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Abstract

Oscillators have two main limitations: their synchronization properties are limited (i.e they
have a finite synchronization region) and they have no memory of past interactions (i.e. they
return to their intrinsic frequency whenever the entraining signal disappears). We previously
proposed a general mechanism to transform an oscillator into an adaptive frequency oscillator
which adapts its parameters to learn the frequency of any input signal. The synchronization
region then becomes infinite and the oscillator retains the entrainment frequency when the driving
signal disappears. While this mechanism has been successfully used in various applications, such
as robot control or observer design for active prosthesis, a formal understanding of its properties
is still missing. In this paper, we study the adaptation mechanism in the case of strongly coupled
phase oscillators and show that non-trivial slow-fast dynamics is at the origin of the adaptation.
We show the existence of a layered structure of stable and unstable invariant slow manifolds and
demonstrate how the input signal forces the dynamics to jump between these manifolds at regular
intervals, leading to exponential convergence of the frequency adaptation. We extend the idea to
a network of oscillators with amplitude adaptation and show that the slow invariant manifolds
structure persists. Numerical simulations validate our analysis and extend the discussion to more
complex cases.

1 Introduction

Oscillators are used increasingly in science and engineering, either for modeling or design purposes.
They are well suited for applications that involve synchronization with periodic signals. However,
since they traditionally have a fixed intrinsic frequency, two main limitations arise. First their
synchronization properties are limited in the sense that they can synchronize only with signals
with close enough frequencies, i.e. they have a finite synchronization region. Second, they have no
memory of past interactions, i.e. if the entrainment signal disappears they return to their original
frequency of oscillations.

Consequently when one wants to design systems that have unlimited synchronization capabilities
and/or where past interactions (i.e. memory) plays an important role, these models are not well
adapted. Some biological oscillators appear to have a mechanism to adapt their intrinsic frequencies,
for example to explain the synchronization phenomena of some species of fireflies [12] or to explain
how the neural pattern generators that control the locomotion of animals can adapt to a body that
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changes dramatically in size during the development of the animal [16]. In engineering applications,
it can be beneficial to have systems capable to synchronize to unknown, noisy and potentially
time-varying periodic inputs without the need to consider synchronization regions. For example,
to ensure a controller automatically adapts to the gait-dependent resonant frequencies of a robot
[9]). Finally, dynamical systems memorizing frequencies of past interactions afford a simple form of
learning.

In [8, 25], we proposed a general mechanism to transform a nonlinear oscillator into an adaptive
frequency oscillator, i.e. an oscillator that can adapt its parameters to learn the frequency of an
arbitrary periodic input signal. This mechanism was used, for example, to transform Hopf, Van der
Pol, Rayleigh and Fitzugh-Nagumo oscillators and also the Rössler strange attractor into adaptive
frequency systems [25]. This effect goes beyond mere synchronization as it works for ranges of
frequencies beyond usual synchronization regions (infinite range in the case of phase oscillators)
and the adapted frequency remains even when the input signal disappears. Moreover, the oscillator
can track changes in the frequency of the input. This approach has been used in several robotic,
control and estimation applications over the past decade but has never been formally studied apart
for the weak coupling case.

In this paper, we study the prototypical case of an adaptive frequency phase oscillator with
strong coupling

φ̇ = λω −K sinφF (t) (1)

ω̇ = −K sinφF (t) (2)

where φ is the phase of the oscillator, ω its frequency, λ > 0 a constant parameter and K > 0 the
coupling strength. This system adapts its frequency to the frequency of the external input F (t).
After adaptation, the frequency of the input signal can explicitly be read out from ω, i.e. the system
can extract the frequency of a periodic input signal without assumptions on F (t) or the need of an
explicit Fourier transform.

1.1 Previous results for weak coupling

We previously proved the convergence of ω to one of the frequency component of a periodic input
F (t) for small coupling K � 1 [25]. Through perturbation analysis we showed that frequency
adaptation was taking place at the second order perturbation, thus emphasizing the importance
of the interaction between the tendency of the oscillator to synchronize and the dynamics of ω,
both having an evolution on two different time-scales. In particular, we showed that for F (t) =∑∞

n=−∞AneinωF t, the frequency adaptation behaved locally as

ω(t) = ω0 +KP (t) +K2Dω(t) +O(K3) (3)

Dω(t) =

(
−A0

2ω0
+
∑

n∈N∗

|An|2ω0

((nωF )2 − ω2
0)

)
(t− t0) (4)

where P (t) is periodic with 0 mean, ω0 and t0 are the initial conditions of the system. This
shows that ω(t) at second order has a linear drift towards one of the frequency component nωF of
F (t), depending on the initial frequency of the oscillator. The results also provide an approximate
characterization of the different basins of attraction (separated by the roots of Dω) for different
frequencies.

While this analysis accurately describes the behavior of the system for weak coupling, it com-
pletely fails to capture the dynamics of the system for strong coupling which is the desirable mode
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of operation in real applications. Numerical simulations suggest that frequency adaptation persists
for strong coupling K � 1 and after convergence, the frequency parameter oscillates around the
correct frequency value with an amplitude bounded when K →∞. However, a rigorous analysis of
the strong coupling case is still lacking.

1.2 Networks of adaptive frequency oscillators

In [11] we numerically studied the behavior of a large number of such adaptive phase frequency
oscillators coupled via a negative mean field. Numerical evidence showed that it was possible to
very well extract the frequency spectrum of arbitrary signals in real-time, ranging from signals with
discrete spectra to ones with time-varying and continuous spectra. One interesting observation
was that for time-varying spectra, the ability of the oscillators to follow time-varying frequencies
resembles a first order linear system with cutoff frequency at 1 rad · s−2. It means that frequency
change can be tracked well up to rates of change of 1 rad · s−2. In this contribution we provide a
rigorous explanation to this phenomenon. This network of oscillators has been extended by adding
an adaptive weight to each oscillator in the mean field sum [23]. The oscillator can then also adapt
its amplitude to match the energy content of a specific frequency component of an input signal.
This idea has been used, for example, to construct controllers that coordinate the joints of a legged
robot during walking [23].

1.3 Applications to control and estimation

Adaptive frequency oscillators have found numerous applications in control and estimation appli-
cations, especially robotics. In adaptive control, they were used to automatically tune a controller
to the resonant frequency of a legged robot via a simple feedback loop [9, 7, 8, 10]. In that case,
the efficiency of the robot locomotion is automatically optimized and any change in the natural
dynamics is tracked by the adaptive frequency oscillator without external intervention, which is
especially useful when the robot changes gait. Recently, the mechanism was used for the design of
locomotion controllers that can quickly react to environmental changes [19]. These oscillators have
also been used to estimate the temporal derivatives of periodic signals with no delay [27]. This type
of estimation is part of the control system of an exoskeleton used in a robot-assisted rehabilitation
context [28]. An electronic implementation of adaptive frequency oscillators was also proposed in
[4].

Networks of such oscillators were used to construct limit cycles in the context of robot learning
from demonstration and robot control, where coupling between the oscillators was added to ensure
stability when sensory feedback is added. Such a network was originally used to learn a complex
motion pattern from demonstrations and generate a controller capable of modulating online those
patterns through feedback. It was applied to the control of bipedal locomotion in [23, 24]. The
idea was extended to learn and robustly generate other types of periodic movements for robots with
arms and legs [14, 15, 22].

