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DISCRETE-TIME INFERENCE FOR SLOW-FAST SYSTEMS DRIVEN BY

FRACTIONAL BROWNIAN MOTION

S. BOURGUIN, S. GAILUS, AND K. SPILIOPOULOS

Boston University, Department of Mathematics and Statistics
111 Cummington Mall, Boston, MA 02215, USA

Abstract. We study statistical inference for small-noise-perturbed multiscale dynamical systems where the
slow motion is driven by fractional Brownian motion. We develop statistical estimators for both the Hurst
index as well as a vector of unknown parameters in the model based on a single time series of observations
from the slow process only. We prove that these estimators are both consistent and asymptotically normal as
the amplitude of the perturbation and the time-scale separation parameter go to zero. Numerical simulations
illustrate the theoretical results.

1. Introduction

In this work we consider statistical estimation for small-noise perturbations of multiscale dynamical sys-
tems. The main feature of the model is that the random perturbation of the slow motion of the system arises
from a fractional Brownian motion (fBm), thereby making it possible to capture dynamical features that are
out of the scope of the standard Brownian motion. More precisely, we consider (Xε, Y η)T = {(Xε

t , Y
η
t )}0≤t≤T

evolving in X × Y := R
m × R

d−m according to the stochastic differential equation

(1)





dXε
t = cθ(X

ε
t , Y

η
t )dt+

√
ǫσ(Y η

t )dWH
t

dY η
t = 1

ηf(Y
η
t )dt+

1√
η τ(Y

η
t )dBt

Xε
0 = x0 ∈ X , Y η

0 = y0 ∈ Y.
Here, WH is a fractional Brownian motion (fBm) with Hurst index H ∈ (1/2, 1) and B is a standard

Brownian motion (Bm) independent of WH . The term dWH is to be understood in the sense of pathwise in-
tegration, although this pathwise integral coincides in our framework with the analogous divergence integral.
ε := (ǫ, η) ∈ R

2
+ is a pair of small positive parameters. Note that η is the time-scale separation parameter

while ǫ dictates the size of the noise.
In this work, we study estimation of the Hurst index H ∈ (1/2, 1) and the vector θ ∈ Θ, where Θ is an

open, bounded, and convex subset of a Euclidean space, based on a time-series sampled from a realization
of the slow process Xε in the regime of ε := (ǫ, η) → 0.

It is widely understood that data coming from physical systems can exhibit multiple characteristic scales
in time or space. Stochastic noise is often included to account for uncertainty or as an intrinsic feature of
a given model. It is perhaps most common to model the noise with standard Brownian motion. In this
work we consider instead the choice of fractional Brownian motion with a Hurst index H that may not
be known but that must rather be estimated from empirical observations. It is well known that fBm is a
one-parameter extension of standard Bm, which is recovered when H = 1/2. Multiscale SDE models like (1)
with H = 1/2 (i.e., models in which Xε is perturbed by a standard Bm) have been applied in a wide variety
of fields, including chemistry, biology, neuroscience, meteorology, econometrics, and mathematical finance.
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The reader is encouraged to consult [8, 15, 26, 27, 37, 61, 62], to offer just a few examples in the applied
literature.

A model like (1) can be interpreted as perturbation of an underlying deterministic dynamical system, say
˙̄X = c̄(X̄), by small noise and multiple scales, see for example [16, 17, 27, 54, 62]. To be more specific,
consider the situation where c̄(x) is given as the integral of a given function with respect to a given measure

µ. In such a situation, the dynamical system ˙̄X = c̄(X̄) is in fact a small noise perturbation of a system of
slow and fast motion and the measure µ is the invariant measure of the fast motion. See also [24] for further
motivation on models with small noise diffusion. In addition, models like (1) also arise when one considers
systems with mulitple scale but one is interested in small time asymptotics, see for example [14, 55].

Whereas the standard Bm case has been studied extensively, the mathematical theory of multiscale models
with H 6= 1/2 is considerably less developed. In our recent work [7], we obtained results on averaging,
homogenization, and fluctuations corrections for models like (1) considered in the limit as ε := (ǫ, η) → 0;
see also [25, 47] for related averaging results.

In the standard Bm case H = 1/2, estimation of θ has been well studied both in the absence of mutiple
scales, when η ≡ 1, as well as the presence of multiple scales, when η → 0. For the case ofH = 1/2 and η ≡ 1,
we refer the interested reader to [6, 24, 35, 36, 50, 53, 57] for estimation of the unknown vector θ based on
continuously and discretely observed data. For the case H = 1/2 and η → 0, we refer the interested reader
to [2, 3, 18, 19, 30, 42, 46, 56] for estimation of θ in the presence of multiple scales based on continuously
and discretely-observed data.

In the case of H 6= 1/2 and η ≡ 1, statistical estimation of the Hurst parameter H has recently been
studied, under various assumptions, in works such as [4, 9, 10, 20, 28, 33, 34].

The focus of this paper is different. We develop the theory of estimation of both H and θ for multiscale
models like (1) in the multidimensional case. Our main assumption is that we are given only a discrete-time
sample {xtk}nk=1 from a single observation of the slow process Xε; we assume that no data are available
from the fast process Y η. We develop strongly consistent and asymptotically normal statistical estimators
for both H and θ in the asymptotic regime in which ε := (ǫ, η) → 0. The limiting variance is precisely
calculated in all cases. To the best of our knowledge, this is the first paper on discrete-time estimation of
multidimensional multiscale models perturbed by fractional Brownian motion.

Note that our analysis is focused on the case where H ∈ (1/2, 1). This comes from the fact that this
is the only range of values for H where the interpretation of stochastic integrals as pathwise integrals or
as divergence integrals can coexist. We need the pathwise interpretation for justifying the existence of a
solution to our slow-fast system (1) and the divergence interpretation to exploit the tools of the Malliavin
stochastic calculus of variations applied to (transformations) of the solution of (1). It is worth mentioning
that a possible approach for the case H ∈ (1/4, 1/2) could be the so-called rough paths interpretation of
the stochastic integral with respect to fBm appearing in our system (1), but the interactions with Malliavin
calculus that are needed here do not exist. For H ∈ (0, 1/4], very little is known in terms of solving (1).We
also mention that the assumption of independence of B and WH comes from reasons that are technical in
nature. Indeed, some crucial estimates used in the proofs of the theoretical results obtained in our recent
work [7] necessitate that the pathwise and divergence integrals with respect to the fBm WH coincide, which
only happens when one assumes independence. As we make use of some of these results here, we need the
same assumptions. The introduction of [7] contains a more detailed and technical discussion of the reasons
leading to the independence assumption, which we refer the reader to.

The rest of the paper is organized as follows. In Section 2, we describe our assumptions and related
preliminary results. In Section 3, we present and analyze two estimators for the Hurst index H , one that
requires knowledge of the magnitude ǫ of the perturbing noise and one that does not require this knowledge.
The trade-off is that the latter has higher limiting variance than the former. Neither estimator for H requires
knowledge of θ. In Section 4, we present and analyze a trajectory-fitting estimator (TFE) for the estimation
of θ, which does not require knowledge of H . We then study in Section 5 an estimator for θ which is
based on the principle of maximum likelihood applied to the fluctuations results of [7]. The advantage of
this alternative estimator over the TFE presented in section 4 is that it has smaller limiting theoretical
variance, at least when the Hurst index is known. One clear disadvantage is that its implementation is
computationally more challenging in that it involves inversion of matrices which are very large in typical
cases. The estimator is nevertheless of theoretical interest, as well as practical interest in cases in which the
computational challenges can be met. In Section 6, we present data from numerical simulations to illustrate
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the theoretical results. For the convenience of the reader we have included in Appendix A and B respectively
a technical lemma and an introduction to fBm and necessary results from the Malliavin calculus.

2. Conditions and preliminary results

In this section we introduce notation, present the conditions that we will assume throughout the paper,
and recall necessary results of [7]. We shall suppress the dependence on θ for expository purposes.

We will denote by A : B the Frobenius inner product Σi,j [ai,j · bi,j ] of matrices A = (ai,j) and B = (bi,j).
We will use single bars | · | to denote the Frobenius (or Euclidean) norm of a matrix, and double bars || · ||
to denote the operator norm.

Condition 1 below imposes conditions of growth and regularity on the drift and diffusion coefficients of
the model.

Condition 1.

Conditions on cθ:

- ∃ (K, q) ∈ R
2
+, r ∈ [0, 1); ∀θ ∈ Θ, |c(x, y)| ≤ K(1 + |x|r)(1 + |y|q)

- ∃ (K, q) ∈ R
2
+; ∀θ ∈ Θ, |∇xc(x, y)|+ |∇x∇xc(x, y)| ≤ K(1 + |y|q)

- c, ∇xc, ∇x∇xc, and ∇y∇yc are continuous in (θ, x, y)
- c, ∇xc, and ∇x∇xc are Hölder continuous in y uniformly in (θ, x)
- c has two locally-bounded derivatives in θ with at most polynomial growth in x and y

Conditions on σ:

- ∃ (K, q) ∈ R
2
+; |σ(y)| ≤ K(1 + |y|q)

- σσT is uniformly nondegenerate

Conditions on f and τ :

- f and ττT are twice differentiable, and, along with their first and second derivatives, are Hölder continuous
- ττT is uniformly bounded and uniformly nondegenerate.

Condition 2 is a basic condition of recurrence type on the fast component, yielding ergodic behavior.

Condition 2.

lim
|y|→∞

y · f(y) = −∞.

To derive most of our results we shall in fact assume a stronger recurrence condition.

Condition 3.

For real constants α > 0, β ≥ 2, and γ > 0, we shall write:

- Condition 3-(α, β): one has

y · f(y) + α|y|β +
1

2
(β − 2 + d−m) sup

ỹ∈Y
|τ(ỹ)|2 ≤ 0

for |y| sufficiently large
- Condition 3-(α, β, γ): Condition 3-(α, β) holds and, moreover, one has ||∇xc(x, y)|| ≤ γ|y|β for |y| suffi-
ciently large.

In Section 6 we present numerical examples for specific systems satisfying Conditions 1-3. The numerical
results demonstrate that the theoretical results should also hold when the growth of cθ is linear in x, i.e.,
when r = 1 in Condition 1 instead of the sub-linear growth assumption under which we are able to prove
our results.

Remark 1. Clearly, Condition 2 is implied by Condition 3-(α, β), which in turn is implied by the stronger
condition

lim
|y|→∞

y · f(y) + α|y|β = −∞.

3



One has the infinitesimal generator

L := f · ∇y +
1

2
(ττT ) : ∇2

y

for the rescaled fast dynamics. Conditions 1 and 2 are enough to guarantee that one has on Y a unique
invariant measure µ corresponding to the operator L, as discussed for example in [51].

Remark 2. Therefore, in particular, the process Y η, obtained as the solution of an SDE that does not
depend on Xε, does not explode and is well defined for all times. Meanwhile, Condition 1 guarantees that
the drift coefficient of Xε is Lipschitz continuous in the variable x locally in the variable y. Thus one sees
that our assumptions are sufficient to guarantee that Xε is well defined on [0, T ] (compare the situation with,
e.g., [43, Sections 2 and 4]). For general results on existence and uniqueness of solutions of equations with
standard and fractional Brownian motions, see for instance [23, 31, 32, 38].

Finally, let us recall the main convergence result of [7], which we shall use frequently in this work. By
[44, Theorem 3], the equations

LΦ(x, y) = − (c(x, y)− c̄(x))
∫

Y
Φ(x, y)µ(dy) = 0,(2)

where c̄ is the averaged function

c̄(x) :=

∫

Y
c(x, y)µ(dy),

admit a unique solution Φ in the class of functions that grow at most polynomially in |y| as y → ∞.

