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AN A POSTERIORI ERROR ESTIMATE OF THE OUTER NORMAL
DERIVATIVE USING DUAL WEIGHTS\ast 
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Abstract. We derive a residual based a posteriori error estimate for the outer normal flux of
approximations to the diffusion problem with variable coefficient. By analyzing the solution of the
adjoint problem, we show that error indicators in the bulk may be defined to be of higher order than
those close to the boundary, which leads to more economic meshes. The theory is illustrated with
some numerical examples.
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Let \Omega \subset Rd, d = 2, 3, be a polygonal/polyhedral domain; let \Gamma = \partial \Omega denote its
boundary and \nu the outer unit normal. We consider the following diffusion problem:

 - \nabla \cdot a\nabla u = f, in \Omega ,

with nonhomogeneous Dirichlet boundary conditions, u = g on \Gamma . The outer normal
flux \nu \cdot (a\nabla u) is an important quantity in many applications. It is of importance, for
instance, when a heat flux or an electric field on the boundary of the domain needs to
be approximated, or in fluid mechanics for the fluid forces [1, 29, 36, 20]. For boundary
control problems, an accurate approximation of the normal flux on the boundary also
plays a critical role [2, 3]. Recently there has been a number of works estimating the
error for the outer normal flux in the a priori sense. We refer to [32, 35].

From the computational perspective it is appealing to apply adaptive methods
that concentrate degrees of freedom where they are most needed to achieve a certain
accuracy. In particular, for the normal flux on the boundary, we expect perturbations
in the bulk of the domain to be less significant than those close to the boundary. This
is proved in [14] where local a priori error estimates were given for the error in the outer
normal flux. In particular, the error on the flux quantity was shown to depend on the
H1-error in a tubular neighborhood of the boundary and a global term that measures
the global error in a weak norm. Similar results using boundary concentrated meshes
were obtained more recently in [38], where the application to a Dirichlet boundary
control problem was studied. A consequence of the localization property underlying
the above a priori error estimates is that a standard energy norm estimate is unlikely
to have optimal performance when approximating the normal flux, since it does not
account for the relative independence of the goal quantity on perturbations in the
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bulk. It is, however, not straightforward to ensure accuracy of the boundary flux
using a priori refinement in the boundary region alone, since geometric singularities
or rough data nevertheless have to be taken into account.

The objective of the present work is to derive a residual based a posteriori error
estimate for the outer normal flux that exploits the localization property. In par-
ticular, we add some mesh dependent weight in front of the classical residual based
error estimator, and the weights greatly depend on the distance to the boundary.
More precisely, the domain is implicitly divided into two zones, a tubular neighbor-
hood around the boundary and an interior, bulk zone. For elements in the latter,
the residual estimator is multiplied with the mesh diameter to a higher power than
in the boundary region, hence giving it relative smaller weight. To get a precise
quantification of the size of the weight we consider an adjoint problem. Thanks to
suitable weighted estimates we determine the rate of the decrease of the adjoint so-
lution and its derivatives with increasing distance to the boundary. This then helps
provide bounds on the dual weights in the a posteriori error estimate that allow us
to decompose the domain in a bulk and a boundary subdomain with associated error
indicators.

The use of adjoint equations for the derivation of a posteriori error estimates
in weak norms was first proposed by Eriksson and Johnson in [21] in the case of
L2 norm bounds. These ideas were generalized to the approximation of fluxes and
fluid forces using the dual weighted residual a posteriori error estimation approach
(see, for instance, [9, 10, 27, 8, 11, 39]). In these approaches, the dual solution was
approximated, typically focusing on linear functionals of the error. There has recently
been an increased interest in the convergence and optimality of goal oriented adaptive
methods [5, 31, 24, 30, 7, 33, 6]. With this work we show that when the target quantity
of the computation is the outward normal flux, a detailed analysis of the adjoint
equation can lead to a posteriori bounds that perform better than the standard energy
estimate but without the need of solving the dual problem numerically. Recall in this
context that, when the target quantity driving the adaptive procedure is a norm of the
error, the computation of the solution of the adjoint problem is complicated by the
fact that the right-hand side depends on the error itself and is therefore not directly
available, contrary to what happens, for instance, when the target quantity is a given
known functional of the solution, such as the value at a point or the integral over a
line.

Herein we only consider the standard finite element setting where the domain
is meshed with a conforming triangulation. However, the arguments generalize in a
straightforward manner to a posteriori error estimates for fictitious domain methods
where elements are cut [17]. To extend the method to adaptive standard fictitious
domain methods [28] in the spirit of [13], or domain decomposition methods, some
more subtle arguments are needed. Indeed in such situations, the boundary divides
the computational domain in two (or more) subdomains, thus requiring an analysis
of the adjoint solution, similar to the one in this paper, for each subdomain and
accounting for all boundaries and interfaces of the problem. This is the topic of a
forthcoming paper.

An outline of the paper is as follows. First we introduce the weak formulation of
our model problem and the associated finite element method in section 1. In section 2
we derive the a posteriori error estimate. Then we show in section 3 how to apply the
results to some known stabilized methods, such as the Barbosa--Hughes methods and
Nitsche's method. Finally, we illustrate the theory with some numerical examples in
section 4.

D
ow

nl
oa

de
d 

06
/1

9/
22

 to
 1

93
.6

0.
24

0.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ESTIMATE OF THE OUTER NORMAL FLUX BY DUAL WEIGHTS 477

1. The Lagrange multiplier formulation of the Dirichlet problem. For
g \in H1/2(\Gamma ) and f \in L2(\Omega ) given, we consider the problem of finding u \in H1(\Omega ),
\lambda \in H - 1/2(\Gamma ) such that for all v \in H1(\Omega ), \mu \in H - 1/2(\Gamma ),\int 

\Omega 

a \nabla u \cdot \nabla v  - 
\int 
\Gamma 

\lambda v =

\int 
\Omega 

fv,

\int 
\Gamma 

u\mu =

\int 
\Gamma 

g\mu ,(1.1)

where a \in C\infty (\=\Omega ) is the diffusion coefficient, which for the sake of simplicity we assume
to be scalar, satisfying 0 < \alpha \leq a \leq M for some constants \alpha and M . We consider a
Galerkin discretization of such problem. More precisely, letting Vh \subset H1(\Omega ), \Lambda h \subset 
H - 1/2(\Gamma ) be finite element spaces defined on a shape regular triangulation \scrT h, we
look for uh \in Vh, \lambda h \in \Lambda h such that for all vh \in Vh, \mu h \in \Lambda h,\int 

\Omega 

a\nabla uh \cdot \nabla vh  - 
\int 
\Gamma 

\lambda hvh =

\int 
\Omega 

fvh,

\int 
\Gamma 

uh\mu h =

\int 
\Gamma 

g\mu h.(1.2)

We assume that Vh contains the space of continuous piecewise polynomials of
order k (k \geq 0) on \scrT h, which we denote by qVh, and that \Lambda h contains a subspace q\Lambda h

which is either the space of piecewise constants or the space of continuous piecewise
linears on the mesh induced on \Gamma by \scrT h.

Restricting the test functions in (1.1) to the discrete spaces and taking the differ-
ence of (1.1) and (1.2) we see that the following Galerkin orthogonality holds: for all
vh \in Vh, \mu h \in \Lambda h,\int 

\Omega 

a \nabla (u - uh) \cdot \nabla vh  - 
\int 
\Gamma 

(\lambda  - \lambda h)vh = 0,

\int 
\Gamma 

(u - uh)\mu h = 0.(1.3)

Observe that in the above we are as general as possible in the definition of the two
spaces. We do not even need to assume that the spaces satisfy the inf-sup condition
required for the stability of (1.2). This of course does not mean that the method is
stable without it, only that the a posteriori error estimate will measure the computa-
tional error independently of the stability properties of the pair Vh\times \Lambda h. An example
of spaces that may be used in the framework is

Vh = \{ u \in H1(\Omega ) : u| T \in Pk(T ) \forall T \in \scrT h\} (1.4)

and, for k\prime \geq 0,

\Lambda h = \{ \lambda \in L2(\Gamma ) : u| F \in Pk\prime (F ) \forall F \in \scrT h| \Gamma \} (1.5)

or, for k\prime \geq 1,

\Lambda h = \{ \lambda \in C0(\Gamma ) : u| F \in Pk\prime (F ) \forall F \in \scrT h| \Gamma \} .(1.6)

Also variants of the spaces (1.5) and (1.6) with local conforming enrichment on the
boundary to satisfy the inf-sup condition are valid [16].

Remark 1.1. We point out that, for k\prime = k, the choice (1.6) for the multi-
plier space, coupled with the choice (1.4) for the approximation of the primal un-
known (i.e., choosing \Lambda h = Vh| \Gamma ), yields a stable discretization of problem (1.1),
equivalent to strongly imposing the Dirichlet boundary condition uh = \pi hg, where
\pi h : L2(\Gamma ) \rightarrow Vh| \Gamma is the L2(\Gamma ) orthogonal projection. Then, using \lambda h as an approx-
imation to the normal flux is equivalent to computing the latter by postprocessing
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with a variational approach as proposed, for instance, in [38]. Remark that, when the
domain has corners, this method will not have, in general, optimal approximation for
the multiplier, and it should be modified following the strategy used in the mortar
method (see [12]), where discontinuity is allowed at the corners, with k\prime = k  - 1 for
those elements on the boundary mesh \scrT h| \Gamma which are adjacent to the corners, and
k\prime = k for the remaining elements. Observe, however, that also for the suboptimal
choice (1.6), the estimator we are going to present, remains valid.