These and other applications using the adaptive frequency mechanism described above require a
precise understanding of the properties and limits of the mechanism. This is particularly important
for applications involving humans in the loop and safety-critical components. However, a formal
analysis of this mechanism is still missing for strong coupling strengths, which is the most interesting
mode of operation.
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1.4 Related work

Oscillators that can adapt their frequency are not novel. In [12], a model for frequency adaptation
of oscillators was proposed to model the synchronization behavior observed in fireflies. In [5, 6], a
network of second order phase oscillators were used to model novelty detection. In [20], a second
order phase oscillator was proposed to adapt the frequency of walking movement generation to the
measured natural frequency of a biped robot and synchronize stepping.

Frequency adaptation has also been studied in networks of second-order phase oscillators, or
oscillators with ”inertial” effects, in Kuramoto-like models [2, 3, 29, 30]. More general networks of
adaptive dynamical systems, akin to the mechanism we proposed, have also been studied in [26],
but with the use of dissipative coupling.

All of the models of frequency adaptation describe above assume that each oscillator has an
explicit representation of either the phase of other oscillators, or the input signal’s period or fre-
quency. This is in contrast to the model we study, which makes no assumption on the nature of the
input signal F (t). This is particularly important for the robotic, control and estimation applications
described above where exact properties of the input signals are not known in advance and typically
change over time.

Closer to the model we study, [21] proposed a model of frequency adaptation for network of
coupled phase oscillators that does not need knowledge of the input signal frequency or phase.
However, the model necessitates the computation of time averages in the network limiting the ease
of applicability of the approach.

1.5 Contributions of the paper

The need for a formal understanding of the frequency adaptation mechanism to support its safe
deployment in robotic, control and estimation applications is the main motivation for this paper.
We provides a complete description of the frequency adaptation mechanism for the strongly coupled
phase oscillator model eqs. (1) and (2). Through geometric perturbation theory, we show that a
slow-fast dynamics is responsible for exponential frequency adaptation and that the oscillator can
extract frequency components of any periodic signal. We derive a map summarizing the slow-fast
dynamics, which accurately describe the frequency adaptation mechanism for complex input signals.
Further we show how the convergence rate can be controlled and the associated trade-offs in terms of
convergence accuracy. Finally, we extends the analysis to networks of coupled oscillators augmented
with amplitude adaptation. We provide a geometric characterization of the slow-fast dynamics and
numerically investigate the behavior for complex input signals. 1

2 Geometric structure of frequency adaptation

In this section, we derive results for the strong coupling case using the adaptive frequency phase
oscillator

φ̇ = λω −K sin(φ)F (t) (5)

ω̇ = −K sin(φ)F (t) (6)

where we introduce the parameter λ > 0, a term enabling the explicit control of the frequency
adaptation convergence rate (as we will prove below). Note that the frequency of the oscillator is
λω. F (t) is a time varying input signal which we assume to be C∞.

1The software used for the numerical simulations of this article is available as open source in [1]
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We rewrite the problem as a singular perturbation problem that can be tackled by geometric
singular perturbation theory [13, 18]. By setting K = 1

ε (where ε � 1) and making the system
autonomous, we obtain

εφ̇ = ελω − sin(φ)F (θ) (7)

εω̇ = − sin(φ)F (θ) (8)

θ̇ = 1 (9)

We study the dynamics, first by characterising slow locally invariant manifolds, then by analyzing
the fast dynamics and finally by deriving discrete maps describing the average dynamics.

2.1 Slow dynamics and invariant slow manifolds

We first aim to characterize invariant slow manifolds using Fenichel theorem [13]. A central hypoth-
esis to apply this theorem is that the critical manifold, i.e. the fixed points to eqs. (7) and (8), be
normally hyperbolic. This is equivalent to requiring that the linearization of the dynamics at each
point on the manifold has as many 0 eigenvalues as there are slow variables [18]. The Jacobian of
the dynamics has two 0 eigenvalues and so any invariant slow manifold cannot be hyperbolic. The
situation can be changed though the change of coordinates Ω = φ− ω to get

εω̇ = − sin(Ω + ω)F (θ) (10)

Ω̇ = λω (11)

θ̇ = 1 (12)

which is equivalent to the following fast system

ω
′

= − sin(Ω + ω)F (θ) (13)

Ω
′

= ελω (14)

θ
′

= ε (15)

where we re-scaled time as t = ετ and ′ = d
dτ .

We can now characterize the invariant slow manifolds and provide a first order approximation
of the flow on these manifolds. The main result is summarized in the following theorem.

Theorem 1 For ε sufficiently small, there exist infinitely many slow locally invariant manifolds for
the flow eqs. (10) to (12). They consist of simply connected, compact subsets of R3 such that

ω = (kπ − Ω)

(
1 +

ε(−1)kλ

F (θ)

)
+O(ε2), F (θ) 6= 0, k ∈ Z (16)

The manifolds are attracting when (−1)k+1F (θ) < 0 and repelling otherwise. The slow flow on these
manifolds is

ω = −Ω(0)e−λt +O(ε) (17)

Ω = kπ + Ω(0)e−λt +O(ε) (18)

θ = t (19)
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Proof. First we compute the critical manifolds when ε = 0. They will be such that − sin(Ω +
ω)F (θ) = 0. We can consider two cases, either Ω + ω = kπ, k ∈ Z or F (θ) = 0. The Jacobian of
the fast ODE at ε = 0 is

J =



− cos(Ω + ω)F (θ) − cos(Ω + ω)F (θ) − sin(Ω + ω)∂F (θ)

∂θ
0 0 0
0 0 0




which taken at F (θ) = 0 has three zero eigenvalues so the corresponding critical manifold is not be
hyperbolic. Taken at Ω+ω = kπ, the Jacobian has eigenvalues 0, 0 and (−1)k+1F (θ) with respective
eigenvectors 


−1
1
0






0
0
1






1
0
0




so the direction transverse to the critical manifolds has a non-zero eigenvalue as long as F (θ) 6= 0
and therefore the critical manifolds are hyperbolic. The sign of (−1)k+1F (θ) defines the attracting
or repelling nature of the slow invariant manifolds. These manifolds consist of any simply-connected,
compact subsets of R3 such that

M0 ⊂ {(ω,Ω, θ)|ω + Ω = kπ, F (θ) 6= 0, k ∈ Z} (20)

We can invoke Fenichel theorem [13, 18] as the vector field is C∞ and the critical manifold is normally
hyperbolic. We then conclude that for each manifold of type M0 and for ε sufficiently small, there
exists a manifold Mε that lies within O(ε) of M0, that is diffeomorphic to M0 and locally invariant
to the flow of Equations eq. (10)-eq. (12). The ε perturbation preserves the attracting/repelling
property of the manifold.

Using the characterization of the critical manifolds and the fast variable equation,

εω̇(Ω, θ, ε) = − sin(Ω + ω(Ω, θ, ε))F (θ) (21)

we can write ω as a perturbation series in ε and match orders. Using at first order ω0 = kπ − Ω,
direct computations show that

ω = (kπ − Ω)

(
1 +

ε(−1)kλ

F (θ)

)
+O(ε2) (22)

The slow flow on these manifolds can be written

Ω̇ = λ(kπ − Ω) +O(ε) (23)

which is linear at first order and therefore Ω(t) = kπ + Ω(0)e−λt + O(ε) on the manifold. Since
Ω + ω = kπ +O(ε) we also have ω(t) = −Ω(0)e−λt +O(ε), which finishes the proof.

