robust approaches popular in traditional
stochastic control, but we find them lacking in the PDMP context. H∞ controls are
the mainstay of robustness for many processes with continuous perturbations [8], but
they are not easily adaptable for discrete mode-switches. Another popular idea is to
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Fig. 8: Example 4: bounds on CDF (starting in Mode 1) for two different initial positions
x̄ = 0.3 and x̄ = 0.7. See a detailed legend in caption of Figure 7.

minimize E[exp(βJ )], with the risk-sensitivity coefficient β > 0 reflecting our desire to
avoid bad outcomes [26]. For small β values, this is roughly equivalent to minimizing
a convex combination of E[J ] and V ar[J ]. While implementable with PDMPs, this
method does not provide any guarantees on the likelihood of bad scenarios. We thus
develop a different approach to maximize the probability of not exceeding a specific
cumulative cost threshold s̄. In subsection 4.2 we develop PDEs to find such optimal
policies for all initial configurations and all threshold values s̄ simultaneously. The
numerical methods and computational examples (for d = 1 and d = 2) are covered in
subsections 4.3 and 4.4 respectively.

4.1. Controlled PDMPs and expectation-optimal policies. To obtain a
controlled PDMP, we will assume that both the running cost C and velocity f also
depend on additional control parameters, which can be changed dynamically while
the system travels through Ω ×M. We will assume that the set of available control
values A is a compact subset of Rn. Throughout this section, we will slightly overload
the notation by using a to refer to a generic element of A and a(·) to refer to a generic
feedback-control policy a : (Ω ×M) → A, which selects a control value based on the
current system state. Once we select any specific a(·), we can define

f(x, i) = f (x, i,a(x, i)) and C(x, i) = C (x, i,a(x, i)) , (4.1)

with equations (1.1)-(1.3) describing the resulting trajectory and cumulative cost.

The latter will be denoted J a(·)(x, i) = J a(·)
i (x) to highlight the dependence on the

chosen control policy. The corresponding expected cost u
a(·)
i = E

[
J a(·)
i (x)

]
and

the CDF w
a(·)
i (x, s) = P

[
J a(·)
i (x) ≤ s

]
can then be found from equations (2.9) and

(2.14) respectively. However, in controlled PDMPs literature the problem is usually
first formulated as an optimization over a broader class of piecewise open-loop policies,
and the dynamic programming argument is then used to show that an optimal policy
can be actually found in feedback form. We provide an overview of this construction
below, but refer to [20,21,47] and related literature for technical details.

In deterministic setting, one considers the set of measurable open loop control
functions Ao = {αo : R→ A} , with αo(t) specifying the control value that will be
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used at the time t. For PDMPs, a piecewise open-loop policy specifies a new open
loop control function to be used after each mode switch. Adapting to our setting,
we can define a set of piecewise open-loop policies as A = {α : (R× Ω×M)→ Ao} .
The three inputs to α encode all information about the last mode switch encountered
before the current time t: the time and position (t# ≥ 0 and x# ∈ Ω) where that
switch has happened and the resulting mode i#. If no switch has occurred since we
started, we will take t# = 0 and (x#, i#) equal to the original (position, mode) pair.
Assuming α(t#,x#, i#) = αo(·) ∈ Ao, the control value to be used at the time t ≥ t#
will be specified by αo(t− t#) until we switch from the mode i#. Slightly abusing the
notation, we can now replace (1.1) and (1.3) by

y′(t) = fm(t)

(
y(t),αo(t− t#)

)
, (4.2)

J α(·)
i (x) =

∫ Tx,i

0

Cm(t)

(
y(t),αo(t− t#)

)
dt + q

(
y
(
Tx,i

)
,m
(
Tx,i

))
, (4.3)

where αo ∈ Ao is the open loop control function currently in effect at the time t
based on the policy α ∈ A and a sequence of mode switches that have occurred so
far. Recall from section 1 that y(0) = x, m(0) = i, and the changes in mode m(t) are
governed by the matrix of switching rates Λ. In this section, we will further assume
that all fi’s and Ci’s are Lipschitz-continuous in both arguments.

