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Abstract. This paper combines two ingredients in order to get a rather surprising result on one of the most
studied, elegant and powerful tools for solving convex feasibility problems, the method of alternating projections
(MAP). Going back to names such as Kaczmarz and von Neumann, MAP has the ability to track a pair of points
realizing minimum distance between two given closed convex sets. Unfortunately, MAP may suffer from arbitrarily
slow convergence, and sublinear rates are essentially only surpassed in the presence of some Lipschitzian error
bound, which is our first ingredient. The second one is a seemingly unfavorable and unexpected condition, namely,
infeasibility. For two non-intersecting closed convex sets satisfying an error bound, we establish finite convergence
of MAP. In particular, MAP converges in finitely many steps when applied to a polyhedron and a hyperplane in
the case in which they have empty intersection. Moreover, the farther the target sets lie from each other, the
fewer are the iterations needed by MAP for finding a best approximation pair. Insightful examples and further
theoretical and algorithmic discussions accompany our results, including the investigation of finite termination of
other projection methods.
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1. Introduction. The method of alternating projections (MAP) has a remarkable impact in
so many areas of Mathematics and is one of the main classical tools for solving convex feasibility
problems. A broad class of problems in Applied Mathematics is effectively solved by MAP [34].
Definitely one of a kind, MAP is not only capable of tracking a point in the intersection of given
closed convex sets X,Y ⊂ Rn, it delivers a replacement of an actual solution when X and Y do
not intersect. Such a replacement comes in the form of a pair (x̄, ȳ) ∈ X × Y , often called best
approximation pair to X and Y , as it minimizes the Euclidean distance between these two sets.

It is well-known that MAP converges globally whenever the distance between X and Y is
attainable. It is also worth mentioning that, in view of Pierra’s famous product space reformula-
tion [48], feasibility problems involving a finite number of sets can be narrowed down to seeking
a common point to two sets X and Y .

The present work focuses on the inconsistent case X∩Y = ∅ and reveals a surprising behavior
of MAP in this setting. Roughly speaking, we come to the conclusion that infeasibility works in
favor of MAP. Quite intuitive when looking at the scenarios displayed in Figure 1, the fact that
infeasibility has a strong positive impact on MAP has apparently not been seen anywhere in
its extensive literature. Actually, we prove that infeasibility added by an error bound condition
provides finite convergence of the very pure MAP. More precisely, by assuming X ∩ Y = ∅ and
a suitable error bound condition, we prove finite convergence of the MAP sequence defined by
xk+1 := PXPY (xk) starting at any point x0 ∈ Rn. Finite convergence means that for some non-
negative integer k̄, MAP reaches a best point x̄ ∈ X, that is, xk̄ = x̄ and ȳ = PY (x̄) form a
best approximation pair to X and Y . Here and throughout the text, PX and PY stand for the
orthogonal projections onto X and Y , respectively.
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Let us now look at a collection of illustrations that serves as a summary of our results.

Y

X

(a) Consistency; linear convergence on the left.

Y

X

(b) Inconsistency; k = 10 on the left.

Y

X

(c) Inconsistency; increasing the distance between
X and Y ; k = 5 on the left.

Y

X

(d) Inconsistency; improving the error bound on
the left; k = 3 on the left.

Fig. 1: Error bound on the left-hand sides.

Figure 1 displays four scenarios of MAP acting on sets X and Y . We start with a consistent
problem in Figure 1a and analyze two MAP sequences. The one starting from the left converges
linearly to a point in X ∩ Y . This is due to the fact that in this region X and Y form a non-zero
angle. In other words, a Lipschitzian error bound holds. This is not the case on the right-hand
side of the picture and therefore, MAP only achieves sublinear convergence over there. By lifting
X, we generate inconsistent intersection problems in 1b to 1d. The result is that MAP responds
favorably speed-wise to this translation of X. More than that, MAP improves when increasing
infeasibility and also when the error bound gets better, that is, the left border of X gets steeper.
This can be noticed looking at Figure 1 as a film from Figures 1a to 1d. Lifting X from Figure 1a
to Figure 1b makes MAP’s convergence jump from linear to finite on the left. On the right-hand
side, MAP leaps its convergence rate from sublinear to linear. After a further lift of X from
Figure 1b to Figure 1c, MAP reaches a best point in 5 iterations instead of 10 on the left-hand
side. MAP only needs 3 iterates to get a best approximation pair when improving the error bound
in the left part of Figure 1d.

The message of Figure 1 is fairly clear. As for the aforementioned error bound condition,
it will be formally introduced later. We anticipate, though, that it regards the target sets and
their relation with what we are going to call optimal supporting hyperplanes. We point out that
such an error bound is automatically globally fulfilled if X is a polyhedron and Y a hyperplane,
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providing finite convergence of MAP if, in addition, these particular polyhedral sets have empty
intersection. Note that finite convergence of MAP may happen even under a non-polyhedral
structure, as depicted in Figure 1.

Before outlining the structure of our paper, we briefly go through some turning points in the
history of MAP. This method has fascinated scientists for nearly a century now, and although
many results on this simple tool have been derived, open questions remain. In the early 1930s,
von Neumann firstly studied MAP for subspaces. Yet, his results were only published in 1950 [51],
proving the convergence of MAP to a so-called best approximation solution for the intersection
of two subspaces. In 1937, Kaczmarz [43] proposed a MAP related algorithm (also known as
Cyclic projections) for finding best approximation solutions of linear systems. In 1959, MAP was
studied for the convex case by Cheney and Goldstein [28], covering also inconsistent feasibility
problems. Precisely the theme of our paper, projection methods for inconsistent inclusions have
a history on their own; see the 2018 review by Censor and Zaknoon [27]. The ability of MAP to
find best approximation pairs is a notable characteristic, making MAP (and its variants) one of
the most used algorithms in Optimization [1, 8, 9, 17, 24,30, 33, 35–37,50]. Although MAP always
converges under the existence of best approximation pairs, the convergence rate may be arbitrarily
slow [6, 16, 41]. In 1950, Aronszajn [4] found the lower bound for the linear rate of MAP, given
by the square of the cosine of the minimal angle (Friedrichs angle) between two subspaces, which
turns out to be the sharpest one, as proved by Kayalar and Weinert [44] in 1988. For an in depth
related literature on MAP; see, for instance, Bauschke and Borwein [10,12], and Deutsch [34].

The paper is organized as follows. In Section 2 we collect known facts on MAP and some
auxiliary material. Section 3 contains our mayor results concerning the geometry of two disjoint
closed convex sets in the presence of an error bound condition. This analysis allows us to derive
in Section 4 our main result, namely, finite convergence of MAP under inconsistency and what
we call BAP error bound. The BAP error bound is automatically fulfilled for a polyhedron and a
hyperplane, and we study its connection with linear regularity and intrinsic transversality. Also
in Section 4, we will see that for a MAP sequence to converge in a finite number of steps, it is
necessary and sufficient that it satisfies the BAP error bound at its iterates. Section 4 ends by
investigating finite termination under inconsistency of Cyclic projections, Cimmino and Douglas-
Rachford methods. In Section 5, we present insightful examples and applications. In particular,
we connect our results to Linear Programming and convex min-max problems. We consider as
well a simple problem giving rise to the question on whether a Hölder type error bound could
make MAP’s rate of convergence go from sublinear to linear when shifting the target sets apart.
Some concluding remarks are presented in Section 6.