We have characterized the locally invariant slow manifolds of the system. In the (ω,Ω) direction
there is an alternation of attracting and repelling manifolds. In the θ direction, attracting and
repelling invariant manifolds are separated by F (θ) = 0. Therefore, each time F (θ) changes sign,
the flow in the neighborhood of an attracting manifold moves into the neighborhood of a repelling
one and vice versa.

The O(ε) approximation of the slow manifold is important to understand where the flow exits
an attracting manifold, with respect to a neighboring repelling manifold. Indeed, eq. (16) shows
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Figure 1: O(ε) approximation of the slow invariant manifolds (repelling manifolds with dashed red
lines and attracting ones with plain blue lines) as defined by eq. (16). The left graph shows a plot of
ω as a function of F (θ) and Ω for k = {0, 1, · · · , 10}, ε = 10−4 and λ = 1. We notice the alternation
of repelling and attracting manifolds separated by F (θ) = 0. The right graph shows a 2D cut of the
left graph for Ω = 1. On this graph we can see that in a neighborhood of F (θ) = 0 the attracting
manifolds rapidly curve away from ω = 0 while the repelling ones curve towards it. This structure
is important to understand how the flow of ω moves between attracting manifolds away from ω = 0
(e.g. when exiting a slow manifold when F (θ) changes sign, the flow is above the repelling manifold
when ω > 0 and the fast flow will then converge to the attracting manifold on top of the repelling
one).

that for fixed k on an attracting manifold we have |ω| > |kπ − Ω| and on a repelling manifold
|ω| < |kπ − Ω|. Therefore, for a given k and for F (θ) small, any pair of associated attracting and
repelling manifolds are on top of each other with always the same relative position as long as kπ−Ω
does not change sign. When F (θ) changes sign, the flow on an attracting manifold is now in a
neighborhood of a repelling one and its position relative to the repelling one is always the same.
fig. 1 illustrates this interleaved structure.

A singular orbit on the critical manifolds is such that ω converges exponentially fast to 0 with
convergence rate λ while Ω displays the same kind of convergence towards kπ. Moreover, on the
critical manifolds the original system eq. (5)-eq. (6) is such that φ = kπ + O(ε), i.e. the slow
dynamics is such that the phase of the oscillator is close to a constant.

2.2 Fast dynamics

The critical orbits of the fast dynamics are the solutions of

ω′ = − sin(Ω + ω)F (θ) (24)

Ω′ = 0 (25)

θ′ = 0 (26)

The fixed points of the fast dynamics correspond to the critical manifolds M0, i.e. points of the
form Ω + ω = kπ. Such a fixed point is stable if the corresponding critical manifold is attracting,
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and unstable otherwise. We conclude that a critical orbit will then flow from the neighborhood of
a repelling manifold to an attracting manifold. Due to the time reparametrization, the time scale
associated with the fast dynamics is controlled by the coupling constant ε, meaning that the time
taken to converge to an attracting manifold is shorter as ε decreases. For the critical orbits, we
assume that this happens instantaneously compared to the slow dynamics.

If the system starts in the neighborhood of a repelling manifold, the fast event makes it converge
towards an attracting manifold with a net variation of ω+Ω of ±π. Because of the relative positions
of the manifolds (cf. fig. 1), when F (θ) changes sign the flow in a neighborhood of an attracting
manifold moves to a neighborhood of a repelling one such that ω + Ω changes away from 0. For
example, in the case presented in fig. 1 (right graph), ω + Ω will increase by π when ω > 0 and
decrease by π otherwise. In the coordinates of the original system eqs. (5) and (6), it means that
the phase φ will quickly change by ±π.

2.3 Convergence for periodic inputs

Thus far we characterized the singular orbits of the slow and fast dynamics separately. We now piece
these singular orbits together to explain how the succession of slow-fast events leads to an adaptive
frequency mechanism. When F (t) is periodic, the slow flow exits periodically the locally invariant
manifold (i.e. each time F (θ) changes sign). On or near an attracting manifold, the critical slow
flow is such that ω converges exponentially fast to 0 and close to a repelling invariant manifold, the
critical fast orbit is such that ω increases by π.

2.3.1 The case F (t) = cos(ωF t)

In the case of a simple periodic input F (t) = cos(ωF t), after one slow-fast event ω changes as

ω+
n+1 = ω+

n e
− λπ
ωF + π (27)

where the duration of the slow event is assumed to be t = π
ωF

, i.e. half of a period of the input.
As we consider the critical orbits (ε = 0), we assume that the fast change of ω is instantaneous.
Similarly, the total change for ω after a succession of a fast and then a slow event is

ω−n+1 = (π + ω−n )e
− λπ
ωF (28)

Both difference equations are linear and have only one globally stable fixed point

ω̄+ =
π

1− e
− λπ
ωF

ω̄− =
π

e
λπ
ωF − 1

(29)

Lemma 2.1 The fixed points ω̄+ and ω̄− are globally asymptotically stable and are such that ωF <
λω̄+ < ωF + λπ and ωF − λπ < λω̄− < ωF . Moreover, if λπ

2ωF
� 1 (i.e. we assume a separation of

time scales such that F (t) changes sign at a faster rate than the decay rate on the slow manifold),

the average ω̃ = ω̄++ω̄−

2 is

λω̃ ' ωF +O(
λπ

2ωF
) (30)

Proof. Globally stability is direct since we have linear maps with a contracting coefficient

e
− λπ
ωF < 1. By using the fact that x+ 1 < ex < 1

1−x when x < 1 we find that ωF < λω̄+ < ωF + λπ.
This directly leads to ωF − λπ < λω̄− < ωF . We have

ω̃ =
ω̄+ + ω̄−

2
=
π

2
coth(

λπ

2ωF
) (31)

8



Assuming that λπ
2ωF
� 1, the series expansion of coth leads at first order to λω̃ = ωF +O( λπ

2ωF
)

It is remarkable that this succession of slow-fast events leads to an exponential convergence of
λω to a neighborhood of ωF , when there is a clear separation of time scale between the frequency
of the input F (t) and the convergence rate λ. Indeed, the system does not have explicit access to
ωF and it is really the timing of these events due to the zero-crossing of the input that induces
convergence to the frequency of the input. After convergence, ω oscillates at a frequency of 2ωF
which is the frequency at which F (t) changes sign. The amplitude of oscillation for ω is π which
is the amount of change during a fast event (i.e. ω̄+ − ω̄− = π). Therefore, the precision at which
we can recover ωF from ω depends on the choice of the convergence rate λ and the bounds for
the precision are of the form λπ. Since each step in the difference equations corresponds to the
evolution of ω for a time t = π

ωF
, the average convergence of ω will be of the form

ω(t) ' (ω − ω̃)e−λt + ω̃ (32)

Figure 2 shows a typical evolution of the adaptive frequency oscillator with simple periodic input.
The figure also shows the very good correspondence of the predicted bounds ω+

n and ω−n (eqs. (27)
and (28)) derived from the critical orbits with the real evolution of ω, as well the average exponential
convergence eq. (32). In particular we see that λω̃ = 100.008 is very close to ωF . We note also
that the continuous exponential convergence prediction, eq. (32), gives a good approximation of the
average dynamics.