The usual goal in controlled PDMPs literature is to minimize the expected total
cost up to the termination time. The value function is thus defined as

û(x, i) = ûi(x) = inf
α(·)∈A

E[J α(·)
i (x)], (4.4)

The existence of an expectation-optimal policy α∗(·) ∈ A such that ûi(x) = u
α∗(·)
i (x)

is only guaranteed under additional assumptions; e.g., if the set

ν(x, i) =
{

(r,fi(x,a)) | r ≥ Ci(x,a), a ∈ A
}

is convex for every x and i. (Alternatively, the existence of optimal policy is also
assured if one allows relaxed control functions, with α0 taking values in the set of
probability measures on A; see [6, 47].) If such an optimal α∗(·) ∈ A exists, it is
easy to see that a “tail” of αo∗ must be also optimal for every (y(t),m(t)) as long as
the process continues. Otherwise, we could obtain an improvement for the starting
configuration (y(0),m(0)) = (x, i) by concatenating α∗ up to the time t with whatever
policy is optimal starting from (y(t),m(t)). A version of this tail-optimality property
holds more generally, even when no expectation-optimal policy exists:

û(x, i) = inf
α(·)∈A

E
[∫ τ

0

Cm(t)

(
y(t), αo(t− t#)

)
dt + û

(
y(τ),m(τ)

)]
, (4.5)

for all τ > 0 sufficiently small to guarantee that y(t) ∈ Ω\Q for all t ∈ [0, τ ], α(·) ∈ A.
I.e., we assume that τ is small enough so that the system cannot reach Q by t = τ
regardless of the sequence of mode switches. A standard argument based on Taylor-
expanding (4.5) in τ (e.g., see [45, §2]) shows that, if ûi’s are sufficiently smooth, they
must satisfy a system of Hamilton-Jacobi-Bellman PDEs:

min
a∈A
{∇ûi(x) · fi(x,a) + Ci(x,a)} +

∑

j 6=i

λij
(
ûj(x)− ûi(x)

)
= 0, x ∈ Ω\Q, i ∈M

(4.6)
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with boundary conditions ûi(x) = qi(x) for all x ∈ Q. In a non-smooth case, these
value functions can be still interpreted as the unique viscosity solution [21]. The
system (4.6) is a natural non-linear generalization of (2.9) and can be similarly dis-
cretized by semi-Lagrangian techniques. However, the coupling between different
modes makes it difficult to solve the discretized system efficiently even in the case of
simple/isotropic cost and dynamics. A variety of Dijkstra-like non-iterative methods
developed for deterministic problems (e.g., [3,14,36,43,44]) will not be applicable for
Λ 6= 0 and one has to resort to slower iterative algorithms instead [27,45].

Once ûi’s are computed, an optimal feedback policy a∗(x, i) can be defined point-
wise (for all x and i simultaneously) by utilizing arg min values4 from (4.6). The
a∗(·)-determined running cost and dynamics defined by (4.1) will be only piecewise
Lipschitz in x, which is precisely the setting considered in section 2. Finally, we note
that the above can be also viewed as an implicit definition for a piecewise open-loop
optimal policy α∗ ∈ A:

α∗(t#,x#, i#; t) = a∗ ∈ arg min
a∈A

{
∇ûi# (y(t)) · fi# (y(t),a) + Ci# (y(t),a)

}
.

4.2. PDEs for threshold-specific optimization. In contrast to the above
expectation-centric approach, our goal is to generalize the CDF-computation meth-
ods of section 2 by choosing control policies that maximize the probability of desirable
outcomes. Two subtleties associated with this approach are worth pointing out be-
fore we start deriving the optimality equations. First, the idea of “generating the
optimal CDF” is misleading unless we state the goal more carefully. Given any fixed
initial configuration (x, i) and two feedback control policies a1(·) and a2(·), it is en-

tirely possible (and actually quite common!) that w
a1(·)
i (x, s1) > w

a2(·)
i (x, s1) while

w
a1(·)
i (x, s2) < w

a2(·)
i (x, s2). So, which of the resulting CDFs is preferable depends

on which threshold is more important: is our priority to minimize the chances of the
cumulative cost exceeding s1 or s2? In this threshold-specific optimization setting, we

will say that a policy a(·) is s-optimal if w
a(·)
i (x, s) ≥ w

b(·)
i (x, s) for all allowable

control policies b(·).
The second subtlety is in choosing the set of inputs used to define feedback con-

trol policies. In threshold-specific optimization, the optimal actions are no longer
fully defined by the current state (x, i). In addition, they also depend on the cost
incurred so far and the desired threshold for the cumulative cost up to the ter-
mination. To handle this complication, we add an extra dimension to our state
space, defining a new expanded set of piecewise open-loop control policies Ae =
{α : (R× Ω×M× R)→ Ao} , and the expanded PDMP dynamics:

y′(t) = fm(t)

(
y(t), αo(t− t#)

)
, (4.7)

y(0) = x ∈ Ω,

c′(t) = Cm(t)

(
y(t), αo(t− t#)

)
,

c(0) = 0,

m(0) = i ∈M.