Theorem 1 (Theorems 1 and 2 in [7]). Assume Conditions 1 and 3-(α, β, γ), where α ≥ 0, β ≥ 2, γ ≥ 0,

and Tβγ supy∈Y ||τ(y)||2 < 2α. For any 0 < p < 2α
Tβγ supy∈Y ‖τ(y)‖2 , there is a constant K̃ such that for

ε := (ǫ, η) sufficiently small,

E sup
0≤t≤T

∣∣Xε
t − X̄t

∣∣p ≤ K̃
(√
ǫ
p
+
√
η
p)
,

where X̄ is the (deterministic) solution of the integral equation

X̄t = x0 +

∫ t

0

c̄(X̄s)ds.

Now suppose in addition that η = η(ǫ) and that limǫ→0

√
η√
ǫ
=: λ ∈ [0,∞). Let Φ be as in (2) and set

ΣΦ := ((∇yΦτ)(∇yΦτ)T )
1/2. The family of processes

{
ξε := 1√

ǫ
(Xε − X̄)

}

ǫ
converges in distribution on the

space C([0, T ];X ) (endowed, as usual, with the topology of uniform convergence) as ǫ → 0 to the law of the
solution ξ of the mixed SDE




ξt =

∫ t

0

(∇xc̄)(X̄s) · ξsds+ λ

∫ t

0

ΣΦ(X̄s)dB̃s + σ̄W̃H
t

ξ0 = 0

,

where σ̄ :=
∫
Y σ(y)µ(dy), W̃

H is a fractional Brownian motion with Hurst index H, and B̃ is a standard

Brownian motion independent of W̃H .

3. Estimation of the Hurst parameter H

This section is devoted to introducing and studying two estimators of the Hurst parameter of the fractional
Brownian motion appearing in our slow-fast system (1). The first estimator (Theorem 2) that we consider
requires knowledge of the magnitude of the noise ǫ > 0 (which is not necessarily always possible depending
on the framework considered in practice), whereas the second one (Theorem 3) does not require knowledge
of the magnitude of the noise ǫ > 0. Before stating the main results of this section, we introduce some
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notation as well as a few preliminary lemmas to be used in the proofs of the two main results dealing with
the asymptotic properties of the two estimators.

For each n ∈ N and k ∈ {0, 1, · · · , n}, let tnk := Tk/n. We denote first- and second-order filtered observations
of a stochastic process {zt}0≤t≤T by

∆n,kz := ztn
k
− ztn

k−1
,

∆
(2)
n,kz := ztn

k
− 2ztn

k−1
+ ztn

k−2
.

We first wish to obtain control, as ε → 0 and n → ∞, over the discrepancy between the behaviour of
1
ǫ (∆

(2)
n,kX

ε)2 and that of σ̄2(∆
(2)
n,kW

H)2. To this end, we have the following three lemmas.

Lemma 1. Let Xε and Y η be as in (1). Assume Conditions 1 and 2. For any 1 ≤ p <∞ and ζ > 0,

∆
(2)
n,kX

ε −√
ǫ∆

(2)
n,k

[∫ ·

0

σ(Y η
s )dWH

s

]
=

1

n
o(η−ζ)

in Lp(Ω) as η → 0, uniformly in n ∈ N, uniformly in k ∈ {2, · · · , n}, and uniformly in ǫ ∈ (0, 1].

Proof of Lemma 1. We will show that the estimate is valid for the first-order filters, i.e., that one has

∆n,kX
ε −√

ǫ∆n,k

[∫ ·

0

σ(Y η
s )dWH

s

]
=

1

n
o(η−ζ),

uniformly in k ∈ {1, · · · , n}; it is clear that the same estimate may then be used for the second-order filters.
By assumption, there are positive constants K, q, r for which |c(x, y)| ≤ K(1 + |x|r + |y|q), so that

E

∣∣∣∣∣

∫ tnk

tn
k−1

c(Xε
s , Y

η
s )ds

∣∣∣∣∣ ≤
KT

n

(
1 + E sup

tn
k−1

≤t≤tn
k

|Xε
t |r + E sup

tn
k−1

≤t≤tn
k

|Y η
t |q
)
,

whence by [7, Lemma 2] and Lemma 6, it follows that for any ζ > 0, one has

n ·∆n,k

[∫ ·

0

c(Xε
s , Y

η
s )ds

]
= o(η−ζ)

in L1(Ω) as η → 0, uniformly in n ∈ N, uniformly in k ∈ {1, · · · , n}, and uniformly in ǫ ∈ (0, 1]. By Jensen’s
inequality this is easily extended to a statement in Lp(Ω). As mentioned earlier, the statement is also valid

with second-order filters ∆
(2)
n,k in place of first-order filters ∆n,k. �

Lemma 2. Let Xε and Y η be as in (1). Assume, for some α > 0 and β ≥ 2, Conditions 1 and 3-(α, β).
For any 2 ≤ p <∞, κ > 0, and 0 < ζ < (κ/2) ∧ (1/p),

∆
(2)
n,k

[∫ ·

0

σ(Y η
s )dW

H
s

]
−∆

(2)
n,k

[
σ̄WH

]
=

1

nH−κ
o(ηζ)

in Lp(Ω) as η → 0, uniformly in n ∈ N, uniformly in k ∈ {2, · · · , n}, and uniformly in ǫ ∈ (0, 1].

Proof of Lemma 2. That the estimate is valid for the first-order filters, i.e., that one has

∆n,k

[∫ ·

0

σ(Y η
s )dWH

s

]
−∆n,k

[
σ̄WH

]
=

1

nH−κ
o(ηζ),

uniformly in k ∈ {1, · · · , n}, follows almost directly from [25, Lemma 4.17], the difference being that in our
setting we do not assume that σ is uniformly bounded nor that Y η begins at time t = 0 in stationarity.
Nevertheless, as explained in detail in the proof of [7, Lemma 7], the arguments may be carried over. Having
established the estimate for the first-order filters ∆n,k, it is easy to see that it is also valid with second-order

filters ∆
(2)
n,k in their stead. �

Lemma 3. Assume Condition 1 and Condition 2 and, if σ is nonconstant, assume that for some α > 0 and
β ≥ 2 we also have Condition 3-(α, β). Suppose that n→ ∞ and ε := (ǫ, η) → 0 in such a way that

(1) there is a ρ1 > 0 such that η−1 = O((ǫn2−2H)ρ1 );
(2) if σ is nonconstant, there is a ρ2 > 0 such that η = O(n−2−ρ2 ).
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For any 1 ≤ p̃ <∞,

sup
2≤k≤n

∣∣∣∣∣

∣∣∣∣
1√
ǫ
∆

(2)
n,kX

ε

∣∣∣∣
2

−
∣∣∣σ̄∆(2)

n,kW
H
∣∣∣
2
∣∣∣∣∣ = o(n−2H)

in Lp̃(Ω). Furthermore, if one has η = O(ǫ), the above can be strengthened to that there is ρ3 > 0 such that

sup
2≤k≤n

∣∣∣∣∣

∣∣∣∣
1√
ǫ
∆

(2)
n,kX

ε

∣∣∣∣
2

−
∣∣∣σ̄∆(2)

n,kW
H
∣∣∣
2
∣∣∣∣∣ = O(n−2H−ρ3 )

in Lp̃(Ω).

Proof of Lemma 3. We have for each n ≥ 2 and k ∈ {2, · · · , n},
∣∣∣∣
1√
ǫ
∆

(2)
n,kX

ε

∣∣∣∣
2

−
∣∣∣σ̄∆(2)

n,kW
H
∣∣∣
2

= 〈An,k, Bn,k〉,(3)

where

An,k := ∆
(2)
n,k

[
1√
ǫ
Xε − σ̄WH

]
, Bn,k := An,k + 2∆

(2)
n,k

[
σ̄WH

]
,

and where the angle brackets denote the usual inner product in R
m.

Notice that 2∆
(2)
n,k

[
σ̄WH

]
is O(n−H) in L2p̃(Ω). By Hölder’s inequality and the triangle inequality it

therefore suffices to show that An,k is o(n−H) in L2p̃(Ω). Writing

An,k = ∆
(2)
n,k

[
1√
ǫ
Xε −

∫ ·

0

σ(Y η
s )dWH

s

]
+∆

(2)
n,k

[∫ ·

0

σ(Y η
s )dWH

s − σ̄WH

]
,

it suffices by the triangle inequality to check that each summand is o(n−H) in L2p̃(Ω). For the first summand
this is just Lemma 1 with p = 2p̃ and ζ = 1/ρ1. If σ is constant then for each y ∈ Y, σ(y) = σ̄ and one
sees that the second summand is exactly 0. Otherwise, the desired estimate for the second summand follows
from Lemma 2 with p = 2p̃, κ = p̃−1, and ζ = (p̃(2 + ρ2))

−1. This concludes the proof of the first part of
the claim.

The strenghthened estimate may be obtained by observing, firstly, that choosing different conjugate
exponents in Hölder’s inequality allows one to increase the value of κ in the appeal to Lemma 2, and
secondly, that the additional assumption η = O(ǫ) allows us to reduce the power of n in the assumption
η−1 = O((ǫn2−2H)ρ1), perhaps with a different choice of ρ1. We omit the details because we do not use the
strengthened estimate.

�

We are now ready to present the results on the estimation of the Hurst parameter H . Theorem 2 presents
the asymptotic behavior of an estimator that requires knowledge of the magnitude of the noise ǫ > 0. On the
other hand, Theorem 3 presents the asymptotic behavior of an estimator that does not require knowledge of
the magnitude of the noise ǫ > 0.

Theorem 2. Assume Condition 1 and Condition 2 and, if σ is nonconstant, assume that for some α > 0
and β ≥ 2 we also have Condition 3-(α, β). Suppose that n→ ∞ and ε := (ǫ, η) → 0 in such a way that

(1) there is a ρ1 > 0 such that η−1 = O((ǫn2−2H)ρ1 );
(2) if σ is nonconstant, there is a ρ2 > 0 such that η = O(n−2−ρ2 ).

When n ∈ N satisfies n > T , the function φn,T : [0, 1] → [0,∞) obtained by mapping x 7→
(
T
n

)2x (
4− 22x

)
is

strictly decreasing. Let us write φ−1
n,T : [0,∞) → [0, 1] for the left inverse of φn,T that restricts to an inverse

on the actual image φn,T ([0, 1]) = [0, 3] and is uniformly zero on [3,∞). For n > T , given a random sample
{Xε

tn
k
}nk=0, define the estimate

Ĥǫ
1({Xε

tn
k
}nk=0) := φ−1

n,T

(
1

nǫ|σ̄|2
n∑

k=2

∣∣∣∆(2)
n,kX

ε
∣∣∣
2
)
.(4)
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We have that Ĥǫ
1({Xε

tn
k
}nk=0) → H in probability as n→ ∞ and ε := (ǫ, η) → 0 and

2
√
n ln

( n
T

)(
Ĥǫ

1({Xε
tn
k
}nk=0)−H

)
→ N (0, ς2⋆ (H))

in distribution as n→ ∞ and ε := (ǫ, η) → 0, where the variance is given by

ς2⋆ (H) := ς21 (H)



 1

|σ̄|4
m∑

i,k=1

m̃∑

j,q=1

σ̄i,j σ̄i,qσ̄k,j σ̄k,q



 ,

and m is the dimension of the slow process X, m̃ is the dimension of the noise WH , while

ς21 (H) := 2
∑

j∈Z

ρ2(j;H), with ρ(j;H) :=
−|j − 2|2H + 4|j − 1|2H − 6|j|2H + 4|j + 1|2H − |j + 2|2H

2(4− 22H)
.

Remark 3. Note that for any value of H, ρ(j;H) is symmetric in j and ρ2(0;H) = 1, and so one may also

write ς21 (H) = 2
(
1 + 2

∑∞
j=1 ρ

2(j;H)
)
as is sometimes done elsewhere in the literature, e.g. [34].