2. Background material. Let X,Y ⊂ Rn be closed, convex and nonempty. We recall
that the orthogonal projection of x ∈ Rn onto X is given by PX(x) ∈ X if, and only if,
〈y − PX(x), x− PX(x)〉 ≤ 0, for all y ∈ X. Throughout the text, 〈·, ·〉 stands for the Euclidean
inner product inducing the norm ‖·‖ :=

√
〈·, ·〉. The non-negative integer numbers will be denoted

by N. The open ball centered in x with radius δ > 0 is the set Bδ(x) := {z ∈ Rn | ‖x− z‖ < δ}.
We define the distance between X and Y by dist(X,Y ) := inf{‖x− y‖ | x ∈ X, y ∈ Y }.

When one of the sets is a singleton, for instance X = {x}, we use the notation dist(x, Y ). A best
approximation pair (BAP) relative to X and Y is a pair (x̄, ȳ) ∈ X × Y attaining the distance
between X and Y , that is, dist(x̄, ȳ) = dist(X,Y ). The set of all BAP relative to X and Y is
denoted by bap(X,Y ) ⊂ X × Y and, accordingly, we define the sets

bapY (X) := {x ∈ X | (x, y) ∈ bap(X,Y )} = {x ∈ X | dist(x, Y ) = dist(X,Y )}

and

bapX(Y ) := {y ∈ Y | (x, y) ∈ bap(X,Y )} = {y ∈ Y | dist(y,X) = dist(X,Y )}.
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Note that bapY (X) (respectively bapX(Y )) is the subset of points inX (respectively Y ) nearest to
Y (respectively X). In the consistent case, that is, when X ∩Y is nonempty, we have bapX(Y ) =
bapY (X) = X ∩ Y . As we are interested in the inconsistent case, henceforth, we suppose that
X ∩ Y = ∅. In this context we define the displacement vector as d := Pcl(X−Y )(0). So, ‖d‖ =
dist(X,Y ) and dist(X,Y ) is attained if, and only, if d ∈ X − Y . In particular, dist(X,Y ) is
attained whenever X − Y is closed.

Given any point x ∈ Rn, define the terms of the sequence (xk)k∈N by

(2.1) x0 = x, xk+1 = PXPY (xk),

for every k ∈ N. The sequence (xk)k∈N is the alternating projection sequence starting at x0 = x.
Cheney and Goldstein established in [28] that if one of the sets is compact or if one of the sets
is finitely generated, the fixed point set of the operator PXPY is nonempty and the sequence
(2.1) converges to a fixed point of this operator. The general result was summarized and enlarged
in [11] as follows.

Fact 2.1 (BAP sets [11, Lemma 2.2]). Denote Fix(PXPY ) = {x ∈ Rn | PXPY (x) = x}.
Then,
(i) bapY (X) = Fix(PXPY ).
(ii) bapY (X) and bapX(Y ) are closed convex sets.
(iii) If bapY (X) or bapX(Y ) is nonempty then dist(X,Y ) is attained. Moreover, let d be the

displacement vector. Then

PY (x̄) = x̄− d, ∀x̄ ∈ bapY (X),

and bapY (X)− d = bapX(Y ),bapY (X) = X ∩ (Y + d),bapX(Y ) = (X − d) ∩ Y.
In the next fact, we abuse notation and use 〈X, y〉 ≤ 0 to denote that 〈x, y〉 ≤ 0,∀x ∈ X.

Fact 2.2 (BAP pairs). Let x ∈ Rn be given. Then, if dist(X,Y ) is attained, with d being
the displacement vector, then

PbapX(Y )(x) = PbapY (X)(x)− d,

and 〈X − bapY (X), d〉 ≥ 0 and 〈Y − bapX(Y ), d〉 ≤ 0.

Fact 2.3 (Convergence of MAP [11, Theorem 4.8]). Let (xk)k∈N be an alternating projection
sequence as given in (2.1). Then,

xk − PY (xk)→ d,

where d is the displacement vector. Moreover,
(i) if dist(X,Y ) is attained then xk → x̄ ∈ bapY (X) and PY (xk)→ ȳ := x̄− d ∈ bapX(Y );
(ii) if dist(X,Y ) is not attained then

∥∥xk∥∥→ +∞.

Next we present some definitions and well-known results concerning polyhedra, useful in
Lemma 3.1 and Theorem 4.1.

Definition 2.4 (Polyhedron). A set Ω ⊂ Rn is said to be a polyhedron, if it can be expressed
as the intersection of a finite family of closed half-spaces, that is,

(2.2) Ω := {x ∈ Rn | 〈ai, x〉 ≤ αi, for i = 1, . . . ,m},

where ai ∈ Rn, αi ∈ R.
Note that a polyhedron, also referred to as a polyhedral set, is always convex.
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Definition 2.5 (Finitely generated cone and conic base). A set K ⊂ Rn is a cone if it
is closed under positive scalar multiplication. A cone K is finitely generated if there exists a
finite set S ⊂ Rn such that cone(S) = K, where cone(S), is the set of all conic combinations of
elements of S. A conic base of a finitely generated cone K is a finite set BK ⊂ Rn with minimal
cardinality such that cone(BK) = K.

Fact 2.6 (Polyhedron is finitely generated [20, Proposition B.17]). A set Ω ⊂ Rn is poly-
hedral if, and only if, it is finitely generated, i.e., there exist a nonempty and finite set of vectors
{v1, . . . , vm} , and a finitely generated cone K such that

Ω = {x ∈ Rn | x = y +

m∑
j=1

µjvj , y ∈ K,
m∑
j=1

µj = 1, µj ≥ 0, j = 1, . . . ,m}.

Let us note that finitely generated cones are the same as polyhedral cones, because of the
well-known Minkowski-Weyl Theorem [49, Theorem 3.52].

Definition 2.7 (Tangent and Normal cones). Let X be a nonempty closed convex set in Rn
and x ∈ X. The tangent cone of X at x is given by

TX(x) := cl ({λ(y − x) ∈ Rn | y ∈ X,λ ∈ R+}) .

The normal cone of X at x is the set defined by

NX(x) := {y ∈ Rn | 〈y, z − x〉 ≤ 0, z ∈ X} .

