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Ensemble Control on Lie Groups

Wei Zhang and Jr-Shin Li

Abstract

Problems involving control of large ensmebles of structurally identical dynamical systems, called

ensemble control, arise in numerous scientific areas from quantum control and robotics to brain medicine.

In many of such applications, control can only be implemented at the population level, i.e., through

broadcasting an input signal to all the systems in the population, and this new control paradigm chal-

lenges the classical systems theory. In recent years, considerable efforts have been made to investigate

controllability properties of ensemble systems, and most works emphasized on linear and some forms

of bilinear and nonlinear ensemble systems. In this paper, we study controllability of a broad class

of bilinear ensemble systems defined on semisimple Lie groups, for which we define the notion of

ensemble controllability through a Riemannian structure of the state space Lie group. Leveraging the

Cartan decomposition of semisimple Lie algebras in representation theory, we develop a covering method

that decomposes the state space Lie group into a collection of Lie subgroups generating the Lie group,

which enables the determination of ensemble controllability by controllability of the subsystems evolving

on these Lie subgroups. Using the covering method, we show the equivalence between ensemble and

classical controllability, i.e., controllability of each individual system in the ensemble implies ensemble

controllability, for bilinear ensemble systems evolving on semisimple Lie groups. This equivalence

makes the examination of controllability for infinite-dimensional ensemble systems as tractable as for

a finite-dimensional single system.

I. INTRODUCTION

Finely manipulating a large ensemble of structurally identical dynamical systems has emerged

as an essential demand in diverse areas from quantum science and technology [18, 30, 34, 15,

16, 2], brain medicine [48, 13, 24, 50] and robotics [4] to sociology [7, 10]. In many applications
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involving ensemble systems, control can only be exerted at the population level becasue it is

infeasible and often impossible to receive state feedback for each individual system. As a result,

considerable efforts have been made over the past years to understand the fundamental limit on

the extent to which an ensemble system can be manipulated with a broadcast open-loop signal.

This new control paradigm raised significant challenges in classical systems theory, while offering

abundant opportunities for making theoretical advancements.

Among the developments in this rising area, referred to as ensemble control, extensive focuses

have been placed on investigating the controllability property of ensemble systems, including

linear [28, 21, 42, 32, 14, 35], bilinear [31, 3, 12], and some forms of nonlinear ensemble systems

[29, 11, 26]. The work on analyzing controllability of an ensemble with each system defining on

the Lie group SO(3) set the milestone in formal and rigorous study of ensemble systems [31].

In this work, using Lie algebraic tools, the controllability analysis was translated to the problem

of polynomial approximation, which opened the door for addressing ensemble control problems

from the perspective of “approximation”. This new notion has led to seminal works on developing

necessary and/or sufficient conditions for ensemble controllability [28, 14, 21, 32, 42, 45, 35]

and observability [44, 43], and novel theory- and computational-based techniques for optimal

ensemble control design and synthesis [34, 49, 9, 38, 39, 40]. Although progress in understanding

fundamental properties of nonlinear ensemble systems is underdeveloped [29, 11] and much is

awaiting to be explored, the work presented in [31] shed light on revealing the equivalence

between ensemble controllability and classical controllability for certain classes of ensemble

systems.

In general, controllability of each individual system (i.e., classical controllability) in an ensem-

ble is a necessary condition to ensemble controllability but not sufficient. Namely, if an ensemble

system is ensemble controllable, then each individual system in the ensemble must be controllable

in the classical sense; however, the reversal is generally not true. Motivated by the work on the

control of ensemble systems on SO(3) [31], where controllability of each individual system led

to controllability of the entire ensemble, in this paper, we extend this previous finding to explore

such equivalence in classical and ensemble controllability for more general classes of ensemble

systems. Specifically, we study the bilinear ensemble system in which each individual system

evolves on the same semisimple Lie group. In our approach, such an ensemble is regarded

as a single system defined on the space of Lie group-valued functions, which is an infinite-

dimensional Lie group, and the concept of ensemble controllability is rigorously defined in the
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sense of approximate controllability through a bi-invariant metric on this infinite-dimensional

Lie group. The main tool developed in this work is the covering method. The central idea

of this method is to decompose the state space Lie group of a bilinear ensemble system into a

collection of Lie subgroups, which generates the Lie group, so that controllability of the ensemble

is determined by that of the subsystems evolving on these Lie subgroups. The covering method

is further used to reveal a significant consequence of equivalence between ensemble and classical

controllability of bilinear systems defined on semisimple Lie groups, i.e., classical controllability

of each individual system in the ensemble implies ensemble controllability. Moreover, we show

that this equivalence is not constrained to systems evolving on compact Lie groups and holds

for bilinear ensemble systems induced by Lie group actions on vector spaces, for which each

individual system is defined on a non-compact Lie group.

This paper is organized as follows. In the next section, we introduce the notion of ensemble

controllability for parameterized families of control systems evolving on Lie groups through the

bi-invariant Riemannian structures of the groups. In Section III, we revisit and extend our previous

results in ensemble controllability of bilinear systems on SO(3), which lays a foundation for the

investigation into controllability of bilinear ensemble systems on general semisimple Lie groups.

In Section IV, we introduce the covering method to establish the equivalence between ensemble

and classical controllability for bilinear systems. In particular, we first illustrate the main idea

by using systems evolving on SO(n) with n > 3, and then extend the analysis to systems

defined on general semisimple Lie groups by using Cartan decompositions. The generality of

the equivalence to ensemble systems induced by Lie group actions on vector spaces is presented

in Section V.

II. PRELIMINARIES

In this section, we review the classical controllability results characterized by the Lie algebra

rank condition (LARC) for control systems defined on compact, connected Lie groups. Then, we

introduce the notion of ensemble controllability for a parameterized family of systems defined

on a Lie group through the Riemannian structure of this group, and address the major obstacle

to ensemble controllability analysis of such systems when applying LARC.
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A. Controllability of systems on compact and connected Lie groups

Controllability of systems evolving on compact, connected Lie groups has been extensively

studied [8, 23, 22]. The analysis is based on examining whether the Lie algebra generated by

the drift and control vector fields is equivalent to the underlying Lie algebra of the Lie group.

Specifically, a right-invariant bilinear control system defined on a compact, connected Lie group

G of the form,

d

dt
X(t) =

[
B0 +

m∑
i=1

ui(t)Bi

]
X(t), X(0) = I, (1)

is of great theoretical and practical interest, where X(t) ∈ G is the state, B0, . . . , Bm are

elements in the Lie algebra g of G, I is the identity element of G, and ui(t) ∈ R are piecewise

constant control functions for i = 1, . . . ,m. In addition, we denote the Lie algebra generated

by the set of vector fields F = {B0, B1, . . . , Bm} by Lie{B0, B1, . . . , Bm}, i.e., the smallest

linear subspace of g, which contains F and is closed under the Lie bracket operation defined

by [M,N ] = MN −NM for all M,N ∈ g. Controllability of the system of the form in (1) can

be evaluated by the following theorem.

Theorem 1. The system in (1) is controllable on the Lie group G if and only if Lie(F) = g,

where F = {B0, B1, . . . , Bm}.

Proof. See [8, 25]. �

If the dimension of g is n, then the only linear subspace of g that also has dimension n is

g itself. Thus, checking controllability of a control system as in (1) is equivalent to checking

the dimension of Lie(F). Conventionally, the necessary and sufficient condition in Theorem 1

is referred to as the Lie algebra rank condition (LARC).

B. Control of ensemble systems

An ensemble control system is a family of control systems defined on a manifold M ,

d

dt
x(t, β) = f(t, x(t, β), u(t)), (2)

parameterized by a parameter β ∈ K ⊂ Rd such that x(t, β) ∈ M for each t ∈ R and

β ∈ K, where the parameter space K is generally assumed to be compact. In this case, for

each fixed t ∈ R, x(t, ·) is an M -valued function defined on K, i.e., the state space of the
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ensemble system in (2) is actually a space of M -valued functions defined on K, denoted by

F(K,M). The parameter independent open-loop control input u(t) ∈ Rm is a broadcast signal

that simultaneously manipulates the ensemble between desired functions in F(K,M). Note

that when the parameter space K is an infinite set, i.e., the ensemble system in (2) contains

infinitely many dynamic units, F(K,M) is an infinite-dimensional manifold so that the ensemble

system is an infinite-dimensional system. For such systems, we define the notion of ensemble

controllability in the approximation sense.