4
Additional assumptions on fi’s and Ci’s can be imposed to ensure that this arg min is a singleton

as long as ûi is differentiable [6]. But even with these assumptions, the expectation-optimal policy
will still be non-unique at the points where ∇ûi does not exist, and a tie-breaking procedure (e.g.,
based on a lexicographic ordering) can be employed to avoid the ambiguity.
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Here c(t) represents the total cost incurred so far and m(t) is the current mode, evolv-
ing through a continuous-time Markov process on M. Similarly, the last argument
in α ∈ Ae is c#, the total cost accumulated by the time of the last mode switch
encountered so far. Assuming α(t#,x#, i#, c#) = αo(·) ∈ Ao, the control value to be
used at the time t ≥ t# will be specified by αo(t− t#) as long as we remain in mode
i#. We can now define our new threshold-aware value function:

ŵi(x, s) = sup
α(·)∈Ae

P
[
J α(·)
i (x) ≤ s

]
.

We note that a similar expansion of state space and policy class could also be used
when defining û, but it would not make any difference due to the linear properties of
expectations. In contrast, the c-dependence of policies is essential for writing down
the tail-optimality property of ŵi’s:

ŵ(x, i, s) = sup
α(·)∈Ae

E
[
ŵ
(
y(τ), m(τ), s− c(τ)

)]
, (4.8)

for all τ > 0 sufficiently small to guarantee that y(t) ∈ Ω\Q for all t ∈ [0, τ ], α(·) ∈
Ae. Similarly to the derivation of (2.14), a Taylor expansion of (4.8) yields a system
of nonlinear PDEs satisfied by ŵi’s:

max
a∈A

{
∇ŵi(x, s) · fi(x,a)− Ci(x,a)

∂ŵi
∂s

(x, s)

}
+
∑

j 6=i

λij
(
ŵj(x, s)− ŵi(x, s)

)
= 0,

∀x ∈ Ω\Q, i ∈M, s > 0; (4.9)

with the same initial and boundary conditions previously specified for wi’s in (2.15)
and (2.16). We can also restrict the computational domain for ŵi’s (and decrease the
numerical diffusion in the discretization) by generalizing equations (2.17)-(2.18) and
defining ŝ0 and ŵ0

i ’s.

4.3. Discretization of PDEs and control synthesis. A semi-Lagrangian
discretization of (4.9) can be obtained on a grid similarly to the treatment of an
uncontrolled case in section 2.3:

Ŵn
i,k = max

a∈A

{ M∑

j=1

pij(τ) Ŵj

(
xk + τfi(xk,a), sn − τCi(xk,a)

)}
. (4.10)

Here Ŵn
i,k ≈ ŵi(xk, sn) is a grid function and Ŵi is its interpolated version defined

on Ω× R.
Once all Ŵi’s are computed, they can be used to approximate the optimal control

not just on the grid but for all (x, i, s) by choosing control values from the set

Â(x, i, s) = arg max
a∈A

{ M∑

j=1

pij(τ) Ŵj

(
x+ τfi(x,a), s− τCi(x,a)

)}
. (4.11)

Wherever ∇ŵi is well-defined, we can also use A(x, i, s) to denote the arg max set in
equation (4.9), with Â(x, i, s) interpreted as its grid approximation.