2.3.2 General periodic functions

We can use a similar analysis for more general functions. Indeed, we can predict ω after one slow-fast
event (i.e. one zero-crossing of an arbitrary F (t)) with the discrete maps

ω+
n+1 = ω+

n e−λ∆ti + π (33)

ω−n+1 = (π + ω+
n )e−λ∆ti (34)

where ∆ti is the time between two zero crossings of F (t).
Without loss of generality, let’s assume a periodic function F (t) of period 2π

ωF
such that F (t =

0) = 0. Let’s denote ti, i = 1 · · ·N the instants for which the function is zero during one period (i.e.
ti > 0 and tN = 2π

ωF
). Combining the N slow-fast events described by the maps eqs. (33) and (34),

we can write two discrete linear maps of the evolution of ω after N slow-fast events, i.e. a complete
period of the input

ω̂+
n+1 = ω̂+

n e
−λ 2π

ωF + πe
−λ 2π

ωF

N∑

i=1

eλti (35)

ω̂−n+1 = ω̂−n e
−λ 2π

ωF + πe
−λ 2π

ωF

(
1 +

N−1∑

i=1

eλti

)
(36)

whose respective unique exponentially stable fixed points are

ω̄+ =
π

e
λ 2π
ωF − 1

N∑

i=1

eλti (37)

ω̄− =
π

e
λ 2π
ωF − 1

(
1 +

N−1∑

i=1

eλti

)
(38)
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Figure 2: Time evolution of the adaptive frequency oscillator for F (t) = cos(ωF t), where λ = 1,
K = 107, ωF = 100. The upper graph shows the evolution of φ(t) (blue line) and the prediction
φ+
n (red cross) and φ−n (green cross). In the zoomed plots, the vertical dashed lines correspond to
F (t) = 0. The lower graph shows the evolution of ω(t) (blue line), the predictions ω+

n (red cross) an
ω−n (green cross) as well as (ω− ω̃)e−λt + ω̃ (dashed line). In the zoomed plots, the vertical dashed
lines correspond to F (t) = 0. In addition, the right zoomed plot shows ω̃ = 100.008 (dashed-dotted
line).
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As for the case of a simple cosine, we notice the exponential convergence towards the fixed points
with rate controlled by λ. As before, we have ω̄+ − ω̄− = π. Note that these maps describe the
evolution of ω over a complete period of F (t), including several slow-fast events and that the actual
dynamics of ω is not necessarily bounded between these two maps. The maps describing one slow-
fast event eqs. (33) and (34) need to be used instead if one needs to compute bounds on ω. The
maps ω̂+

n and ω̂−n however enable to derive the following result.

Lemma 2.2 The average ω̃ = ω̄++ω̄−

2 is such that

lim
λ→0

λω̃ = ωF
N

2
(39)

where N is the number of times the input signal changes sign over one period.

Proof. The average is

ω̃ =
ω̄+ + ω̄−

2
=

π

2(e
λ 2π
ωF − 1)

(
1 + e

λ 2π
ωF + 2

N−1∑

i=1

eλti

)
(40)

The rest of the proof follows from L’Hôpital’s rule.

In Section 2.3 we saw that λ was a term that not only controlled the convergence rate but also
the precision at which ωF could be recovered. λ → 0 can be interpreted as the limit for the best
recovery of the input frequency. If F (t) is periodic and continuous then N is even as long as the
zeros of F (t) are not one of its extrema. Therefore, when λ→ 0, the adaptive frequency oscillator
will converge to an integer multiple of the fundamental frequency depending on the number of zeros
of F (t).

To illustrate this result, we simulate the system with the periodic input F (t) = 1.3 cos(30t
+0.4) + cos(60t) + 1.4 cos(90t+ 1.3) which has 4 zeros. Our lemma predicts that ω should converge
in a neighborhood of 60 (and not towards the frequency of the input which is 30). Figure 3 shows
the results of the simulation, which confirms the prediction. Simulation results also show that every
slow fast event can be accurately predicted using the discrete maps eqs. (33) and (34), suggesting
that the description of the dynamics using the critical orbits is sufficient to capture the main features
of the dynamical behavior of the system.

2.3.3 Strictly positive inputs

The frequency adaptation mechanism relies on the interaction between slow and fast dynamics and
it is driven by the sign changes of the external input. Therefore, if F (t) is a periodic signal that
never changes sign then we expect no frequency adaptation. After a transient, the flow will be on an
attracting slow manifold and ω(t)→ 0 (i.e. the oscillator will adapt to the ”zero frequency” of the
DC bias). This is an important remark for real applications as input signals need to be processed
to ensure appropriate sign changes, for example by removing the mean value of the input.

3 Empirical evaluations with more complex inputs

Our analysis thus far only considered period signals and strong coupling. Here, we numerically
investigate the system dynamics with aperiodic and chaotic inputs, time varying frequencies and
reduced K.
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Figure 3: Time evolution of the adaptive frequency oscillator for F (t) = 1.3 cos(30t+0.4)+cos(60t)+
1.4 cos(90t + 1.3), where λ = 1, K = 106, ωF = 30. The graph shows the evolution of ω(t) (blue
line), the predictions ω+

n (red cross) an ω−n (green cross) taken from eqs. (33) and (34) as well as
(ω− ω̃)e−λt+ ω̃ (dashed line). In the zoomed plots, the vertical dashed lines correspond to F (t) = 0.
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Figure 4: Example of convergence of ω for small coupling (K = 20). The input signal is F (t) =
cos(60t), ω(0) = 90. The vertical dashed line shows the limit of the synchronization region, we
notice that convergence becomes exponential when the frequency of the oscillator enters in it.

3.1 Effect of reduced coupling

In practical applications, coupling might remain small for numerical stability reasons. We explore
whether exponential convergence remains possible. We performed simulations of a phase oscillator
coupled to a cosine input and evaluated its synchronization region (without frequency adaptation)
for a large range of K (between 1 to 103) and then the region of exponential convergence when
frequency adaptation was used. Our numerical experiments show that these two regions approxi-
mately coincide, even for small coupling (K < 10). This suggest that frequency adaptation enters
the exponential regime inside the synchronization region of the normal phase oscillator, even for
small K.

In fig. 4 we show an example of such convergence where convergence becomes exponential when
entering the synchronization region. fig. 5 shows a superposition of the regions of exponential con-
vergence and the synchronization regions for a more complex periodic input. This suggests that our
observation extends to more complex synchronization regions structures. We numerically evaluated
the behavior of the adaptive frequency phase oscillator for different types of input, different values
of coupling and initial conditions for ω. For each experiment, we evaluated the synchronization re-
gions of the oscillator for a given input without frequency adaptation together with the convergence
behavior of ω with adaptation.

The regions of exponential convergence match well the synchronization regions. It must be
noted that the numerical delimitation of the region of exponential convergence is not very precise,
due to the complex interaction between the oscillator and the several frequency components of
the input signal. This has to be taken into account to explain why the regions of exponential
convergence slightly exceeds the regions of entrainment. This observation enables to bridge the
results we previously derived for small coupling K << 1 [25] where we showed that convergence
depends on the frequency components and their associated amplitude (4) and results we derive in this
article for strong coupling. Albeit adaptation of frequency is different from mere synchronization,
our numerical results suggest that the structure of the synchronization regions is critical in the
convergence of the adapted frequency.
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Figure 5: The left graph show the input signal, F (t) = 1.3 cos(30t+0.4)+cos(60t)+1.4 cos(90t+1.3).
The right graph shows: 1) the three synchronization regions of the phase oscillator without frequency
adaptation associated to the three frequencies of the input (delimited by the dashed lines) and 2)
the regions where where exponential convergence is numerically detected for the adaptive frequency
phase oscillator (grey areas). We notice that both synchronization regions and regions of exponential
convergence approximately overlap. For moderate coupling K, ω converges to one of the three
frequency components of the input depending on its initial condition. The thick black line separate
these three regions (e.g. the bottom left region shows the initial values of ω that converge toward
30, the center region towards 60 and the bottom right region towards 90). The vertical dotted lines
represent the frequency components of the input.