Definition 1 (Ensemble Controllability). Let F(K,M) denote a space of M -valued functions

defined on K. The family of systems in (2) is said to be ensemble controllable on the function

space F(K,M), if for any ε > 0 and starting with any initial state x0 ∈ F(K,M), where

x0(·) = x(0, ·), there exists a control law u(t) that steers the system into an ε-neighborhood of

a desired target state xF ∈ F(K,M) at a finite time T > 0, i.e., d(x(T, ·), xF (·)) < ε, where

d : F(K,M)×F(K,M)→ R is a metric on F(K,M). Note that the final time T may depend

on ε, and ensemble controllability is a notion of approximate controllability.

In this work, we focus on the time-invariant bilinear ensemble system evolving on a Lie group

G of the form

d

dt
X(t, β) =

[
β0B0 +

m∑
i=1

βi ui(t)Bi

]
X(t, β), X(0, β) = I, (3)

where β = (β0, . . . , βm)′ is the parameter vector varying on a compact subset K ⊂ Rm+1,

X(t, ·) ∈ C(K,G) is the state and C(K,G) denotes the space of continuous G-valued functions

defined on K, B0, . . . , Bm are elements in the Lie algebra g of G, I is the identity element of

G, and u1, . . . , um are real-valued piecewise constant control inputs.

According to Definition 1, a metric on C(K,G) is necessary in the study of ensemble

controllability of the system in (3). In the next section, we will introduce metrics on C(K,G) and

C(K, g) through a Riemannian structure of G such that these two metrics are locally compatible

with respect to the exponential map, exp : g → G. Consequently, ensemble controllability

of systems defined on C(K,G) can be studied through their drift and control vector fields in

C(K, g).
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C. Metric space structures on C(K,G)

In Definition 1, ensemble controllability is defined in the sense of approximate controllability,

where it only requires to steer the considered system into an ε-neighborhood of the desired final

state. However, the properties of neighborhoods depend on the topology of the state space of the

system. Therefore, in this section, we will introduce a metrizable topology on C(K,G) such that

ensemble controllability of an ensemble system evolving on C(K,G) can be defined through

the metric induced by this topology.

The compact-open topology is commonly used on the space of continuous functions between

two topological spaces. In our case, K is compact and G is a metric space as a Riemannian

manifold, then the compact-open topology on C(K,G) is metrizable. Specifically, it is equivalent

to the topology of uniform convergence [20], i.e., the topology induced by the metric d(f, g) =

supβ∈K ρ(f(β), g(β)) for any f, g ∈ C(K,G), where ρ : G×G→ G is the metric induced by

a Riemannian metric on G. This observation illustrates that it suffices to define a Reimannian

structure on G, which in turn induces a metric on C(K,G).

A bi-invariant Riemannian metric is a good candidate of Reimannian metrics defined on a

compact, connected Lie group G for understanding the relationship between its geometric and

algebraic structures. Because, under this metric, the exponential map from g to G coincides

with the Riemannian exponential map from TIG to G, where TIG denotes the tangent space of

G at the identity element I [37]. Correspondingly, the trajectory of each individual system in

the ensemble in (3) is a concatenation of some geodesics of G. Computationally, a bi-invariant

Riemannian metric can be obtained by averaging an arbitrary inner product defined on g over

the group G, where g is identified with TIG of G [41].

Let 〈·, ·〉 : g × g → R denote an inner product on g that extends to a bi-invariant met-

ric on G, then the uniform norm on C(K, so(n)), that is, ‖f − g‖∞ = supβ∈K ‖f(β) −

g(β)‖ for f, g ∈ C(K, so(n)), is well-defined because K is compact, where ‖f(β) − g(β)‖ =√
〈f(β)− g(β), f(β)− g(β)〉 is the norm on g induced by the inner product. If ‖f − g‖∞ <

ε for some ε smaller than the injectivity radius of the Riemannian exponential map, then

ρ(exp(f(β)), exp(g(β))) ≤ ‖f(β) − g(β)‖ ≤ ‖f − g‖∞ < ε holds for any β ∈ K, because

the Lie group G with the bi-invariant Riemannian metric has non-neagtive sectional curvature

[37], where ρ is the metric on G induced by the bi-invariant Riemannian metric. On the other

hand, since G is connected and compact, the exponential map exp : g → G is surjective [19],
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and thus the uniform topology of C(K,G) is carried over from the uniform norm of C(K, g).

This property enables the study of ensemble controllability of the system in (3) on C(K,G)

through its drift and control vector fields on C(K, g).

It can be shown that C(K,G) itself is an infinite-dimensional Lie group with the Lie algebra

C(K, g). Furthermore, since every element f ∈ C(K, g) can be expressed in the form f =∑n
i=1 fiEi for some fi ∈ C(K,R) with {E1, . . . , En} a basis of g, this indicates that C(K, g),

as a C(K,R)-module, is isomorphic to C(K,R) ⊗ g, where C(K,R) is the set of continuous

real-valued functions defined on K and ⊗ denotes the tensor product over R. However, C(K,R)

is generally not compact with respect to the topology of uniform convergence, e.g., the sequence

fn(β) = βn in C([0, 1],R) has no convergent subsequence. Consequently, C(K,G) is a non-

compact infinite-dimensional Lie group, which disables the application of the LARC, as presented

in Theorem 1, to examine controllability of ensemble systems defined on C(K,G) and hence

motivates the need of developing new tools to achieve this goal.

To this end, in Sections III and IV, we integrate tools from geometry, analysis, and algebra to

synthesize the machinery for controllability analysis of ensemble systems defined on C(K,G) in

the form of (3). In particular, our framework will be elaborated through the study of the ensemble

system defined on C(K, SO(n)) by leveraging the nice structure of so(n), where SO(n) is the

special orthogonal group consisting of all n-by-n orthogonal matrices with determinant 1 and

so(n) is its Lie algebra consisting of all n-by-n skew-symmetric matrices. In the next section,

we will initiate our investigation with the ensemble system evolving on C(K, SO(3)).

III. ENSEMBLE CONTROL OF SYSTEMS ON SO(3)

Manipulating an ensemble of systems evolving on SO(3) is an important problem arising in

many areas, notably in quantum control and robotics [18, 30, 15, 16, 33, 4]. In this section,

we revisit and extend our previous results in ensemble controllability of systems on SO(3) [31],

which will lay the foundation for analyzing controllability of ensemble systems defined on SO(n)

and, further, on SE(n).

We first consider the driftless ensemble system on SO(3), given by

d

dt
X(t, β) = β

[
uΩy + vΩx

]
X(t, β), X(0, β) = I, (4)
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where β ∈ K = [a, b] ⊂ H, H = R+ = (0,∞), and

Ωy =


0 0 1

0 0 0

−1 0 0

 , Ωx =


0 0 0

0 0 −1

0 1 0


are the generators of rotation around the y- and the x-axis, respectively. According to the

discussion in Section II, a metric on C(K, SO(3)) is required to define the notion of ensem-

ble controllability for the system in (4). The detailed construction of a bi-invariant metric on

C(K, SO(n)) is shown in Section IV-B. At present, let’s assume that the state space C(K, SO(3))

has already been equipped with a bi-invariant metric d : C(K, SO(3)) × C(K, SO(3)) → R,

which is induced by an inner product on so(3).Then, in the following lemma, we prove ensemble

controllability of the system in (4) over the topology induced by d.

Lemma 1. The system in (4) is ensemble controllable on C(K, SO(3)).