We note that this procedure allows synthesizing a policy (approximately) op-
timal with respect to any desired threshold value. To obtain an s̄-optimal feed-
back policy a(·), we would simply need to select a(x, i, c) ∈ Â(x, i, s̄ − c). How-
ever, such policies will be generically non-unique since ∇ŵi(x, s) = 0 might hold
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on a large part of Ω × (0,+∞). For example, there is always a “hopeless region”
H = {(x, s) | ŵi(x, s) = 0,∀i ∈M} since this equality holds by definition whenever
s < ŝ0(x). If Ci’s do not depend on a, then ∇ŵi(x, s) = 0 implies A(x, i, s) = A. If
we start from (x0, i0) such that ŵi0(x0, s̄) < 1, then every policy will have a non-zero
probability of exceeding the threshold s̄. Which control values are used on H does not

change the probability of “success”
(
J a(·)
i0

(x0) ≤ s̄
)
, but it can significantly impact

the overall CDF of that policy. In many problems there is also an “unconditionally
successful” region U = {(x, s) | ŵi(x, s) = 1,∀i ∈M} . If ŵi0(x0, s̄) = 1 then an opti-
mal policy will never exceed the threshold s̄ regardless of the timing of mode switches.
If (x0, s̄) is in the interior of U , then the success is guaranteed regardless of control
values chosen until we reached ∂U , but these choices will generally affect the CDF.
To resolve these ambiguities, we use a tie-breaking procedure in defining optimal poli-
cies: whenever Â(x, i, s) is not a singleton, we select its element that minimizes the
expectation. (On H this will coincide with an expectation-optimal policy a∗(·). But
on U this need not be the case since our optimal policy is c-dependent and we need
to account for expected values on ∂U .)

Assuming that V̂ ni,k is a grid function approximating the expected outcome and

V̂i is its interpolated version, we can summarize the computational process as follows:

Ŵn
i,k =

M∑

j=1

pij(τ) Ŵj

(
xk + τfi(xk, â

n
i,k), sn − τCi(xk, âni,k)

)
; (4.12)

V̂ ni,k = τCi(xk, â
n
i,k) +

M∑

j=1

pij(τ) V̂j

(
xk + τfi(xk, â

n
i,k), sn − τCi(xk, âni,k)

)
;

(4.13)

âni,k ∈ arg min
a∈Â(xk,i,sn)

{
τCi(xk,a) +

M∑

j=1

pij(τ) V̂j

(
xk + τfi(xk,a), sn − τCi(xk,a)

)}
.

(4.14)

The above description removes almost all ambiguity from the synthesis of threshold-
optimal policies, but the arg min in (4.14) might still have multiple elements on a set
of measure zero in Ω × S. In such rare cases, additional tie-breaking can be used
based on another criterion (e.g., a lexicographic ordering).

4.4. Numerical experiments. We first illustrate these subtleties of policy syn-
thesis with a simple example on a one-dimensional state space Ω = [0, 1] and two
modes, each with its own preferred (faster) direction of motion.

Example 5: More precisely, the control value a ∈ A = {−1, 1} specifies the
chosen direction of motion, and the dynamics are fi(x,a) = a + (−1)i−1 1

2 with
i = 1, 2. In other words, in mode 1 we can move right with speed 3/2 and left
with speed 1/2, while in mode 2 it is the opposite. We use q ≡ 0 on Q = ∂Ω and
C1 ≡ C2 ≡ 1, ensuring that the cumulative cost J is just the time to target. For
simplicity, we also use symmetric switching rates λ12 = λ21 = 2. The resulting optimal
policies and the contour plots of ŵi(x, s) are shown in Figures 9 and 10 respectively.
In Figure 11 we fix a starting configuration and compare the CDFs of two different

policies. The expectation-optimal feedback policy a∗(·) is obtained by solving (4.6)
and its CDF is then found by solving (2.14). Unfortunately, the same approach is
not available for threshold-specific optimal policies: for an s̄-optimal feedback policy
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Fig. 9: Example 5: a map of threshold-optimal control values with position on the horizontal
axis and time remaining until the deadline on the vertical axis. The purple color represents
the optimal choice of moving to the left, and the yellow color represents the optimal choice of
moving to the right. The shaded area with the cyan border represents the “hopeless region”
H, where wi’s are uniformly zero and the threshold-specific optimal policies coincide with the
expectation-optimal policy. The “unconditionally successful” region U is shown above the
black dashed line. Under grid refinement, everything in the left part of U becomes purple and
everything in the right part of U becomes yellow in both modes. The red dashed vertical
lines show the point of direction-switching for the expectation-optimal policy. Computed
with ∆x = 1.25 · 10

−4
, ∆s = 0.625 · 10

−4
.