Fact 2.8 (Tangent cone of polyhedron [49, Theorem 6.46]). If Ω ⊂ Rn is a polyhedron
defined as in (2.2), then the tangent cone TΩ(x), at any point x ∈ Ω, is a polyhedral cone and can
be represented as

TΩ(x) = {w ∈ Rn | 〈ai, w〉 ≤ 0, for i ∈ I(x)},

where ai ∈ Rn defines the polyhedron Ω and I(x) := {i | 〈ai, x〉 = αi} is the active index set of Ω
at x.

Fact 2.9 (Finitely many tangent cones of a polyhedron [20]). If Ω is a polyhedron, then the
set of all tangent cones {TΩ(x) | x ∈ Ω} has finite cardinality. Moreover, for any x ∈ Ω, there
exists a radius δ > 0 such that (TΩ(x) + x) ∩ Bδ(x) = Ω ∩ Bδ(x), that is, Ω coincides locally with
any shifted tangent cone to it.

Finally, it is noteworthy that the distance between two non-intersecting polyhedral sets is
attained.

Fact 2.10 (Distance between polyhedra is attained [28, Theorem 5]). Let Ω1,Ω2 ⊂ Rn be
nonempty polyhedra with Ω1 ∩ Ω2 = ∅. Then, dist(Ω1,Ω2) is attained.

3. On the geometry of two disjoint convex sets under error bound condition.
This section is divided in two subsections, gathering key contributions of our paper. In the first
subsection, we investigate the geometry under which a single alternating projection step reaches a
best approximation pair when the sets are apart from each other. In the second one, we compare
well-known regularity conditions from the literature with our proposed error bound.

3.1. BAP-EB and alternating projection step. Here we start stating that a single
alternating projection step yields a best approximation pair to a polyhedron Ω and a hyperplane
H, if Ω ∩ H = ∅ and the alternating projection step is taken from a point sufficiently close to
bapH(Ω).
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Lemma 3.1 (Alternating projection step for polyhedron versus hyperplane under inconsis-
tency). Consider two nonempty sets Ω, H ⊂ Rn such that Ω is a polyhedron, H is a hyperplane
and Ω ∩H = ∅. Then, there exists a radius r > 0 such that

(3.1) PΩPH(z) ∈ bapH(Ω),

for all z ∈ Rn satisfying dist(z,bapH(Ω)) ≤ r.
Proof. For a point x ∈ Ω, let TΩ(x) denote the tangent cone of Ω at x. Since Ω is a polyhedron,

the set of all tangent cones {TΩ(x) | x ∈ Ω} is finite and each TΩ(x) is a finitely generated cone
(see Facts 2.6, 2.8, and 2.9). In particular, the cardinality of Γ := {TΩ(x) | x ∈ bapH(Ω)}
is finite since bapH(Ω) ⊂ Ω and each tangent cone in Γ has a finite number of generators.
Consider now the collection of all normalized generators with respect to cones in Γ denoted by
W := {w ∈ Rn | ‖w‖ = 1, such that w belongs to a conic base of some TΩ(x), x ∈ bapH(Ω)}.

Let d be the displacement vector. Fact 2.2 allows us to conveniently categorize the generators
in W . For the disjoint finite sets U := {u ∈ W | ‖u‖ = 1, 〈u, d〉 = 0} and V := {v ∈ W | ‖v‖ =
1, 〈v, d〉 > 0}, we have W = U ∪ V . The finiteness and definition of V provide the existence and
positivity of

(3.2) r := min
v∈V
{〈v, d〉}.

The facts that r > 0 and ‖d‖ > 0 are key for the statement (3.1).
Take z ∈ Rn arbitrary, but fixed, such that dist(z,bapH(Ω)) ≤ r. In order to shorten the

notation, set z̄ := PbapH(Ω)(z) and zH := PH(z). Let y be an element of bapH(Ω). Fact 2.1(iii)
implies that y − d and z̄ − d are contained in bapΩ(H) ⊆ H. Since zH ∈ H and H is affine,
y− z̄+ zH = (y−d)− (z̄−d) + zH ∈ H. The fact that H is a hyperplane and the characterization
of the best approximation for Ω and H imply

〈zH − z̄, y − z̄〉 = 〈z − z̄, y − z̄〉+ 〈zH − z, (y − z̄ + zH)− zH〉 = 〈z − z̄, y − z̄〉 ≤ 0.

Thus, z̄ = PbapH(Ω)(zH).
Let us now look at the angle between zH − z̄ and vectors in TΩ(z̄). Since z̄ is in bapH(Ω),

all the generators of the tangent cone TΩ(z̄) must be contained in W . Recall that W is split as
U ∪V and, therefore, in order to investigate the sign of 〈w, zH − z̄〉, consider the two cases below:
(a) w is a generator of TΩ(z̄) belonging to U ;
(b) w is a generator of TΩ(z̄) belonging to V .

Case (a). For w to be a generator of TΩ(z̄) belonging to U , it must be a generator of
TbapH(Ω)(z̄), since bapH(Ω) ⊂ H + d. Bear in mind that a polyhedron coincides locally with its
tangent cone (See Fact 2.9). So, for some radius ε > 0, bapH(Ω)∩Bε(z̄) = (TbapH(Ω)(z̄)+z̄)∩Bε(z̄).
Thus, for all t > 0 sufficiently small, z̄+tw ∈ bapH(Ω) and since PbapH(Ω)(zH) = z̄, by projections
onto convex sets, we have 〈z̄ + tw − z̄, zH − z̄〉 ≤ 0, therefore 〈w, zH − z̄〉 ≤ 0.

Case (b). This is the case in which the constant r > 0 defined in (3.2) is going to be employed.
We now have w ∈ V ,

〈w, zH − z̄〉 = 〈w, zH − z̄ + d〉 − 〈w, d〉
≤ ‖w‖ ‖zH + d− z̄‖ − 〈w, d〉
≤ ‖z − z̄‖ − 〈w, d〉
≤ r − 〈w, d〉 ≤ 0,

where we used Cauchy-Schwarz in the first inequality, the fact that w is a unit vector and the
Pythagoras argument ‖zH + d− z̄‖2 = ‖z − z̄‖2 − ‖zH + d− z‖2 in the second one, and the
definition of r given in (3.2) in the last one.
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Hence, cases (a) and (b) have shown that 〈zH − z̄, w〉 ≤ 0 for any normalized generator w of
the cone TΩ(z̄). This means that the projection of zH onto the shifted cone TΩ(z̄) + z̄ is given by
z̄. Since z̄ ∈ Ω and Ω ⊂ TΩ(z̄) + z̄, we get that PΩ(zH) = z̄. Recalling that we set zH = PH(z),
the proof is finished.

We remark that replacing the hyperplane H by an arbitrary polyhedron in the previous
lemma does not, in general, guarantee the statement (3.1); see Example 5.2. The key for reaching
a best point in a single alternating step essentially relies on the existence of a suitable error bound
between the two non-intersecting sets, which in the case of Lemma 3.1 is automatically fulfilled.

The geometrical appeal of Lemma 3.1 will inspire us to formulate the so-called BAP error
bound, which depends on the definition of optimal supporting hyperplane, next.