Proof. We revisit the proof in our previous work [31] by using the metric space structure on

C(K, SO(3)) introduced above. Observe that the Lie brackets generated by the set of matrices

{βΩy, βΩx} are

ad2k+1
βΩy

(βΩx) = (−1)kβ2kΩz,

ad2k
βΩy(βΩx) = (−1)kβ2k+1Ωx,

where adAB = [A,B] and adkAB = [A, adk−1
A B], k ∈ N, for all A,B ∈ so(3), and

Ωz =


0 −1 0

1 0 0

0 0 0


is the generator of rotation around the z-axis. Now using elements in {βΩx, β

3Ωx, . . . , β
2n+1Ωx}

as generators, we are able to produce an evolution of the form

Rx(β) = exp(c0βΩx) exp(c1β
3Ωx) · · · exp(cnβ

2n+1Ωx)

= exp
{ n∑
k=0

ckβ
2k+1Ωx

}
.
= exp

{
θ̂x(β)Ωx

}
. (5)

As a result, given any β-dependent rotation exp{θx(β)Ωx} around x-axis with θx ∈ C(K,R), the
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order of the polynomial n and the coefficients ck can be appropriately chosen so that ‖θ̂x−θx‖∞ =

supβ∈K

√
〈θ̂x(β)− θx(β), θ̂x(β)− θx(β)〉 < ε for any given approximation error ε > 0 by the

Weierstrass theorem [1]. Similar arguments can be developed to show that any β-dependent

rotations exp{θy(β)Ωy} and exp{θz(β)Ωz} around the y- and the z-axis, respectively, can be

approximately generated as exp{θ̂y(β)Ωy} and exp{θ̂z(β)Ωz}, and hence any three-dimensional

rotations can also be uniformly approximated. Namely, given any β-dependent rotation Θ ∈

C(K, SO(3)), one can parameterize it by using the Euler angles Θ = (θx, θy, θz) such that

Θ(β) = exp{θx(β)Ωx} exp{θy(β)Ωy} exp{θz(β)Ωz}

= Θx(β)Θy(β)Θz(β),

and then the desired rotation Θ(β) characterized by the three continuous functions, θx, θy, θz ∈

C(K,R), can be synthesized by using piecewise constant control vector fields as described in

(5). Specifically, for any ε > 0, the approximated rotations θ̂x, θ̂y, and θ̂z can be generated such

that ‖θ̂x−θx‖∞ < ε/3, ‖θ̂y−θz‖∞ < ε/3, and ‖θ̂z−θz‖∞ < ε/3. As a result, the total evolution

Θ̂(β) = exp{θ̂x(β)Ωx} exp{θ̂y(β)Ωy} exp{θ̂z(β)Ωz}

= Θ̂x(β)Θ̂y(β)Θ̂z(β)

satisfies

d(Θ̂,Θ) = d(Θ̂xΘ̂yΘ̂z,ΘxΘyΘz)

≤ d(Θ̂xΘ̂yΘ̂z,ΘxΘyΘ̂z) + d(ΘxΘyΘ̂z,ΘxΘyΘz)

= d(Θ̂xΘ̂y,ΘxΘy) + d(Θ̂z,Θz)

≤ d(Θ̂xΘ̂y,ΘxΘ̂y) + d(ΘxΘ̂y,ΘxΘy) + d(Θ̂z,Θz)

= d(Θ̂x,Θx) + d(Θ̂y,Θy) + d(Θ̂z,Θz)

≤ ‖θ̂x − θx‖∞ + ‖θ̂y − θy‖∞ + ‖θ̂z − θz‖∞ < ε,

where we repeatedly used the triangle inequality and bi-invariance of the metric d. This then

concludes ensemble controllability of the system in (4) on C(K, SO(3)). �

Remark 1 (Topological characterization of ensemble controllability). In the proof of Lemma

1, the key observation leading to ensemble controllability of the system in (4) is the uniform
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approximation of β-dependent rotations θx(β)Ωx, θy(β)Ωy, and θz(β)Ωz by iterated Lie brack-

eting the control vector fields in G = {βΩx, βΩy}. This implies that the closure of the Lie

algebra generated by G satisfies Lie(G) = C(K,R)⊗ so(3) = C(K, so(3)), which gives rise to

a topological characterization of ensemble controllability of the system in (4) on C(K, SO(3)).

In general, a family of driftless bilinear systems defined on a compact, connected Lie group G

parameterized by a vector β = (β0, . . . , βm)′ varying on a compact subset K ⊂ Rm of the form

d

dt
X(t, β) =

[ m∑
i=1

βi ui(t)Bi

]
X(t, β), X(0, β) = I,

is ensemble controllable on C(K,G) if and only if Lie(G) = C(K, g), where G = {β1B1, . . . ,

βmBm} is the set of control vector fields evaluated at the identity element I of G, and g is the

Lie algebra of G.

It was also shown in our previous work that the ensemble with a dispersion in the drift, i.e.,

the system

d

dt
X(t, β, ω) =

[
ωΩz + βuΩy + βvΩz

]
X(t, β, ω), X(0, β, ω) = I,

where ω ∈ Kd ⊂ R with Kd compact, is ensemble controllable on C(K ×Kd, SO(3)) [31]. In

the following, we illustrate the applicability of the polynomial approximation technique exploited

in the proof of Lemma 1 to analyze ensemble systems on SO(3) with three parameter variations.

This analysis constitutes the key element in the covering method to be developed in Section IV

for the controllability analysis of bilinear ensemble systems defined on compact, connected Lie

groups.

Proposition 1. An ensemble system of the form,

d

dt
X(t, β) =

[
β1u1Ωx + β2u2Ωy + β3u3Ωz

]
X(t, β), X(0, β) = I, (6)

is ensemble controllable on C(K, SO(3)), where β = (β1, β2, β3) ∈ K is the parameter vector

varying on a compact subset K of the three-dimensional upper half space H3 = {(β1, β3, β3) ∈

R3 : βi > 0 for all i = 1, . . . , 3}, I is the 3-by-3 identity matrix, and ui(t) are piecewise constant

control inputs for all i = 1, 2, 3.
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Proof. By successive Lie brackets of the control vector fields β2Ωy and β3Ωz, we obtain

ad2k+1
β2Ωy

(β3Ωz) = (−1)kβ2k+1
2 β3Ωx,

ad2l+1
β3Ωz

(β2k+1
2 β3Ωx) = (−1)lβ2k+1

2 β2l+1
3 Ωx,

where k, l ∈ N. Then, defining L(k,l) = β2k+1
2 β2l+1

3 and applying iterated Lie brackets of

[β1Ωx, β2Ωy] and L(k,l)Ωx yields

ad2s
[β1Ωx,β2Ωy ](L(k,l)Ωx) = (−1)sβ2s

1 β
2(k+s)+1
2 β2l+1

3 Ωx

= (−1)sβ2s
1 β

2(k+s)
2 β2l

3 (β2β3Ωx),

where s ∈ N. Furthermore, let L(s,k,l)(β) = β2s
1 β

2(k+s)
2 β2l

3 and A = span{L(s,k,l) : s, k, l =

0, 1, . . . } ⊂ C(K,R), then we claim that A is a subalgebra of C(K,R) by checking that fg ∈ A

for any f, g ∈ A. Now, pick any two points x = (x1, x2, x3)′ and y = (y1, y2, y3)′ in K and

assume f(x) = f(y) for all f ∈ A, in particular, L(1,0,0)(x) = L(1,0,0)(y), L(0,1,0)(x) = L(0,1,0)(y),

and L(0,0,1)(x) = L(0,0,1)(y) hold. This gives xi = yi for each i = 1, 2, 3, i.e., x = y. Therefore,

A separates points in K [35] and hence A is dense in C(K,R) by Stone-Weierstrass Theorem

[17]. Equivalently, for any f ∈ C(K,R), we can uniformly approximate f(β)Ωx by iterated

Lie brackets of the control vector fields in G = {β1Ωx, β2Ωy, β3Ωz}. A similar argument can

be applied to show that, for any g, h ∈ C(K,R), g(β)Ωy and h(β)Ωz can also be uniformly

approximated. It follows that Lie(G) = C(K,R)⊗ so(3) = C(K, so(3)), and hence the system

in (6) is ensemble controllable on C(K, SO(3)) by Remark 1. �

IV. ENSEMBLE CONTROL OF SYSTEMS ON COMPACT LIE GROUPS

In this section, we will carry out an extension of the ensemble controllability analysis de-

veloped in the previous section dedicated to the system on SO(3) to general systems defined

on compact, connected Lie groups. To this end, we will introduce a covering method based

on the decomposition of the state space Lie group into a collection of Lie subgroups, which

generates this Lie group, and, correspondingly, decomposes the ensemble system defined on

this Lie group into a collection of subsystems, each of which evolves on one of these Lie

subgroups. This decomposition then enables the determination of controllability of the ensemble

by controllability of each subsystem, since the state space Lie group is generated by the Lie

subgroups defining the state space of the subsystems.
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Before the discussion of systems evolving on general semisimple Lie groups, this method

will be best motivated and illuminated with the system defined on SO(n) first. To facilitate

our exposition, we review some key properties of the Lie algebra so(n) that are relevant to the

subsequent ensemble controllability analysis in the following section.

A. Basics of the Lie algebra so(n)

The Lie algebra so(n) is the vector space containing all n×n real skew-symmetric matrices,

which has dimension n(n− 1)/2. Let Eij ∈ Rn×n denote the matrix whose ijth entry is 1 and

others are 0, then the matrix Ωij = Eij − Eji satisfies

Ωij =

−Ωji, if i 6= j,

0, if i = j,

taking value 1 in the ijth entry, -1 in the jith entry, and 0 elsewhere. Moreover, the set B =

{Ωij : 1 ≤ i < j ≤ n} forms a basis of so(n), which is referred to as the standard basis of

so(n).