Remark 4. Note that φ−1
n,T is a one-sided inverse only. Namely, φ−1

n,T ◦ φn,T : [0, 1] → [0, 1] is the identity

map while φn,T ◦ φ−1
n,T : [0,∞) → [0,∞) maps x 7→ min{x, 3}. The reason for this choice of domain for φ−1

n,T

is of course to ensure that the estimates are always defined. We will see that with probability approaching 1
in the limit, one in fact lands in the invertible range.

The idea is to use the approximation presented in Lemma 3. Therefore, let us proceed as follows: we will
first verify in Lemma 4 a basic convergence statement, then deduce in Lemma 5 consistency and asymptotic
normality for the ideal case in which the data is sampled not from Xε but rather from

√
ǫσ̄WH , and finally

combine this with Lemma 3 to obtain Theorem 2.
In accordance with the above plan, let us start with the basic convergence statement. Note that there is

no ε here and the asymptotic regime of interest is simply n→ ∞.

Lemma 4. With notation as in the statement of Theorem 2, we have that

n2H−1

T 2H(4− 22H)

1

|σ̄|2
n∑

k=2

∣∣∣σ̄∆(2)
n,kW

H
∣∣∣
2

→ 1 in probability as n→ ∞

and
√
n

(
n2H−1

T 2H(4− 22H)

1

|σ̄|2
n∑

k=2

∣∣∣σ̄∆(2)
n,kW

H
∣∣∣
2

− 1

)
→ N (0, ς2⋆ (H)) in distribution as n→ ∞.

Proof of Lemma 4. Recall that m is the dimension of the Euclidean space in which the slow process evolves.
Let us write m̃ for the dimension of WH and denote by {WH,j}m̃j=1 the independent components of WH .
For each pair 1 ≤ j, q ≤ m̃ define

V j,q
n,T :=

n2H−1

T 2H(4− 22H)

n∑

k=2

∆
(2)
n,kW

H,j∆
(2)
n,kW

H,q.

With this notation we can write

(5)
√
n

(
n2H−1

T 2H(4− 22H)

1

|σ̄|2
n∑

k=2

∣∣∣σ̄∆(2)
n,kW

H
∣∣∣
2

− 1

)
= An,T +Bn,T ,

where

An,T :=
√
n


 1

|σ̄|2
m∑

i=1

m̃∑

j=1

σ̄2
i,jV

j,j
n,T − 1


 and Bn,T :=

√
n


 1

|σ̄|2
m∑

i=1

∑

j 6=q

σ̄i,j σ̄i,qV
j,q
n,T


 .

Each of these belongs, at least asymptotically, to the second chaos of the isonormal Gaussian process asso-
ciated with WH , and so it will be enough to understand their limits separately. Let us start with An,T . By
known results in dimension one (see for example the references [10, 28] and others in the introduction), for
each j, we have that as n→ ∞,

(6) V j,j
n,T

a.s.−−→ 1,
7



and

(7)
√
n
(
V j,j
n,T − 1

)
D−→ N

(
0, ς21 (H)

)
.

Independence of {WH,j}m̃j=1 implies independence of {V j,j
n,T }m̃j=1, so that

√
n



V 1,1
n,T − 1

...

V m̃,m̃
n,T − 1


 D−→ N






0
...
0


 ,



ς21 (H)

. . .

ς21 (H)





 .

By the Cramér-Wold theorem (see [29, Corollary 4.5]), the known convergence (7), and the algebraic identity

An,T :=
√
n


 1

|σ̄|2
m∑

i=1

m̃∑

j=1

σ̄2
i,jV

j,j
n,T − 1


 =

1

|σ̄|2
m̃∑

j=1

(
m∑

i=1

σ̄2
i,j

)
√
n
(
V j,j
n,T − 1

)
,

one then obtains

An,T
D−→ N


0,

ς21 (H)

|σ̄|4
m∑

i,k=1

m̃∑

j=1

σ̄2
i,j σ̄

2
k,j


 .(8)

Let us now show that Bn,T also converges to a centered Gaussian distribution as n→ ∞. It is straightforward
to check that for each 1 ≤ j ≤ m̃ and 2 ≤ k ≤ n, one has in distribution

∆
(2)
n,kW

H,j = IH,j
1 (hnk ),

where IH,j
1 denotes the Wiener integral of order one with respect to the fractional Brownian motion WH,j

(see Appendix B.4.1 for an introduction and statement of key properties), and the function hnk is given by

hnk = χ[tn
k−1

,tn
k
] − χ[tn

k−2
,tn

k−1
], with ‖hnk‖H =

TH
√

4−22H

nH . Now, for any 1 ≤ j 6= q ≤ m̃ and 2 ≤ k ≤ n, we

have that
(
∆

(2)
n,kW

H,j ,∆
(2)
n,kW

H,q
)

is equal in distribution to (I1(h
n
k ), I1(g

n
k )), where I1 denotes a Wiener

integral of order one with respect to a generic fractional Brownian motion with the same Hurst parameter
H as WH , and where gnk is a function such that 〈hnk , gnk 〉H = 0 and ‖gnk‖H = ‖hnk‖H. This is explained in the
next remark.

Remark 5. As the above equalities are only stated in distribution, we can replace the Wiener integrals of
the same function hnk with respect to the two independent fractional Brownian motions WH,j and WH,q by
Wiener integrals with respect to the same (generic) fractional Brownian motion, but of orthogonal functions
with the same norms, as here orthogonality is a characterization of independence (see for instance [58,

Proposition 1]). Hence, the vectors
(
IH,j
1 (hnk ), I

H,q
1 (hnk )

)
and (I1(h

n
k ), I1(g

n
k )) are equal in distribution.

Based on this observation, we have that
√
nV j,q

n,T has the same law as

n2H−1

T 2H(4− 22H)

n∑

k=2

I1(h
n
k )I1(g

n
k ) =

n2H−1

T 2H(4 − 22H)

n∑

k=2

I2(h
n
k ⊗̃gnk ) = I2

(
n2H− 1

2

T 2H(4− 22H)

n∑

k=2

hnk ⊗̃gnk

)
,

where the first equality comes from applying the product rule for Wiener integrals given in (19) together
with the orthogonality in H of hnk and gnk . Define

ξn,T =
n2H− 1

2

T 2H(4− 22H)

n∑

k=2

hnk ⊗̃gnk .

It is then straightforward to check that

Var
(√

nV j,q
n,T

)
= Var (I2(ξn,T )) = 2 ‖ξn,T ‖2H⊗2 → ς21 (H)

as n → ∞. We will show that
√
nV j,q

n,T converges to a centered Gaussian distribution with variance

given by ς21 (H). According to [40, Theorem 5.2.7], all we need to prove is that the contraction norm
8



‖ξn,T ⊗1 ξn,T ‖H⊗2 → 0 as n→ ∞ (see Appendix B.4.1 for a definition of contractions). We have

ξn,T ⊗1 ξn,T =
n4H−1

T 2H(4− 22H)2

n∑

k1,k2=2

(
hnk1

⊗̃gnk1

)
⊗1

(
hnk2

⊗̃gnk2

)

=
n4H−1

T 2H(4− 22H)2

n∑

k=2

(
hnk ⊗̃gnk

)
⊗1

(
hnk ⊗̃gnk

)
+

2n4H−1

T 2H(4− 22H)2

n∑

k=2

(
hnk ⊗̃gnk

)
⊗1

(
hnk+1⊗̃gnk+1

)
,

where the reduction to only one sum comes from the fact that if k1 and k2 are strictly more than one appart,
the resulting functions are orthogonal. Repeating this argument when taking the norm in H⊗2 of ξn,T ⊗1 ξn,T
yields, with C > 0 denoting a generic constant,

‖ξn,T ⊗1 ξn,T ‖2H⊗2 ≤ Cn8H−1

T 8H(4− 22H)4
‖hnk‖8H =

C

n
→ 0

as n → ∞. Now, note that for any j1, j2, q1, q2 such that j1 6= j2, j1 < q1 and j2 < q2, it holds by the
independence of WH,j and WH,q for j 6= q that

E
(
nV j1,q1

n,T V j2,q2
n,T

)
= 0,

so that all of the summands in Bn,T are uncorrelated, and hence asymptotically independent. We can
therefore conclude that

(9) Bn,T
D−→ N



0,
2ς21 (H)

|σ̄|4
∑

j<q

(
m∑

i=1

σ̄i,j σ̄i,q

)2


 .

Taking together (5), (8), and (9), we conclude that

√
n

(
n2H−1

T 2H(4− 22H)|σ̄|2
n∑

k=2

∣∣∣σ̄∆(2)
n,kW

H
∣∣∣
2

− 1

)

converges to a centered Gaussian distribution with variance

ς21 (H)

|σ̄|4
m∑

i,k=1

m̃∑

j=1

σ̄2
i,j σ̄

2
k,j +

2ς21 (H)

|σ̄|4
∑

j<q

(
m∑

i=1

σ̄i,j σ̄i,q

)2

+ 2 lim
n→∞

Cov (An,T , Bn,T ) .

The first two summands are precisely ς2⋆ (H), and it therefore remains only to show that An,T and Bn,T

are, at least asymptotically, uncorrelated. To demonstrate this, observe that E(Bn,T ) = 0 (in comparison,
E(An,T ) = − 1√

n
), and as a consequence,

Cov (An,T , Bn,T ) = E (An,TBn,T )

= E
((
An,T +

√
n
)
Bn,T

)

=
n

|σ̄|4E






m∑

i=1

m̃∑

j=1

σ̄2
i,jV

j,j
n,T






m∑

i=1

∑

j 6=q

σ̄i,j σ̄i,qV
j,q
n,T






= 0,

since each summand in the product (recall that the V terms are themselves sums) includes a filtered obser-
vation of a component of WH that is independent from the others in that summand. This concludes the
proof. �

We now apply Lemma 4 to deduce an idealized version of Theorem 2 which we state in Lemma 5; namely,
we imagine that the data is sampled not from Xε but rather from

√
ǫσ̄WH . Note that the ǫ-dependence

in the estimator and in the ideal data compensate one another and the asymptotic regime of interest is
therefore once again simply n→ ∞.

9



Lemma 5. With notation as in the statement of Theorem 2, we have that

Ĥǫ
1({

√
ǫσ̄WH

tn
k
}nk=0) → H in probability as n→ ∞ and

2
√
n ln

( n
T

)(
Ĥǫ

1({
√
ǫσ̄WH

tn
k
}nk=0)−H

)
→ N (0, ς2⋆ (H)) in distribution as n→ ∞.

Note that the value of Ĥǫ
1({

√
ǫσ̄WH

tn
k
}nk=0) does not depend on ǫ because the dependence in the estimator and

the dependence in the ideal sampled data compensate one another.

Proof of Lemma 5. It suffices to show that

φn,T (Ĥ
ǫ
1({

√
ǫσ̄WH

tn
k
}nk=0))

φn,T (H)

prob.−−−→ 1,

√
n

(
φn,T (Ĥ

ǫ
1({

√
ǫσ̄WH

tn
k
}nk=0))

φn,T (H)
− 1

)
D−→ N (0, ς2⋆ (H)),

whence the claim follows by reasoning as in [33, 34].
If φ−1

n,T were a right inverse of φn,T , then this would be precisely the content of Lemma 4, for one could
write

φn,T

(
Ĥǫ

1({
√
ǫσ̄WH

tn
k
}nk=0)

)
=
(
φn,T ◦ φ−1

n,T

)( 1

n|σ̄|2
n∑

k=2

∣∣∣σ̄∆(2)
n,kW

H
∣∣∣
2
)

=
1

n|σ̄|2
n∑

k=2

∣∣∣σ̄∆(2)
n,kW

H
∣∣∣
2

.(10)

Of course, one actually has φn,T ◦ φ−1
n,T = min{·, 3} (see Remark 4). However, equation (6) implies in

particular that for each 1 ≤ j ≤ m̃,

1

n

n∑

k=2

|∆(2)
n,kW

H,j |2 a.s.−−→ 0,

and hence also

0 ≤ 1

n|σ̄|2
n∑

k=2

|σ̄∆(2)
n,kW

H |2 ≤ ‖σ̄‖2
|σ̄|2

m̃∑

j=1

(
1

n

n∑

k=2

|∆(2)
n,kW

H,j |2
)

a.s.−−→ 0.