Definition 3.2 (Optimal supporting hyperplane). Let X,Y ⊂ Rn be closed convex sets
such that X ∩ Y = ∅ and that dist(X,Y ) is attained. We say that

HY (X) := {z ∈ Rn | 〈z − x̄, d〉 = 0, x̄ ∈ bapY (X)}

is the optimal supporting hyperplane to X regarding Y , where d is the displacement vector.

Y

X

HY (X)

HX(Y )

d

bapY (X)

bapX(Y )

Fig. 2: Disjoint convex sets X and Y , BAPs and optimal hyperplanes.

Note that HY (X) is well-defined since any points x̂, x̄ ∈ bapY (X) satisfy 〈x̂− x̄, d〉 = 0.
Definition 3.2 together with Fact 2.1(iii) imply that, for two disjoint closed convex sets X,Y ⊂ Rn
with attainable distance, bapY (X) = X∩(Y +d) ⊂ HY (X) and bapX(Y ) = (X−d)∩Y ⊂ HX(Y ).
Figure 2 illustrates all these sets related to X and Y as well as the displacement vector d.

We now formally present the BAP error bound in a non-symmetrical version.

Definition 3.3 (Unilateral BAP error bound). Let X,Y ⊂ Rn be non-intersecting closed
convex sets and assume that the distance between them is attained. We say that X and Y satisfy
the unilateral BAP error bound (unilateral BAP-EB) at x∗ ∈ bapY (X) if there exist a bound
ω > 0 and a radius δ > 0 such that the following inequality holds

(3.3) ω dist(x,bapY (X)) ≤ dist(x,HY (X)), for all x ∈ Bδ(x∗) ∩X.

Definition 3.3 is a condition where the error bound is concentrated in only one of the two sets,
therefore, the term unilateral. Nevertheless, the responsibility of carrying an error bound can be
distributed between the sets X and Y . In this regard, we will introduce in Definition 3.8 a more
general error bound condition, in which a bilateral concern about the error bound is embedded.

Error bounds are, in general, regularity conditions that allow one to deal with non-isolated
solutions; see, for example, [18, 19]. The BAP-EB resembles the well-known concept of local
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linear regularity [10, 12], formally presented in Definition 3.6. Linear regularity is also known as
subtransversality [45]. BAP-EB requires, depending on the context, a further geometrical feature
between the sets, in comparison to linear regularity. In Subsection 3.2, we present a detailed dis-
cussion on BAP-EB in which we compare it with the standard linear regularity (subtransversality)
and with another regularity condition known as intrinsic transversality [39,40].

Along this subsection, we are going to derive two important lemmas in which we consider the
unilateral BAP-EB. They will be valuable tools towards establishing finite convergence of MAP
in Section 4 under the more general error bound condition BAP-EB that we introduce later in
Definition 3.8.

We present next a result encompassing a broader class of instances than the one in Lemma 3.1,
since we are going to consider a closed convex set X and a hyperplane H with empty intersection
and attainable distance. Here, the optimal supporting hyperplane HH(X) to X regarding H
coincides precisely with H+d, that is, the hyperplane obtained by shifting H by the displacement
vector d. In this context, unilateral BAP-EB from Definition 3.3 is equivalent to local linear
regularity. We prove this equivalence in Proposition 3.7. Taking this equivalence into account,
the next result states that the standard linear regularity condition leads to finite convergence of
alternating projections when the target convex sets are disjoint and one of them is a hyperplane.

Lemma 3.4 (Alternating projection step for a convex set versus hyperplane under inconsis-
tency). Let X,H ⊂ Rn be a closed convex set and a hyperplane, respectively, and suppose that
X and H are disjoint with attainable distance. Assume that X and H satisfy the unilateral BAP
error bound (3.3) from Definition 3.3 at x∗ ∈ bapH(X), that is,

(3.4) ω dist(x, bapH(X)) ≤ dist(x,HH(X)), for all x ∈ Bδ(x∗) ∩X,

with bound ω > 0 and radius δ > 0. By setting r := min
{
ω dist(X,H), δ2

}
, we have that

PXPH(z) ∈ bapH(X), for all z ∈ Br(x∗).

Proof. Take z ∈ Br(x∗), arbitrary, but fixed, with x∗ and r as enunciated in the hypothesis.
Set z̄ := PbapH(X)(z) and zH := PH(z) and define

S := {s ∈ Rn | 〈s− z̄, zH − z̄〉 ≤ 0}.

Since, X ∩H = ∅, we have that zH − z̄ 6= 0 and thus, S is an affine half-space. The keystone of
the proof is to show that

(3.5) X ⊂ S.

If this claim is proved, we get, directly from the characterization of a projection onto a closed
convex set, that z̄ = PX(zH) = PXPH(z). Therefore, let us draw our attention to proving that
(3.5) holds. Assume the contrary, that is, there exists a point w ∈ X which does not lie in S.
Then, for a sufficiently small t ∈ (0, 1], we have x := tw + (1− t)z̄ ∈ Bδ(x∗) ∩X. In fact, x ∈ X,
by convexity. Now, we have that

‖x− x∗‖ = ‖tw + (1− t)z̄ − x∗‖ = ‖t(w − x∗) + (1− t)(z̄ − x∗)‖
≤ t ‖w − x∗‖+ (1− t) ‖z̄ − x∗‖
= t ‖w − x∗‖+ (1− t)

∥∥PbapH(X)(z)− PbapH(X)(x
∗)
∥∥

≤ t ‖w − x∗‖+ (1− t) ‖z − x∗‖
< t ‖w − x∗‖+ (1− t)r

≤ t ‖w − x∗‖+ (1− t)δ
2
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< t ‖w − x∗‖+
δ

2
,

where we used the definition of x, the convexity of the norm, the definition of z̄ and the fact that
x∗ ∈ bapH(X), the nonexpansiveness of the projection, the assumption z ∈ Br(x∗), the definition
of r, and the fact that 1 − t < 1, respectively. Let us take a fixed t ∈

(
0,min

{
1, δ

2‖w−x∗‖

}]
.

Thus, the correspondent x = tw + (1− t)z̄ ∈ Bδ(x∗) ∩X. Note also that

〈x− z̄, zH − z̄〉 = 〈tw + (1− t)z̄ − z̄, zH − z̄〉
= t 〈w − z̄, zH − z̄〉
> 0,

since t > 0 and w /∈ S. Hence, x /∈ S.
We proceed by showing that this point x does not comply with the error bound condition

(3.3), leading to a contradiction.
Simple Pythagoras arguments imply that PbapH(X)(zH) = z̄ := PbapH(X)(z), as we will see

next. Let zH := PHH(X)(z), where HH(X) is the optimal supporting hyperplane to X regarding H
introduced in Definition 3.2. Reminding that, in this case, HH(X) = H + d, we get zH = zH + d.
Then,

‖z − z̄‖2 − ‖z̄ − zH‖2 = ‖z − zH‖2 =
∥∥z − PbapH(X)(zH)

∥∥2 −
∥∥PbapH(X)(zH)− zH

∥∥2

≥ ‖z − z̄‖2 −
∥∥PbapH(X)(zH)− zH

∥∥2
.