2. A posteriori error estimates. The a posteriori error estimate is derived in
three steps. We first derive an error representation using the adjoint problem. We then
derive the local bounds for the adjoint solution, and, finally, we obtain the weighted
residual estimates. In what follows we will use the notation A \lesssim B to indicate that
A \leq cB for some positive constant c independent of mesh size parameters such as
element diameters and/or face diameters or edge lengths. A \simeq B will stand for
A \lesssim B \lesssim A.

2.1. Error representation using duality. We let

A : (H1(\Omega )\times H - 1/2(\Gamma ))\times (H1(\Omega )\times H - 1/2(\Gamma )) \rightarrow R

be defined by

A(w, \eta ; v, \zeta ) =

\int 
\Omega 

a\nabla w \cdot \nabla v  - 
\int 
\Gamma 

\eta v +

\int 
\Gamma 

w\zeta .(2.1)

Let (u, \lambda ) \in H1(\Omega ) \times H - 1/2(\Gamma ) be the solution of (1.1), and let (uh, \lambda h) \in Vh \times \Lambda h

satisfy (1.2). Set e = u - uh and \delta = \lambda  - \lambda h. We define L : H - 1/2(\Gamma ) \rightarrow R as

L(\xi ) := \| \delta \|  - 1
 - 1/2,\Gamma (\delta , \xi ) - 1/2,\Gamma so that L(\delta ) = \| \delta \|  - 1/2,\Gamma ,

where (\cdot , \cdot ) - 1/2,\Gamma is the scalar product for the space H - 1/2(\Gamma ), whose precise expres-
sion is provided later in (2.5), and where \| \cdot \|  - 1/2,\Gamma is the corresponding norm. Define

(z, \zeta ) \in \scrV = H1(\Omega )\times H - 1/2(\Gamma ) as the solution of

A(w, \eta ; z, \zeta ) = L(\eta ) \forall (w, \eta ) \in \scrV .(2.2)

Remark that the right-hand-side functional L depends on the unknown error \delta , so
that it is not possible to compute z, \zeta , even only approximately. It is, however, easy
to see that | L(\xi )| \leq \| \xi \|  - 1/2,\Gamma , and then the operator L has unitary norm. Therefore,
by the stability of (2.2), we have

\| z\| 1,\Omega \lesssim 1, \| \zeta \|  - 1/2,\Gamma \lesssim 1.(2.3)

Let \scrF i
h and \scrF b

h, respectively, denote the set of interior and boundary (d  - 1)-
dimensional facets of the triangulation \scrT h, and, for an element T \in \scrT h, let \nu T denote
the outer unit normal to \partial T . On a (d  - 1)-dimensional facet F = \partial T+ \cap \partial T - we
define the jump of the normal flux by [a \partial \nu uh] = a\nabla u+h \cdot \nu T+ + a\nabla u - h \cdot \nu T - .

Proposition 2.1 (error representation). Let \delta = \lambda  - \lambda h, and let z, \zeta be the
solution of (2.2). Then it holds that for any zh \in Vh and \zeta h \in \Lambda h,

\| \delta \|  - 1/2,\Gamma =
\sum 
T\in \scrT h

\int 
T

(f +\nabla \cdot a\nabla uh)(z  - zh) - 
\sum 

F\in \scrF i
h

\int 
F

[a \partial \nu uh](z  - zh)

+
\sum 

F\in \scrF b
h

\int 
F

(\lambda h  - a \partial \nu uh)(z  - zh) +

\int 
\Gamma 

(g  - uh)(\zeta  - \zeta h).

(2.4)D
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Proof. Taking w = e and \eta = \delta in (2.2) we have

\| \delta \|  - 1/2,\Gamma = L(\delta ) = A(e, \delta ; z, \zeta ).

Now, for zh \in Vh, \zeta h \in \Lambda h arbitrary, thanks to Galerkin orthogonality (1.3) we can
write

\| \delta \|  - 1/2,\Gamma = A(e, \delta ; z  - zh, \zeta  - \zeta h) = I + II

with

I =

\int 
\Omega 

a\nabla e \cdot \nabla (z  - zh), II =  - 
\int 
\Gamma 

(a \partial \nu u - \lambda h)(z  - zh) +

\int 
\Gamma 

(g  - uh)(\zeta  - \zeta h).

For the term I we obtain using Green's theorem

I =

\int 
\Omega 

a\nabla e \cdot \nabla (z  - zh) =
\sum 
T\in \scrT h

\int 
T

a\nabla e \cdot \nabla (z  - zh)

=
\sum 
T\in \scrT h

\biggl( \int 
T

(f +\nabla \cdot a\nabla uh)(z  - zh) +

\int 
\partial T

a\nabla (u - uh) \cdot \nu T (z  - zh)

\biggr) 
=

\sum 
T\in \scrT h

\int 
T

(f +\nabla \cdot a\nabla uh)(z  - zh) - 
\sum 

F\in \scrF i
h

\int 
F

[a \partial \nu uh](z  - zh)

+
\sum 

F\in \scrF b
h

\int 
F

(a \partial \nu u - a \partial \nu uh)(z  - zh).

Combining all yields (2.4). This completes the proof of the proposition.

2.1.1. Some observations on the operator \bfitL . We start by observing that
taking vh = 1 in (1.3) implies

\int 
\Gamma 
\delta = 0. Then we have

\| \delta \|  - 1/2,\Gamma = sup
\phi \in H1/2(\Gamma )

\int 
\Gamma 
\delta \phi 

\| \phi \| 1/2,\Gamma 
\simeq sup

\phi \in H1/2(\Gamma )\int 
\Gamma \phi =0

\int 
\Gamma 
\delta \phi 

| \phi | 1/2,\Gamma 
.

On the space H
1/2
\circ (\Gamma ) = \{ \phi \in H1/2 :

\int 
\Gamma 
\phi = 0\} of zero average functions in H1/2(\Gamma ),

we can define a scalar product and a norm, equivalent to the standard H1/2 scalar
product and norm, as

(\phi , \psi )1/2,\Gamma =

\int 
\Omega 

\nabla \phi \scrH \cdot \nabla \psi \scrH , | \phi | 1/2,\Gamma := | \phi \scrH | 1,\Omega ,

where \phi \scrH \in H1(\Omega ) denotes the harmonic lifting of \phi . We then let \| \cdot \|  - 1/2,\Gamma be defined

by duality with respect to the above norm. We now let R : (H
1/2
\circ (\Gamma ))\prime \rightarrow H

1/2
\circ (\Gamma )

denote the Riesz isomorphism, which, we recall, is defined as the solution of

(R\lambda , \phi )1/2,\Gamma =

\int 
\Gamma 

\lambda \phi \forall \phi \in H
1/2
\circ (\Gamma ).

We recall that, as R is an isomorphism, we also have that

(\lambda , \mu ) - 1/2,\Gamma = (R\lambda ,R\mu )1/2,\Gamma =

\int 
\Omega 

\nabla (R\lambda )\scrH \cdot \nabla (R\mu )\scrH .(2.5)

D
ow

nl
oa

de
d 

06
/1

9/
22

 to
 1

93
.6

0.
24

0.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

480 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

It is now easy to check that, if \mu \in L2(\Gamma ) satisfies
\int 
\Gamma 
\mu = 0, then (R\mu )\scrH is the unique

solution of

 - \Delta (R\mu )\scrH = 0 in \Omega ,

\int 
\Gamma 

(R\mu )\scrH = 0, \partial (R\mu )\scrH /\partial \nu = \mu .(2.6)

Indeed for any function v \in H1(\Omega ), there is a unique decomposition v = \=v+v1+v0
such that \=v = | \Gamma |  - 1

\int 
\Gamma 
v, v0 \in H

1/2
\circ (\Gamma ) is the harmonic extension of v  - \=v, and

v1 \in H1
0 (\Omega ) satisfies \bigtriangleup v1 = \bigtriangleup v. Then we have that for any v \in H1(\Omega ),\int 

\Omega 

\nabla (R\mu )\scrH \cdot \nabla v =

\int 
\Omega 

\nabla (R\mu )\scrH \cdot \nabla v0 = (R\mu , v0)1/2 =

\int 
\Gamma 

\mu v0 =

\int 
\Gamma 

\mu v,(2.7)

which is the weak form of (2.6).

2.2. Local estimates for the adjoint solution \bfitz . We observe that z is the
solution of the following problem:\int 

\Omega 

a\nabla w \cdot \nabla z +
\int 
\Gamma 

w\zeta = 0,  - 
\int 
\Gamma 

\eta z = \| \delta \|  - 1
 - 1/2,\Gamma (\delta , \eta ) - 1/2,\Gamma = | R\delta |  - 1

1/2,\Gamma 

\int 
\Gamma 

\eta R\delta .