Thus, one sees that for almost every realization of the random state, it is true that for n sufficiently large
the equality (10) is valid. Having made this observation the claim of the lemma follows by appeal to Lemma
4.

�

With the above lemmas and results at hand, we are now ready to present the proof of Theorem 2.

Proof of Theorem 2. It suffices to show that

φn,T (Ĥ
ǫ
1({Xε

tn
k
}nk=0))

φn,T (H)

prob.−−−→ 1,

√
n

(
φn,T (Ĥ

ǫ
1({Xε

tn
k
}nk=0))

φn,T (H)
− 1

)
D−→ N (0, ς2⋆ (H)),

and the claim follows by the same arguments as in [33, 34]. To do so, we use Lemmas 3 and 5. Indeed,
combining the approximation of Lemma 3 with the reasoning of the proof of Lemma 5, one sees that

φn,T

(
Ĥǫ

1({Xε
tn
k
}nk=0)

)
=
(
φn,T ◦ φ−1

n,T

)( 1

nǫ|σ̄|2
n∑

k=2

∣∣∣∆(2)
n,kX

ε
∣∣∣
2
)

=
1

n|σ̄|2
n∑

k=2

∣∣∣σ̄∆(2)
n,kW

H
∣∣∣
2

+ o(n−2H),

10



where the little-o is understood in probability as n→ ∞ and ε := (ǫ, η) → 0. Therefore,

φn,T (Ĥ
ǫ
1({Xε

tn
k
}nk=0))

φn,T (H)
=
φn,T (Ĥ

ǫ
1({

√
ǫσ̄WH

tn
k
}nk=0))

φn,T (H)
+ o(1),

whence the claim follows by appeal to Lemma 5. �

Whenever one does not have knowledge of the magnitude of the noise ǫ > 0, which is required for using

the estimator Ĥǫ
1 and applying Theorem 2, we introduce a second estimator of H for which knowledge of

the magnitude of the noise ǫ > 0 is not required. This is the objcet of Theorem 3 below.

Theorem 3. Assume Condition 1 and Condition 2 and, if σ is nonconstant, assume that for some α > 0
and β ≥ 2 we also have Condition 3-(α, β). Suppose that n→ ∞ and ε := (ǫ, η) → 0 in such a way that

(1) there is a ρ1 > 0 such that η−1 = O((ǫn2−2H)ρ1 ) and
(2) if σ is nonconstant, there is a ρ2 > 0 such that η = O(n−2−ρ2 ).

For n > T , given a random sample {Xε
tn
k
}2nk=0, define the estimate

Ĥ2({Xε
tn
k
}2nk=0) :=

1

2
− 1

2 ln 2
ln




∑2n
k=2

∣∣∣∆(2)
2n,kX

ε
∣∣∣
2

∑n
k=2

∣∣∣∆(2)
n,kX

ε
∣∣∣
2


 .(11)

Note that the filtered increments in the denominator are taken with double the spacing relative to those in
the numerator.

We have that

Ĥ2({Xε
tn
k
}2nk=0) → H in probability as n→ ∞ and ε := (ǫ, η) → 0

and

2 ln 2
√
n
(
Ĥ2({Xε

tn
k
}2nk=0)−H

)
→ N (0, ς2⋆⋆(H)) in distribution as n→ ∞ and ε := (ǫ, η) → 0,

where the variance is given by

ς2⋆⋆(H) :=

(
3

2
ς21 (H)− 2ς22 (H)

)

 1

|σ̄|4
m∑

i,k=1

m̃∑

j,q=1

σ̄i,j σ̄i,qσ̄k,j σ̄k,q





where m is the dimension of the slow process X, m̃ is the dimension of the noise WH , ς21 (H) is as in Theorem
2, and

ς22 (H) :=
∑

j∈Z

ρ̃2(j;H)

with

ρ̃(j;H) :=
−|j − 3|2H + 2|j − 2|2H + |j − 1|2H − 4|j|2H + |j + 1|2H + 2|j + 2|2H − |j + 3|2H

2(4− 22H)2H
.

Proof of Theorem 3. The proof is very similar to that already given for the first estimator and so we only
indicate the direction of it.

By the approximation of Lemma 3 and with the notation of the proof of Lemma 4, the behavior of the
estimator is asymptotically equivalent in probability to

H − 1

2 ln 2
log

(∑m
i=1

∑m̃
j,q=1 σ̄i,j σ̄i,qV

j,q
2n,T∑m

i=1

∑m̃
j,q=1 σ̄i,j σ̄i,qV

j,q
n,T

)
,

and so one is led to consider the limiting behavior of this quantity.
One calculates that

1

|σ̄|2
m∑

i=1

m̃∑

j,q=1

σ̄i,j σ̄i,qV
j,q
n,T

a.s.−−→ 1

11



(the same of course for 2n in place of n) and that moreover

√
n

(
1

|σ̄|2
∑m

i=1

∑m̃
j,q=1 σ̄i,j σ̄i,qV

j,q
n,T − 1

1
|σ̄|2

∑m
i=1

∑m̃
j,q=1 σ̄i,j σ̄i,qV

j,q
2n,T − 1

)
D−→ N



(
0
0

)
,

(
ς21 (H) ς22 (H)
ς22 (H) ς21 (H)/2

)
 1

|σ̄|4
m∑

i,k=1

m̃∑

j,q=1

σ̄i,j σ̄i,qσ̄k,j σ̄k,q




 .

The result follows from this by the delta method. �

4. Trajectory fitting estimator for drift estimation

Suppose that the drift coefficient c in (1) depends upon an unknown parameter θ that lies in some bounded,
convex, open subset Θ of some Euclidean space. We write





dXε,θ,H
t = cθ(X

ε,θ,H
t , Y η

t )dt+
√
ǫσ(Y η

t )dW
H
t

dY η
t = 1

ηf(Y
η
t )dt+

1√
η τ(Y

η
t )dBt

Xε,θ,H
0 = x0 ∈ X , Y η

0 = y0 ∈ Y.

Definition 1. For θ ∈ Θ and 0 ≤ s ≤ t ≤ T , let Zθ(t, s) denote the matrix-valued solution to the equation

dZθ(t, s)

dt
= (∇xc̄θ)(X̄

θ
t )Z

θ(t, s), Zθ(s, s) = 1m,

where 1m denotes the m ×m identity matrix. By [22, Proposition 2.14], the continuity of t 7→ (∇xc̄θ)(X̄
θ
t )

on (0, T ] guarantees the semigroup relations Zθ(t, s)Zθ(s, r) = Zθ(t, r) and the invertibility of Zθ(t, s).

A very simple approach to estimating θ is to choose a value θ ∈ Θ̄ that brings the vector {X̄θ
tn
k
}nk=1

into nearest possible agreement with the vector {Xε,θ,H
tn
k

}nk=1 of observations. We impose an identifiability

condition to guarantee that the choice is unique. Let us take as our contrast function the squared Euclidean
distance

U(θ; {xtn
k
}nk=1) := Σn

k=1

∣∣∣xtn
k
− X̄θ

tn
k

∣∣∣
2

.

Remark 6. There are many other reasonable contrast functions that one could choose to use here. For
example, with Zθ as in Definition 1, recalling that tn0 = 0, one can define the alternative contrast function

U ′(θ; {xtn
k
}nk=1) := Σn

k=1

∣∣∣(xtn
k
− X̄θ

tn
k
)− Zθ(tnk , t

n
k−1)(xtnk−1

− X̄θ
tn
k−1

)
∣∣∣
2

. It is then easy to derive results anal-

ogous to the ones derived in this section for U(θ; {xtn
k
}nk=1) = Σn

k=1

∣∣∣xtn
k
− X̄θ

tn
k

∣∣∣
2

, although it should be noted

that a stronger identifiability condition may be required. We have chosen to work with the particular choice
U(θ; {xtn

k
}nk=1) because the resulting estimator is perhaps among the simplest to analyze, implement, and

compute, while exhibiting at the same time general stability in numerical behavior (see Section 6).

Remark 7. Taking the L2 distance requires that Tβγ supy∈Y ‖τ(y)‖2 < α so that one may take p = 2 in
[7, Theorem 1], but makes it easier to deduce asymptotic normality of the resulting estimates by studying the
Hessian of the contrast function.

Finally, we define the mean-square Trajectory-Fitting Estimator

θ̂TFE({xtn
k
}nk=1) := argmin

θ∈Θ̄
U(θ; {xtn

k
}nk=1).(12)

4.1. Finite sample calculations. In this section, we assume that we have a fixed number of observations,
n, of the slow process, say {xtn

k
}nk=1 observed at given discrete times {tnk}nk=1 ⊂ [0, T ]. We impose an

identifiability condition to guarantee that for each θ0 ∈ Θ, U(θ; {X̄θ0}nk=1) is uniquely minimized over θ ∈ Θ̄
at θ = θ0.

Condition 4. (First Identifiability Condition) For a given choice of n ∈ N we shall write Condition 4-(n)

to mean that for any (θ1, θ2) ∈ Θ̄2, {X̄θ1
tn
k
}nk=1 = {X̄θ2

tn
k
}nk=1 if and only if θ1 = θ2.

We are going to show that this estimator is consistent and asymptotically normal. Let us start with the
consistency, which follows from a modulus-of-continuity argument.
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Theorem 4. (Consistency of the Trajectory-Fitting Estimator) Let n ∈ N be given. Assume Conditions 1,
3-(α, β, γ) and 4-(n). Assume also that Tβγ supy∈Y ‖τ(y)‖2 < α so that one may take p = 2 in [7, Theorem
1]. For any θ0 ∈ Θ, H0 ∈ (1/2, 1), and ζ > 0,

lim
ε→0

P
(
|θ̂TFE({Xε,θ0,H0

tn
k

}nk=1)− θ0| > ζ
)
= 0.

Proof of Theorem 4. Consider the modulus of continuity

w(φ; {xtn
k
}nk=1) := sup

(θ1,θ2)∈Θ2;|θ1−θ2|≤φ

|U(θ1; {xtn
k
}nk=1)− U(θ2; {xtn

k
}nk=1)|

defined for φ > 0. It is clear from [7, Theorem 1] that as ε→ 0, w(φ; {Xε,θ,H
tn
k

}nk=1) converges in probability

uniformly in θ ∈ Θ̄ and φ > 0 to w(φ; {X̄θ
tn
k
}nk=1). It is also clear by continuity of θ 7→ {X̄θ

tn
k
}nk=1 and the

triangle inquality that limφ→0 supθ∈Θ̄w(φ; {X̄θ
tn
k
}nk=1) = 0. The claim of the theorem follows by [11, Theorem

3.2.8]. �

The next result establishes the asymptotic normality of our estimator.

Theorem 5. (Asymptotic Normality of the Trajectory-Fitting Estimator) Let n ∈ N be given. Assume
Conditions 1, 3-(α, β, γ) and 4-(n). Assume also that Tβγ supy∈Y ‖τ(y)‖2 < α so that one may take p = 2

in [7, Theorem 1]. For any θ0 ∈ Θ, H0 ∈ (1/2, 1), we have that 1√
ǫ

(
θ̂TFE({Xε,θ0,H0

tn
k

}nk=1)− θ0

)
converges

in distribution as ε := (ǫ, η) → 0 to the normal distribution N (0,M(θ0, H0;n)), where the variance is given
by

M(θ,H ;n) :=
(
Σn

k=1

[
(∇θ

∣∣∣
θ
X̄ ·

tn
k
)T∇θ

∣∣∣
θ
X̄ ·

tn
k

])−1

×
(
Σn

j,k=1

[(
∇θ

∣∣∣
θ
X̄ ·

tnj

)T
E
[
ξθ,Htnj

(ξθ,Htn
k

)T
] (

∇θ

∣∣∣
θ
X̄ ·

tn
k

)])
×

(
Σn

k=1

[
(∇θ

∣∣∣
θ
X̄ ·

tn
k
)T∇θ

∣∣∣
θ
X̄ ·

tn
k

])−1

.