Fig. 10: Contour plot of ŵi(x, s) for Example 5. Computed with ∆x = 1.25 · 10
−4
, ∆s =

0.625 · 10
−4
.

a(·), there is no reason to expect ŵi(x, s) = P
[
J a(·)
i (x) ≤ s

]
unless s = s̄. Instead,

we approximate their CDF using 100,000 Monte-Carlo simulations5. Not surprisingly,

5
While we do not pursue this alternative here, one could also approximate this CDF by solving

the Kolmogorov Forward Equation with initial conditions chosen based on this specific starting
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Fig. 11: Example 5: CDF of an expectation-optimal policy (in red) and CDF of a threshold-
specific optimal policy computed for s̄ = 0.38 (in blue). In both cases, the starting configu-
ration is (x0, i0) = (0.4, 1). The value of the CDF at the threshold s̄ = 0.38 is marked by a
blue dot. The vertical dashed lines indicate the expected value of each policy.

the threshold-specific policy reduces the probability of missing the deadline s̄ but at
the expense of increasing the expected time to target.

Moreover, threshold-specific optimal policies (and their respective CDFs) may
also vary significantly depending on the chosen threshold s̄. To illustrate this, we now
consider an example on a two-dimensional state space Ω = [0, 1] × [0, 1] with four
modes, each with its own faster direction of motion.

Example 6: The control values a now reside in A = {a ∈ R2 | |a| = 1}, and
the dynamics are given by

f1(x,a) = a+

[
−0.5

0

]
, f2(x,a) = a+

[
0

0.5

]
, (4.15)

f3(x,a) = a+

[
0.5
0

]
, f4(x,a) = a+

[
0
−0.5

]
.

Again, we use q ≡ 0 on Q = ∂Ω and Ci ≡ 1 for all i, ensuring that the cumulative
cost J is just the time to ∂Ω. The switching rates are λij = 1 for all i 6= j. In Figure
12, we show the CDFs (each approximated using 10,000 Monte-Carlo simulations)
for three different threshold-specific optimal policies with the same starting location.
Not surprisingly, each of these policies is strictly better than others with respect to its
particular threshold value. The contour plots of ŵi(x, s) at various s-slices are also
shown in Figure 13.

5. Conclusion. The versatility of Piecewise-Deterministic Markov Processes
(PDMPs) makes them a useful modeling framework for applications with non-diffusive
random perturbations. In prior literature on PDMPs, the focus has been mostly on
the average/expected performance. Unfortunately, this ignores the practical impor-
tance of relatively rare yet truly bad outcomes. The primary goal of our paper is to
address this shortcoming and fully characterize the aleatoric uncertainty in a broad
class of discrete and continuous PDMPs. We have accomplished this in section 2,
approximating the Cumulative Distribution Function (CDF) for their outcomes by

configuration (x, i).
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Fig. 12: Example 6: CDFs of threshold-specific optimal policies computed for s̄ = 0.28 (in
blue), s̄ = 0.33 (in green), and s̄ = 0.40 (in red). The value of the CDFs at each threshold
are denoted by dots of the corresponding color. In all cases, the starting configuration is
(x0, y0, i0) = (0.4, 0.3, 1).

ŵ1 ← ŵ2 ↑ ŵ3 → ŵ4 ↓

s = 0.125

s = 0.250

s = 0.375

s = 0.500

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 13: Contour plots of ŵi(x, s) for Example 6. Transition rate between all modes is λ = 1.
Each subplot contains a snapshot of ŵi(x, s). Each row has a fixed s value, and each column
has a fixed mode i. Dynamics are given by (4.15). Computed on Ω × S = [0, 1]

3
with

∆x = ∆y = ∆s = 0.0025.
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solving a system of linear hyperbolic PDEs. Although we did not pursue this here, it
would be easy to adapt our approach to compute the CDF of hitting times in discrete
time Markov chains. In continuous setting, similar ideas could be also extended to
stochastic switching in diffusive systems. Despite our focus on time-till-exit examples,
the presented approach is suitable for a broader class of running costs and PDMP per-
formance measures. We illustrate this with a bioeconomic sample problem described
in the Appendix.

For simplicity of exposition, we have assumed the mode-switching rates λij to be
constant, but it should be easy to extend our framework to state-dependent switching
rates λij(x). The case of λij ’s deterministically evolving in time can be treated
similarly by increasing the dimension of our state space. But random changes in rates
present a more serious challenge, which is also related to handling model uncertainties.
The latter is particularly important in PDMPs since in many practical applications
these rates are not known precisely and are instead estimated based on historical data.
It is thus useful to characterize the range of possible CDFs – a task accomplished in
section 3, where tight CDF bounds are developed under the assumption that each
(state-independent) transition rate λij has known bounds but does not necessarily
remain constant throughout the process.