We rewrite this as

 - \nabla \cdot a\nabla z = 0 in \Omega , z =  - | R\delta |  - 1
1/2,\Gamma R\delta on \Gamma .

The following lemma, whose proof we include for the sake of completeness, was
proven in [34].

Lemma 2.2. Let d\Gamma (x) denote the distance of x from \Gamma , and let w \in H1(\Omega ) satisfy
\nabla \cdot a\nabla w = 0 in \Omega . Then, for all p \geq 0 it holds that

\| dp+1
\Gamma \nabla p+2w\| 0,\Omega \lesssim | w| 1,\Omega .(2.8)

Proof. We start by proving a local bound. Let BR and BcR, 0 < c < 1, be
two concentric balls of radius, respectively, R and cR, and assume that w \in H1(BR)
satisfies \nabla \cdot a\nabla w = 0 in BR. Then, we claim that for all p \geq 0 it holds that

\| \nabla p+2w\| 0,BcR
\lesssim R - p - 1\| \nabla w\| 0,BR

+R - p - 2\| w\| 0,BR
,(2.9)

where the implicit constant in the inequality depends on c. We start by proving (2.9)
for R = 1. We prove it by induction on p. For p = 0, this is a consequence of [26,
Theorem 8.8]. Let us now assume that the result is true for all p \leq n  - 1 and prove
it for p = n. We let c\prime = 1  - (1  - c)/2 = c/2 + 1/2 and let \omega c \in C\infty 

0 (Bc\prime ), \omega c \geq 0,
\omega c = 1 in Bc. We have

\nabla \cdot a\nabla (\omega cw) = 2a\nabla w \cdot \nabla \omega c + aw\Delta \omega c + w\nabla a \cdot \nabla \omega c in Bc\prime \omega cw = 0 on \partial Bc\prime .

Using standard results on the smoothness of the solution of elliptic equations (see
[26]), by the induction assumption we have that

\| \nabla n+2w\| 0,Bc
\leq \| \nabla n+2(\omega cw)\| 0,Bc\prime \lesssim \| 2a\nabla w \cdot \nabla \omega c + aw\Delta \omega c + w\nabla a \cdot \nabla \omega c\| n,Bc\prime 

\lesssim \| \nabla w\| n,Bc\prime + \| w\| n,Bc\prime \lesssim \| w\| 1,B1
,

which proves our claim for R = 1. By rescaling we immediately obtain (2.9).
Let us now prove (2.8). We consider a covering of \Omega , consisting of a countable

collection of balls Bi = Bri(xi) \subset \Omega , of center xi and radius ri, with ri = \~cd\Gamma (xi) for
some fixed 0 < \~c < 1, such that
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1. there exist N \in N such that all x \in \Omega belong to at most N balls Bi;
2. for some 0 < c < 1 independent of i, letting \widetilde Bi \subset \subset Bi denote the ball of

center xi and radius cri, it holds that \Omega \subseteq \cup i
\widetilde Bi.

(By the Besicovitch covering theorem, such a collection exists.) We observe that the
relation between the radius of the balls in our covering and the distance of the centers
from the boundary of the domain implies that for all i, x \in \widetilde Bi implies d\Gamma (x) \simeq ri.
Then, letting wi = | Bi|  - 1

\int 
Bi
w denote the average of w in Bi, using (2.9) and a

Poincar\'e inequality, we can write

\| dp+1
\Gamma \nabla p+2w\| 20,\Omega \leq 

\sum 
i

\| dp+1
\Gamma \nabla p+2w\| 2

0, \widetilde Bi
\lesssim 

\sum 
i

r
2(p+1)
i \| \nabla p+2w\| 2

0, \widetilde Bi

\lesssim 
\sum 
i

r
2(p+1)
i \| \nabla p+2(w  - wi)\| 20, \widetilde Bi

\lesssim 
\sum 
i

(| w  - wi| 21,Bi
+ r - 2

i \| w  - wi\| 20,Bi
)

\lesssim 
\sum 
i

| w| 21,Bi
\lesssim | w| 21,\Omega ,

which concludes the proof.

2.3. The a posteriori error estimator. Using the error representation of
Proposition 2.1 and the local bounds for the adjoint solution stated in (2.8), we will
now derive the a posteriori error estimation. Compared to the classical residual based
error indicator, our local error indicators for each element/facet are additionally mul-
tiplied by local dual weights depending on the distance from the element/facet to the
boundary. Let us first introduce some notations that will be useful for the bounds.

We let hT (resp., hF ) denote the diameter of an element T (resp., of a (d  - 1)-
dimensional facet F ) in \scrT h. For a given element T \in \scrT h, \Delta T denotes the patch of
elements that have at least a vertex in common with T . The distance of an element
T to the boundary will be measured using \rho T = minx\in \Delta T

d\Gamma (x). That is the shortest
distance from the associated patch to the boundary.

We now let \widehat \Pi h : H1(\Omega ) \rightarrow qVh denote the Scott--Zhang projector, introduced in
[40]. We recall that, for 1 \leq m \leq k + 1, it holds that

\| z  - \widehat \Pi hz\| 0,T + hT | z  - \widehat \Pi hz| 1,T \lesssim hmT | z| m,\Delta T
.(2.10)

Using this bound for m = 1 and m = k + 1 we have the following local interpolation
bounds for the adjoint solution.

Lemma 2.3. Let zh = \widehat \Pi hz; then we have the following two bounds:

\| z  - zh\| 0,T + hT | z  - zh| 1,T \leq C1hT | z| 1,\Delta T
,

\| z  - zh\| 0,T + hT | z  - zh| 1,T \leq C2h
k+1
T \rho  - k

T \| dk\Gamma \nabla k+1z\| 0,\Delta T
.

The constants C1 and C2 depend on the shape regularity of the mesh.

Proof. The first inequality is immediate by (2.10) with m = 1. The second
inequality trivially holds for T with \Delta T adjacent to the boundary (for which \rho  - k

T =
\infty ). For the elements for which \Delta T is interior to \Omega , it follows by first applying (2.10)
withm = k+1, then multiplying and dividing by dk\Gamma , and finally bounding d - k

\Gamma \leq \rho  - k
T :

\| z  - zh\| 0,T + hT | z  - zh| 1,T \lesssim hk+1
T | z| k+1,\Delta T

\lesssim hk+1
T \rho  - k

T | dk\Gamma z| k+1,\Delta T
.

Let us at first assume that we have g \in H1(\Gamma ). Under such an assumption we
have the following theorem.
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Theorem 2.4. Define the following local residuals:

r(T ) = hT \| f +\nabla \cdot a\nabla uh\| 0,T \forall T \in \scrT h,

r0(F ) = h
1/2
F \| [a \partial \nu uh]\| 0,F \forall F \in \scrF i

h,

r1(F ) = h
1/2
F \| \lambda h  - a \partial \nu uh\| 0,F \forall F \in \scrF b

h,

r2(F ) = h
1/2
F | g  - uh| 1,F \forall F \in \scrF b

h.

(2.11)

Then we have

\| \lambda  - \lambda h\|  - 1/2,\Gamma \lesssim 
\sqrt{} \sum 

T\in \scrT h

\varsigma 2T | r(T )| 2 +
\sum 

F\in \scrF i
h

\varsigma 2F | r0(F )| 2 +
\sum 

F\in \scrF b
h

(| r1(F )| 2 + | r2(F )| 2),

(2.12)

where the element and facet weights \varsigma T and \varsigma F are defined by

\varsigma T = min\{ C1, C2h
k
T \rho 

 - k
T \} , \varsigma F = min\{ \varsigma T , \varsigma T \prime \} with F = T \cap T \prime .(2.13)

Proof. Let us start by splitting \scrT h as the union of two disjoint sets

\scrT 1
h =

\Bigl\{ 
T \in \scrT h : C1| z| 1,\Delta T

\leq C2h
k
T \rho 

 - k
T \| dk\Gamma \nabla k+1z\| 0,\Delta T

\Bigr\} 
, \scrT 2

h = \scrT h \setminus \scrT 1
h .

Setting zh = \widehat \Pi hz and \zeta h = 0 in the error representation of Proposition 2.1, we have

\| \delta \|  - 1/2,\Gamma =
\sum 
T\in \scrT h

\int 
T

(f +\nabla \cdot a\nabla uh)(z  - \widehat \Pi hz) - 
\sum 

F\in \scrF i
h

\int 
F

[a \partial \nu uh](z  - \widehat \Pi hz)

+
\sum 

F\in \scrF b
h

\int 
F

(\lambda h  - a \partial \nu uh)(z  - \widehat \Pi hz) +

\int 
\Gamma 

(g  - uh)\zeta .