3.2 Extracting frequencies from a chaotic signal

Thus far we only treated cases where the input was periodic. Here we show the behavior of the
adaptive frequency oscillator for inputs that are not periodic but possesses a localized peak in their
frequency spectrum. The oscillator can extract this frequency from the signal, a non trivial task.
Further, we show that the maps derived in the previous section accurately predict the behavior of
the system. We consider the Lorentz system in its standard chaotic regime

ẋ = 10(y − x) (41)

ẏ = x(28− z)− y (42)

ż = xy − 8

3
z (43)

and use the state variable z(t) as an input to the adaptive frequency oscillator. We center the
variable to ensure that zero crossings happen, i.e. we use F (t) = z(t) − 23 as an input to the
adaptive frequency oscillator. A Fourier transform of the signal shows a clear peak at frequency
8.42 rad · s−1. Figure 6 shows the result of the numerical simulation. The oscillator adapts ω to
the correct frequency component, i.e. it is capable of extracting the major frequency present in the
chaotic signal. Further, the computed maps accurately predict the behavior of the system. Note
here that the extraction of this frequency is not trivial as it would require performing a FFT or a
similar operation.
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Figure 6: Numerical experiments with Lorentz system. The left graph shows the time evolution of ω
when the input signal is the centered z variable of the Lorentz system (F (t) = z(t)−23), the dashed
black line shows the frequency peak of the input. The crosses show the predictions from the ω+

(red cross) and ω− (green cross) maps. In the zoomed plots, the vertical dashed lines correspond to
the zero-crossings of the input. The right graph shows z(t) (top) and the ”output” of the oscillator
cosφ.

3.3 Non-periodic inputs with discrete spectra

The behavior of the adaptive frequency oscillator when the input F (t) has a discrete spectra but is
not periodic is well defined in the small coupling case: the oscillator frequency converges to one of
the frequency component present in the input spectrum [25]. In fact, we observe similar behavior
concerning exponential convergence in synchronization regions than in the periodic case discussed
previously. However, we empirically found that after K reaches a certain value, the oscillator’s
frequency does not converge anymore. However, the discrete maps defined in eqs. (33) and (34) are
still capable to accurately predict the system behavior after each slow-fast events. As an example,
fig. 7 shows the evolution of ω compared to the prediction of each slow-fast event for such a case. We
can see that the discrete maps are able to very well predict the non-trivial, non-periodic behavior
of the system. This empirically supports the validity of our analysis for complex inputs. Our
observation also implies that for non-periodic signals, convergence depends on coupling strength,
which is not the case for periodic signals, where the system always converges to a multiple of the
signal frequency.

3.4 Tracking changing frequencies

An adaptive frequency oscillator will also be able to track a time-varying frequency. We have seen
earlier that the frequency adaptation is exponential (32) with convergence rate λ. Therefore, while
the dynamics of ω is nonlinear, its average behavior resembles that of a first-order linear low pass
filter with cutoff frequency λ rad · s−1. We assume here that the low-pass filter acts directly on
the frequency of the input signal F (t), which the system does not have explicit access to. In this
case, changing frequencies will be tracked properly only when ω̇F < λ. To support this claim, we
numerically evaluate the response of ω(t) when the input’s frequency changes periodically (i.e. we
aim to see how fast can ω adapt to an input with a time-varying frequency). We use the input
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Figure 8: Frequency response experiments. We show both the magnitude (left) and the phase delay
(right) of the response of ω(t) for λ = 1 (orange), λ = 10 (green) and λ = 0.1 (blue) when the
adaptive oscillator is subjected to an input with time-varying frequency. The time varying frequency
is ψ̇ = ωF +cos(ωCt). The frequency response is computed using the ratio of the Hilbert transforms
of ψ̇ and λω(t) in steady-state (i.e. after the transient dynamics of ω(t)).

signal F (t) = sin(ψ), with ψ = ωF t + 1
ωC

sin(ωCt) so the instantaneous frequency of the input is

ψ̇ = ωF + cos(ωCt), i.e. the frequency of the input is oscillating around ωF at frequency ωC . The
frequency response analysis aims to study the ratio and phase differences between the time series
ω(t) and ωF + cos(ωCt). This enable us to study the first order linear response of the frequency
adaptation mechanism as shown in fig. 8. We notice in the figure all the characteristics of a first order
low pass filter: amplitude reduction of -3dB and π

4 phase shift at the cutoff frequency, amplitude
reduction of 20dB per decade.

These results can also explain the frequency tracking limitations empirically observed in [11] in
the case of a pool of oscillators coupled with a negative feedback loop. It is worth noting that while
λ can be chosen arbitrarily and will lead to any desired convergence time to the input frequency,
the resulting oscillation around the desired frequency ωF will have amplitude ∆ω = λπ. Therefore,
the resolution of frequency extraction is limited by the speed at which this frequency is recovered.
This is not surprising as it is reminiscent of fundamental time-frequency resolution results in signal
processing.

4 Pool of adaptive frequency oscillators

In this section, we study the frequency adaptation mechanism in a more complex system involving
several oscillators coupled via negative feedback together with an adaptive amplitude mechanism.
Our previous work numerically investigated how a pool of adaptive frequency oscillators coupled
via a negative mean field could do frequency analysis of signals, with discrete, continuous and time-
varying spectra [11] but without any amplitude adaptation. Here, we study the method introduced
in [24] for robot control, which additionally associates to each oscillator a variable encoding the
amplitude of the corresponding oscillation. We chose this system as this idea has been used in
several robotics applications [15, 22, 23]. In these applications, a periodic pattern is learned from
demonstrations using the adaptive mechanism. The resulting stable oscillations generated by the
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system are then used as a controller (potentially adding coupling between oscillators after learning
to ensure proper phase relations). Feedback can also be included after encoding the pattern to
react to unexpected disturbances, for example to adapt walking patterns online [23], thanks to the
encoded stable limit cycle. To our knowledge the method was never studied rigorously, in the weak
or strong coupling regime, despite its use in several applications.

We show below the persistence of locally invariant slow manifolds similar to those identified
for a single oscillator (Section 2) when the feedback loop and multiple oscillators are introduced.
We also show that amplitude adaptation is mainly due to the slow dynamics. Convergence is con-
trolled through the disappearance of these slow manifolds as the amplitude gets properly adapted.
Interestingly, in the case of a single oscillator with the feedback loop, a new type of slow manifold
appears which alters the frequency adaptation mechanism as the amplitude variable is adapted.
However, hyperbolicity is not preserved when introducing multiple oscillators and it is not clear if
slow invariant manifolds of this type still exist. Numerical experiments show that a network of such
oscillators can reproduce complex input signals. While for medium coupling we observe amplitude
and frequency convergence, numerical simulations suggest that with strong coupling, convergence is
not guaranteed anymore although the system properly reproduces the input signal. This numerical
result suggest certain limitations when using networks of adaptive frequency oscillators with strong
coupling.