Lemma 2. The Lie bracket of Ωij and Ωkl satisfies the relation [Ωij,Ωkl] = δjkΩil + δilΩjk +

δjlΩki + δikΩlj , where δ is the Kronecker delta function, i.e.,

δmn =

1, if m = n,

0, if m 6= n.

Proof. Notice that EijEkl = δjkEil, so [Eij, Ekl] = δjkEil − δliEkj . Following the bilinearity

of the Lie bracket, we get

[Ωij,Ωkl] = [Eij − Eji, Ekl − Elk] = [Eij, Ekl]− [Eij, Elk]− [Eji, Ekl] + [Eji, Elk]

= δjkEil − δliEkj − δjlEik + δkiElj − δikEjl + δljEki + δilEjk − δkjEli

= δjkΩil + δilΩjk + δjlΩki + δikΩlj.

�

According to Lemma 2, for any Ωij,Ωkl ∈ B, [Ωij,Ωkl] 6= 0 if and only if i = l j = k, i = k

or j = l.
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B. Bi-invariant metrics on SO(n)

By Definition 1 in Section II-B, a metric on C(K, SO(n)) is required to define the notion

of ensemble controllability for systems evolving on SO(n). Moreover, because SO(n) is a Lie

group, the discussion in Section II-C implies that a metric on C(K, SO(n)) can be induced

by an inner product on the Lie algebra so(n). In particular, we introduce an inner product

〈·, ·〉 : so(n) × so(n) → R such that the standard basis elements in B form an orthonormal

basis for so(n), or equivalently, 〈Ωij,Ωkl〉 = tr(Ω′ijΩkl)/2. Then, we extend this inner product

to a left-invariant Riemannian metric on SO(n) by defining 〈ΩijX,ΩklX〉 = tr(Ω′ijΩkl)/2 for

any X ∈ SO(n). Notice that 〈·, ·〉 is invariant under the adjoint action of SO(n) on so(n),

i.e., 〈XYX−1, XZX−1〉 = 〈Y, Z〉 for any X ∈ SO(n) and Y, Z ∈ so(n). Hence, this left-

invariant Riemannian metric is also bi-invariant [37], which then induces a bi-invariant metric ρ

on SO(n). Consequently, by the discussion in Section II-C, the compact-open topology induces a

bi-invariant metric d on C(K, SO(n)), which coincides with the topology of uniform convergence

with respect to ρ, i.e., d(f, g) = supβ∈K ρ(f(β), g(β)) for any f, g ∈ C(K, SO(n)). In particular,

for the case of SO(3) discussed in Section III, the bi-invariant metric d is just obtained by defining

the set {Ωx,Ωy,Ωz} to be an orthonormal basis of so(3).

In the following sections, ensemble controllability will be analyzed under this bi-invariant

metric d on C(K, SO(n)).

C. The covering method for ensemble controllability analysis

In this section, we develop a covering method for examining ensemble controllability of

bilinear systems evolving on semisimple Lie groups. Together with the technique of polynomial

approximation, we then establish an equivalence between ensemble and classical controllability

for such bilinear ensemble systems. The existence and construction of this covering method are

based on the Cartan decomposition of semisimple Lie algebras in representation theory [19].

Specifically, given such a system, we apply the Cartan decomposition to the semisimple Lie

algebra of the state-space Lie group, which gives rise to a cover of the Lie algebra consisting of

Lie subalgebras isomorphic to so(3) or su(2). Correspondingly, the ensemble system also admits

a decomposition into a family of ensemble subsystems with each defined on SO(3) or SU(2).

In this way, the controllability analysis of the ensemble system is equivalently carried over to

these ensemble subsystems. To showcase the main idea of the decomposition in the covering

method, we use an example of the Lie group SO(4).
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G2

G1

G3

G4
SO(4)

<latexit sha1_base64="v7q1qrFPdlbgaPBBprQqNGcWMdw=">AAAB83icbVBNS8NAEN3Ur1q/qh69BItQLyWRgnorevFmRfsBTSib7bRdutmE3YlYQv+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF8SCa3Scbyu3srq2vpHfLGxt7+zuFfcPmjpKFIMGi0Sk2gHVILiEBnIU0I4V0DAQ0ApG11O/9QhK80g+4DgGP6QDyfucUTSS5yE8YXp/OylXT7vFklNxZrCXiZuREslQ7xa/vF7EkhAkMkG17rhOjH5KFXImYFLwEg0xZSM6gI6hkoag/XR288Q+MUrP7kfKlER7pv6eSGmo9TgMTGdIcagXvan4n9dJsH/hp1zGCYJk80X9RNgY2dMA7B5XwFCMDaFMcXOrzYZUUYYmpoIJwV18eZk0zyputXJ5Vy3VrrI48uSIHJMycck5qZEbUicNwkhMnskrebMS68V6tz7mrTkrmzkkf2B9/gBWmJE+</latexit>

Fig. 1. The demonstration of the cover V = {G1, G2, G3, G4} of SO(4) constructed in Example 1. In particular, G1, G2, G3,
and G4, illustrated by blue, purple, orange, and green shadows bounding by the dashed lines with the corresponding colors,
respectively, are Lie subgroups of SO(4) isomorphic to SO(3).

Example 1 (A simple illustration of the covering method). In this example, we will construct a

set of generators of SO(4) such that every generator is a Lie subgroup of SO(4) isomorphic to

SO(3). We start our construction with decomposing the Lie algebra so(4) into a collection of

Lie subalgebras isomorphic to so(3). This is equivalent to constructing a cover of the standard

basis B = {Ω12,Ω13,Ω14,Ω23,Ω24,Ω34}. To this end, let U = {B1,B2,B3,B4}, where B1 =

{Ω12,Ω13,Ω23}, B2 = {Ω12,Ω24,Ω14}, B3 = {Ω13,Ω14,Ω34}, and B4 = {Ω23,Ω34,Ω24}, then

it is clear that U forms a cover of B, because B = B1 ∪ B2 ∪ B3 ∪ B4. Moreover, let F =

{Lie(B1),Lie(B2), Lie(B3),Lie(B4)}, then we have span(F ) = so(4), and hence F is a set of

generators of so(4). Notice that each Lie(Bi), i = 1, . . . , 4, is isomorphic to so(3) so that its Lie

group Gi is a Lie subgroup of SO(4) isomorphic to SO(3). In addition, because F generates

so(4), V = {G1, G2, G3, G4} is a set of generators of SO(4) as desired. This cover of SO(4) is

illustrated in Figure 1.

The covering idea illustrated in Example 1 for SO(4) can be directly generalized to SO(n).

This generalization immediately enables the adoption of the polynomial approximation based

technique developed for systems on SO(3) in Section III to the ensemble controllability analysis

of systems on SO(n) with n > 3. More importantly, the covering method paves the way for

understanding and quantifying the equivalence between ensemble and classical controllability.

Theorem 2 (The main result). Consider an ensemble of systems on SO(n), given by

d

dt
X(t, β) =

[ m∑
k=1

βkuk(t) Ωikjk

]
X(t, β), X(0, β) = I, (7)

where the parameter vector β = (β1, . . . , βm)′ takes values on a compact subset K ⊂ Hm,

the state X(t, ·) ∈ C(K, SO(n)), and the control inputs uk(t) ∈ R are piecewise constant for
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all k = 1, . . . ,m. This system is ensemble controllable on C(K, SO(n)) if and only if each

individual system with respect to a fixed β ∈ K in this ensemble is controllable on SO(n).

Proof. The necessity is obvious, and hence it remains to show the sufficiency. In particular,

we divide the proof of sufficiency into three steps.

(Step I): An ensemble of systems defined on SO(n) of the form,

d

dt
X(t, β) =

[ ∑
1≤i<j≤n

βijuij(t)Ωij

]
X(t, β), X(0, β) = I, (8)

is ensemble controllable on C
(∏

1≤i<j≤nKij, SO(n)
)
, where the parameter vector β = (β12, . . . , βn−1,n)

takes values in the product space
∏

1≤i<j≤nKij with each Kij a compact subset of H, X(t, ·) ∈

C
(∏

1≤i<j≤nKij, SO(n)
)

is the state, and uij(t) ∈ R are piecewise constant for all 1 ≤ i < j ≤

n.