Observe that Lemma 2.3 gives us two error estimates for \| z  - \widehat \Pi hz\| 0,T , and,
depending on whether T \in \scrT 1

h or T \in \scrT 2
h , we apply the best possible estimate. This

yields \sum 
T\in \scrT h

\int 
T

(f +\nabla \cdot a\nabla uh)(z  - \widehat \Pi hz)

\lesssim 
\sum 

T\in \scrT 1
h

\| f +\nabla \cdot a\nabla uh\| 0,TC1hT | z| 1,\Delta T

+
\sum 

T\in \scrT 2
h

\| f +\nabla \cdot a\nabla uh\| 0,TC2h
k
T \rho 

 - k
T \| dk\Gamma \nabla k+1z\| 0,\Delta T

=
\sum 

T\in \scrT 1
h

\varsigma T r(T )| z| 1,\Delta T
+

\sum 
T\in \scrT 2

h

\varsigma T r(T )\| dk\Gamma \nabla k+1z\| 0,\Delta T

\leq 
\sqrt{} \sum 

T\in \scrT h

\varsigma 2T | r(T )| 2
\sqrt{} \sum 

T\in \scrT 1
h

| z| 21,\Delta T
+

\sum 
T\in \scrT 2

h

\| dk\Gamma \nabla k+1z\| 20,\Delta T
.

Applying Lemma 2.2 we have\sum 
T\in \scrT 1

h

| z| 21,\Delta T
+

\sum 
T\in \scrT 2

h

\| dk\Gamma \nabla k+1z\| 20,\Delta T
\lesssim \| z\| 21,\Omega + \| dk\Gamma \nabla k+1z\| 20,\Omega \lesssim \| z\| 1,\Omega \lesssim 1,
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so that \sum 
T\in \scrT h

\int 
T

(f +\nabla \cdot a\nabla uh)(z  - \widehat \Pi hz) \lesssim 

\sqrt{} \sum 
T\in \scrT h

\varsigma 2T | r(T )| 2,(2.14)

where the constant in the inequality depends on \Omega and a.
A similar argument can be applied for interior facets. Letting F \in \scrF i

h, F \subset \partial T ,
the standard bound holds,

\int 
F

[a \partial \nu uh](z  - \widehat \Pi hz) \leq \| [a \partial \nu uh]\| 0,F \| z  - \widehat \Pi hz\| 0,F

\lesssim \| [a \partial \nu uh]\| 0,F
\Bigl( 
h
 - 1/2
T \| z - \widehat \Pi hz\| 0,T+h1/2T | z - \widehat \Pi hz| 1,T

\Bigr) 
\leq \| [a \partial \nu uh]\| 0,Fh1/2T C1| z| 1,\Delta T

,

(2.15)

as well as the enhanced bound,\int 
F

[a \partial \nu uh](z  - \widehat \Pi hz) \leq \| [a \partial \nu uh]\| 0,FC2h
k+1/2
T \rho  - k

T \| dk\Gamma \nabla k+1z\| 0,\Delta T
.(2.16)

As for the cell contribution to the a posteriori estimate, we can retain, for each facet,
the more favorable estimator depending on whether the facet F belongs to an element
in \scrT 1

h or in \scrT 2
h . By similar argument to the ones used for the element residual term,

we have

 - 
\sum 

F\in \scrF i
h

\int 
F

[a \partial \nu uh](z  - \widehat \Pi hz) \lesssim C(\Omega )

\sqrt{} \sum 
e\in \scrF i

h

\varsigma 2F | r0(F )| 2.(2.17)

The boundary terms are treated in the standard way for any F \in \scrF b
h and F \subset \partial T ,

\int 
F

(\lambda h - a \partial \nu uh)(z  - \widehat \Pi hz)\leq \| \lambda h - a \partial \nu uh\| 0,F \| z - \widehat \Pi hz\| 0,F\lesssim \| \lambda h - a \partial \nu uh\| 0,Fh1/2F | z| 1,\Delta T
.

(2.18)

Therefore,\sum 
F\in \scrF b

h

\int 
F

(\lambda h  - a \partial \nu uh)(z  - \widehat \Pi hz)

\lesssim 

\left(  \sum 
F\in \scrF b

h

hF \| \lambda h  - a \partial \nu uh\| 20,F

\right)  1/2

\| z\| 1,\Omega \leq 

\left(  \sum 
F\in \scrF b

h

| r1(F )| 2
\right)  1/2

.(2.19)

By (2.3), the last term can be bounded as\int 
\Gamma 

(g  - uh)\zeta \leq \| g  - uh\| 1/2,\Gamma \| \zeta \|  - 1/2,\Gamma \lesssim \| g  - uh\| 1/2,\Gamma .

Finally, since g  - uh is orthogonal to q\Lambda h \subseteq \Lambda h, we can use Lemma 3 of [15] to bound

\| g  - uh\| 21/2,\Gamma \lesssim 
\sum 

F\in \scrF b
h

hF | g  - uh| 21,F =
\sum 

F\in \scrF b
h

| r2(F )| 2.(2.20)

Combining all gives (2.12). This completes the proof of the theorem.
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If g \in H1(\Gamma ), it is, therefore, natural, for the Lagrangian multiplier method, to
define the following error indicator \eta T for each element T \in \scrT h, and estimator \eta , as

\eta T =

\sqrt{} 
\varsigma 2T | r(T )| 2 +

\sum 
F\in \scrF i

h\cap \partial T

\varsigma 2F | r0(F )| 2 +
\sum 

F\in \scrF b
h\cap \partial T

(| r1(F )| 2 + | r2(F )| 2),

\eta =

\sqrt{} \sum 
T\in \scrT h

\eta 2T .

(2.21)

If g is not in H1(\Gamma ), we cannot get the full localization (2.20) of the residual g - uh
on \Gamma . We can, however, resort, for the two-dimensional case, to [22, Theorem 2.2]
and, for the three-dimensional case, to [23, Lemma 3.1], which allows us to bound

\| g  - uh\| 21/2,\Gamma \lesssim 
\sum 

P\in \scrN b
h

| g  - uh| 21/2,\Delta P
,

where \scrN b
h is the set of nodes of the mesh \scrT h on \Gamma and where for P \in \scrN b

h, \Delta P \subset \Gamma is
the patch formed by the boundary facets sharing P as a vertex. For those patches \Delta P

for which g| \Delta P
\in H1(\Delta P ), | g - uh| 1/2,\Delta P

can be further bounded by
\sum 

F\subset \Delta P
| r2(F )| 2.

For the remaining patches, the H1/2(\Delta P ) seminorm of the residual will have to be
computed by evaluating the double integral involved in the definition of the fractional
norm.

Remark 2.5. Note that, in the implementation of the method, we do not explicitly
use the splitting \scrT h = \scrT 1

h \cup \scrT 2
h , which is only needed for the theoretical analysis.

Remark also that, for the elements adjacent to \Gamma , for which \rho  - k
T = \infty , we always have

\varsigma T = C1.

3. Application to stabilized methods for the imposition of boundary
conditions. In engineering practice it is often advantageous to use a stabilized
method instead of choosing the spaces so that the inf-sup condition is satisfied. In
this section we show how the proposed framework can be adapted to two of the most
well-known stabilized methods, namely, the Barbosa--Hughes method [4] and Nitsche's
method [37]. We assume for the sake of simplicity that g \in H1(\Gamma ). Both the final
results and the arguments are in the same spirit as Theorem 2.4 above, and therefore
we only give sketches of the proofs.

3.1. Indicators for the Barbosa--Hughes method. The Barbosa--Hughes
discrete problem reads: find uh \in Vh, \lambda h \in \Lambda h such that for all vh \in Vh, \mu h \in \Lambda h it
holds that\int 

\Omega 

a\nabla uh \cdot \nabla vh  - 
\int 
\Gamma 

\lambda hvh \pm \alpha 
\sum 

F\in \scrF b
h

hF

\int 
F

(a \partial \nu uh  - \lambda h)(a \partial \nu vh) =

\int 
\Omega 

fvh,(3.1)

\int 
\Gamma 

uh\mu h  - \alpha 
\sum 

F\in \scrF b
h

hF

\int 
F

(a \partial \nu uh  - \lambda h)\mu h =

\int 
\Gamma 

g\mu h.(3.2)

Here we use \pm in front of the stabilization term in (3.1) to indicate that the analy-
sis applies to both the symmetric and antisymmetric version of the method. The
functional L and z, \zeta are defined as in the previous section. Similarly we have the
following error representation by subtracting (3.1) and (3.2) from (1.1): for arbitrary
zh \in Vh and \zeta h \in \Lambda h it holds that
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L(\delta ) =

\int 
\Omega 

a\nabla e \cdot \nabla z  - 
\int 
\Gamma 

\delta z +

\int 
\Gamma 

e\zeta 

=

\int 
\Omega 

a\nabla e \cdot \nabla (z  - zh) - 
\int 
\Gamma 

\delta (z  - zh) +

\int 
\Gamma 

e(\zeta  - \zeta h)

+

\int 
\Omega 

a\nabla e \cdot \nabla zh  - 
\int 
\Gamma 

\delta zh +

\int 
\Gamma 

e\zeta h

=

\int 
\Omega 

a\nabla e \cdot \nabla (z  - zh) - 
\int 
\Gamma 

\delta (z  - zh) +

\int 
\Gamma 

e(\zeta  - \zeta h)

 - \alpha 
\sum 

F\in \scrF b
h

hF

\int 
F

(a \partial \nu uh  - \lambda h)(\zeta h \mp a \partial \nu zh).