4.1 System description

The system consists of a set of adaptive frequency oscillators coupled together via a negative feed-
back loop. To each oscillator, we associate a new state variable αi encoding the oscillator output
amplitude. The output of the system is the sum of the outputs of the oscillators. The system is
described as

φ̇i = λωi −KF (t) sinφi (44)

ω̇i = −KF (t) sinφi (45)

α̇i = ηF (t) cosφi (46)

F (t) = I(t)−
N∑

i=1

αi cosφi (47)

where η > 0 and we assume αi = 0 at t = 0. We call output of the system the sum
∑N

i=0 αi cosφi.
I(t) is an arbitrary input signal (typically a periodic signal) assumed to be C∞. The intuition
behind the behavior of the system is as follows: each oscillator will adapt its frequency to one
frequency component of the input, and then adapt its amplitude αi until this frequency component
disappears from the error signal F (t). The remaining oscillators can then adapt their frequency to
the remaining frequency components until F (t) = 0 and the system is able to reproduce the input
completely.

Remark 1 If the input is periodic I(t) =
∑N

i=1Ai cos(Γit + γi) (where Ai, Γi and γi are real
constants), for a system with at least N oscillators, setting λωi = Γi, αi = Ai, φi = Γit + γi for
the first N oscillators and αi = 0 for the remaining ones is a solution of the system. The system’s
output perfectly reconstructs the periodic input signal and F (t) = 0 for all t.

4.2 Singular orbits for a single oscillator

First we study the singular orbits of the slow-fast system with a single oscillator to understand the
effect of feedback and amplitude adaptation. Again, we use the change of variable Ωi = φi−ωi and
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set ε = 1
K to study the singularly perturbed system

εω̇ = − sin(Ω + ω) (I(θ)− α cos(Ω + ω)) (48)

Ω̇ = λω (49)

α̇ = η cos(Ω + ω) (I(θ)− α cos(Ω + ω)) (50)

θ̇ = 1 (51)

Theorem 2 For ε sufficiently small, there exist infinitely many slow invariant manifolds for the
flow of eqs. (48) to (51). They consist of simply connected, compact subsets of R4 with one of the
following three forms

M−π,ε : ω = (kπ − Ω)(1 + ελ
(−1)kI(θ)−α) +O(ε2), α < (−1)kI(θ), k ∈ Z

M+
π,ε : ω = (kπ − Ω)(1 + ελ

(−1)kI(θ)−α) +O(ε2), α > (−1)kI(θ), k ∈ Z
MF,ε : α cos(Ω + ω) = I(θ) +O(ε), sin(Ω + ω) 6= 0, α 6= 0

Manifolds of the type M−π,ε are locally attracting and ones of the type M+
π,ε are locally repelling and

the ones of the form MF,ε are locally attracting if α > 0 and repelling otherwise.

Proof. The proof for M−π,ε and M+
π,ε follows the same reasoning than for the proof of Theorem 1

and we omit it for brevity. For MF,ε, we verify that α cos(Ω+ω) = I(θ) is a solution to eq. (48) when
ε = 0 so simply connected compact subsets satisfying this relation are candidate manifolds. The
Jacobian of the fast system on this critical manifold when ε = 0 has only one non-zero eigenvalue
−α sin2(Ω + ω) with eigenvector [1, 0, 0, 0]T so the direction transverse to the critical manifolds
has a non zero eigenvalue as long as sin(Ω + ω) 6= 0 and α 6= 0 and these critical manifolds are
hyperbolic. Fenichel’s theorem can then be invoked to prove the existence of locally invariant slow
manifolds O(ε) close to the critical ones. These manifolds are attracting when the sign of the
non-zero eigenvalue is negative (and repelling otherwise) which is defined by the sign of α.

We note M−π,0, M+
π,0 and MF,0 the critical manifolds on which we study the singular flow.

4.2.1 Critical orbits on M−π,0 and M+
π,0

Interestingly, the system with the feedback loop and amplitude adaptation still has invariant man-
ifolds M−π,ε and M+

π,ε similar to the ones seen in Section 2 with similar O(ε) shapes. However, the
feedback loop and amplitude adaptation change the conditions for exiting the manifolds. Indeed,
the input zero-crossings does not anymore trigger the fast events. Instead, the fast event is triggered
when α+ (−1)k+1I(θ) changes sign. This means that as α increases, the duration of the flow on or
close to M−π,0 decreases. When α > (−1)kI(θ) the flow is not anymore in proximity of attracting

slow invariant manifolds of type M−π,ε. As for the previous case, the critical orbits on M+
π,0 and M−π,0

remain the same for ω and Ω, i.e.

ω = −Ω(0)e−λt +O(ε) (52)

Ω = kπ + Ω(0)e−λt +O(ε) (53)

Furthermore, on these critical manifolds (i.e. when Ω + ω = kπ) we have

α̇ = η
(

(−1)kI(θ)− α
)

(54)
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and so α̇ > 0 on M−π,0 and α̇ < 0 on M+
π,0. On the attracting manifold, α increases but cannot go

beyond the magnitude of the input I(t) to remain on the manifold. This analysis shows that the
critical orbit is such that the amplitude adaptation increases at most to the maximum amplitude of
I(θ). One can easily see that if the input is a simple cosine of amplitude A, then α will converge to A.
Since both frequency and amplitude adaptation are happening concurrently, it might be desirable
to choose η small enough with respect to λ to ensure frequency convergence prior to amplitude
convergence.

4.2.2 Critical orbits on MF,0

Interestingly, there are slow locally invariant manifolds MF,ε appearing when α 6= 0. They are due
to the feedback loop. On the critical manifolds MF,0, the input I(t) and the output α cos(Ω + ω)

are equal. Writing ω = ± arccos( I(θ)α )− Ω + n2π with n ∈ Z, the critical dynamics is of the form

Ω̇ = λ

((
± arccos(

I(θ)

α
)− n2π

)
− Ω

)
(55)

α̇ = 0 (56)

We see that the amplitude α remains constant on MF and Ω will behave like a first-order low-pass
filter on a signal of the form ± arccos( I(θ)α )−n2π with cutoff frequency λ. Therefore Ω will follow this
signal, i.e. it will increase or decrease until sin(Ω+ω) changes sign and the flow leaves the manifold.
This also implies that ω will tend to remain constant on MF if λ when large enough compared to
the rate of change of the input I(θ) (to ensure full magnitude of the frequency response).

Manifolds of type MF,0 are bounded within the zeros of sin(Ω+ω) and the flow necessarily leaves
them as Ω increases or decreases. As a simple example, consider I(t) = A cos(ωF t) and α = A, then
we have Ω̇ = λ (ωF t− n2π − Ω), and Ω follows the phase of the cosine input, which implies that ω
remain near constant (for λ large enough to track ωF t) since cos(Ω + ω) = cos(ΩF t) on MF,0. The
dynamics exits MF as sin(Ω + ω) changes sign.

In summary, on the critical manifold MF,0 we expect to qualitatively see no amplitude adapta-
tion, an increase or decrease of Ω and close to no change in ω.

4.2.3 Critical fast orbits

We now consider the critical fast dynamics

ω̇ = − sin(Ω + ω) (I(θ)− α cos(Ω + ω)) (57)

The fixed points of the dynamics correspond to points on the various critical manifolds and their
stability properties correspond to the attracting/repelling nature of these manifolds. The orbits of
the fast critical dynamics consists of rapid transitions between neighborhoods of slow manifolds.
When α = 0, we expect to see transitions between manifolds of type M−π,0, similar to the dynamics
studied in Section 2. However, as α increases, we expect intermediary transitions to MF,0, i.e. fast
transitions will go from one M−π,0 to MF,ε and finally to another M−π,0. In that case, contrary to the
system studied in Section 2, one fast event does not lead to an increase of π for ω because the flow
transits through a manifold of type MF ”on the way” to the next M−π,0.