Before presenting the proof of this theorem, let us make some related remarks.

Remark 8. For the limit as n→ ∞ of the limiting variance, one may write explicitly

lim
n→∞

M(θ,H ;n) =

(∫ T

t=0

[
(∇θ

∣∣∣
θ
X̄ ·

t)
T∇θ

∣∣∣
θ
X̄ ·

t

]
dt

)−1

×
(∫ T

t1=0

∫ T

t2=0

[(
∇θ

∣∣∣
θ
X̄ ·

t1

)T
E
[
ξθ,Ht1 (ξθ,Ht2 )T

] (
∇θ

∣∣∣
θ
X̄ ·

t2

)]
dt2dt1

)
×

(∫ T

t=0

[
(∇θ

∣∣∣
θ
X̄ ·

t)
T∇θ

∣∣∣
θ
X̄ ·

t

]
dt

)−1

.

Remark 9. For t ∈ [0, T ], one may write explicitly

∇θ

∣∣∣
θ
X̄ ·

t =

∫ t

0

Zθ(t, s)(∇θ c̄·)(X̄
θ
s )ds.

Remark 10. For (t1, t2) ∈ [0, T ]2, one may write explicitly

E
[
ξθ,Ht1 (ξθ,Ht2 )T

]
=

∫ t1∧t2

s=0

(
Zθ(t1, s)λΣ

θ
Φ(X̄

θ
s )
) (
Zθ(t2, s)λΣ

θ
Φ(X̄

θ
s )
)T
ds

+H(2H − 1)

∫ t1

s1=0

∫ t2

s2=0

(
Zθ(t1, s1)σ̄

) (
Zθ(t2, s2)σ̄

)T |s1 − s2|2H−2ds2ds1.

Proof of Theorem 5. Let us suppress the data {Xε,θ0,H0

tn
k

}nk=1. By Taylor’s theorem,

0 =
1√
ǫ
∇θ

∣∣∣
θ̂TFE

U =
1√
ǫ
∇θ

∣∣∣
θ0
U +

1√
ǫ
(θ̂TFE − θ0)

T∇2
θ

∣∣∣
θ†
U,
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where θ† is an appropriately-chosen point on the line segment connecting θ̂TFE with θ0. Assuming the
inverse exists, we may reexpress this as

1√
ǫ
(θ̂TFE − θ0) =

(
∇2

θ

∣∣∣
θ†
U
)−1

(
− 1√

ǫ
∇θ

∣∣∣
θ0
U

)T

.

Thus, it suffices to establish a limit in distribution of − 1√
ǫ
∇θ

∣∣∣
θ0
U and an invertible limit in probability of

∇2
θ

∣∣∣
θ†
U ; the interested reader is referred to [11, Section 3.3.4] for a rigorous justification of this now-classical

approach.
For the rescaled gradient of the contrast function, we have

− 1√
ǫ
∇θ

∣∣∣
θ0
U = 2Σn

k=1

[
1√
ǫ
(Xε,θ0,H0

tn
k

− X̄θ0
tn
k
)T∇θ

∣∣∣
θ0
X̄ ·

tn
k

]
,(13)

which converges in distribution to 2Σn
k=1

[
(ξθ0,H0

tn
k

)T∇θ

∣∣∣
θ0
X̄ ·

tn
k

]
by [7, Theorem 2], where ξθ,H , the limit of

the fluctuations, is given for t ∈ [0, T ] by the mixed stochastic integral (recall Theorem 1)

ξθ,Ht = λ

∫ t

0

Zθ(t, s)Σθ
Φ(X̄s)dB̃s +

∫ t

0

Zθ(t, s)σ̄dW̃H
s ,

where W̃H is a fractional Brownian motion with Hurst parameter H and B̃ is a standard Brownian motion
independent from W̃H .

Meanwhile, for the Hessian of the contrast function, we have

∇2
θ

∣∣∣
θ†
U = 2Σn

k=1

[
(∇θ

∣∣∣
θ†
X̄ ·

tn
k
)T∇θ

∣∣∣
θ†
X̄ ·

tn
k

]
− 2Σn

k=1∇θ

∣∣∣
θ†

(
(Xε,θ0,H0

tn
k

− X̄θ†

tn
k
)T∇θ

∣∣∣
θ
X̄ ·

tn
k

)T
,(14)

which converges in probability to 2Σn
k=1

[
(∇θ

∣∣∣
θ0
X̄ ·

tn
k
)T∇θ

∣∣∣
θ0
X̄ ·

tn
k

]
; to see this, recall that θ̂TFE converges in

probability to θ0 by Theorem 4, that Xε,θ0,H0

t converges in probability to X̄θ0
t uniformly in t ∈ [0, T ], and

that ∇2
θ

∣∣∣
θ
X̄ ·

t is bounded uniformly in θ ∈ Θ and t ∈ [0, T ].

Putting these together,

1√
ǫ
(θ̂TFE({Xε,θ0,H0

tn
k

}nk=1)− θ0)
D−→
(
Σn

k=1

[
(∇θ

∣∣∣
θ0
X̄ ·

tn
k
)T∇θ

∣∣∣
θ0
X̄ ·

tn
k

])−1(
Σn

k=1

[
(ξθ0,H0

tn
k

)T∇θ

∣∣∣
θ0
X̄ ·

tn
k

])T

,

which is to say that 1√
ǫ
(θ̂TFE({Xε,θ0,H0

tn
k

}nk=1)− θ0) converges in distribution as ε→ 0 to N (0,M(θ0, H0;n)).

This completes the proof of the theorem. �

4.2. High-frequency regime for the trajectory fitting estimator. Here, in contrast with Subsection
4.1, where we assume that the number of observations n is fixed, we consider the case where n grows to
infinity at the same time as ǫ, η are taken to zero. For notational convenience, let us write ∆ := T/n for the
sampling interval.

Theorem 6. (Consistency of the Trajectory-Fitting Estimator as (ǫ + η +∆) → 0) Assume Conditions 1,
3-(α, β, γ) and 4-(n). Assume also that Tβγ supy∈Y ‖τ(y)‖2 < α so that one may take p = 2 in [7, Theorem

1]. Assume that ǫ, η, and ∆ all go to zero in such a way that
√
ǫ+

√
η

∆ → 0. For any θ0 ∈ Θ, H0 ∈ (1/2, 1),
and ζ > 0,

lim
(ǫ+η+∆)→0

P
(
|θ̂TFE({Xε,θ0,H0

tn
k

}nk=1)− θ0| > ζ
)
= 0.

Proof of Theorem 6. The proof of this result is very similar to that of Theorem 4. The main difference is
that we would like to show that the assumed relationship among ǫ, η, and ∆ is sufficient to conclude that,
for any ζ > 0,

lim
(ǫ+η+∆)→0

P

(
sup

θ1,θ2∈Θ
|U(θ2; {Xǫ,θ1

tk
}nk=1)− U(θ2; {X̄θ1

tk
}nk=1))| > ζ

)
= 0.

14



To this end, we have that

U(θ2; {Xǫ,θ1,H0

tk
}nk=1)− U(θ2; {X̄θ1

tk
}nk=1)) =

n∑

k=1

(
Xǫ,θ1,H0

tk
− X̄θ1

tk

)(
Xǫ,θ1,H0

tk
− 2X̄θ2

tk
+ X̄θ2

tk

)

= (
√
ǫ+

√
η)

n∑

k=1

Xǫ,θ1,H0

tk − X̄θ1
tk√

ǫ +
√
η

(
Xǫ,θ1,H0

tk − 2X̄θ2
tk + X̄θ2

tk

)
.

From this we conclude that this term vanishes in L1 by Theorem 1 together with the assumption that√
ǫ+

√
η

∆ → 0. The rest of the proof follows the proof of Theorem 4. �

Let us now consider the asymptotic normality statement in the high-frequency regime. Recall that we
stated in Remark 8 the limit, as n→ ∞, of the limiting variance for a fixed number n of observed data. The
same expression is obtained as the variance of a joint limit provided that ǫ, η,∆ satisfy the same asymptotic
relationship as in Theorem 6.

Theorem 7. (Asymptotic Normality of the Trajectory-Fitting Estimator as (ǫ + η + ∆) → 0) Assume
Conditions 1, 3-(α, β, γ) and 4-(n). Assume also that Tβγ supy∈Y ‖τ(y)‖2 < α so that one may take p = 2

in [7, Theorem 1]. Assume that ǫ, η, and ∆ all go to zero in such a way that
√
ǫ+

√
η

∆ → 0. For any θ0 ∈ Θ,

H0 ∈ (1/2, 1), we have that 1√
ǫ

(
θ̂TFE({Xε,θ0,H0

tn
k

}nk=1)− θ0

)
converges in distribution as ǫ, η,∆ → 0 to the

normal distribution N (0, M̄(θ0, H0)), where the variance is given by

M̄(θ,H) :=

(∫ T

t=0

[
(∇θ

∣∣∣
θ
X̄ ·

t)
T∇θ

∣∣∣
θ
X̄ ·

t

]
dt

)−1

×
(∫ T

t1=0

∫ T

t2=0

[(
∇θ

∣∣∣
θ
X̄ ·

t1

)T
E
[
ξθ,Ht1 (ξθ,Ht2 )T

] (
∇θ

∣∣∣
θ
X̄ ·

t2

)]
dt2dt1

)
×

(∫ T

t=0

[
(∇θ

∣∣∣
θ
X̄ ·

t)
T∇θ

∣∣∣
θ
X̄ ·

t

]
dt

)−1

.

Proof of Theorem 7. The proof of this theorem follows closely that of Theorem 5 with the additional element
of accounting for the limit as ∆ → 0. Below, we only comment on the differences. In particular, by (13) we
have that

− ∆√
ǫ
∇θ

∣∣∣
θ0
U = 2∆Σn

k=1

[
1√
ǫ
(Xε,θ0,H0

tn
k

− X̄θ0
tn
k
)T∇θ

∣∣∣
θ0
X̄ ·

tn
k

]
,

which converges in distribution to 2
∫ T

0

[
(ξθ0,H0

t )T∇θ

∣∣∣
θ0
X̄ ·

t

]
dt by [7, Theorem 2], where, as before, ξθ,H is

the limit of the fluctuations, given for t ∈ [0, T ] by the mixed stochastic integral

ξθ,Ht = λ

∫ t

0

Zθ(t, s)Σθ
Φ(X̄s)dB̃s +

∫ t

0

Zθ(t, s)σ̄dW̃H
s .

By (14) we have that

∆∇2
θ

∣∣∣
θ†
U = 2∆Σn

k=1

[
(∇θ

∣∣∣
θ†
X̄ ·

tn
k
)T∇θ

∣∣∣
θ†
X̄ ·

tn
k

]
− 2∆Σn

k=1∇θ

∣∣∣
θ†

(
(Xε,θ0,H0

tn
k

− X̄θ†

tn
k
)T∇θ

∣∣∣
θ
X̄ ·

tn
k

)T
,

which converges in probability to 2
∫ T

0

[
(∇θ

∣∣∣
θ0
X̄ ·

t)
T∇θ

∣∣∣
θ0
X̄ ·

t

]
dt. To see that the second term vanishes, we

used the fact that θ̂TFE converges in probability to θ0 by Theorem 6, that Xε,θ0,H0

t converges in probability

to X̄θ0
t uniformly in t ∈ [0, T ], and that ∇2

θ

∣∣∣
θ
X̄ ·

t is bounded uniformly in θ ∈ Θ and t ∈ [0, T ]. The rest of

the proof follows that of Theorem 5. �
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5. A Contrast Estimator Based on the Likelihood of an Approximate Model

In this section we present an alternative estimator for the unknown parameter θ which is based on the
principle of maximum likelihood applied to an approximate model motivated by the fluctuations approx-
imation given precisely in Theorem 1. The advantage of this estimator is that it has smaller asymptotic
variance than the one presented in Section 4, at least when the Hurst index is known, as we demonstrate in
the proof of Theorem 10. One disadvantage, however, which is clear from the formulation (15), is that it is
computationally challenging to implment, in that one must invert a matrix which is quite large in typical
cases. Nevertheless this estimator is of theoretical interest as well as practical interest when the computa-
tional challenges can be met. Also, note that the construction of this estimator involves a parameter which
is ideally chosen to coincide with the Hurst index. However, it turns out that one has consistency and
asymptotic normality even when the chosen parameter and the Hurst index do not coincide.