From Proposition 2.1, we have

L(\delta ) =
\sum 
T\in \scrT h

\int 
T

(f +\nabla \cdot a\nabla uh)(z  - zh) - 
\sum 

F\in \scrF i
h

\int 
F

[a \partial \nu uh](z  - zh)

+
\sum 

F\in \scrF b
h

\int 
F

(\lambda h  - a \partial \nu uh)(z  - zh)

+

\int 
\Gamma 

(g  - uh)(\zeta  - \zeta h) - \alpha 
\sum 

F\in \scrF b
h

hF

\int 
F

(a \partial \nu uh  - \lambda h)(\zeta h \mp a \partial \nu zh).

(3.3)

We again set zh = \widehat \Pi hz, \zeta h = 0. The first three terms in (3.3) can be bounded
using (2.14), (2.17), and (2.19). However, for the fourth term in (3.3), contrary to
the previous case, we do not have that uh  - g is orthogonal to the multiplier space;
therefore, (2.20) no longer holds. Instead we only have the following weaker bound
[22, 23]. Recall that \scrN b

h denote the set of boundary vertices of the triangulation, and
for each P \in \scrN b

h denote by \Delta P \subset \Gamma the patch formed by the boundary faces sharing
P as a vertex. We have

\| g  - uh\| 21/2,\Gamma \lesssim 
\sum 

P\in \scrN b
h

| uh  - g| 21/2,\Delta P
+

\sum 
F\in \scrF b

h

h - 1
F \| uh  - g\| 20,F .(3.4)

We can further localize the term | uh  - g| 21/2,\Delta P
. In order to do so we add and

subtract gPh \in qVh| \Delta P
, where gPh is the L2(\Delta P ) projection onto the local space of

continuous piecewise linears on the (d - 1)-dimensional local mesh \scrT h| \Delta P
, yielding

| g  - uh| 21/2,\Delta P
\lesssim | uh  - gPh | 21/2,\Delta P

+ | gPh  - g| 21/2,\Delta P
,

which, combining with the inverse inequality, gives

| uh  - gPh | 21/2,\Delta P
\lesssim h - 1

P \| uh  - gPh \| 20,\Delta P
\simeq 

\sum 
F\subseteq \Delta P

h - 1
F \| uh  - gPh \| 20,F ,

where hP = maxF\in \Delta P
hF (remark that the shape regularity of the mesh implies that

for all F \subseteq \Delta P we have hF \simeq hP ). Thanks to the fact that g  - gPh is orthogonal to
the continuous piecewise linear functions, we have

| gPh  - g| 21/2,\Delta P
\lesssim 

\sum 
F\subseteq \Delta P

hF | gPh  - g| 21,F .
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We also observe that, for P a vertex of F ,

\| g  - uh\| 20,F \lesssim \| g  - gPh \| 20,F + \| gPh  - uh\| 20,F \lesssim 
\sum 

F\subseteq \Delta P

hF | gPh  - g| 21,F + \| uh  - gPh \| 20,F .

Combining these bounds we easily obtain\int 
\Gamma 

(g  - uh)\zeta \leq \| g  - uh\| 1/2,\Gamma \| \zeta \|  - 1/2,\Gamma \lesssim \| g  - uh\| 1/2,\Gamma 

\lesssim 
\sqrt{} \sum 

P\in \scrN b
h

\sum 
F\subseteq \Delta P

(h - 1
F \| uh  - gPh \| 20,F + hF | gPh  - g| 21,F )

=

\sqrt{} \sum 
P\in \scrN b

h

\sum 
F\subseteq \Delta P

| r(F, P )| 2,

(3.5)

where, for P a vertex of F \subset \scrF b
h, we define

r(F, P ) =
\sqrt{} 
h - 1
F \| uh  - gPh \| 20,F + hF | gPh  - g| 21,F .

Finally, we bound the additional term resulting from the stabilization, namely,\sum 
F\in \scrF b

h

hF

\int 
F

(a \partial \nu uh  - \lambda h)(a \partial \nu (\widehat \Pi hz))

\leq 
\sqrt{} \sum 

F\in \scrF b
h

hF \| a\nabla uh \cdot \nu  - \lambda h\| 20,F
\sqrt{} \sum 

F\in \scrF b
h

hF \| a \partial \nu (\widehat \Pi hz)\| 20,F

\lesssim 
\sqrt{} \sum 

F\in \scrF b
h

hF \| a \partial \nu uh  - \lambda h\| 20,F .

(3.6)

The last bound derives from a standard trace inequality on the element T associated
to the boundary face F followed by an inverse inequality and an H1 stability bound
for \widehat \Pi h:

\| a \partial \nu (\widehat \Pi hz)\| 0,F \lesssim \| \nabla (\widehat \Pi hz)\| 0,F \lesssim h
 - 1/2
T \| \nabla (\widehat \Pi hz)\| 0,T + h

1/2
T | \nabla (\widehat \Pi hz)| 1,T

\lesssim h
 - 1/2
T \| \nabla (\widehat \Pi hz)\| 0,T \lesssim h

 - 1/2
T | z| 1,\Delta T

,
(3.7)

which, together with (2.3), yields\sum 
F\in \scrF b

h

hF \| a \partial \nu (\widehat \Pi hz)\| 20,F \lesssim \| z\| 21,\Omega \lesssim 1.

We then have

\alpha 
\sum 

F\in \scrF b
h

hF

\int 
F

(a\nabla uh \cdot \nu  - \lambda h)(a \partial \nu (\widehat \Pi hz)) \lesssim \alpha 

\sqrt{} \sum 
F\in \scrF b

h

| r1(F )| 2,(3.8)

where, we recall, r1(F ) = h
1/2
F \| a \partial \nu uh  - \lambda h\| 0,F .

Collecting the above bounds we obtain the a posteriori error estimate for the
Barbosa--Hughes formulation (3.1)--(3.2):

\| \lambda  - \lambda h\| 2 - 1/2,\Gamma \lesssim 
\sum 
T\in \scrT h

\varsigma 2T | r(T )| 2 +
\sum 

F\in \scrF i
h

\varsigma 2F | r0(F )| 2

+ (1 + \alpha 2)
\sum 

F\in \scrF b
h

| r1(F )| 2 +
\sum 

P\in \scrN b
h

\sum 
F\subseteq \Delta P

| r(F, P )| 2.(3.9)
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3.2. Indicators for Nitsche's method. Let us now consider Nitsche's method,
which reads: find uh \in Vh such that for all vh \in Vh, there holds\int 

\Omega 

a\nabla uh \cdot \nabla vh  - 
\int 
\Gamma 

vh(a \partial \nu uh)\pm 
\int 
\Gamma 

uh(a \partial \nu vh) + \gamma 
\sum 

F\in \scrF b
h

h - 1
F

\int 
F

uhvh

=

\int 
\Omega 

fvh \pm 
\int 
\Gamma 

g(a \partial \nu vh) + \gamma 
\sum 

F\in \scrF b
h

h - 1
F

\int 
F

gvh.

(3.10)

Following the work of Stenberg [41], which focuses on the Poisson equation
but which is easily adapted to (1.1), Nitsche's method is equivalent to a Barbosa--
Hughes method with the choice \Lambda h = L2(\Gamma ). The solution uh, \lambda h of (3.1)--(3.2) with
\Lambda h = L2(\Gamma ) verifies that uh solves (3.10) with \gamma = \alpha  - 1, and we have that, on e \subset \Gamma ,

\lambda h = a \partial \nu uh + \gamma h - 1
F (g  - uh).(3.11)

Due to the equivalence, L(\delta ) has the same representation (3.3) with \alpha replaced by
\gamma  - 1. With the same choice of zh and \zeta h, the first and second terms can be bounded
using (2.14) and (2.17), respectively. The fourth term

\int 
\Gamma 
(g  - uh)\zeta can be bounded

using (3.5). For the remaining terms, observe that

r1(F ) = h
1/2
F \| \lambda h  - a \partial \nu uh\| 0,F = h

1/2
F \| \gamma h - 1

F (g  - uh)\| 0,F := \gamma r3(F )

with

r3(F ) = h
 - 1/2
F \| uh  - g\| 0,F ,

which, combining with (2.19) and (3.8), yields

\sum 
F\in \scrF b

h

\int 
F

(\lambda h  - a \partial \nu uh)(z  - \widehat \Pi hz)\mp \gamma  - 1
\sum 

F\in \scrF b
h

hF

\int 
F

(a \partial \nu uh  - \lambda h)(a\nabla (\widehat \Pi hz) \cdot \nu )

(3.12)

\lesssim 
\sqrt{} \sum 

F\in \scrF b
h

(1 + \gamma 2)| r3(F )| 2.

Collecting all, we obtain the following a posteriori error bound for the normal flux
computed using Nitsche's method:

\| a \partial \nu u - \lambda h\|  - 1/2,\Gamma 

(3.13)

\lesssim 
\sqrt{} 
\varsigma 2T

\sum 
T\in \scrT h

| r(T )| 2+
\sum 

F\in \scrF i
h

\varsigma 2F | r0(F )| 2+
\sum 

F\in \scrF b
h

(1+\gamma 2)| r3(F )| 2+
\sum 

P\in \scrN b
h

\sum 
F\subseteq \Delta P

| r(F, P )| 2,

where \lambda h is given in (3.11).
Similarly as in (2.21), we can define the corresponding error indicator \eta T and \eta 

for the Barbosa--Hughes and Nitsche's methods.