For any Ωij ∈ B and k1 ∈ {1, . . . , n}\{i, j}, the subset S1 = {Ωij,Ωik1 ,Ωk1j} of B generates

a Lie subalgebra of so(n) isomorphic to so(3). By Proposition 1, the controllable submanifold

of the system obtained by setting uαγ = 0 for all α, γ ∈ {1, . . . , n}\{i, j, k1} in the system (8),

i.e.,

d

dt
X(t, β) = [βijuij(t)Ωij + βik1uik1(t)Ωik1 + βk1juk1j(t)Ωk1j]X(t, β),

X(0, β) = I,

is a Lie subgroup of C(K12× · · · ×Kn−1,n, SO(n)) isomorphic to C(K1
ij, SO(3)), where K1

ij =

Kij×Kik1×Kk1j . Consequently, L1
ij = Lie{βijΩij, βik1Ωik1 , βk1jΩk1j} is isomorphic to C(K1

ij, so(3))

by Remark 1. Notice that the cardinality of {1, . . . , n}\{i, j} is n−2, so there are n−2 distinct

subsets of B (including S1), denoted by S1, . . . ,Sn−2, in the form of Sl = {Ωij,Ωikl ,Ωklj} for

some kl ∈ {1, . . . , n}\{i, j}, and their intersection only contains Ωij . Similar to L1
ij , Llij =

Lie{βijΩij, βiklΩikl , βkljΩklj} is isomorphic to C(K l
ij, so(3)) for each l = 1, . . . , n − 2, where

K l
ij = Kij ×Kikl ×Kklj . As a result, for any f ∈ C(Kα

ij,R) and g ∈ C(Kγ
ij,R) with α 6= γ,

we have f(βij, βikα , βkαj)Ωij ∈ Lαij and (g(βij, βikγ , βkγj)/βikγ )Ωikγ ∈ L
β
ij . Because of

[[f(βij, βikα , βkαj)Ωij, βikγΩikγ ], (g(βij, βikγ , βkγj)/βikγ )Ωikγ ]

= f(βij, βikα , βkαj)g(βij, βikγ , βkγj)Ωij,

the set of the coefficients of Ωij in Lie(∪n−2
l=1 Llij), denoted byAij , is a subalgebra of C

(∏
1≤i<j≤nKij,R

)
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generated by C(K1
ij,R), . . . , C(Kn−2

ij ,R). Furthermore, letA denote the subalgebra of C
(∏

1≤i<j≤nKij,R
)

generated by Aij , 1 ≤ i < j ≤ n, then Lie(∪1≤i<j≤n ∪n−2
l=1 Llij) = A ⊗ so(n) holds. Because

C(K l
ij,R) separates points in K l

ij for each l = 1, . . . , n − 2 and 1 ≤ i < j ≤ n as shown in

the proof of Proposition 1, A is able to separate points in
∏

1≤i<j≤nKij . By Stone-Weierstrass

theorem, A is dense in C
(∏

1≤i<j≤nKij,R
)
, and then so is A⊗so(n) in C

(∏
1≤i<j≤nKij,R

)
⊗

so(n) = C
(∏

1≤i<j≤nKij, so(n)
)
. Notice that A⊗so(n) ⊆ Lie({βijΩij : 1 ≤ i < j ≤ n}) holds

by the construction ofA, thus we conclude Lie({βijΩij : 1 ≤ i < j ≤ n}) = C
(∏

1≤i<j≤nKij, so(n)
)
,

which then implies ensemble controllability of the system in (8) on C
(∏

1≤i<j≤nKij, SO(n)
)
.

(Step II): Given the ensemble system in (7), there is an ensemble system in the form of (8)

so that these two systems have the same controllable submanifold.

By the condition that each individual system in the ensemble system (7) is controllable

on SO(n), any Ωij ∈ B can be generated by iterated Lie brackets of the elements in F =

{Ωi1j1 , . . . ,Ωimjm}. As a result, for each Ωij 6∈ F , there exists a positive monomial function

ηij : K → H such that ηij(β)Ωij can be generated by sucessively Lie bracketing the elements

in G = {βi1j1Ωi1j1 , . . . , βimjmΩimjm}. Now, consider the following ensemble system,

d

dt
X(t, β) =

[ ∑
Ωij∈F

βiju(t)Ωij +
∑

Ωij 6∈F

ηij(β)uij(t)Ωij

]
X,

X(0, β) = I, (9)

its controllable submanifold has Lie algebra Lie(G ∪ G ′), where G ′ = {ηij(β)Ωij : Ωij 6∈ F}.

Because ηij(β)Ωij ∈ Lie(G) for each i, j = 1, . . . , n, Lie(G) = Lie(G ∪ G ′) holds, which also

implies Lie(G) = Lie(G ∪ G ′). Since we have shown that Lie(G) is the Lie algebra of the

controllable submanifold of the system in (7), the two ensmeble systems (7) and (9) have the

same controllable submanifold.

(Step III): The system in (7) is ensemble controllable on C(K, SO(n)).

In step II, we have shown that each ηij(β) is a positive monomial function defined on the

compact subset K of Hm, where we define ηikjk(β) = βikjk for k = 1, . . . ,m. Let Rij = ηij(K)

be the image of ηij , then R =
∏

1≤i<j≤nRij is a compact subset of Hn(n−1)/2 by the continuity

of each ηij and Tychonoff’s product theorem [36]. Then, the conclusion in Step I implies that
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the following ensemble system parameterized by η = (η12, . . . , ηn−1,n) ∈ R

d

dt
X(t, η) =

[ ∑
1≤i<j≤n

ηijvij(t)Ωij

]
X(t, η), X(0, η) = I (10)

is ensemble controllable on C(R, so(n)).

Now, consider η as a function of β from K toR given by (βi1j1 , . . . , βimjm) 7→ (βi1j1 , . . . , βimjm , . . . , ηn,n−1),

then η is smooth and its differential

dη =

 Im

∗

 ,
is full rank, where Im is the m-by-m identity matrix. This implies that η is a smooth embedding,

and hence η(K) is a compact m-dimensional embedded submanifold of R [27]. By Tietze’s

Extension Theorem [36], for any f ∈ C(η(K), SO(n)), there exists g ∈ C(R, SO(n)) such

that f = g|η(K), which implies that the map from C(R, SO(n)) to C(η(K), SO(n)) given

by g 7→ g|η(K) is surjective. Then, by Step II, ensemble controllability of the system in (10)

on C(R, SO(n)) leads to ensemble controllability of the system in (7) on C(η(K), SO(n)).

Moreover, since η is a diffeomorphism between K and η(K), the function from C(K, SO(n))

to C(η(K), SO(n)) given by f 7→ f ◦ η−1 is a Lie group isomorphism, which then concludes

ensemble controllability of the system in (7) on C(K, SO(n)). �

In Step III above, the key observation leading to ensemble controllability of the system in (7) is

the compactness of η(K) ⊂ Hn(n−1)/2. Consequently, the proof still holds if the parameter space

is diffeomorphic to a compact submanifold of the upper half space as shown in the following

corollary.

Corollary 1. The ensemble of systems defined on SO(n), given by

d

dt
X(t, β) =

[ m∑
k=1

fk(β)uk(t) Ωikjk

]
X(t, β), X(0, β) = I, (11)

is ensemble controllable on C(K, SO(n)) if and only if each individual system with respect to a

fixed β ∈ K in this ensemble is controllable on SO(n), where K is a compact smooth manifold,

and f : K → Hm defined by β 7→ (f1(β), . . . , fm(β)) is a smooth embedding.

Proof. The necessity is clear, and thus we only need to prove the sufficiency. By defining

ηi = fi(β) for each i = 1, . . . ,m, Theorem 2 implies that the system in (11) parameterized
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by η = (η1, . . . , ηm)′ is ensemble controllable on C(f(K), SO(n)). In addition, because f is a

smooth embedding, the map from C(K, SO(n)) to C(f(K), SO(n)) given by g 7→ g ◦ f−1 is a

Lie group isomorphism, and hence the system in (11) is ensemble controllable on C(K, SO(n)).

�

Because Step I in the proof of Theorem 2 follows from ensemble controllability of systems

on SO(3), this theorem, as well as Corollary 1, exclude systems defined on SO(2).

Remark 2. An ensemble of bilinear systems defined on SO(2) is not ensemble controllable.