4.2.4 Qualitative example of a critical behavior

Taking all the critical orbits together we can describe the qualitative behavior of a complete critical
orbit, for example when I(t) = A cos(ωF t), assuming that α(t = 0) = 0. At the beginning we expect
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Figure 9: Example of frequency and amplitude adaptation for one oscillator (K = 105, λ = 1 and
η = 2.) and I(t) = 2 cos(30t). ω and α converge to 30 and 2 as expected. The vertical dashed lines
enclose the regions where |I(t) − α cosπ|2 < 10−5, (i.e. numerically close to 0). The qualitative
behavior described in 4.2.4 is shown in the three quadrants of each plot: 1) at the beginning where
the evolution of ω resembles that of the original adaptive frequency oscillator (Section 2), 2) in
the middle of the convergence where increases of ω are reduced due to the presence of MF,ε and 3)
towards convergence where ω varies very little. Similarly we notice that α increases only when ω
decreases (i.e. when the flow is close or on M−π,ε).
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transitions between stable manifolds of type M−π with an increase of ω by π during the fast event
similar to the case studied in the previous sections. On M−π , the amplitude α will increase. As α
increases, we will observe shorter slow events on M−π and fast events where ω increases by a smaller
amount than π as the orbit reaches MF . There, Ω will increase but ω and α will remain constant.
Upon exiting MF , ω will increase rapidly again until reaching another M−π . Over a succession of
two fast transitions and one slow event on MF,0, i.e. M−π,0 →MF,0 →M−π,0, ω + Ω will increase by
π but ω will have changed by less than π. Increasingly, most of this change will be attributed to
Ω until the system converges to α = A and ω = ωF . Interestingly, as α → A, the oscillations of ω
will decrease and eventually disappear (i.e. the feedback loop enables perfect adaptation to ωF ). A
numerical illustration of this behavior is shown in Figure 9 where we see all the features of the flow
described in this section.

4.3 Singular orbits for a pool of N oscillators

We now extend our analysis to the case where there are N oscillators coupled through the negative
feedback loop. The dynamics of each oscillator is

εω̇i = − sin(Ωi + ωi)


I(θ)−

N∑

j=1

αj cos(Ωj + ωj)


 (58)

Ω̇i = λωi (59)

α̇i = η cos(Ωi + ωi)


I(θ)−

N∑

j=1

αj cos(Ωj + ωj)


 (60)

θ̇ = 1 (61)

4.3.1 Existence of hyperbolic invariant slow manifolds

The following theorem characterizes the slow invariant (hyperbolic) manifolds of the dynamics.

Theorem 3 For ε sufficiently small, there exist infinitely many slow invariant manifolds for the
flow of eqs. (58) to (61). They consist of simply connected, compact subsets of R3N+1 of the following
form

Mπ : ωi = (kiπ − Ωi)

(
1 + ελ(−1)ki

I(θ)−
∑N
j=1(−1)kjαj)

)
+O(ε2),

∀i ∈ {1, · · · , N}, ki ∈ Z, I(θ) 6= ∑N
j=1(−1)kjαj

Such invariant manifolds are attracting if αi < (−1)kiI(θ) − ∑i 6=j αj(−1)kj+ki, ∀i, repelling if

αi > (−1)kiI(θ)−∑i 6=j αj(−1)kj+ki, ∀i and of saddle type otherwise.

Proof. The proof follows the same reasoning than the proof of Theorem 1. We note here that the
Jacobian of the critical fast dynamics (i.e. when ε = 0) has N non-zero eigenvalues, all of the form
αi + (−1)ki+1I(θ) +

∑
i 6=j αj(−1)kj+ki , their corresponding eigenvector has zero entries everywhere

except for the row associated to ωi. It means that the unstable and stable manifolds associated to
the critical manifold will be tangent to these eigendirections and the unstable and stable manifolds
of Mπ will be O(ε) close to them.

Interestingly, the slow manifolds remain in the case where N oscillators are coupled together.
Note however that the manifolds can now be of saddle type, i.e. they can now have stable
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and unstable transverse directions, leading to more complex dynamics. The associated unstable
and stable manifolds are however aligned with the ωi directions at O(ε), preserving the dynam-
ics observed for a single oscillator. The flow on the critical manifolds are also similar, where
Ωi(t) = kiπ+ Ωi(0)e−λt +O(ε) and ωi(t) = −Ωi(0)e−λt +O(ε). The dynamics of αi on one of these
critical manifold is

α̇i = η


−αi + (−1)ki


I(θ)−

∑

j 6=i
(−1)kjαj




 (62)

α̇i is positive when αi < (−1)kiI(θ)−∑i 6=j αj(−1)kj+ki , i.e. when the corresponding ωi direction is
attracting, and negative otherwise. This is consistent with the findings of the single oscillator case.
We note however that the amplitude adaptation now takes into account the amplitude contributions
associated to the other oscillators (i.e. these contributions are removed from the input signal),
potentially creating more complex interactions. Qualitatively, the critical orbits described in the
case of one oscillator with feedback are preserved when several oscillators are introduced.

4.3.2 Non-hyperbolic candidate slow manifolds

The most important difference here is that critical slow manifolds of type I(θ) =
∑N

j=1 αj cos(Ωj +
ωj) seen in the one oscillator case are not normally hyperbolic. Indeed, the eigenvalues of the

critical fast dynamics Jacobian are all 0 except one which is equal to −∑N
i=1 αi sin2(Ωi + ωi). The

associated eigenvector is [1, 0, 0, · · · , sin(ωi+Ωi)
sin(ω1+Ω1) , 0, · · · , 0,

sin(ωj+Ωj)
sin(ω1+Ω1) , · · · ] where the non-zero entries

are the rows associated to the ωi. In this case, Fenichel theory cannot be applied to investigate
the persistence of invariant slow manifolds at order O(ε) and it is not directly obvious how one can
study those. Indeed, the non-hyperbolic critical manifold is not nilpotent since one eigenvalue of
the Jacobian is non-zero and techniques that handle non-hyperbolicity such as the blow-up method
cannot be directly applied [17].

The numerical experiments presented below suggest that solutions of the dynamics are indeed
attracted towards I(t)−∑i αi cosφi. However, they also reveal that the dynamics of each oscillator
can be rather complicated. Therefore, we conjecture that locally invariant manifolds of type I(θ) =∑N

j=1 αj cos(Ωj +ωj) do indeed exist and that the resulting dynamics includes complex interactions
between oscillators. A formal analysis of this case remains however beyond the scope of this paper,
and might be of limited interest for engineering applications due to the seeming lack of convergence
to defined frequencies and amplitudes as discussed below.

4.4 Numerical experiments

We now present numerical experiments to illustrate our findings and illustrate some of the capabil-
ities and limits of the system.

4.4.1 Discrete spectra

This example shows the typical behavior of a network of oscillators when the input signal has a
discrete frequency spectrum. We use I(t) = 1.3 cos(30t) + cos(30

√
2t) + 1.4 cos(30π√

2
t), already used

in Section 3.3. We showed previously that the frequency of a single oscillator in open-loop would not
converge in that case. In contrast, with the feedback loop and amplitude adaptation, the oscillators
systematically adapt their states such that I(t) '∑i αi cosφi.