Finally, in section 4 we have extended our methods to control the PDMP dynam-
ics, showing how to maximize the probability of not exceeding a specific cumulative
cost threshold s̄. Our approach is also related to the Stochastic On-Time Arrival
(SOTA) formulation, developed in discrete setting by transportation engineers to op-
timize the routing on stochastic networks [23, 25, 41]. In the context of SOTA, there
is only one “mode,” but the running cost is random. While we do not pursue it here,
our method can be similarly adapted to optimize the CDF for a subclass of Markov
Decision Processes with deterministic running cost and random successor nodes.

Several generalizations of the described methods will broaden their appeal to
practitioners. First, all PDMPs considered here were exit-time problems, with the
process terminating as soon as the system enters a specific subset Q of the state space
Ω. It will be easy to extend our approach to finite horizon problems, but the extensions
to infinite horizon (with time discounting of running cost) or ergodic (time-averaged
cumulative cost) problems will be more challenging.

Second, the classical controlled PDMP models in [20,47] were more general than
the setting presented here: instead of our “mode switching” they considered ODE
trajectories punctuated by random jumps in state space, with both the rate of jumping
and the distribution over the set of post-jump positions generally dependent on the
pre-jump state and the chosen control value. It would be clearly useful to extend our
methods to this broader setting. Our section 3 can be viewed as a small step in this
direction, since we are essentially controlling mode-transition rates to either maximize
or minimize the CDF.

Third, there are many potential ways to improve the accuracy and computational
efficiency. Our approach relies on solving systems of hyperbolic PDEs, whose solutions
are typically piecewise continuous. While the described implementation is based on
a first-order accurate semi-Lagrangian discretization, it would be useful to replace
these with higher-order accurate schemes [24]. Our preliminary experimental results
based on ENO/WENO [46] spatial discretization in one dimension seem promising,
but we have decided to omit them here due to length constraints. We have also
developed a technique restricting the computational domain by pre-computing the
minimal attainable cumulative cost. In controlled PDMPs with an “unconditionally
successful” region, further domain restriction techniques might be used to maximize
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the probability of desirable outcomes while also imposing a hard constraint on the
worst-case performance. This would mirror the approach previously developed for
routing on stochastic networks [23].

For controlled processes, another interesting challenge is to carefully evaluate all
trade-offs between conflicting objectives. This is usually done by computing non-
dominated (or Pareto-optimal controls), for which any improvement in one of the
objectives must come at the cost of decreased performance based on some other objec-
tive(s). With PDMPs, the natural objectives would include traditional minimization
of the expected cumulative cost and maximizing the probability of not exceeding a
threshold (possibly for several different threshold values). In the fully deterministic
case, several methods for multiobjective optimal control have been developed in the
last ten years [22,29,34]. It will be useful but more challenging to extend these to the
piecewise-deterministic setting.

It would be also very interesting to explore additional notions of robustness for
PDMPs. Our approach can be viewed as a dual of optimizing the Value-at-Risk
(VaR), in which the goal is to minimize a specific percentile of the random outcome.
We minimize the probability of exceeding a specific threshold, but similarly to VaR,
we provide no guarantees on how bad the outcomes can be once that threshold is
exceeded. The Conditional Value-at-Risk (CVaR) is an extended risk measure which
addresses this limitation. A method based on CVaR optimization has been developed
for Markov Decision Processes in [16]. It would be useful to extend it to PDMPs and
compare with the threshold-optimal policies described here.

Acknowledgements. The authors would like to thank Tristan Reynoso and
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REU-2018 program at Cornell University. The authors are also grateful to anonymous
reviewers whose suggestions have helped us improve this paper.

6. Appendix: a fish harvesting example. To show that our general methods
are broadly useful beyond the set of illustrative first-exit-time problems considered
above, we include an example based on a PDMP with non-constant dynamics and
non-constant running cost in each mode. We quantify the uncertainty in harvesting
fish population (whose changing level is encoded by y(t)) in the environment with
randomly switching carrying capacity K. As a motivation for such switching, we note
that the fish population in the tropical Pacific depends on upwelling of nutrients due
to the common easterly winds. In El Niño years, these winds weaken, temporarily
reducing both the upwelling and the carrying capacity.