Because so(2) is a one-dimensional real vector space with the only basis element Ω12, any

ensemble system on SO(2) in the form of (7) can be uniquely represented by

d

dt
X(t, β) = βu(t)Ω12X(t, β) = βu(t)

 0 −1

1 0

X(t, β), X(0, β) = I, (12)

where β is the parameter taking values on a compact set K ⊂ H, X(t, ·) ∈ C(K, SO(2)) is the

state, and u(t) ∈ R is a piecewise constant control input. However, so(2) is nilpotent, which

disables the generation of terms βkΩ12 for k ≥ 2 by iterated Lie brackets of the single control

vector field βΩ12. As a result, Lie(βΩ12) only contains first order terms of β, and hence the

system in (12) is ensemble uncontrollable on C(K, SO(2)).

D. Ensemble controllability of systems on semisimple Lie groups

The equivalence between ensemble and classical controllability established in Theorem 5

reduced the evaluation of controllability for infinite-dimensional ensemble systems to finite-

dimensional single systems. This reduction made it possible to explicitly characterize the generi-

cally intractable ensemble controllability property using classical approaches for finite-dimensional

control systems, i.e., the LARC for bilinear systems and the Kalman rank condition for linear

systems. A natural question concomitant with this property for systems on SO(n) is what other

classes of ensemble systems inherit such equivalence in controllability to their subsystems. In

this section, we show that ensemble systems defined on semisimple Lie groups exhibit such an

equivalence property.

To illuminate this extension, we begin with our discussion on the system defined on SU(2),

the special unitary group of 2 × 2 unitary matrices with determinant 1, which is also the most

fundamental semisimple Lie group. Notice that its Lie algebra su(2), containing all 2× 2 skew-
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Hermitian traceless matrices, is isomorphic to so(3) by identifying the three basis elements of

su(2),

B1 =
1√
2

 0 i

i 0

 , B2 =
1√
2

 0 −1

1 0

 , and B3 =
1√
2

 i 0

0 −i

 ,
with Ωx, Ωy and Ωz, respectively, and B1, B2, and B3 are the Pauli matrices multiplied by

i/
√

2, where i is the imaginary unit. In particular, this is called the spin representation of su(2).

Consequently, following the same proof as that of Proposition 1, the system defined on SU(2),

d

dt
X(t, β) =

[ 3∑
k=1

βkukBk

]
X(t, β)

is ensemble controllable on C(K, SU(2)), where β = (β1, β2, β3) is the parameter vector taking

values on a compact set K ⊂ H3. This result forms the basis of investigating ensemble controlla-

bility for systems evolving on semisimple Lie groups using the covering method. The prerequisite

for this investigation is to cover semisimple Lie groups by Lie subgroups isomorphic to SU(2).

Similar to Example 1, it suffices to construct covers consisting of Lie subalgebras isomorphic

to su(2).

Given a semisimple Lie group G, its semisimple Lie algebra g admits a root space decom-

position as g = h⊕
⊕

α∈R gα, where h is the Cartan subalgebra, R is the set of nonzero roots,

and gα is the space of root vectors for the root α [19]. Then, for each root α ∈ R, we can

construct a Lie subalgebra sα of g so that sα is isomorphic to su(2). To proceed, we first equip

the Cartan subalgebra h an inner product 〈·, ·〉, through which we define the notion of coroot of α

as Hα = 2α/〈α, α〉. Then, any element Xα ∈ gα satisfies [Hα, Xα] = 〈α,Hα〉Xα = 2Xα by the

definition of a root. Let Yα = −X̄α, where X̄α denotes the complex conjugate of Xα, then we can

show that Yα ∈ g−α, [Hα, Yα] = −2Yα, and [Xα, Yα] = Hα. As a result, Hα, Xα, and Yα generate

a Lie subalgebra of g isomorphic to su(2), denoted by sα. However, Hα, Xα and Yα do not give

rise to the spin representation of sα as desired, i.e., Hα, Xα, and Yα do not satisfy the same

Lie bracket relations as B1, B2 and B3. To construct the spin representation of sα, we further

define Bα
1 = iHα/2, Bα

2 = i(Xα +Yα)/2 and Bα
3 = (Yα−Xα)/2, which lead to the Lie bracket

relations [Bα
1 , B

α
2 ] = Bα

3 , [Bα
2 , B

α
3 ] = Bα

1 , and [Bα
3 , B

α
1 ] = Bα

2 . Moreover, because the roots span

the Cartan subalgebra h [19], we have constructed a cover of g as U = {sα : α ∈ R}, in which

each sα = Lie(Bα) = Lie({Bα
1 , B

α
2 , B

α
3 }) is isomorphic to su(2) with the spin representation.
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As a result, the proof of Theorem 2 for systems on SO(n) can be adopted to show ensemble

controllability of systems evolving on semisimple Lie groups based on covering its Lie algebra

by Lie subalgebras in the form of sα that are isomorphic to su(2) with the spin representation.

Theorem 3. Given an ensemble of bilinear systems defined on a semisimple Lie group G of the

form,

d

dt
X(t, β) =

m∑
k=1

[
βkuk(t)Bk

]
X(t, β), X(0, β) = I, (13)

where β = (β1, . . . , βm) is the parameter vector taking values on a compact subset K of Hm,

X(t, ·) ∈ C(K,G) is the state, uk(t) ∈ R are piecewise constant control inputs, and I denotes

the identity element of G; B1, . . . , Bm are elements in the Lie algebra g of G with the property

that for any Bi, i = 1, . . . ,m, there exist some Bj and Bk such that the Lie subalgebra of g

generated by {Bi, Bj, Bk} is isomorphic to the spin representation of su(2). Then, this system is

ensemble controllable on C(K,G) if and only if each individual system with respect to a fixed

β ∈ K in this ensemble is controllable on G.

Proof. The proof is constructive based on the construction described above and then follow

the proof of Theorem 2. To be more specific, after obtaining the cover U = {sα : α ∈ R} of g,

we adopt the proof of Theorem 2 by replacing Sl = {Ωij,Ωikl ,Ωklj} by Bα = {Bα
1 , B

α
2 , B

α
3 }. �

Note that when the semisimple Lie algebra g associated with the system in (13) is over C,

the field of complex numbers, the control inputs uk are also required to be complexed-valued.

Correspondingly, the Lie subalgebra of g generated by {Bi, Bj, Bk} is the special linear Lie

algebra sl(2,C), the vector space over C consisting of 2-by-2 complex matrices with trace 0.

This is because sl(2,C) is the complexification of su(2), that is, for any A ∈ sl(n, 2) there exist

A1, A2 ∈ su(2) such that A = A1 + iA2, [19].

Remark 3. A bilinear ensemble system of the form,

d

dt
X(t, β) =

[ m∑
i=1

βi ui(t)Bi

]
X(t, β),

evolving on a Lie group G that is not semisimple can never be ensemble controllable. To see

this, let g be the Lie algebra of G, then g has a nontrivial center z, whose elements commute

with every element in g. Suppose Bi ∈ z for some i = 1, . . . ,m, then [βiBi, βjBj] = 0 for any
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j = 1, . . . ,m. Consequently, the Lie algebra generated by the control vector fields is a module

of g over a space of functions independent of βi, and hence the system cannot be ensemble

controllable (on a space of functions of β1, . . . , βm).

V. ENSEMBLE CONTROL OF SYSTEMS DEFINED ON NON-COMPACT LIE GROUPS

In Section IV-C, by introducing the covering method, we established the equivalence between

ensemble and classical controllability for parameterized populations of bilinear systems evolving

on compact and connected Lie groups. Fortunately, this equivalence also holds true for broader

classes of bilinear systems, for example, for bilinear systems induced by Lie group actions

on vector spaces. The finding sheds light on possible extension of the equivalence property to

systems defined on non-compact Lie groups. In particular, we will show that the system evolving

on the special Euclidean group SE(n), which contains the action of SO(n) on Rn, inherits this

property. Moreover, it is also worth noting that the action of SO(n) on Rn is neither free nor

transitive. In the following section, we briefly review some essential properties of the Lie group

SE(n) and its Lie algebra se(n) as a prerequisite for carrying out the analysis of ensemble

controllability for the system defined on SE(n).

A. Basics of the SE(n) and se(n)

Consider the Euclidean space Rn as a Lie group under addition, then its semidirect product

with SO(n), denoted by SE(n) = RnoSO(n), is called the special Euclidean group. Therefore,

every element in SE(n) can be represented by a 2-tuple (x,X) with x ∈ Rn and X ∈ SO(n).