Crossing out
∥∥PbapH(X)(zH)− zH

∥∥2 yields ‖z̄ − zH‖ ≤
∥∥PbapH(X)(zH)− zH

∥∥, which gives us
PbapH(X)(zH) = z̄. Similarly, considering the Pythagoras relations, we have

‖zH − z̄‖2 − ‖z̄ − zH‖2 = ‖zH − zH‖2 =
∥∥zH − PbapH(X)(zH)

∥∥2 −
∥∥PbapH(X)(zH)− zH

∥∥2

≤
∥∥zH − PbapH(X)(zH)

∥∥2 − ‖z̄ − zH‖2 ,

because ‖z̄ − zH‖ ≤
∥∥PbapH(X)(zH)− zH

∥∥. After a cancellation, we get

‖zH − z̄‖ ≤
∥∥zH − PbapH(X)(zH)

∥∥ ,
providing PbapH(X)(zH) = z̄.

The fact that PbapH(X)(zH) = z̄ implies that 〈s− z̄, zH − z̄〉 ≤ 0, for all s ∈ bapH(X), and we
conclude by definition of S that bapH(X) ⊂ S. On the other hand, recall that bapH(X) ⊂ HH(X)
(see Definition 3.2). In particular,

(3.6) bapH(X) ⊂ S ∩HH(X).

Now, let us define x̂ := PS∩HH(X)(x). Since x /∈ S, we have 〈x− z̄, zH − z̄〉 > 0 and because
x̂ lies on the affine half-space S, it holds that 〈x̂− z̄, zH − z̄〉 ≤ 0. Hence,

〈x− x̂, zH − z̄〉 = 〈x− z̄, zH − z̄〉+ 〈z̄ − x̂, zH − z̄〉 > 0.

Moreover,

0 < 〈x− x̂, zH − z̄〉 = 〈x− x̂, zH − (z̄ − d)− d〉
= 〈x− x̂, zH − (z̄ − d)〉 − 〈x− x̂, d〉
≤ ‖x− x̂‖ ‖zH + d− z̄‖ − 〈x− x̂, d〉
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= ‖x− x̂‖
∥∥PHH(X)(z)− PHH(X)(z̄)

∥∥− 〈x− x̂, d〉
≤ ‖x− x̂‖ ‖z − z̄‖ − 〈x− x̂, d〉
< ‖x− x̂‖ r − 〈x− x̂, d〉 ,(3.7)

where the second inequality is by Cauchy-Schwarz, the third is by the nonexpansiveness of pro-
jection and the last one follows from ‖z − z̄‖ ≤ ‖z − x∗‖ < r. Therefore,

(3.8) 〈x− x̂, d〉 < r ‖x− x̂‖ ≤ ω ‖d‖ ‖x− x̂‖ ,

by (3.7) and the definition of r.
Now, let xH := PH(x) and xH := PHH(X)(x) = xH + d. Then,

(3.9) 〈x− x̂, d〉 = 〈x− xH + xH − x̂, d〉 = 〈x− xH, d〉+ 〈xH − x̂, d〉 = 〈x− xH, d〉 ,

as x̂, xH ∈ HH(X) and d ⊥ HH(X). Due to the fact that HH(X) is a hyperplane, x − xH is
collinear to d, so Cauchy-Schwarz holds sharply, that is, |〈x− xH, d〉| = ‖x− xH‖ ‖d‖. Moreover,
since x ∈ X, the inner product 〈x− xH, d〉 is nonnegative and thus 〈x− xH, d〉 = ‖x− xH‖ ‖d‖,
which combined with (3.8) and (3.9) provides

‖x− xH‖ ‖d‖ < ω ‖d‖ ‖x− x̂‖ .

This inequality, together with bapH(X) ⊂ S ∩HH(X), as proved in (3.6), yields

dist(x,HH(X)) = ‖x− xH‖
< ω ‖x− x̂‖ = ω dist(x, S ∩HH(X))

≤ ω dist(x,bapH(X)),

which contradicts the error bound assumption (3.4), because x ∈ Bδ(x∗) ∩ X and bapH(X) =
X ∩HH(X).

The previous result leads to another contribution of this paper. We show that the two
ingredients, infeasibility and unilateral BAP-EB, imply that a single alternating projection step
can locally reach a best approximation pair.

Lemma 3.5 (Alternating projection step under infeasibility and unilateral BAP-EB). Let
X,Y ⊂ Rn be closed convex sets such that X ∩ Y = ∅ and assume that the distance between them
is attained. Assume that X and Y satisfy the unilateral BAP error bound (3.3) from Definition 3.3
at x∗ ∈ bapY (X), that is,

(3.10) ω dist(x, bapY (X)) ≤ dist(x,HY (X)), for all x ∈ Bδ(x∗) ∩X,

with bound ω > 0 and radius δ > 0. By setting r := min
{
ω dist(X,Y ), δ2

}
we have that for all

z ∈ Br(x∗),

PXPY (z) ∈ bapY (X).

Proof. Consider x∗ and r as stated in the assumptions and let z ∈ Br(x∗) be arbitrary, but
fixed. Now, set zY := PY (z) and z� := PHX(Y )(zY ), where HX(Y ) is the optimal supporting
hyperplane to Y regarding X, i.e., HY (X) = HX(Y ) + d, where d is the displacement vector.
Moreover, using the nonexpansiveness of projection operators onto convex sets and that x∗ − d
lies in both Y and HX(Y ), we obtain

‖(z� + d)− x∗‖ = ‖z� − (x∗ − d)‖
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=
∥∥PHX(Y )(zY )− PHX(Y )(x

∗ − d)
∥∥

≤ ‖zY − (x∗ − d)‖
= ‖PY (z)− PY (x∗)‖
≤ ‖z − x∗‖ ≤ r,(3.11)

that is, z�+d ∈ Br(x∗). Taking into account that dist(X,HX(Y )) = dist(X,Y ) = ‖d‖, Lemma 3.4
can be applied to z� + d, with HX(Y ) playing the role of H, yielding PXPHX(Y )(z

� + d) ∈
bapHX(Y )(X). Note that bapHX(Y )(X) ⊂ X ∩HY (X) and clearly, the fact that the error bound
constant ω in (3.10) is strictly positive implies that bapY (X)∩Br(x∗) = (X ∩HY (X))∩Br(x∗).
Thus,

(3.12) PX(z�) ∈ bapY (X),

since PX(z�) ∈ Br(x∗). This occurs because PX(z�) = PXPHX(Y )(z
� + d), x∗ ∈ X ∩HY (X), the

nonexpansiveness of projections and (3.11) as

‖PX(z�)− x∗‖ =
∥∥PXPHX(Y )(z

� + d)− PXPHX(Y )(x
∗)
∥∥

≤
∥∥PHX(Y )(z

� + d)− PHX(Y )(x
∗)
∥∥

≤ ‖(z� + d)− x∗‖
≤ r.