Figure 10 presents results with N = 3 oscillators (i.e. the minimum number to reconstruct the
input frequency spectrum) for different values of K. For small K, frequency adaptation becomes
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(b) K = 100

0 20 40
0

50

ω
i

0 20 400

1

2

α
i

0 20 40
Time [s]

0

5

10
|I

(t
)
−
∑

i
α
i
co

s
φ
i|2

(c) K = 10000

Figure 10: Examples of decomposition of the spectrum of an input signal I(t) = 1.3 cos(30t) +
cos(30

√
2t) + 1.4 cos(30π√

2
t) with a pool of N = 3 oscillators with amplitude adaptation for three

different coupling strengths. The parameters used in the simulations are λ = 1 and η = 10. For
each experiment, the top graphs show the evolution of the state variables ωi and αi, the bottom
graph is the square error between the input signal I(t) and the output of the pool of oscillators∑N

i=0 αi cosφi. The dashed lines correspond to the input frequencies and amplitudes.
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Figure 11: Pool of oscillators (N = 50) with input I(t) = 1.3 cos(30t) + cos(30
√

2t) + 1.4 cos(30π√
2
t).

We used K = 104, λ = 0.1 and η = 1 in the simulations. Top: amplitude weighted frequency
distribution (cf. text for details) as a function of time. The red dashed lines correspond to the
frequencies present in the input. Bottom left: evolution of ωi and αi. Bottom right: input signal
I(t) and squared error between input and output.
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Figure 12: Pool of oscillators with time varying spectra input (cf. section 4.4.1 for more details).
We used K = 100, λ = 10 and η = 0.5 in the simulations. Top: amplitude weighted frequency
distribution as a function of time. Bottom left: evolution of ωi and αi. Bottom right: input signal
I(t) and squared error between input and output. The vertical dashed lines show the important
events in time: maximum of the Gaussians and crossing of the chirps.
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exponential when getting close to the input frequency (i.e. when entering the synchronization region
- as discussed in the previous section). After frequency convergence, the corresponding amplitude
is adapted. Interestingly the green ωi crosses the frequencies already taken by the other oscillators
to adapt to the remaining frequency. Eventually all the frequencies and amplitudes converge to
the expected values and I(t) =

∑
i αi cosφi. We observe similar results for K = 100, except that

convergence is exponential from the beginning, leading to faster convergence. When K = 10000
(i.e. strong coupling case) the situation is different. Only one ωi converges to one of the frequency
component of the input. The other ωi do not seem to converge to any specific value. On the
other hand, the amplitude corresponding to the converged frequency does not seem to converge
to a specific value while the two other amplitudes do converge, but not to one of the amplitudes
associated to one of the cosine of the input. Nevertheless, the output of the pool of oscillator
perfectly reconstructs the input signal very quickly. It is interesting to see that the feedback loop
enables the pool of oscillator to reconstruct the signal albeit the exact frequency components in the
input are not recovered when the coupling becomes too high.

Figure 11 shows results with N = 50 oscillators for large coupling. The upper graph shows the
frequency distribution of the oscillators, i.e. the distribution of ωi weighted by the respective αi
while taking into account the oscillator phases. We data presented in this figure is computed as
follows. At each time t, the frequency spectrum is discretized into frequency bins (1 rad/s in this
case) and each ωi(t) is associated to a bin. The amplitude associated to a bin of frequency ψ is
computed as maxt̄(

∑
i αi(t) cos(ψt̄ + φi(t))), where t is fixed and t̄ is varied to cover at least one

period of oscillation. This representation gives the same information as a spectrogram resulting
from a windowed Fourier transform.

The frequencies and amplitudes adapt such that the output of the network reproduces the input
very quickly. Initially, frequencies ωi are all attracted to the frequency components present in the
input. However frequencies do not seem to all converge. We notice that the overall amplitudes
associated to each frequency component, i.e. the contribution of all the oscillators close to this
frequency, match well those of the input (visible in the top graph).

Both simulations show that the pool of oscillator can well reproduce a non-periodic input
with discrete spectrum whereas a single oscillator without feedback would not converge to any
frequency. However, we notice that not all frequencies ωi converge to the input frequency compo-
nents. This behavior suggests that the loss of hyperbolicity for candidate invariant manifolds when
I(t) =

∑
i αi cosφi might play an important role in describing the complete dynamics as the net-

work dynamics seems to converge to it. The dynamics appears to change qualitatively as coupling
increases, which is in contrast to the single oscillator case where convergence happens for any value
of K.

Time-varying spectra Finally, we illustrate the capabilities of the system for moderate cou-
pling to track a time varying spectrum, with appearing and disappearing frequency components,
demonstrating its generic frequency analysis capabilities. In this example, the input is composed of
one linear chirp sin(200t + 2t2), one quadratic chirp sin(400t − t3

15), and two frequency modulated

Gaussians: sin(300t) exp−
(t−5)2

2.5 and sin(400t) exp−
(t−30)2

5 . We use N = 100 oscillators. The results
are shown in fig. 12. We see that the system is able to track the chirps and to appropriately locate
the Gaussians. All the important features of the signal are clearly visible. We also notice that the
error between the system output and the input is almost always 0, except when a new component
appears (the Gaussian) or when the quadratic chirp becomes too fast, but still the match is very
good. The time evolution of ωi and αi shows that oscillators that are not used to encode the
chirps are recruited when an event appears (e.g. the Gaussians). We also notice appearing and
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disappearing clusters of frequencies and amplitudes representing the different signals.

5 Conclusion

We analyzed the geometric structure of frequency adaptation for an adaptive frequency phase
oscillator with strong coupling. We characterized the existence of invariant slow manifolds and
demonstrated that the frequency adaptation mechanism resulted from the alternation of slow and
fast dynamics, regulated by sign changes of an input signal. The slow-fast dynamics described in
this paper is rather unique in that regard. Our analysis enabled to extend such systems to set the
exponential convergence rate λ. A discrete map summarizing the slow-fast dynamics allowed to
characterize important features of the system, such as its convergence rate or predicting that for
some non-periodic signals frequency adaptation would not converge.

We have also analyzed the case of a network of adaptive frequency oscillators with amplitude
adaptation. Interestingly, the slow manifolds characterized in the simple oscillator case persist and
the feedback loop leads to the appearance of a novel type of slow manifolds for the single oscillator
case. When several oscillators are used, the novel critical manifold is not hyperbolic nor nil-potent.
While numerical simulations show that the system converges to I(t) =

∑
αi cosφi, whether there

exists slow invariant manifolds of this type remains an open question. Numerical simulations further
showed the ability of the system to track complex signals with time-varying frequency components.

To the best of our knowledge, previous work describing adaptive frequency oscillators (e.g. sec-
ond order oscillators or oscillators with intertial effects [2, 3, 29, 30]) need an explicit representation
of either the phase of other oscillators, or the input signal’s period or frequency. This is in contrast
with the system we described which can extract the frequency of arbitrary inputs. From this view-
point, the mechanism described is potentially more practical in engineering applications where input
signals are not known in advance and can be noisy and time-varying. We believe that the results
presented in this paper will further help design real applications beyond existing ones in robotics,
control and estimation applications [9, 14, 23, 22, 28], further help understand their fundamental
limitations and facilitate their usage in real-world settings.
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