Algebraically, the group multiplication is given by (x,X)(y, Y ) = (x + Xy,XY ) for any

x, y ∈ Rn and X, Y ∈ SO(n), which also indicates that (0, I) is the identity element of SE(n).

Topologically, due to the non-compactness of Rn, SE(n) is also a non-compact Lie group.

In addition, SE(n) can be smoothly embedded into GL(n + 1,R), the general linear group

consisting of all (n + 1)-by-(n + 1) invertible matrices. This embedding immediately yields a

matrix representation for each (x,X) ∈ SE(n) as

(x,X) =

 X x

0 1

 ,
which also reveals that SE(n) contains SO(n) and Rn as Lie subgroups.
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Geometrically, let γ(t) = (x(t), X(t)) be a smooth curve in SE(n) with γ(0) = (0, I), then

its time derivative at t = 0, i.e., γ̇(0) = (ẋ(0), Ẋ(0)), gives rise to an element in the Lie algebra

se(n) by identifying se(n) with T(0,I)SE(n), the tangent space of SE(n) at the identity (0, I).

Note that X(t) is a curve in SO(n) with X(0) = I , and hence we have Ẋ(0) ∈ so(n). Therefore,

every element (v,Ω) ∈ se(n) also admits a matrix representation as

(v,Ω) =

 Ω v

0 0

 ,
where Ω ∈ so(n) and v ∈ Rn.

Similar to so(n), se(n) is also a finite-dimensional vector space, and hence has a basis. Let

{e1, . . . , en} denote the standard basis of Rn, and define R = {Rij ∈ se(n) : Rij = (0,Ωij), 1 ≤

i < j ≤ n} and T = {Tk ∈ se(n) : Tk = (ek, 0), 1 ≤ k ≤ n}, then the set R ∪ T forms

a basis of se(n). The following lemma then characterizes the Lie bracket relations among the

basis elements of se(n).

Lemma 3. The Lie brackets among elements in the basis of se(n) satisfy that [Rij, Rkl] =

δjkRil+δilRjk+δjlRki+δikRlj , [Rij, Tk] = δjkTi−δikTj , and [Tk, Tl] = 0 for all 1 ≤ i, j, k, l ≤ n,

where δ is the Kronecker delta function.

Proof. The proof follows from direction computations of Lie brackets by using the matrix

representations of Rij , Rkl, Tk, and Tl. �

Notice that Lie brackets among the elements in R = {Rij : 1 ≤ i < j ≤ n} follow the same

relation as those elements in B = {Ωij : 1 ≤ i < j ≤ n} as shown in Lemma 2. This indicates

that the Lie algebra se(n) contains so(n) as a Lie subalgebra. Together with the inclusion of

SO(n) in SE(n) as a Lie subgroup, a system defined on SE(n) also contains a system on SO(n)

as a subsystem. These relations will help facilitate the controllability analysis of the system on

SE(n).

B. A decomposition method for controllability analysis of systems on SE(n)

In this section, we focus on the controllability analysis of a single bilinear system defined on

SE(n), which builds the foundation towards examining controllability of an ensemble of such

systems detailed in the next section. This analysis also illuminates the framework for analyzing

controllability of systems induced by Lie group actions on vector spaces. Controllability of
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systems induced by Lie group actions has been extensively studied [6, 5, 22], however, these

previous works were largely restricted to consider systems induced by free or transitive Lie

group actions. Unfortunately, the action of SE(n) on Rn is neither free nor transitive, which

disables the use of the previously developed conditions to examine controllability of systems

on SE(n). Here, we leverage the semidirect product structure of SE(n) to decompose a system

defined on this Lie group into two components, the rotational (SO(n)) and translational (Rn)

components, so that controllability of SE(n) can be analyzed by individually examining that

of each component. This approach works for systems on SE(n) because the semidirect product

structure is independent of the freeness and transitivity of the group action. It is also potentially

applicable to systems induced by general Lie group actions.

For systems on SE(n), we are particularly interested in those governed by the vector fields in

R∪ T of the form,

d

dt

 X x

0 1

 =

 m1∑
s=1

us(t)

 Ωisjs 0

0 0

+

m2∑
l=1

vl(t)

 0 ekl

0 0

 X x

0 1

 , (14)

(x(0), X(0)) = (0, I),

where Ωisjs ∈ B is a basis element of so(n), ekl is the kl-th standard basis vector of Rn, and

us(t), vl(t) ∈ R are piecewise constant control functions for all s = 1, . . . ,m1 and l = 1, . . . ,m2.

Because SE(n) contains SO(n) and Rn as Lie subgroups, the system in (14) can be decomposed

into two subsystems on SO(n) and Rn, given by

Ẋ(t) =
[ m1∑
s=1

us(t)Ωisjs

]
X(t), X(0) = I, (15)

ẋ(t) =
[ m1∑
s=1

us(t)Ωisjs

]
x(t) +

m2∑
l=1

vl(t)ekl , x(0) = 0, (16)

representing the rotational and translational dynamics of the system, respectively. This decom-

position enables a tractable way to understand controllability of the system in (14).

Theorem 4. A system defined on SE(n) as in (14) is controllable if and only if its rotational

component in (15) and translational component in (16) are simultaneously controllable on SO(n)

and Rn, respectively.

Proof. (Necessity): Geometrically, SE(n) is trivially diffeomorphic to Rn × SO(n) through
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the identity map (x,X) 7→ (x,X). Therefore, if the system in (14) is controllable on SE(n),

then the direct product of the controllable submanifolds of its subsystems in (16) and (15) must

be Rn × SO(n), and hence, the systems in (15) and (16) are controllable on SO(n) and Rn,

respectively.

(Sufficiency): Given any XF ∈ SO(n) and xF ∈ Rn, it suffices to show that there exist

piecewise constant control inputs u1, . . . , um1 , v1, . . . , vm2 that simultaneously steer the systems

in (15) from I to XF and (16) from 0 to xF .

At first, we claim that m2 ≥ 1 must hold if the system in (16) is controllable on Rn. Otherwise,

the system reduces to

ẋ(t) =
[ m1∑
s=1

us(t)Ωisjs

]
x(t), (17)

which describes the dynamics of the system in (15) on SO(n) acting on Rn. However, the

homogeneous spaces of the Lie group action of SO(n) on Rn are spheres centered at the origin

[27]. Consequently, the controllable submanifold of the system in (17) must be contained in a

sphere, which contradicts the controllability of the system on Rn.

Now, let Sn−1
‖xF ‖ denote the sphere centered at the origin with radius ‖xF‖, where ‖·‖ denotes the

Euclidean norm on Rn, and V be the subspace of Rn spanned by ek1 , . . . , ekm2
, then V ∩Sn−1

‖xF ‖ 6=

∅ holds. Pick a point z ∈ V ∩ Sn−1
‖xF ‖, because SO(n) acts on Sn−1

‖xF ‖ transitively [27], there exists

A ∈ SO(n) such that xF = Az.

In the following, we will develop a control strategy to simultaneously steer the system in (15)

from I to XF and the system in (16) from 0 to xF in three steps. First, because the system in

(15) is controllable on SO(n), the control inputs u1, . . . , um1 can be appropriately designed to

steer the system from I to A−1XF , and simultaneously, the system in (16) stays at the origin

by setting v1 = · · · = vm2 = 0. Then, we set u1 = · · · = um1 = 0 and apply v1, . . . , vm2 to steer

the system in (16) from the origin to z. In this step, the rotational component in (15) stays at

A−1XF . At last, u1, . . . , um2 can be turned on again to steer the system in (15) from A−1XF to

XF . Since xF = Az, the translational component in (16) will be simultaneously steered to xF

from z, which also completes the proof. �

The proof of Theorem 4 indeed provides a systematic control design procedure to simultane-

ously steer the systems in (15) and (16) between desired states, which concludes controllability

of the system in (14). Alternatively, the proof can also be carried out algebraically by computing
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the Lie algebras generated by the control vector fields of these systems. Furthermore, notice

that the translational component in (16) also involves the rotational dynamics through the SO(n)

action on Rn, therefore, it is possible to completely determine controllability of the system in

(14) on SE(n) solely by its translational component in (16) on Rn.

Corollary 2. A system on SE(n) as in (14) is controllable if and only if its translational

component in (16) is controllable on Rn and remains controllable on Sn−1 if x(0) ∈ Sn−1

and vl = 0 for all l = 1, . . . ,m2, where Sn−1 denotes the (n − 1)-dimensional unit sphere

centered at the origin.