4. Numerical experiments. In this section we demonstrate the performance
of the proposed error estimator on some simple, yet significant, two-dimensional test
cases. Firstly, we demonstrate the action of the weight \varsigma T defined in (2.13) in the
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488 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

adaptive mesh refinement procedure independently of any particular problem. For
simplicity, we fix C1 = 1. In the computation, we approximate \rho T by the following:

\rho T \approx min
x\in \scrN \bigtriangleup T

d\Gamma (x),

where \scrN \bigtriangleup T
is the set of all vertices on \bigtriangleup T .

We start with a 4 by 4 initial triangular mesh on a unit square domain; see
Figure 1(a). A total number of 7 refinement steps is performed, and the marking
strategy identifies an element K \in \scrT h to be refined if

\varsigma T > 0.5\varsigma T,max, where \varsigma T,max = max
T\in \scrT h

\varsigma T .

Figure 1 shows the meshes at various steps with k = 2 and C2 = 1.0. It is easy to
observe that significantly more refinements are placed near the boundary. Further
experiments also show that the refinements on the boundary become more dominant
if we decrease the value of C2 or increase the order of k.

Remark 4.1. We note that, while the precise value of the best constants C1 and
C2 in Lemma 2.3 is not known, it is possible to give an estimate of the ratio C2/C1 in

terms of the Poincar\'e constant for the patch \Delta T . Indeed, as \widehat \Pi h preserves polynomials
of degree not greater than k, we can write

\| u - \widehat \Pi hu\| 0,T + hT \| u - \widehat \Pi hu\| 1,T \leq C1hT inf
p\in Pk

| u - p| 1,\Delta T
,

and then we can choose C2 such that C2/C1 is the smallest constant Ck,best for which

inf
p\in Pk

| u - p| 1,\Delta T
\leq Ck,besth

k
T | u| k+1,\Delta T

.

(a) step 1 (b) step 3

(c) step 5 (d) step 7

Fig. 1. Adaptive meshes based on \varsigma T with k = 2 and C2 = 1.0.
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Such a constant may be estimated by recursively applying some upper bound for
the Poincar\'e constant for the patch \Delta T , which can be obtained, for instance, by the
approach of [42]. Its dependence on the polynomial degree k can also be taken into
account. For this choice to be the most effective, we would, however, need the upper
bounds for Ck,best to be sharp. If this is not the case, we observe that the true error
might present some more or less pronounced oscillations. In our numerical tests, we
tried several different values of C2. In all the cases considered, setting C2 between 0.1
and 1 turns out to be a reasonable choice. See also Remark 4.1.

4.1. Computation of the true error. In this subsection, we present two meth-
ods to compute the true error, i.e., \| \lambda  - \lambda h\|  - 1/2,\Gamma , for the purpose of comparison.
From (2.5) and (2.6),

\| \lambda  - \lambda h\| 2 - 1/2,\Gamma = | \nabla w| 2\Omega (or \langle \lambda  - \lambda h, w\rangle \Gamma ),

where w \in H1(\Omega ) satisfies the following variational problem:\int 
\Omega 

\nabla w \cdot \nabla v =

\int 
\Gamma 

(\lambda  - \lambda h)v and

\int 
\Gamma 

w = 0 \forall v \in H1(\Omega ).(4.1)

Note that (4.1) is a pure Neumann problem. The compatibility of the solu-
tion is guaranteed since

\int 
\Gamma 
(\lambda  - \lambda h) = 0 for all aforementioned numerical meth-

ods. We approximate the true error in each refinement step using a two order
higher finite element method on a finer mesh (compared to the mesh used in the
adaptive procedure). We let wh \in V k+2

h denote the Galerkin projection of w on

V k+2
h = \{ v \in H1(\Omega ) : v| T \in P k+2(T ) for all T \in \~\scrT h\} . Here \~\scrT h is the finer mesh. We

then approximate the error by

\| \lambda  - \lambda h\| 2 - 1/2,\Gamma \approx | \nabla wh| 2\Omega (or

\int 
\Gamma 

(\lambda  - \lambda h)wh).(4.2)

When \lambda does not have enough regularity, using (4.2) to accurately compute the
true error becomes infeasible as a very fine mesh is required to guarantee the accu-
racy. We therefore introduce another method to compute the true error by exploring
properties of the wavelet decomposition. Indeed, it is known that, by expanding a
function in H - 1/2(\Gamma ) based on a suitable wavelet basis, an equivalent H - 1/2(\Gamma ) norm
can be computed by taking a weighted L2 norm of the coefficient vector. The latter
can be efficiently computed by applying a wavelet transform [18]. This only requires
computations on \partial \Omega ; therefore, we are able to compute the true error to a satisfactory
accuracy even for low regularity \lambda .

More precisely, given v \in H - 1/2(\Gamma ), we aim at computing \| v\|  - 1/2,\Gamma . In order
to do so, we consider the sequence of spaces \{ Vj\} \infty j=0 such that Vj \subset L2(\Gamma ) is the
space of piecewise constant functions on the embedded uniform grid on \Gamma with mesh

size | \Gamma | 2 - j . We denote by \{ xjk\} 
2j - 1
k=0 the nodes of the corresponding mesh, which we

assume to be ordered counterclockwise. For v \in Vj , we can compute the vector vj of
length 2j :

vj := \{ vjk\} 2
j - 1

k=0 and vjk =
2j/2

| \Gamma | 

\int xj
k+1

xj
k

v.

\{ vjk\} 2
j - 1

k=0 is regarded as the coefficients of the L2(\Gamma ) orthonormal bases consisting of
the normalized characteristic functions on the elements of the grid. As Vj \subset Vj+1, for
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all level j we can decompose vj+1 \in Vj+1 as vj+1 = vj + dj , with vj \in Vj obtained by
applying a suitable oblique projector Pj to vj+1. This gives us a telescopic expansion

of all function in VM as vM = v0 +
\sum M - 1

j=0 dj and, passing to the limit as M goes to

infinity, of all functions in L2(\Gamma ) as v = v0 +
\sum \infty 

j=0 dj . Given vj+1, we can compute

vj := \{ vjk\} 2
j - 1

k=0 and dj := \{ djk\} 2
j - 1

k=0 (this last one being the vector of coefficients
of dj with respect to a suitable basis for the space Wj = (1  - Pj)Vj+1) by applying
a low-pass filter h (strictly related with the projector Pj) and the band-pass filter
g = [1, - 1]:

vjk =

L\sum 
l=0

\surd 
2

2
h(l) vj+1,2k+l and djk =

1\sum 
l=0

\surd 
2

2
g(l) vj+1,2k+l

=

\surd 
2

2
(vj+1,2k  - vj+1,2k+1) ,

where L + 1 is the length of the low-pass filter h. In the above computation the
function v is considered as periodic, so that, when the index 2k + l > 2j+1  - 1, we
extend the vector vj+1 as vj+1,2j+1+k = vj+1,k, k \geq 0. For suitable choices of the

low-pass filter h, the following norm equivalence holds for all v \in H - 1/2(\Omega ) [19]:

\| v\| 2 - 1/2,\Gamma \simeq \| v0\| 22 +
\infty \sum 
j=0

2 - j\| dj\| 22,

where \| \cdot \| 2 denotes the Euclidean norm. In our experiments we choose the so-called
(2,2)-biorthogonal wavelet (see [18]), for which the low-pass filter h is

h =

\surd 
2

2
[3/128, - 3/128, - 11/64, 11/64, 1, 1, 11/64, - 11/64, - 3/128, 3/128].

By choosing M big enough and projecting v onto VM (in our tests we use the L2

orthogonal projection), we approximate the norm by

\| v\| 2 - 1/2,\partial \Omega \approx \| v0\| 22 +
M - 1\sum 
j=0

2 - j\| dj\| 22.(4.3)

4.2. Test results. Before presenting the results of our numerical tests, let us
recall what the dependence of the error on the number of degrees of freedom is ex-
pected to be for an order k method on either a uniform or a boundary concentrated
mesh: letting h denote the mesh size on the boundary and N the total number of
degrees of freedom, we have h \simeq N - 1/2 for uniform meshes and h \simeq N - 1| log(N)| for
boundary concentrated meshes. For a smooth solution, the error on the normal flux
for optimal order k method will behave like hk, that is, N - k/2 for uniform grids and
N - k| log(N)| k for boundary concentrated meshes.