Bearing in mind the definition of HX(Y ) and that zY ∈ Y , observe that there exists t ≤ 0
such that zY − z� = td. For all x ∈ X, we have

〈zY − PX(z�), x− PX(z�)〉 = 〈zY − z�, x− PX(z�)〉+ 〈z� − PX(z�), x− PX(z�)〉
= t︸︷︷︸
≤0

〈d, x− PX(z�)〉︸ ︷︷ ︸
≥0

+ 〈z� − PX(z�), x− PX(z�)〉︸ ︷︷ ︸
≤0

≤ 0,(3.13)

where the second under-brace remark is by Fact 2.2 and the third is by characterization of the
orthogonal projection of z� onto X. Hence, (3.13) implies that PX(zY ) = PX(z�). Therefore, due
to (3.12) and that PXPY (z) = PX(zY ), it holds that

PXPY (z) ∈ bapY (X),

proving the theorem.

3.2. BAP-EB and other regularity conditions. We now proceed to discuss the connec-
tion of BAP-EB with two other regularity conditions: local linear regularity, which is the keystone
for providing linear convergence of MAP [10, Corollary 3.14], and intrinsic transversality.

First, we show that unilateral BAP-EB implies the standard local linear regularity and more-
over, both coincide in the context of Lemma 3.4, that is, when one of the sets is a hyperplane.
This is proved in Proposition 3.7 below. This subsection ends with a proof that BAP-EB is more
general than intrinsic transversality. For clarity, we present the definitions of linear regularity and
intrinsic transversality.

Definition 3.6 (Local linear regularity [10, Definition 3.11]). Let X,Y ⊂ Rn be closed
convex sets such that X ∩ Y = ∅, assume that the distance between them is attained and suppose
that d is the displacement vector. We say that X and Y are locally linearly regular if for some
point x∗ ∈ bapY (X) there exist a bound κ > 0 and a radius ρ > 0 and such that, for all z ∈ Bρ(x∗),

dist(z,bapY (X)) ≤ κmax{dist(z,X),dist(z, Y + d)}.
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Proposition 3.7. Let X,Y ⊂ Rn be closed convex sets, suppose that X and Y are disjoint
with attainable distance and let d be the displacement vector. Then, the unilateral BAP-EB
condition from Definition 3.3 implies local linear regularity. If, in addition, Y is a hyperplane,
then local linear regularity is equivalent to the unilateral BAP-EB.

Proof. Assume that the unilateral BAP error bound condition from Definition 3.3 holds, that
is, for some point x∗ ∈ bapY (X) there exist ω > 0 and δ > 0 such that, for all x ∈ Bδ(x∗) ∩X,

ω dist(x, bapY (X)) ≤ dist(x,HY (X)).

Note that, for all x ∈ X, we have dist(x,HY (X)) ≤ dist(x, Y +d). From the fact that bapY (X) =
X ∩ (Y + d), it follows that

dist(x,X ∩ (Y + d)) ≤ 1

ω
dist(x, Y + d),

for all x ∈ Bδ(x∗) ∩X. Using [10, Lemma 4.1] in the last inequality, with X playing the role of
M and Y + d playing the role of N , we get

dist(z,X ∩ (Y + d)) ≤
(

2

ω
+ 1

)
max{dist(z,X),dist(z, Y + d)},

for all z ∈ B δ
2
(x∗). Thus, the local linear regularity holds with κ := 2

ω + 1 and ρ := δ
2 .

To complete the proof, we just have to show that, if Y is a hyperplane, local linear regularity
implies (3.3), as in this case Y + d coincides with HY (X), the optimal supporting hyperplane to
X regarding Y . Therefore, for all points z ∈ X, max{dist(z,X),dist(z, Y +d)} = dist(z, Y +d) =
dist(z,HY (X)). Hence, the result follows, with ω := 1

κ and δ := ρ.

Later, in Example 5.2, we will see that if none of the sets is a hyperplane, local linear regularity
might not coincide with the unilateral BAP error bound from Definition 3.3.

Next, we introduce a bilateral error bound condition (referred to as BAP-EB), which is more
general than the unilateral BAP-EB from Definition 3.3 and also implies finite convergence of
MAP under inconsistency; see Theorem 4.5. Furthermore, we will see in Theorem 4.6 that, under
inconsistency, a given MAP sequence converges in a finite number of steps if, and only if, the
BAP-EB is satisfied along it.

Definition 3.8 (BAP error bound). Let X,Y ⊂ Rn be non-intersecting closed convex sets
and assume that the distance between them is attained. We say that X and Y satisfy the BAP
error bound (BAP-EB) at x∗ ∈ bapY (X) if there exist a bound ω > 0 and a radius δ > 0 such
that, for all x ∈ Bδ(x∗) ∩X, at least one of the following inequalities holds

(3.14)
ω dist(PY (x),bapX(Y )) ≤ dist(PY (x),HX(Y )),

ω dist(PXPY (x),bapY (X)) ≤ dist(PXPY (x),HY (X)).

Before starting to state theorems on finite convergence of MAP and variants, we will compare
BAP-EB with intrinsic transversality. Drusvyatskiy presents intrinsic transversality in [39, Defi-
nition 3.1] and comments on its importance. The definition originally considers intersecting sets,
and says that two closed sets X,Y ⊂ Rn are intrinsically transversal at a common point if there
exists an angle α ∈

(
0, π2

]
such that, near this common point, any two points x ∈ X\Y and

y ∈ Y \X cannot have difference x − y simultaneously making an angle strictly less than α with
both the normal cones −NX(x) and NY (y).

The concept of intrinsic transversality was adapted for nonintersecting sets in [23]. This nice
manuscript first appeared in the form of a preprint on arXiv a few days after the submission
of the present paper. The authors of [23] have similar results to ours as they derived finite
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convergence of MAP under inconsistency and intrinsic transversality. We will actually prove that
intrinsic transversality for nonintersecting convex sets implies BAP-EB. However, the converse is
not true. Example 5.3 shows that BAP-EB is more general. More than that, BAP-EB along a
MAP sequence is a necessary and sufficient condition for its finite convergence under infeasibility;
see Theorem 4.6. Next, we provide the definition of intrinsic transversality for two nonintersecting
closed convex sets introduced in [23, Condition 1’].

Definition 3.9 (Intrinsic transversality for disjoint sets). Two closed convex sets X,Y ⊂
Rn with empty intersection and attainable distance are intrinsically transversal at (x∗, y∗) ∈
bap(X,Y ) if there exist κ ∈ (0, 1) and δ > 0 such that

(3.15) max

{
dist

(
x− y
‖x− y‖

,NY (y)

)
,dist

(
x− y
‖x− y‖

,−NX(x)

)}
≥ κ,

for all x ∈ X ∩ Bδ(x∗) and y ∈
(
Y \bapX(Y )

)
∩ Bδ(y∗).