Recall that [7, Theorem 2] states that the fluctuations process 1√
ǫ

(
Xε,θ,H − X̄θ

)
converges in distribution

to ξθ,H , where for t ∈ [0, T ],

ξθ,Ht = λ

∫ t

0

Zθ(t, s)Σθ
ΦdB̃s +

∫ t

0

Zθ(t, s)σ̄dW̃H
s ,

where Zθ is as in Definition 1, W̃H is a fractional Brownian motion with Hurst parameter H , and B̃ is a
standard Brownian motion independent from W̃H .

Let ⊕ denote the vector concatenation sum and ⊗ the vector outer product. For each n ∈ N, ξθ,H(n) :=

⊕n
k=1ξ

θ,H
tn
k

is a centered Gaussian vector with covariance matrix Ξθ,H
(n) := E

[
ξθ,H(n) ⊗ ξθ,H(n)

]
.

The convergence in distribution of the fluctuations in [7, Theorem 2] may be understood to mean that, in

an appropriate sense, the vector of observations ⊕n
k=1X

ε,θ,H
tn
k

is asymptotically Gaussian with mean ⊕n
k=1X̄

θ
tn
k

and covariance matrix ǫΞθ,H
(n) .

The form of the likelihood for this approximation suggests that it is reasonable to estimate θ by minimizing
the contrast function

Ũ ǫ(θ;H, {xtn
k
}nk=1) := ǫ log det(Ξθ,H

(n) ) +
(
⊕n

k=1(xtnk − X̄θ
tn
k
)
)T (

Ξθ,H
(n)

)−1 (
⊕n

k=1(xtnk − X̄θ
tn
k
)
)

or more simply

Ũ(θ;H, {xtn
k
}nk=1) :=

(
⊕n

k=1(xtnk − X̄θ
tn
k
)
)T (

Ξθ,H
(n)

)−1 (
⊕n

k=1(xtnk − X̄θ
tn
k
)
)
.

We define the Minimum Contrast Estimator with parameter H
θ̂HMCE

(
{xtn

k
}nk=1

)
:= argmin

θ∈Θ̄
Ũ(θ;H, {xtn

k
}nk=1).(15)

The estimator turns out to be consistent and asymptotically normal even if H 6= H0, i.e., even if the Hurst
index is not correctly specified.

Theorem 8. (Consistency of the Minimum Contrast Estimator) Let n ∈ N be given. Assume Conditions 1,
3-(α, β, γ), and 4-(n). Assume also that Tβγ supy∈Y ‖τ(y)‖2 < α so that one may take p = 2 in [7, Theorem

1]. For any θ0 ∈ Θ, (H0,H) ∈ (1/2, 1)2, and ζ > 0,

lim
ε→0

P
(
|θ̂HMCE({Xε,θ0,H0

tn
k

}nk=1)− θ0| > ζ
)
= 0.

Proof. Consider the modulus of continuity

w̃(φ;H, {xtn
k
}nk=1) := sup

(θ1,θ2)∈Θ2;|θ1−θ2|≤φ

|Ũ(θ1;H, {xtn
k
}nk=1)− U(θ2;H, {xtn

k
}nk=1)|

defined for φ > 0. It is clear from [7, Theorem 1] that as ε→ 0, w̃(φ;H, {Xε,θ,H0

tn
k

}nk=1) converges in probability

uniformly in θ ∈ Θ̄ and φ > 0 to w̃(φ;H, {X̄θ
tn
k
}nk=1). It is also clear by continuity of θ 7→ {X̄θ

tn
k
}nk=1 and

the triangle inquality that limφ→0 supθ∈Θ̄ w̃(φ;H, {X̄θ
tn
k
}nk=1) = 0. The claim of the theorem follows by [11,

Theorem 3.2.8].
�
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Theorem 9. (Asymptotic Normality of the Minimum-Contrast Estimator)
Let n ∈ N be given. Assume Conditions 1, 3-(α, β, γ), and 4-(n). Assume also that Tβγ supy∈Y ‖τ(y)‖2 <

α so that one may take p = 2 in [7, Theorem 1]. For any θ0 ∈ Θ, H0 ∈ (1/2, 1), and H ∈ (1/2, 1), we

have that 1√
ǫ

(
θ̂HMCE({xtnk }nk=1)− θ0

)
converges in distribution as ε := (ǫ, η) → 0 to the normal distribution

N (0,MH(θ0, H0;n)), where the variance is given by

MH(θ,H ;n) :=

((
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

)T (
Ξθ0,H
(n)

)−1
(
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

))−1

×
(
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

)T

Ξθ0,H
(n)

(
Ξθ0,H0

(n)

)−1

Ξθ0,H
(n)

(
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

)
×

((
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

)T (
Ξθ0,H
(n)

)−1
(
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

))−1

.

Proof. Let us suppress the data {Xǫ,θ0,H0

tn
k

}nk=1 and the parameter H in the estimator. The argument is

nearly identical to that of the proof of Theorem 5 and so we provide a sketch only.

− 1√
ǫ
∇θ

∣∣∣
θ0
Ũ = 2

(
1√
ǫ
⊕n

k=1

(
Xε,θ0,H0

tn
k

− X̄θ0
tn
k

))T (
Ξθ0,H
(n)

)−1
(
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

)
+RI ,

where the first term converges in distribution to 2
(
ξθ0,H0

(n)

)T (
Ξθ0,H
(n)

)−1
(
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

)
and RI converges

in probability to 0.

∇2
θ

∣∣∣
θ†
Ũ = 2

(
⊕n

k=1∇θ

∣∣∣
θ†
X̄ ·

tn
k

)T (
Ξθ†,H
(n)

)−1
(
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

)
+RII ,

where the first term converges in probability to 2

(
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

)T (
Ξθ0,H
(n)

)−1
(
⊕n

k=1∇θ

∣∣∣
θ0
X̄ ·

tn
k

)
and RII

converges in probability to 0.
The claim follows as in the proof of Theorem 5.

�

In the next theorem we compare the limiting variance of the TFE studied in Section 4 with that of the
estimator studied in this section. As we shall see, the estimator studied in this section has smaller limiting
variance, at least when the Hurst index is known. However, as we have mentioned, it is considerably more
computationally challenging to implement than is the TFE.

Theorem 10. (Comparing the Asymptotic Variances) For any θ ∈ Θ, H ∈ (1/2, 1), and n ∈ N,M(θ,H ;n)−
MH(θ,H ;n) is positive semidefinite, or what is equivalent, (M(θ,H ;n))−1 − (MH(θ,H ;n))−1 is negative
semidefinite.

Proof. We will show that the difference of inverses is negative semidefinite. Let us begin by writing A for

∇θ

∣∣∣
θ0
X̄ ·

tn
k
and B for a symmetric square root of Ξθ,H

(n) .

In this notation, for any vector v in the domain,

〈v, (M(θ,H ;n))−1v〉2 = 〈v,ATA(ATB2A)−1ATAv〉2

= 〈B−1Av,BA(ATB2A)−1ATAv〉2

≤ 〈B−1Av,B−1Av〉〈BA(ATB2A)−1ATAv,BA(ATB2A)−1ATAv〉
= 〈v, (MH(θ,H ;n))−1v〉〈v, (M(θ,H ;n))−1v〉.

The claim follows immediately.
�

17



6. Numerical Examples

We now present data from numerical simulations to illustrate the theory. In Subsection 6.1, we consider
a model in which σ ≡ 1, i.e., the diffusion coefficient of the slow component is constant, while in Subsection
6.2, we consider a model with multiplicative noise in the slow component, i.e., σ is nonconstant. We have
constructed the models so as to exhibit the same behavior in the slow component, to two asymptotic orders,
as ε := (ǫ, η) → 0. In addition, the diffusion coefficient σ and fast component Y in the second model are
such that the averaged diffusion coefficient is precisely σ̄ ≡ 1, in agreement with the constant value of σ in
the first example. This design perhaps facilitates a comparative analysis of the two examples.

Before presenting the models and their statistical analysis, let us collect here some of the more high-level
conclusions.

• Estimation of θ is stable across all values of n (even for small values). Moreover, as one would expect,
data corresponding to smaller values of ǫ result in more accurate estimates of θ.

• When σ is constant, both estimators for the Hurst parameter H , Ĥǫ
1 and Ĥǫ

2, work equally well as

far as the point estimates are concerned, but as expected Ĥǫ
1 has smaller variance than Ĥǫ

2.

• If σ is variable, then Ĥǫ
2 is in general more reliable than Ĥǫ

1. A likely reason for this behavior lies in

the fact that the construction of Ĥǫ
1 uses the the averaged σ̄ whereas the actual data are of course

generated with the prelimit σ. Note that the estimator Ĥǫ
2 does not require knowledge of σ̄. In

connection with this, it is also worth pointing out that both Theorems 2, for Ĥǫ
1, and 3, for Ĥ2,

make assumptions about the relationships among ǫ, η, n. It turns out that in practice there is some
tension between asking for η to be small (so that the fast dynamics behave ergodically) and at the
same time hoping to observe convergence of the estimators (one must ensure that the number of
samples n is commensurately large).

Let us now proceed with our two examples.

6.1. Constant-σ Model. We begin by considering the constant-σ system

(16)

{
dXε

t = θ0X
ε
t Y

η
t Y

η
t dt+

√
ǫdWH0

t

dY η
t = − 1

ηY
η
t + 1√

ηdBt

for t ∈ [0, T = 1] with (Xε
0 , Y

η
0 ) = (1, 0) ∈ R

2.

The limit X̄ of the slow process Xε in (16) is given by X̄t = e
tθ0
2 and, of course, σ̄ = 1.

We fix θ0 = 1 and H0 = 0.85 and consider the estimators θ̂TFE , Ĥ
ǫ
1, and Ĥ2 defined in equations (12),

(4), and (11) respectively. For each estimator, for ǫ = 0.1 and ǫ = 0.01, and for selected values of η and

n (or 2n in the case of Ĥ2), we perform 10, 000 simulations. The slow and fast trajectories are simulated
according to an Euler-Maruyama scheme with 106 evenly-spaced discrete time steps.

Tables 1-12 present the empirical means and standard deviations.
Let us start with the estimator for θ.

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.93566 0.9368 0.9223 0.939 0.9309
η = 0.001 0.93834 0.93437 0.93605 0.94778 0.94202
η = 0.0001 0.94638 0.94862 0.94215 0.94506 0.94895

Table 1. Means of θ̂TFE for constant-σ model with ǫ = 0.1

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.58072 0.58527 0.59206 0.58791 0.59172
η = 0.001 0.57269 0.57432 0.56904 0.56154 0.56128
η = 0.0001 0.56523 0.56427 0.56397 0.56596 0.56001

Table 2. Standard deviations of θ̂TFE for constant-σ model with ǫ = 0.1

18



* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.98719 0.98777 0.98919 0.98619 0.9852
η = 0.001 0.99307 0.99424 0.99702 0.99042 0.9954
η = 0.0001 1.00236 0.99737 1.00063 1.00136 0.99745

Table 3. Means of θ̂TFE for constant-σ model with ǫ = 0.01

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.22959 0.23078 0.23264 0.23139 0.2322
η = 0.001 0.1795 0.17761 0.17749 0.18082 0.17798
η = 0.0001 0.17353 0.17266 0.17173 0.17366 0.17349

Table 4. Standard deviations of θ̂TFE for constant-σ model with ǫ = 0.01

Comparing Tables 1 and 3 we see that when ǫ is smaller the estimates of θ are more accurate. Note also
that the TFE is stable across all of the different values of n. In addition, we compute using the theoretical
limiting standard deviation of Theorem 5 an approximate standard deviation of 0.54037 for ǫ = 0.1 and
0.17088 for ǫ = 0.01, both of which are very close to their empirical estimates presented in Tables 2 and 4
respectively.