Proof. We have shown in the proof of Theorem 4 that if v1 = · · · = vm2 = 0, then the

rotational component in (16) reduces to a system induced by the action of SO(n) on Rn. The

conclusion then follows from the fact that this Lie group action is transitive on Sn−1 [27]. �

The above analyses for a single system defined on SE(n) offer the basics for us to move on

to the ensemble case in the next section.

C. Ensemble controllability of systems on SE(n)

In this section, we will investigate controllability of an ensemble of bilinear systems defined

on SE(n). In particular, we focus on the ensemble of the form,

d

dt

 X(t, β) x(t, β)

0 1

 =

m1∑
s=1

us(t)

 βsΩisjs 0

0 0

 X(t, β) x(t, β)

0 1


+

m2∑
l=1

vl(t)

 0 ekl

0 0

 X(t, β) x(t, β)

0 1

 , X(0, β) = I, x(0, β) = 0, (18)

where β = (β1, . . . , βm1) is the parameter vector varying on a compact set K ⊂ Hm1 , Ωisjs ∈ B

is a standard basis element of so(n) for each s = 1, . . . ,m1, and ekl is the kl-th standard

basis vector of Rn for each l = 1, . . . ,m2. Analogous to the case of a single bilinear system

defined on SE(n) discussed in the previous section, the ensemble system in (18) also admits a

decomposition into its rotational and translational components as follows,

d

dt
X(t, β) =

[ m1∑
s=1

βsus(t)Ωisjs

]
X(t, β), X(0, β) = I, (19)

d

dt
x(t, β) =

[ m1∑
s=1

βsus(t)Ωisjs

]
x(t, β) +

m2∑
l=1

vl(t)ekl , x(0, β) = 0, (20)
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which in turn leads to a characterization of ensemble controllability of the system in (18) in

terms of ensemble controllability of its rotational and translational components in (19) and (20),

respectively.

Theorem 5. An ensemble of systems as in (18) is ensemble controllable on C(K, SE(n)) if

and only if its rotational component in (19) and translational component in (20) are ensemble

controllable on C(K, SO(n)) and C(K,Rn), respectively.

Proof. The proof is based on the development of a control strategy that simultaneously steers

the ensemble systems in (19) and (20) between the respective desired states, which follows the

same proof as for Theorem 4. Alternatively, we can also adopt the covering method by acting

the cover U = {Llij : l = 1, . . . , n−2, 1 ≤ i < j ≤ n} of C(K, so(n)) constructed in Theorem 2

on Rn. Consequently, U ∪{ek1 , . . . , ekm2
} forms a cover of C(K,Rn), treated as the Lie algebra

of the Lie group C(K,Rn). Then, the rest of the proof follows that of Theorem 2. �

In Theorem 2, we proved the remarkable result that an ensemble system on C(K, SO(n))

is ensemble controllable if and only if each individual system in this ensemble is controllable

on SO(n). By using the decomposition in (19) and (20), this equivalence between ensemble

controllability and classical controllability can be extended to ensemble systems defined on

C(K, SE(n)).

Corollary 3. The system in (18) is ensemble controllable on C(K, SE(n)) if and only if each

individual system in this ensemble is controllable on SE(n).

Proof. To facilitate the proof, we define the notations F1 = {Ωi1j1 , . . . ,Ωim1jm1
}, F2 =

{Ωi1j1x, . . . ,Ωim1jm1
x, ek1 , . . . , ekm2

}, G1 = {β1Ωi1j1 , . . . , βm1Ωim1jm1
}, and G2 = {β1Ωi1j1x, . . . , βm1Ωim1jm1

x, ek1 , . . . , ekm2
}.

The necessity is obvious, so it remains to prove the sufficiency. Assume that each system with

a fixed β ∈ K in the ensemble (18) is controllable on SE(n), then by Theorem 4, any individual

system in the ensemble (19) or (20) is also controllable on SO(n) or Rn, respectively. Hence,

the ensemble system in (19) is ensemble controllable on C(K, SO(n)) by Theorem 2. Then,

Theorem 5 implies that it suffices to prove ensemble controllability of the system in (20) on

C(K,Rn) = C(K,R)⊗ Rn, which is equivalent to showing f(β)ek ∈ Lie(G2) for any standard

basis element ek ∈ Rn and f ∈ C(K,R) by Remark 1.

Because each individual system in the ensemble (20) is controllable on Rn, there exists Ωij ∈

F1 and el ∈ F2 such that [Ωijx, el] = ek. Furthermore, ensemble controllability of the system
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in (19) guarantees f(β)Ωij ∈ Lie(G1), which then gives [f(β)Ωijx, el] = f(β)ek, i.e., f(β)ek ∈

Lie(G2). Therefore, the ensemble system in (20) is ensemble controllable on C(K,Rn). �

As a consequence of Theorem 5 and Corollary 3, the equivalence between ensemble control-

lability and classical controllability also holds for the translational component of the ensemble

system as in (20). This in turn gives rise to a characterization of ensemble controllability of

systems on C(K, SE(n)) solely by their translational components.

Corollary 4. The system in (18) is ensemble controllable on C(K, SE(n)) if and only if its

translational component in (20) is ensemble controllable on C(K,Rn), and remains ensemble

controllable on C(K, Sn−1) if x(0, ·) ∈ C(K, Sn−1) and vl = 0 for all l = 1, . . . ,m2.

Proof. The proof directly follows from Theorem 5 and Corollaries 2 and 3. �

Notice that the proof of Corollary 3 relies on ensemble controllability of systems evolv-

ing on C(K, SO(n)). Because all the results regarding ensemble controllability of systems on

C(K, SO(n)) established in Section IV-C concerned the cases of n ≥ 3, they do not apply to

systems defined on C(K, SE(2)).

Remark 4. An ensemble of systems on SE(2) in the form of (18) admits a decomposition,

d

dt
X(t, β) = βu(t)

 0 −1

1 0

X(t, β), X(0, β) = I, (21)

d

dt
x(t, β) = βu(t)

 0 −1

1 0

x(t, β) +

 1

0

 v(t), x(0, β) = 0, (22)

where X(t, ·) ∈ C(K, SO(2)) and x(t, ·) ∈ C(K,R2) for each t ≥ 0, and β ∈ K ⊂ H with K

compact. According to Remark 2, the rotational component in (21) is not ensemble controllable

on C(K, SO(2)), or, equivalently, the translational component in (22) is not ensemble controllable

on C(K, S1) for v(t) = 0 and x(0, ·) ∈ C(K, S1). This implies uncontrollability of this ensemble

on C(K, SE(2)) by Theorem 5. However, this does not hinder controllability of the translational

component in (22) on C(K,R2). In particular, let u(t) = 1 be a constant control input, then

the ensemble system in (21) becomes a linear ensemble system with linear parameter variation,

studied in our previous work [32]. Because the system matrix A(β) = β

 0 −1

1 0

 has disjoint

spectra i.e., the images of the two eigenvalue functions, λ1(β) = iβ and λ1(β) = −iβ, are
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disjoint, this ensemble system representing the translational component is ensemble controllable

[32].

Remark 5. In our previous work on linear ensemble systems, the equivalence between ensemble

controllability and classical controllability requires disjoint spectrum among the system matrices

of individual systems [35]. However, for bilinear ensemble systems, the equivalence revealed by

utilizing the covering method holds naturally due to their algebraic structure. This finding also

indicates that bilinear ensemble systems are easier to be ensemble controllable than linear

ensemble systems, which is owing to the nonlinearity in bilinear systems.

VI. CONCLUSION

In this paper, we propose a unified framework for analyzing ensemble controllability of bilinear

ensemble systems defined on semisimple Lie groups. Our main contribution is to develop the

covering method that leverages the covering of the state-space Lie group of an ensemble system

by its Lie subgroups to enable the controllability analysis of an ensemble through its ensemble

subsystems. Exploiting this method, we establish the equivalence between ensemble and classical

controllability. This nontrivial property not only reduces the analysis of infinite-dimensional

ensemble systems to finite-dimensional single systems, but also empowers the utilization of

controllability conditions developed for classical bilinear systems for examining ensemble con-

trollability for bilinear ensemble systems, for example, the LARC and the symmetric group-

theoretic controllability conditions in terms of permutation orbits developed in our recent works

[46, 47]. Moreover, this equivalence property holds for bilinear ensembles in which the individual

systems are defined on non-compact Lie groups, in particular those induced by Lie group actions

on vector spaces. This work broadens our understanding of ensemble control systems and opens

the door for systematic investigation of fundamental properties of nonlinear ensemble systems.
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