To assess the performance of our estimator, we test it on the Lagrangian method
without stabilization and on Nitsche's method (the Barbosa--Hughes method being
equivalent to the latter). Nitsche's method with polynomial degree k is optimal, i.e.,
it yields an order k rate of convergence, on uniform meshes (see Table 1). For the
Lagrangian method, the rate of convergence depends on the choice of the multiplier.
We test two choices: discontinuous piecewise polynomials of order k\prime = k  - 2 and
continuous polynomials of order k\prime = k. Both choices yield inf-sup stable discretiza-
tions, yet they are both suboptimal (see Table 2): the first choice only provides, for
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Table 1
Example 1: Convergence rates for Nitsche's method on uniform meshes.

k = 1 k = 2
h E1 rate E2 E2/E1 E1 rate E2 E2/E1

1/8 3.35E-1 0.40 8.53E-2 0.25 2.86E-1 3.31 5.17E-2 0.18
1/16 1.73E-1 0.95 4.51E-2 0.26 3.19E-2 3.16 7.50E-3 0.23
1/32 8.66E-2 1.00 2.26E-2 0.25 4.69E-3 2.77 1.44E-3 0.30
1/64 4.33E-2 1.00 1.13E-2 0.26 2.51E-4 2.10 8.15E-5 0.32

Table 2
Example 1: Convergence rates for Lagrangian multiplier method on uniform meshes.

k = 2, k\prime = 0 k = 2, k\prime = 2
h E1 rate E2 E2/E1 E1 rate E2 E2/E1

1/8 4.58E-2 1.88 1.14E-2 0.25 9.83E-3 2.67 3.13E-2 3.18
1/16 1.43E-2 1.68 3.97E-3 0.28 2.65E-3 1.89 7.74E-3 2.92
1/32 4.80E-3 1.57 1.40E-3 0.29 1.18E-3 1.15 2.60E-3 2.19
1/64 5.62E-4 1.54 1.82E-4 0.32 5.88E-4 1.01 1.15E-3 1.96

the normal flux, an approximation of order at most k  - 1/2, at the cost of using an
order k method in the bulk, while, in the presence of corners, the second only allows
for an order 1 approximation of the normal flux, independently of k, as it involves ap-
proximating a discontinuous function (the normal flux, in the presence of corners) by
means of continuous functions. We point out that we are in no way advocating such
choices as recommended methods for solving the problem considered (other choices
for the multiplier---see Remark 1.1---allowing for optimality, are of course to be pre-
ferred for the actual computation of the flux). However, considering such suboptimal
cases allows us to put the robustness of our method to the test and to show that the
refinement driven by our estimator can somehow make up for the lack of optimality.

Example 1. In this example, we consider the Poisson equation on the unit square
domain with right-hand side and boundary data chosen so that the solution is the
Franke function [25]

u(x, y) = 0.75 exp
\bigl( 
 - (9x - 2)2/4 - (9y  - 2)2/4

\bigr) 
+ 0.75 exp ( - (9x+ 1)2/49 - (9y + 1)/10)

+ 0.5 exp ( - (9x - 7)2/4 - (9y  - 3)2/4) - 0.2 exp ( - (9x - 4)2  - (9y  - 7)2).

This function has two peaks at (2/9, 2/9) and (7/9, 1/3) and one sink at (4/9, 7/9).

We firstly test the convergence rate of the true error \| \lambda  - \lambda h\|  - 1/2,\Gamma on uniform
meshes. The true error is computed using the aforementioned two methods. We
denote by E1 the error computed by (4.2) and by E2 the error computed using the
wavelet in (4.3) with M = 20. The problem (4.2) is solved on a finer uniform mesh
with mesh size h = 1/64. Tables 1 and 2 show the convergence rates for E1. Observe
that these are in agreement with the expected convergence rates given by the standard
error estimates for the two methods, that is, order 1 (resp., 2) for Nitsche's method
with k = 1 (resp., k = 2) and order 3/2 (resp., 1) for the Lagrangian multiplier
method with k = 2, k\prime = 0 (resp., k = 2, k\prime = 2). From Tables 1 and Table 2,
we also observe that the ratio between E2 and E1 is relatively stable (the fluctuation
of the ratio is likely caused by the inaccurate computation of E1). In particular, for
Nitsche's method, the ration E2/E1 remains close to 0.25 for both orders. These
results, therefore, confirm that E2 is equivalent to the true error for both the Nitsche
and Lagrangian multiplier methods.
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We now test the adaptive mesh refinement (AMR) procedure for the Lagrangian
method. In the adaptive procedure, we set the stopping criteria such that the total
number of degrees of freedom (DOFs) is less than 20, 000. The marking strategy is set
such that an element T is marked to be refined if \eta K \geq 0.5\eta K,max. In this example,
we set C2 = 1.0. The initial mesh is set to be the 4 \times 4 mesh in Figure 1(a). For
comparison, we also perform the AMR procedure using the classical residual based
error estimator (AMRc) without any dual weights . For the Lagrangian method, it is
defined as

\eta classical =

\sqrt{} \sum 
T\in \scrT h

| r(T )| 2 +
\sum 

F\in \scrF i
h

| r0(F )| 2 +
\sum 

F\in \scrF b
h

\Bigl( 
| r1(F )| 2 + h - 1

F \| g  - uh\| 20,F
\Bigr) 
,

and for Nitsche's method [17], it is defined as

\eta classical =

\sqrt{} \sum 
T\in \scrT h

| r(T )| 2 +
\sum 

F\in \scrF i
h

| r0(F )| 2 +
\sum 

F\in \scrF b
h

\gamma 2h - 1
F \| g  - uh\| 20,F .

It is well known that \eta classical is optimal in minimizing the energy norm of the error,
i.e., \| \nabla (u  - uh)\| 0,\Omega . Note that comparing with (2.21), the H1 norm in r2(F ) is
reduced to L2 norm on \Gamma with adjusted weights for the Lagrangian method.

Figure 2 shows the final meshes for the adaptive Lagrangian multiplier method
(k = 2, k\prime = 0) using respective \eta classical(left) and \eta (right). It can be seen that the
mesh generated by \eta classical has dense refinements around the interior peaks and sinks
while the mesh generated by \eta has more dense refinements near the boundary and
almost completely ignores the peaks and sinks in the interior domain.

In the log-log plots Figure 3, we compare the convergence of true errors and
estimators. The purpose of the convergence figures is to compare the two adaptive
procedures using, respectively, the dual weighted and the classical nonweighted error
estimators. From Figure 3(a), we see that the error driven by \eta converges faster
than the one driven by \eta classical, which already has the order N - 1 with N being the
total number of DOFs. In comparison with rates attained by uniform refinement,
which are provided in the Table 2 and Table 1, the relationship is that the rate
obtained by \eta classical is higher than or equal to the uniform approximation rate and
that the rate obtained by \eta is higher than that obtained by \eta classical. More in detail,
in Figure 3(a) we display two reference straight lines: the slope  - 1 of the first line
refers to the approximation rate in the energy norm that can be attained by the best

(a) by \eta classical (b) by \eta 

Fig. 2. Example 1. Final meshes for the Lagrangian method (k = 2, k\prime = 0, C2 = 1.0).
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Fig. 3. Example 1. Convergence comparison for Lagrangian method (k = 2, k\prime = 0, C2 = 1.0).

(a) by \eta classical (b) by \eta 

Fig. 4. Example 1. Final meshes for the Lagrangian method (k = 2, k\prime = 2, C2 = 1), including,
on the right, a zoom on the upper left corner.

approximation with order k finite elements on a quasi-uniform grid with N DOFs,
which also provides an upper bound for the corresponding error of the normal flux.
The slope of the second reference line is numerically evaluated by linear regression of
the data set (log(N), log(E)) from the AMR with the proposed estimator \eta . For this
case its value is \sim  - 1.5. For the figures thereafter, the same strategies will be used
to present the reference slopes.

Figure 3(b) shows that both methods display the same rate of convergence with
respect to the number of DOFs on the boundary. However, for the same total number
of DOFs, many more DOFs are located on the boundary by \eta . More precisely, Fig-
ure 3(c) shows that the ratio between the number of boundary DOFs and the total
DOFs gradually gets higher for the meshes generated by \eta in the AMR procedure.

We also test Example 1 using the Lagrangian multiplier method with k = 2,
k\prime = 2, and

\Lambda h = \{ \lambda \in C0(\Gamma ) : u| F \in P2(F ) \forall F \in \scrT h| \Gamma \} .(4.4)

Since in this test the domain has corners and, consequently, \lambda is discontinuous, optimal
approximation for the multiplier cannot be achieved, as \lambda h \in C0(\Gamma ). This is also
shown in Table 2 for the uniform refinement. In Figure 4(b), we observe that the
mesh is densely refined around the corners which indicates that the error estimator
\eta successfully captures the error on the corners. The convergence results of error
estimators and the true error are provided in Figure 5, which is similar to Figure 3.

We now test Nitsche's method with k = 1 and k = 2 and set \gamma = 10 in (3.10).
Figure 6 compares the final meshes generated using \eta and \eta classical. We observe similar
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Fig. 5. Example 1. Convergence comparison for Lagrangian method (k = 2, k\prime = 2, C2 = 1.0).

(a) k = 1 by \eta classical (b) k = 1, C2 = 1.0 by \eta 

(c) k = 2 by \eta classical (d) k = 2, C2 = 0.1 by \eta 

Fig. 6. Example 1. Final meshes for Nitsche's method.

phenomena to those of the Lagrangian method, i.e., the mesh generated by \eta classical
has dense refinement near the interior peaks and sinks, while the mesh generated
by \eta has dense refinements almost all close to the boundary. The corresponding
convergence rates of the true error and error estimators are plotted in Figure 7. Again,
for both orders, we observe significant improvements of the convergence rate compared
to the classical case.