We point out that the previous definition is not symmetrical. It is unilateral, since one is
considering local points y ∈ Y such that dist(X, y) > dist(X,Y ), but this condition is not required
for points in X.

We now establish that intrinsic transversality is a sufficient condition for BAP-EB to be
fulfilled.

Proposition 3.10 (Intrinsic transversality implies BAP-EB). If intrinsic transversality from
Definition 3.9 is satisfied, then BAP-EB from Definition 3.8 holds.

Proof. We are going to prove the statement by showing that the absence of BAP-EB prevents
intrinsic transversality to hold.

Consider two closed and convex sets X,Y ∈ Rn with empty intersection and attainable
distance. Let (x∗, y∗) ∈ bap(X,Y ) and suppose that BAP-EB does not hold at x∗. The lack
of BAP-EB guarantees the existence of a sequence (xk)k∈N ⊂ X converging to x∗ such that the
sequence defined by yk := PY (xk) has no term in bapX(Y ) and converges to y∗, and the sequence
determined by wk := PXPY (xk) does not have any term in bapY (X) and converges to x∗. The
existence of such sequence (xk)k∈N is indeed easy to verify when denying both inequalities (3.14)
in BAP-EB.

Obviously, xk − yk ∈ NY (yk) and wk − yk ∈ −NX(wk). Taking into account the nonexpan-
siveness of projections, we have xk − yk → x∗ − y∗ and wk − yk → x∗ − y∗.

Hence,

lim
k→∞

dist

(
wk − yk

‖wk − yk‖
,NY (yk)

)
≤ lim
k→∞

∥∥∥∥ wk − yk

‖wk − yk‖
− xk − yk

‖xk − yk‖

∥∥∥∥
=

∥∥∥∥ x∗ − y∗

‖x∗ − y∗‖
− x∗ − y∗

‖x∗ − y∗‖

∥∥∥∥ = 0,

and

lim
k→∞

dist

(
wk − yk

‖wk − yk‖
,−NX(wk)

)
≤ lim
k→∞

∥∥∥∥ wk − yk

‖wk − yk‖
− wk − yk

‖wk − yk‖

∥∥∥∥ = 0,

which invalids (3.15), i.e., intrinsic transversality fails.

4. Finite convergence of projection-based methods.

4.1. Finite convergence of MAP. In this subsection we present straightforward conse-
quences of Lemmas 3.1, 3.4, and 3.5 on MAP. The first theorem establishes finite convergence of
MAP for a polyhedron and a disjoint hyperplane. We then show that under local linear regularity,
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MAP for a closed convex set and a disjoint hyperplane also converges in a finite number of steps,
as for a hyperplane versus a closed convex set, local linear regularity coincides with BAP-EB;
recall Proposition 3.7. Then, we see in Theorem 4.3 that infeasibility combined with unilateral
BAP-EB implies finite convergence of alternating projections for two closed convex sets. Finally,
in Theorem 4.5, we prove the most important result of this work, namely, that BAP-EB from
Definition 3.8 under inconsistency also yields finite convergence of MAP.

Theorem 4.1 (Finite convergence of MAP for polyhedron versus hyperplane under incon-
sistency). Consider two nonempty sets Ω, H ⊂ Rn such that Ω is a polyhedron, H is a hy-
perplane and Ω ∩ H = ∅. Let x0 ∈ Rn be given and (xk)k∈N be the MAP sequence defined by
xk+1 := PΩPH(xk). Then, (xk)k∈N converges in finitely many steps to x̄ ∈ bapH(Ω).

Proof. Fact 2.10 provides that dist(Ω, H) is attained, as H is also a polyhedron. Hence,
the sequence (xk)k∈N converges to some x̄ ∈ bapH(Ω) (Fact 2.3(i)). Hence, for a sufficiently
large k̄, dist(xk̄,bapH(Ω)) ≤ r, where r set as in Lemma 3.1. Therefore, by Lemma 3.1, xk̄+1 =
PΩPH(xk̄) = x̄, hence proved.

Theorem 4.1 alone encompasses a very relevant setting featuring non-isolated solutions as it
concerns a hyperplane versus a polyhedron (see Example 5.1 for an application on linear program-
ming). Below, we will state results for non-intersecting convex sets under BAP-EB conditions
beyond the polyhedral-affine setting.

Theorem 4.2 (Finite convergence of MAP for a convex set versus hyperplane under incon-
sistency). Let X,H ⊂ Rn be a closed convex set and a hyperplane, respectively, and suppose
that X and H are disjoint with attainable distance. Assume that X and H satisfy the BAP error
bound (3.3) from Definition 3.3 at x∗ ∈ bapH(X) with bounds ω > 0 and radius δ > 0. By setting
r := min

{
ω dist(X,H), δ2

}
, we have that for any given x0 ∈ Rn, the MAP sequence (xk)k∈N

defined by xk+1 := PXPH(xk) converges to a point x̄ ∈ bapH(X). Moreover, if there exists an
index k̄ ≥ 0, such that xk̄ ∈ Br(x∗), then xk̄+1 = x̄, that is, in this case, MAP converges in at
most k̄ + 1 steps.

Proof. It is well-known that MAP converges globally for two closed convex sets with attain-
able distance (see Fact 2.3(i)) and thus, the first part of item (ii) follows. Its second part is a
straightforward consequence of Lemma 3.4.

Theorem 4.3 (Finite convergence of MAP under infeasibility and unilateral BAP-EB). Let
X,Y ⊂ Rn be closed convex sets such that X ∩ Y = ∅ and assume that the distance between them
is attained. Assume that X and Y satisfy the unilateral BAP error bound of Definition 3.3 at
x∗ ∈ bapY (X) with bound ω > 0 and radius δ > 0. Set r := min

{
ω dist(X,Y ), δ2

}
, and then

we have that for any given x0 ∈ Rn, the MAP sequence (xk)k∈N defined by xk+1 := PXPY (xk)
converges to a point x̄ ∈ bapY (X). Moreover, if there exists an index k̄ ≥ 0, such that xk̄ ∈ Br(x∗),
then xk̄+1 = x̄, that is, in this case, MAP converges in at most k̄ + 1 steps.

Proof. The result follows directly from Fact 2.3(i) and Lemma 3.5.

In order to prove finite convergence of MAP under the bilateral BAP-EB from Definition 3.8,
we need the following auxiliary proposition.

Proposition 4.4. Let X,Y ⊂ Rn be closed convex sets such that X ∩ Y = ∅, assume that
the distance between them is attained. Consider a sequence (zk)k∈N ⊂ X converging to a point
z∗ ∈ bapY (X). Assume there exists ω > 0 such that, for all k,

(4.1) ω dist(zk,bapY (X)) ≤ dist(zk,HY (X)).