Now we proceed with the two Hurst-index estimators.

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.85 0.84997 0.84921 0.83503 0.7698
η = 0.001 0.84998 0.84967 0.84356 0.81115 0.82201
η = 0.0001 0.84978 0.84711 0.83132 0.83769 0.84763

Table 5. Means of Ĥǫ
1 for constant-σ model with ǫ = 0.1

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 5e-05 0.00017 0.00071 0.0059 0.02968
η = 0.001 5e-05 0.0002 0.00204 0.01014 0.0145
η = 0.0001 8e-05 0.00089 0.00486 0.00437 0.01058

Table 6. Standard deviations of Ĥǫ
1 for constant-σ model with ǫ = 0.1

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.84998 0.84966 0.84283 0.77158 0.60576
η = 0.001 0.84978 0.84684 0.80863 0.71165 0.71418
η = 0.0001 0.84789 0.82844 0.76846 0.78014 0.8205

Table 7. Means of Ĥǫ
1 for constant-σ model with ǫ = 0.01

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 5e-05 0.00019 0.00177 0.01209 0.0391
η = 0.001 5e-05 0.00041 0.00357 0.00974 0.02063
η = 0.0001 0.00022 0.00171 0.00428 0.00575 0.01197

Table 8. Standard deviations of Ĥǫ
1 for constant-σ model with ǫ = 0.01
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* 2n = 106 2n = 105 2n = 104 2n = 103 2n = 102

η = 0.01 0.85005 0.851 0.86961 1.0264 0.83383
η = 0.001 0.85046 0.85998 0.95922 0.85727 0.7368
η = 0.0001 0.85441 0.91253 0.85565 0.79103 0.81603

Table 9. Means of Ĥ2 for constant-σ model with ǫ = 0.1

* 2n = 106 2n = 105 2n = 104 2n = 103 2n = 102

η = 0.01 0.00145 0.00462 0.016 0.06725 0.17248
η = 0.001 0.00145 0.00557 0.03151 0.05317 0.15745
η = 0.0001 0.00197 0.01776 0.01581 0.04978 0.1502

Table 10. Standard deviations of Ĥ2 for constant-σ model with ǫ = 0.1

* 2n = 106 2n = 105 2n = 104 2n = 103 2n = 102

η = 0.01 0.85045 0.86004 0.99699 1.2951 0.82796
η = 0.001 0.8544 0.93419 1.23565 0.8622 0.57189
η = 0.0001 0.88917 1.15074 0.86317 0.63009 0.72459

Table 11. Means of Ĥ2 for constant-σ model with ǫ = 0.01

* 2n = 106 2n = 105 2n = 104 2n = 103 2n = 102

η = 0.01 0.00146 0.00523 0.03152 0.05684 0.19151
η = 0.001 0.00154 0.01011 0.02237 0.06417 0.17704
η = 0.0001 0.00394 0.01501 0.01985 0.05434 0.15789

Table 12. Standard deviations of Ĥ2 for constant-σ model with ǫ = 0.01

As the Tables above show, both estimators do reasonably well in this case, becoming more accurate as
n increases. The theoretical limiting standard deviations for the two Hurst-index estimators are given by
Tables 13-14 below and are reasonably close to the empirical ones, especially when ǫ = 0.1.

n = 106 n = 105 n = 104 n = 103 n = 102

6e-05 0.00022 0.00085 0.00358 0.017

Table 13. Theoretical limiting standard deviations of Ĥǫ
1 for all combinations of ǫ, η.

n = 106 n = 105 n = 104 n = 103 n = 102

0.00145 0.00459 0.0145 0.04585 0.14499

Table 14. Theoretical limiting standard deviations of Ĥ2 for all combinations of ǫ, η.
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6.2. Variable-σ Model. We now consider the variable-σ system

(17)

{
dXε

t = 1
2θ0X

ε
t dt+

√
ǫ L
2π e

sin(Y η
t )+cos(Y η

t )dWH0

t

dY η
t = 1

2η (sin(Y
η
t )− cos(Y η

t ))dt+ 1√
ηdBt

for t ∈ [0, T = 1], where L :=
∫ 2π

0 e−(sin(y)+cos(y))dy =
∫ 2π

0 esin(y)+cos(y)dy. For the purposes of averaging
we regard the fast component as taking values in the circle S obtained as a quotient of R upon identifying
points whose distance from one another is an integral multiple of 2π. Permitting a slight abuse of notation,
let (Xε

0 , Y
η
0 ) = (1, 0) ∈ R× S.

The scaling is chosen so that once again the limit X̄ of the slow process Xε in (17) is given by X̄t = e
tθ0
2

and σ̄ = 1, facilitating comparison of the experimental results between the two models.

We again fix θ0 = 1 and H0 = 0.85 and consider the estimators θ̂TFE and Ĥ2 defined in equations (12),
(4), and (11) respectively. For each estimator, for ǫ = 0.1 and ǫ = 0.01, and for selected values of η and

n (or 2n in the case of Ĥ2), we perform 10, 000 simulations. The slow and fast trajectories are simulated
according to an Euler-Maruyama scheme with 106 evenly-spaced discrete time steps.

Tables 15-26 present the empirical means and standard deviations. We start with the TFE θ̂TFE estimator.

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.92498 0.9297 0.91818 0.92298 0.91503
η = 0.001 0.94111 0.94252 0.93942 0.93276 0.93712
η = 0.0001 0.9289 0.93416 0.94348 0.93748 0.94499

Table 15. Means of θ̂TFE for variable-σ model with ǫ = 0.1

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.63444 0.64771 0.65125 0.6456 0.65453
η = 0.001 0.57226 0.579 0.58357 0.58011 0.5778
η = 0.0001 0.56799 0.57611 0.56143 0.57273 0.56516

Table 16. Standard deviations of θ̂TFE for variable-σ model with ǫ = 0.1

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.98835 0.99125 0.99326 0.99246 0.99009
η = 0.001 0.99302 0.99112 0.99112 0.99488 0.99388
η = 0.0001 0.99503 0.99587 0.99252 0.99287 0.99446

Table 17. Means of θ̂TFE for variable-σ model with ǫ = 0.01

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.20009 0.19998 0.19965 0.19787 0.1979
η = 0.001 0.17634 0.17853 0.17669 0.17456 0.17539
η = 0.0001 0.17297 0.17298 0.17149 0.1724 0.17242

Table 18. Standard deviations of θ̂TFE for variable-σ model with ǫ = 0.01

Our conclusions here are the same as those for the TFE in the constant-σ example of Subsection 6.1.
Note that because we have constructed the two examples so that certain limiting quantities coincide, the

theoretical standard deviation values for the TFE θ̂TFE are the same as those given in 6.1.
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Let us now proceed with the Hurst-index estimators.

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.82242 0.81812 0.8117 0.80079 0.77864
η = 0.001 0.82287 0.81827 0.81088 0.79324 0.79413
η = 0.0001 0.82255 0.81711 0.8041 0.80577 0.83329

Table 19. Means of Ĥǫ
1 for variable-σ model with ǫ = 0.1

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.01364 0.01615 0.01941 0.02536 0.04578
η = 0.001 0.00446 0.00527 0.0066 0.0114 0.0261
η = 0.0001 0.00143 0.00172 0.00303 0.00693 0.01275

Table 20. Standard deviations of Ĥǫ
1 for variable-σ model with ǫ = 0.1

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.82251 0.81802 0.81142 0.80042 0.77952
η = 0.001 0.82286 0.81826 0.81072 0.79297 0.79494
η = 0.0001 0.82254 0.81707 0.80411 0.80571 0.83334

Table 21. Means of Ĥǫ
1 for variable-σ model with ǫ = 0.01

* n = 106 n = 105 n = 104 n = 103 n = 102

η = 0.01 0.01377 0.01605 0.01918 0.02555 0.04554
η = 0.001 0.00447 0.00522 0.00657 0.01132 0.02596
η = 0.0001 0.00142 0.00171 0.00309 0.00695 0.01272

Table 22. Standard deviations of Ĥǫ
1 for variable-σ model with ǫ = 0.01

* 2n = 106 2n = 105 2n = 104 2n = 103 2n = 102

η = 0.01 0.85002 0.85028 0.85186 0.86408 0.81163
η = 0.001 0.85015 0.85219 0.86907 0.86401 0.68595
η = 0.0001 0.85134 0.87005 0.87218 0.69986 0.76573

Table 23. Means of Ĥ2 for variable-σ model with ǫ = 0.1

* 2n = 106 2n = 105 2n = 104 2n = 103 2n = 102

η = 0.01 0.00418 0.01341 0.04129 0.12186 0.26647
η = 0.001 0.00436 0.01365 0.04039 0.09693 0.16591
η = 0.0001 0.00424 0.01309 0.03379 0.05615 0.15515

Table 24. Standard deviations of Ĥ2 for variable-σ model with ǫ = 0.1
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* 2n = 106 2n = 105 2n = 104 2n = 103 2n = 102

η = 0.01 0.84999 0.85019 0.85115 0.86087 0.81679
η = 0.001 0.85015 0.85238 0.86952 0.86384 0.68816
η = 0.0001 0.8513 0.86992 0.87149 0.69979 0.76835

Table 25. Means of Ĥ2 for variable-σ model with ǫ = 0.01

* 2n = 106 2n = 105 2n = 104 2n = 103 2n = 102

η = 0.01 0.00413 0.0131 0.04173 0.12224 0.26606
η = 0.001 0.00428 0.01344 0.0406 0.09806 0.16667
η = 0.0001 0.00426 0.01309 0.03325 0.05559 0.15577

Table 26. Standard deviations of Ĥ2 for variable-σ model with ǫ = 0.01

We notice that Ĥ2 does a better job of correctly estimating H than Ĥ1. This can be explained by noting
that Ĥ1 depends on knowledge of the limiting coefficient σ̄ whereas the actual data come from the prelimit
model. It is therefore not surprising that the convergence here is slow. On the other hand Ĥ2 is based only
on the variation in the sample, which may allow it to converge more quickly in such cases. Note that as for
the TFE the theoretical standard deviation values are the same as those given in Subsection 6.1.

Appendix A. Auxiliary Results

The following lemma bounds the moments of the maximum process of |Y | with respect to η.

Lemma 6. Assume Conditions 1 and 2. For any 0 ≤ p <∞ and any ζ > 0,

E( sup
0≤t≤T

|Y η
t |p) = o

(
η−ζ

)

as η → 0.

Proof. By Proposition 2 of [43], one has for the time-rescaled fast process, for any 0 ≤ q <∞, the relation

E( sup
0≤s≤t

|Y η
ηs|q) = o(

√
t)

as t→ ∞. This yields

E( sup
0≤t≤T

|Y η
t |q) = o(

1√
η
)

as η → 0, whence the statement is immediate for ζ ≥ 1/2. For 0 < ζ < 1/2, apply Jensen’s inequality and
substitute q = p/2ζ:

E( sup
0≤t≤T

|Y η
t |p) ≤

(
E( sup

0≤t≤T
|Y η

t |p/2ζ)
)2ζ

= o((
1√
η
)2ζ).

�
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Appendix B. Preliminaries

B.1. Fractional Brownian motion. A fractional Brownian motion (fBm) is a centered Gaussian process
WH = {WH

t }t≥0 ⊂ L2(Ω), characterized by its covariance function

RH(t, s) := E(WH
t WH

s ) =
1

2

(
s2H + t2H − |t− s|2H

)
.