The usual logistic population growth model y′ = r(1 − y
K )y assumes that the

per capita growth rate decreases linearly with the current population size, starting
from the rate r when y = 0 and decreasing to zero if y reaches the carrying capacity
K. This logic reflects the ideas of increasing competition for limited resources when
the population grows. But at low population sizes, other considerations might be
more important – having more individuals might make it easier to find partners for
mating, cooperate in finding food, or fend off predators. This “Allee effect” [2] is
reflected by having per capita growth rate that first increases (until some threshold
value y = A < K) and only then decreases (until it reaches 0 at y = K). Perhaps the
simplest model that captures this and includes harvesting is

dy

dt
= r y

( y
A
− 1
) (

1− y

K

)
− hy (6.1)

Here, h ≥ 0 is the effective fishing efforts coefficient, which we will assume to be
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Fig. 14: Bifurcation diagrams corresponding to the dynamics in each mode. The orange y = 0
line is a stable equilibrium for each value of K. The other two equilibria exist for a range of
h values and are shown in red, green, and blue for K1, K2, and K3 respectively. The stable
y+(h) is shown by solid lines while the unstable y−(h) is shown by dashed lines. The saddle
node bifurcations for each Ki are indicated by black dots, while the K2-deterministically-
optimal rate h

∗
2 is shown by the gray line.

constant. Note that y = 0 is a stable equilibrium for all h ≥ 0, including the no-
fishing case h = 0. (This is because we are modeling a strong Allee effect and y′ < 0
for all y ∈ (0, A).) But for sufficiently small h, the system has two more equilibria: an
unstable one at y−(h) and a stable one at a higher y+(h):

y±(h) =
K +A

2
±

√
(K −A)2 − h 4K

r

2
, for h ≤ r(K −A)2

4K
= h#. (6.2)

In this regime, the asymptotic behavior depends on the initial conditions: lim
t→+∞

y(t) =

y+(h) if y(0) > y−(h) and lim
t→+∞

y(t) = 0 if y(0) < y−(h). As shown in Figure 14,

this bi-stability disappears in a saddle-node bifurcation at h = h#, marking the
onset of population collapse. However, we make a distinction between two stages of
collapse: for all h > h# the collapse of fish population is imminent since lim

t→+∞
y(t) =

0 regardless of y(0). It can be still reversed by reducing h sufficiently quickly, but
becomes irreversible as soon as y(t) < A. We will view this irreversible collapse as a
terminal event, motivating our choice of the exit set Q = {A}.

Another value of obvious relevance is the optimal level of fishing efforts h∗ that
maximizes the sustainable yield hy+(h) over all h ∈ [0, h#]. A straightforward calcu-
lation shows that

h∗ =
r

9K

[
K2 +A2 − 4KA+ (K +A)

√
(K −A)2 +KA

]
. (6.3)

Until now, we have treated all other parameters as fixed and considered the
changes to asymptotic behavior as a function of the chosen h. We now turn to a
PDMP model with 3 modes, each with its own carrying capacity (K1 = 3.8, K2 = 4,
and K3 = 4.2) and with the other two parameters held constant (r = 2 and A = 1).

For notational convenience, we will use h#
i and h∗i to refer to the corresponding

maximal sustainable and the yield-optimal fishing rates for each value Ki in the
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(a) Mode 1 (K = 3.8)
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(b) Mode 2 (K = 4.0)
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(c) Mode 3 (K = 4.2)

Fig. 15: Deterministic dynamics for modes 1, 2 and 3 with harvesting rate h
∗
2 ≈ 1.057

deterministic setting (i.e., if you start in Mode i and there are no mode switches).
But in our computational experiments, we will assume the switching rates λ12 =
λ32 = 0.1, λ21 = λ23 = 0.05, and λ13 = λ31 = 0. As a result, the system spends on
average 50% of time in Mode 2 and 25% of time in each of the Modes 1 and 3. So, it is
natural to view K2 as “usual” (or at least as “average”) and it might be tempting to
select its optimal fishing rate h∗2 ≈ 1.057. But if we stay in Mode 1 for a sufficiently
long time, this rate will lead to a population collapse since h∗2 > h#

1 ≈ 1.032; see
Figures 14 and 15(a). In fact, if we stick to the same harvesting rate h∗2 in all modes,
this collapse eventually happens with probability one as long as λ21, λ32 > 0.