For Nitsche's method of linear order, we also compare the performance with the
boundary concentrated meshes proposed in [38] by Pfefferer and Winkler (PW), which
yield what is presently the best a priori error estimate for a nonadaptive approxima-
tion of the normal flux. The boundary concentrated mesh has a fixed hierarchy
structure, i.e., it has uniform mesh size h2 on the boundary and h

\sqrt{} 
dist(T,\Gamma ) for

interior elements. We generate three such meshes in Figure 8.
The corresponding log-log curve of (N,E2) is plotted with legend E2,PW in Fig-

ure 7 (see the top left figure). We observe that the error obtained with this mesh,

D
ow

nl
oa

de
d 

06
/1

9/
22

 to
 1

93
.6

0.
24

0.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ESTIMATE OF THE OUTER NORMAL FLUX BY DUAL WEIGHTS 495

10
2

10
3

10
4

N: Number of total DOFs

10
-3

10
-2

10
-1

10
0

10
1

N
-0.5

N
-0.65

classical

E
1

E
2

E
1

E
2

E
2,PW

100 300 500 900

N
b
: Number of total boundary DOFs

10
-3

10
-2

10
-1

10
0

10
1

N
b

-1

classical

E
1

E
2

E
1

E
2

0 0.5 1 1.5 2

N: Number of total DOFs 10
4

0

200

400

600

800

1000

N
b
: 

N
u

m
b

e
r 

o
f 

b
o

u
d

a
ry

 D
O

F
s

classical

k = 1, C2 = 1.0

10
3

10
4

N: Number of total DOFs

10
-4

10
-2

10
0

N
-1

N
-2

classical

E
1

E
2

E
1

E
2 50 100 200 300 600 850

N
b
: Number of total boundary DOFs

10
-4

10
-2

10
0

10
2

N
b

-2

classical

E
1

E
2

E
1

E
2

0 0.5 1 1.5 2

N: Number of total DOFs 10
4

0

500

1000

1500

N
b
: 

N
u

m
b

e
r 

o
f 

b
o

u
d

a
ry

 D
O

F
s

classical

k = 2, C2 = 0.1

Fig. 7. Example 1. Convergence comparison for Nitsche's method.

Fig. 8. Example 1. Three meshes for the PW method.

which is adapted ``a priori"" to a good approximation of the boundary flux, is very
close to the error obtained thanks to our error estimator \eta . This is not surprising, as
the solution of the problem is smooth.

To provide a more complete picture, in Figure 9, we instead compare the per-
formance of the error estimators \eta classical and \eta , and of the related AMRs, in terms
of the convergences in the energy error \| \nabla (u  - uh)\| 0,\Omega . The results confirm that
\eta classical is optimal for the energy error, while, as is to be expected, \eta yields only a
suboptimal rate for the energy error in each of the tests.

Remark that despite the fact that both versions of the Lagrangian method that
we tested are, for different reasons, suboptimal with respect to the order k of the bulk
discretization, our tests show that the proposed error estimator allows us to obtain a
satisfactory approximation of the normal flux also for such methods.

For the remaining examples, to avoid a too large number of redundant tests, we
then focus only on Nitsche's method, which is, instead, optimal and which, we recall,
is equivalent to the Barbosa--Hughes method. Moreover, we observe that the results
displayed before in Table 1 and Figure 7 for Nitsche's method both confirm that E2

can, after rescaling, serve as a good alternative to the more expensive E1 in evaluating
the true error. As for Nitsche's method with k = 1, the ratio E2/E1 is stable around
0.25; in the remaining examples, we will use E = 4E2 as the true error.

D
ow

nl
oa

de
d 

06
/1

9/
22

 to
 1

93
.6

0.
24

0.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

496 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

10
2

10
3

10
4

N: Number of total DOFs

10
-2

10
-1

10
0

10
1

N
-0.5

N
-0.4

classical

||  (u-u
h
)||

||  (u-u
h
)||

10
3

10
4

N: Number of total DOFs

10
-4

10
-3

10
-2

10
-1

10
0

10
1

N
-1.0

N
-0.8

classical

||  (u-u
h
)||

||  (u-u
h
)||

(a) Nitsche k = 1 (b) Nitsche k = 2

10
3

10
4

N: Number of total DOFs

10
-3

10
-2

10
-1

10
0

10
1

N
-1.0

N
-0.8

classical

||  (u-u
h
)||

||  (u-u
h
)||

10
3

10
4

N: Number of total DOFs

10
-4

10
-3

10
-2

10
-1

10
0

10
1

N
-1.0

N
-0.8

classical

||  (u-u
h
)||

||  (u-u
h
)||

(c) Lagrangian k = 2, k\prime = 0 (d) Lagrangian k = 2, k\prime = 2

Fig. 9. Example 1. Convergence comparison with energy error \| \nabla (u - uh)\| 0,\Omega .

Example 2. In this example, we test a diffusion problem with variable diffusion
coefficient. The diffusion coefficient is defined as a = 1.0 + sin2(\pi 

\sqrt{} 
x2 + y2). And

the functions g and f are defined such that the true solution u has the following
representation:

u(x, y) = exp( - \alpha p((x - xp)
2 + (y  - yp)

2)) with \alpha p = 200, xp = 0.2, yp = 0.2.

Note that this function has a strong peak at the point (xp, yp).

In the adaptive procedure, the stopping criteria are again set such that the total
number of DOFs is less than 20, 000. We test Nitsche's method for both the first and
second orders with C2 = 1.0. For Example 2 with variable coefficient, we observe
similar numerical behavior as in Example 1; see Figure 10 and Figure 11. From the
left two subfigures of Figure 11, we observe that in both cases the convergence rates
for the true error using \eta is almost double that using \eta classical. In the example,
our adaptive algorithm slightly outperforms the PW method. In the case k = 2 we
however observe visible oscillations for the true error. This is not in contrast with
the theory. Indeed, the Galerkin method minimizes a discrete energy norm of the
error which controls the error on the normal flux only up to a constant. Therefore,
refining the mesh does not automatically yield a reduction in the error on the normal
flux, particularly if measured, as in our case, in a norm that does not depend on the
diffusion coefficient a.

Example 3. In this example, we test the L-shaped domain Poisson problem (a =
1) with a corner singularity and with an addition interior peak. The true solution has
the following representation in polar coordinates:

u(r, \vargamma ) = r\alpha sin(\alpha \vargamma ) + exp( - \alpha p((x - xp)
2 + (y  - yp)

2)) \in H5/3(\Omega ),

where \alpha = 2/3, (\alpha p, xp, yp) is the same as in Example 2 and the \Omega is the L-shaped
domain, i.e., \Omega = [ - 1, 1]2 \setminus (0, 1)\times ( - 1, 0).
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(a) k = 1, \eta classical (b) k = 1, \eta 

(c) k = 2, \eta classical (d) k = 2, \eta 

Fig. 10. Example 2. Final meshes for Nitsche's method (C2 = 1.0).
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Fig. 11. Example 2. Convergence comparison for Nitsche's method (C2 = 1).

In this test, we set C2 = 1 and C2 = 0.1 for the first and second order Nitsche's
method, respectively. The convergence rate on uniform meshes is firstly verified in Ta-
ble 3. We recall that, according to the standard a priori error estimates for uniformly
refined grids, the error for both the Lagrangian multiplier and Nitsche's method be-
haves like h5/3 - 1 = h2/3 = N - 1/3.
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Table 3
Example 3: Convergence rates on uniform meshes.

Nitsche k = 1 Nitsche k = 2
h E2 rate E2 rate

1.76E-1 1.10E-2 0.86 6.88E-2 2.53
8.84E-2 1.28E-2 3.10 1.62E-2 2.08
4.42E-2 8.84E-3 0.54 7.93E-3 1.03
2.21E-2 6.04E-3 0.55 5.08E-3 0.64
1.10E-2 4.07E-3 0.56 3.36E-3 0.59
5.52E-3 2.72E-3 0.57 2.23E-3 0.59

(a) k = 1, \eta classical (b) k = 1, C2 = 1, \eta 

(c) k = 2, \eta classical (d) k = 2, C2 = 0.1, \eta 

Fig. 12. Example 3. Final meshes for Nitsche's method.

The final meshes obtained for Nitsche's method are given in Figure 12, and the
corresponding convergence results are provided in Figure 13. We note that for this
problem, even with the low regularity caused by boundary singularity, in both cases
the true error E driven by \eta still doubles the convergence rates with respect to those
of \eta classical.

In this example, in the presence of the corner singularity on the boundary, the
adaptive method based on our error estimator shows significantly better performance
than the PW method, which has uniform refinement on the boundary.

Comparing the performance of the estimator in the three examples we see that the
adaptive procedure based on the dual weighted residual performs always better than
the one based on the classical error estimator. If the solution is smooth, the results
obtained by the AMR based on the new estimator are, in terms of error versus number
of DOFs, as good as the ones obtained by using boundary concentrated meshes (of
course, in this case, this last method is cheaper, as the mesh is designed a priori and
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Fig. 13. Example 3. Convergence comparison for Nitsche's method.

the problem is solved only once). Our adaptive method is particularly advantageous
when the solution presents singularities on or close to the boundary (which boundary
concentrated meshes, based on a priori analysis, cannot tackle efficiently).
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