It is straightforward to verify that increments of fBm are stationary. The parameter H ∈ (0, 1) is usually
referred to as the Hurst exponent, Hurst parameter, or Hurst index.

By Kolmogorov’s continuity criterion, such a process admits a modification with continuous sample paths,
and we always choose to work with such. In this case one may show in fact that almost every sample path
is locally Hölder continuous of any order strictly less than H . It is this sense in which it is often said that
the value of H determines the regularity of the sample paths.

Note that when H = 1
2 , the covariance function is R 1

2

(t, s) = t∧ s. Thus, one sees that W
1

2 is a standard

Brownian motion, and in particular that its disjoint increments are independent. In contrast to this, when
H 6= 1

2 , nontrivial increments are not independent. In particular, when H > 1
2 , the process exhibits long-

range dependence.
Note moreover that when H 6= 1

2 , the fractional Brownian motion is not a semimartingale, and the usual
Itô calculus therefore does not apply.

Another noteworthy property of fractional Brownian motion is that it is self-similar in the sense that, for
any constant a > 0, the processes

{
WH

t

}
t≥0

and
{
a−HWH

at

}
t≥0

have the same distribution.

For more details about fractional Brownian motion, we refer the reader to the monographs [5, 39, 41].
The self-similarity and long-memory properties of the fractional Brownian motion make it an interesting

and suitable input noise in many models in various fields such as analysis of financial time series, hydrology,
and telecommunications. However, in order to develop interesting models based on fractional Brownian
motion, one needs a stochastic calculus with respect to the fBm, which will make use of the stochastic
calculus of variations, or Malliavin calculus, introduced in the next subsection.

B.2. Elements of Malliavin calculus. We outline here the main tools of Malliavin calculus needed in this
paper. For a complete treatment of this topic, we refer the reader to [41].

Let WH =
{
WH

t

}
t≥0

⊂ L2(Ω) be a fractional Brownian motion with Hurst index H ∈ (12 , 1) and let us

fix a time interval [0, T ], where T ∈ R+.
The formula 〈

χ[0,s], χ[0,t]

〉
H
:= RH(s, t)

induces an inner product on the set E of step functions on [0, T ]. We denote by H the Hilbert space obtained
as the completion of the resulting inner product space.

It can be shown that the formula

(18) 〈ϕ, ψ〉
H
:= αH

∫ T

0

∫ T

0

ϕ(r)ψ(u) |r − u|2H−2
dudr,

with αH := H(2H − 1), extends the above inner product from E to the superset L2([0, T ]), and that it is
equivalent to define H as the completion of this extended inner product space (see e.g. [12]).

Now, the map χ[0,t] 7→ WH
t extends to a linear isometry of Hilbert spaces H → L2(Ω). We will denote

this map also by WH .
Recall that we are in the setting in which H > 1

2 . While one may interpret H as a space of distributions,

it has been shown in [49, 48] that when H > 1
2 , the elements may not be ordinary functions but distributions

of negative order. Adapting the inner product (18), one can introduce the space |H| of equivalence classes
of measurable functions ϕ on [0, T ] for which

‖ϕ‖2|H| := αH

∫ T

0

∫ T

0

|ϕ(r)| |ϕ(u)| |r − u|2H−2
dudr <∞,

which is in fact a Banach space equipped with this square norm.
It can be shown that one has the following chain of continuous inclusions:

L2([0, T ]) ⊂ L
1

H ([0, T ]) ⊂ |H| ⊂ H.
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Let us now denote by S the set of smooth cylindrical random variables of the form F = f
(
WH(ϕ1), · · · ,WH(ϕn)

)
,

where n ≥ 1, {ϕi}ni=1 ⊂ H, and f ∈ C∞
b (Rn) (f and all of its partial derivatives of all orders are bounded

functions).
The Malliavin derivative of such a smooth cylindrical random variable F is defined as the H-valued random

variable given by

DF :=

n∑

i=1

∂f

∂xi

(
WH(ϕ1), · · · ,WH(ϕn)

)
ϕi.

The derivative operator D is a closable operator from L2(Ω) into L2(Ω;H), and we continue to denote by D
the closure of the derivative operator, the domain of which we denote by D

1,2, and which is a Hilbert space
in the Sobolev-type norm

‖F‖21,2 := E(F 2) + E
(
‖DF‖2

H

)
.

Similarly one obtains a derivative operator D : D1,2(H) → L2(Ω;H⊗H) as the closure of D : L2(Ω;H) →
L2(Ω;H⊗ H), and so on.

Note that more generally with p > 1 one can analogously obtain D
1,p as Banach spaces of Sobolev type

by working with Lp(Ω).

We can now introduce the divergence operator δ as the adjoint of the derivative operator D. By defini-
tion, an H-valued random variable u ∈ L2(Ω;H) is in the domain of δ, which we denote by dom δ, if there is
a constant cu for which, for all F ∈ D

1,2,

∣∣E
(
〈DF, u〉

H

)∣∣ ≤ cu |F |L2(Ω) .

For such an element u, δ(u) is defined by duality as the unique element of L2(Ω) such that, for each F ∈ D
1,2,

E (Fδ(u)) = E
(
〈DF, u〉

H

)
.

It can be shown that D1,2(H) ⊂ dom δ, and that for any u ∈ D
1,2(H),

E
(
δ(u)2

)
= E

(
‖u‖2

H

)
+ E

(
〈Du, (Du)∗〉

H⊗H

)
,

where (Du)∗ is the adjoint of Du in the Hilbert space H⊗ H.

B.3. Multiple Wiener integrals of deterministic functions with respect to fractional Brownian

motion.

B.4. Stochastic integration with respect to fractional Brownian motion.

In this subsection we state useful properties of multiple Wiener integrals of elements of H with respect the
fractional Brownian motion and introduce two main methods used to define stochastic integrals with respect
to the fractional Brownian motion. These and other available approaches are collected and discussed in
detail in the monograph [5].

The first method, introduced in [12], is based on the stochastic calculus of variations, or Malliavin calculus.
Owing to the central role played by the divergence operator introduced in Subsection B.2, stochastic integrals
of this type are commonly referred to as divergence integrals.

The second approach uses the fact that the Hölder regularity of the paths of fBm with H > 1
2 is sufficient

to allow integration in the sense of Zähle [60] or [52] (see also the classic paper [59]). Stochastic integrals of
this type are often called pathwise integrals.

Remark 11. The divergence integral can be formulated for fractional Brownian motion with any H ∈ (0, 1)
whereas the pathwise integral exists only for H > 1

2 . One reason that we restrict attention to the case H > 1
2

in this work is so that we may make use of known results for both.
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B.4.1. Multiple Wiener integrals. For q ∈ N and f ∈ H⊗q, we denote by Iq(f) the multiple Wiener integral of
order q with respect to the fractional Brownian motion WH introduced in the preceding subsections (when
several different fractional Brownian motions are being used, a superscript will be added to the multiple
integral notation to avoid ambiguities as to which fractional Brownian motion is the integrator). We refer
the reader to [41, Chapter 1] for a definition and construction of these objects. We limit ourselves here to
recalling the main properties of multiple Wiener integrals needed in this paper, the first of which is that
multiple Wiener integrals of different orders are orthogonal in L2(Ω). The multiple Wiener integrals form
an algebra with the following product rule: for q, p ∈ N, f ∈ H⊗q and g ∈ H⊗p,

(19) Iq(f)Ip(g) =

q∧p∑

r=0

r!

(
q

r

)(
p

r

)
Ip+q−2r (f ⊗r g) ,

where f ⊗0 g := f ⊗ g and for each 1 ≤ r ≤ q ∧ p, the contraction f ⊗r g is given by

f ⊗r g :=

∞∑

i1,...,ir=1

〈f, ei1 ⊗ . . .⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ . . .⊗ eir 〉H⊗r

where {ek}∞k=1 is any complete orthonormal system in H.

B.4.2. Divergence integration. The definition of the divergence operator as the adjoint of the Malliavin
derivative operator suggests interpretation as an integral. Indeed, in the standard Brownian motion case
(H = 1

2 ), the divergence of an adapted, Itô-integrable process coincides with its familiar Itô integral. In
general one defines, for u ∈ dom δ and 0 ≤ t ≤ T ,

∫ t

0

usδW
H
s := δ(uχ[0,t]),

which we call the divergence integral of u. Note that the divergence integral is always centered in the sense
that its expected value is zero.

We shall make use of a maximal inequality for the divergence integral, which we now state. The inter-
ested reader is referred to [1] for more details.

Denote by L
1,p
H the set of elements u ∈ D

1,p(H) for which

E

(
|u|p

L
1

H ([0,T ])
+ |Du|p

L
1

H ([0,T ]2)

)
<∞.

There is a constant C depending only on H and T such that for any p with pH > 1 and any u ∈ L
1,p
H ,

E

(
sup

0≤t≤T

∣∣∣∣
∫ t

0

usδW
H
s

∣∣∣∣
p
)

≤ C




∫ T

0

|E (us)|p ds+
∫ T

0

E

(∫ T

0

|Dsur|
1

H ds

)pH

dr



 .

Here, Dur is being interpreted as a stochastic process and the subscript s in the notation Dsur refers to its
parameter. Note that if we denote by λ the Lebesgue measure on [0, T ], by P the probability measure on Ω,
and by ω ∈ Ω the random state, then Dsur is defined for λ× P -almost-every pair (s, ω).

B.4.3. Pathwise integration. We present a version of pathwise integration that appears by the name of
symmetric stochastic integration in [52].

Let u = {ut}0≤t≤T be a stochastic process in D
1,2(H). If one has that

E
(
‖u‖2|H| + ‖Du‖2|H|⊗|H|

)
<∞

and ∫ T

0

∫ T

0

|Dsut| |t− s|2H−2
dsdt <∞ a. s.,

then the symmetric integral ∫ T

0

utdW
H
t
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defined as the limit in probability as ε tends to zero of

1

2ε

∫ T

0

us

(
WH

(s+ε)∧T −WH
(s−ε)∨0

)
ds

exists and for each t ∈ [0, T ],

(20)

∫ t

0

usdW
H
s =

∫ t

0

usδW
H
s + αH

∫ t

0

∫ T

0

Drus |s− r|2H−2
drds.

Thus one sees how the pathwise and divergence integrals are related to one another. Note in particular that
whereas the divergence integral is centered, the pathwise integral generally speaking is not. In the setting
of the model in this paper, however, the two integrals coincide.

Remark 12. Note that whenever one has Du = 0, as is the case for instance when the integrand u and the
fractional Brownian motion WH are independent stochastic processes, the relation (20) says

∫ t

0

usdW
H
s =

∫ t

0

usδW
H
s ,

which is to say that the two approaches lead to the same integral and in particular that both are centered.
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Attal, Alain Joye, Claude-Alain Pillet (Eds.). Lecture Notes in Mathematics 1881, Berlin: Springer, 2006, pp. 1–39.
[52] F. Russo, P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields, 97 (1993),

no. 3, pp. 403–421. MR 1245252
[53] M. Sørensen, M. Uchida, Small diffusion asymtptotics for discretely sampled stochastic differential equations, Benroulli 9

(2003) 1051-1069.
[54] K. Spiliopoulos, Large deviations and importance sampling for systems of slow-fast motion, Applied Mathematics and

Optimization,, Vol. 67, (2013), pp. 123-161.
[55] K. Spiliopoulos, Fluctuation analysis and short time asymptotics for multiple scales diffusion processes, Stochastics and

Dynamics 14 (3) (2014) 1350026.
[56] K. Spiliopoulos, A. Chronopoulou, Maximum likelihood estimation for small noise multiscale diffusions, Statistical Inference

for Stochastic Processes 16 (3) (2013) 237–266.
[57] M. Uchida, Estimation for discretely observed small diffusions based on approximate martingale estimating functions,

Scandinavian Journal of Statistics, 31 (4), (2004), 553-566.

28
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