One natural question is to quantify the uncertainty in the time until this collapse
becomes irreversible; i.e., a random time Tx until y(t) = A = 1 for a trajectory
starting from y(0) = x in Mode i. This could be interpreted as another “first-exit time
problem”, similar to those considered in section 2.4, but with x-dependent dynamics
in each mode. Instead, we have chosen to focus on the CDF for the total amount
harvested before the collapse becomes irreversible:

Ji(x) =

∫ Tx

0

h∗2 y(t) dt, wi(x, s) = P(Ji(x) ≤ s). (6.4)

which requires using a non-constant running “profit”. To map this back to the nota-
tion of section 2.2, we will take

fi(x) = r x
( x
A
− 1
) (

1− x

Ki

)
− h∗2x and Ci(x) = h∗2x. (6.5)

Our exit set is Q = {1}; so, we set all qi(1) = 0 and note that no boundary condition
is needed at the other endpoint since fi(4) < 0 for all i.

We solve the three coupled PDEs (2.14) for x ∈ Ω = [A,K2] = [1, 4] and s ∈
[0, 200]. The approximate solution is computed through a semi-Lagrangian scheme
(2.19) on a 101 by 120,001 grid, corresponding to ∆x = 0.03 and ∆s = 1/600. In this
example, max(x,i)|fi(x)| ≈ 5.4912 and min(x,i) Ci(x) ≈ 1.057. So, we use a pseudo-
timestep τ = 1/600 to satisfy the inequalities (2.20) and (2.21).

An obvious lower bound for Ji(x) is (x−A), but this does not include all the fish
born and harvested before Tx. The sharp lower bound s0(x) can be computed by noting
that the fastest collapse happens if we stay in Mode 1 throughout. For the initial
condition x = 4 depicted in Figure 15(a), this quantity is approximately s0(4) ≈ 14.87.
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Fig. 16: CDFs computed up to s = 200 for two starting population levels: x = 2.13 (left)
and x = 4 (right). Red, blue, and green are starting in Modes 1, 2, and 3 respectively. Plots
represent probability of irreversible population collapse at or before a harvest of size s. Note
that y−(h

∗
2) ≈ 2.1312; so, with x = 2.13 a quick collapse can only be prevented by an early

switch to Mode 3. If starting at x = 4 in Mode 2 (blue curve in the right subfigure) the
25th, 50th, and 75th percentiles are s ≈ 39.09, s ≈ 66.10, and s ≈ 112.95 respectively.

Fig. 17: Probability of irreversible population collapse before a harvest of size s̄ computed
for all starting populations x and three specific s̄ values. Red, blue, and green represent
starting in Modes 1, 2, and 3 respectively.

If starting in Mode 1, the probability of such an outcome is w0
1(x) = exp

(
− λ12T

)
,

where T is the time taken by this “deterministically fastest” collapse. If starting in
any other mode, this outcome would require an instantaneous transition to Mode 1;
so, w0

2(x) = w0
3(x) = 0.

Figure 16 presents the corresponding CDFs wi(x̄, s) for the initial populations
x̄ = 2.2 and x̄ = 4 while the graphs of wi(x, s̄) for 3 different values of s̄ are shown
in Figure 17. We note that in a deterministic scenario of K = K2, the sustainable
equilibrium would be y+(h∗2) ≈ 2.8685 and the sustained optimal yield (i.e., the
amount perpetually harvested per unit time) would be R = h∗2 y+(h∗2) ≈ 3.0323.
This provides a natural yardstick for thinking about the argument s used in our
CDFs. E.g., based on Figure 16, if we start with y = K2 in mode 2 under the random
switches defined by λij ’s, there is an approximately 50% chance of harvesting at least
21.8×R ≈ 66.1 before the collapse becomes irreversible.

The above story is based on the assumptions that mode transitions are not ob-
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served and h is chosen once and for all. In reality, declining catch would provide an
advance warning that the population starts to collapse and one could reduce h adap-
tively. Selecting h ≤ h#

i (or h ≤ mini h
#
i , if mode switches are not directly observable)

would make harvesting indefinitely sustainable. One could also use the methods of
section 4 to find the CDF-optimizing harvesting rates in feedback form. So, our
model described above is a vast simplification, but it already illustrates the promise
of presented techniques for quantifying uncertainty in bioeconomic applications.
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