Then,

(4.2) ω dist(z,bapY (X)) ≤ dist(z,HY (X))
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holds for all z ∈ S := cl
(
conv

(
(zk)k∈N ∪ bapY (X)

))
. Moreover, dist(S, Y ) = dist(X,Y ),

bapY (S) = bapY (X) and HY (S) = HY (X).

Proof. We start proving that the convex hull S := conv
(
(zk)k∈N ∪ bapY (X)

)
satisfies the

announced error bound (4.2). This will be done by induction over the sets

Sk := conv
({
z0, z1, . . . , zk

}
∪ bapY (X)

)
.

Note that S0 = {zλ ∈ X | zλ = λz0+(1−λ)v, λ ∈ [0, 1], v ∈ bapY (X)}. Taking arbitrary but fixed
v ∈ bapY (X) and λ ∈ [0, 1], we define accordingly zλ ∈ S0 and denote by z̄λ := PbapY (X)(zλ)and
by z̄0 := PbapY (X)(z

0). Note that ẑλ := λz̄0 + (1− λ)v ∈ bapY (X), so we get

ω dist(zλ,bapY (X)) = ω ‖zλ − z̄λ‖
≤ ω ‖zλ − ẑλ‖
= ω

∥∥λz0 + (1− λ)v − (λz̄0 + (1− λ)v)
∥∥

= ω
∥∥λ(z0 − z̄0)

∥∥
= λω dist

(
z0,bapY (X)

)
.(4.3)

Define now z̃λ := PHY (X)(zλ). Since HY (X) is a hyperplane we get

z̃λ = PHY (X)(λz
0 + (1− λ)v) = λPHY (X)(z

0) + (1− λ)PHY (X)(v) = λz̃0 + (1− λ)v,

using in the last equality that z̃0 := PHY (X)(z
0) and v ∈ bapY (X) ⊂ HY (X). Then,

dist(zλ,HY (X)) = ‖zλ − z̃λ‖
=
∥∥(λz0 + (1− λ)v)− (λz̃0 + (1− λ)v)

∥∥
=
∥∥λ(z0 − z̃0)

∥∥
= λ dist

(
z0,HY (X)

)
).(4.4)

The hypothesis (4.1) for k = 0 reads as

ω dist
(
z0,bapY (X)

)
≤ dist

(
z0,HY (X)

)
.

Multiplying this inequality by λ ∈ [0, 1] and combining it with equalities (4.3) and (4.4), gives us
the first step of the induction.

Now, note that

Sk+1 = conv
({
z0, z1, . . . , zk, zk+1

}
∪ bapY (X)

)
= conv(Sk ∪ {zk+1}),

our induction hypothesis says that all u ∈ Sk satisfies

(4.5) ω dist (u,bapY (X)) ≤ dist (u,HY (X))

and inequality (4.1) specialized for k + 1 gives us

(4.6) ω dist
(
zk+1,bapY (X)

)
≤ dist

(
zk+1,HY (X)

)
.

Consider an arbitrary point in Sk+1. It can be written as zλ = λu + (1 − λ)zk+1, for some
u ∈ Sk and λ ∈ [0, 1]. Let ū, z̄k+1 be the distance realizers of u, zk+1 with respect to bapY (X),
respectively and ũ, z̃k+1 be the distance realizers of u, zk+1 regarding HY (X), respectively. Note
that z̃λ := PHY (X)(zλ) = λũ+ (1− λ)z̃k+1, since HY (X) is a hyperplane. Moreover, by the same
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token, u − ũ = αd and zk+1 − z̃k+1 = βd, for some α, β ≥ 0 and where d is the displacement
vector (pointing from Y to X). Thus,

dist (zλ,HY (X)) = ‖zλ − z̃λ‖ =
∥∥λ(u− ũ) + (1− λ)(zk+1 − z̃k+1)

∥∥
= ‖λ(αd) + (1− λ)(βd)‖ = ‖(λα+ (1− λ)β)d‖
= (λα+ (1− λ)β) ‖d‖ = λα ‖d‖+ (1− λ)β ‖d‖
= λ ‖αd‖+ (1− λ) ‖βd‖ = λ ‖u− ũ‖+ (1− λ)

∥∥zk+1 − z̃k+1
∥∥

= λ dist (u,HY (X)) + (1− λ) dist
(
zk+1,HY (X)

)
.(4.7)

Now, the point ẑλ := λū + (1 − λ)z̄k+1 belongs to bapY (X) but need not coincide with z̄λ,
the distance realizer of zλ to bapY (X). Nevertheless, we can write

ω dist(zλ,bapY (X)) = ω ‖zλ − z̄λ‖ ≤ ω ‖zλ − ẑλ‖
= ω

∥∥(λu+ (1− λ)zk+1)− (λū+ (1− λ)z̄k+1)
∥∥

≤ λω ‖u− ū‖+ (1− λ)ω
∥∥zk+1 − z̄k+1

∥∥
= λω dist (u,bapY (X)) + (1− λ)ω dist

(
zk+1,bapY (X)

)
≤ λ dist (u,HY (X)) + (1− λ) dist

(
zk+1,HY (X)

)
= dist (zλ,HY (X)) ,

where the last inequality is by (4.5) and (4.6) and the last equality is due to (4.7). Therefore, the
induction argument is completed and the error bound (4.2) holds for all points in S.

Next we are going to prove that the error bound (4.2) extends to S, the closure of S. Take
s ∈ S. Then, there exists a sequence (s`)`∈N ⊂ S so that s` → s. Note that we have just proven
the error bound for all points in S, thus all s` satisfies

ω dist(s`,bapY (X)) ≤ dist(s`,HY (X)).

Taking into account that the distance functions to both sets bapY (X) and HY (X) are continuous,
we can take limits as ` goes to infinity in both sides of the previous inequality, getting the result.

Finally, since bapY (X) ⊂ S ⊂ X, we have dist(X,Y ) ≤ dist(S, Y ) ≤ dist(bapY (X), Y ) =
dist(X,Y ), that is, dist(S, Y ) = dist(X,Y ). Thus, bapY (S) = bapY (X) and HY (S) = HY (X)

We are now ready to establish finite convergence of MAP under inconsistency added by
BAP-EB.

Theorem 4.5 (Finite convergence of MAP under infeasibility and BAP-EB). Let X,Y ⊂ Rn
be closed convex sets such that X ∩Y = ∅, assume that the distance between them is attained and
let x0 ∈ Rn be given. Then, the MAP sequence (xk)k∈N, defined by xk+1 := PXPY (xk), converges
to some x∗ ∈ bapY (X). If BAP-EB from Definition 3.8 is satisfied by X and Y at x∗, then
(xk)k∈N converges to x∗ in a finite number of steps.

Proof. The convergence of the MAP sequence to some x∗ ∈ bapY (X) for two disjoint closed
convex sets X and Y , assuming its distance is attainable, is due to Fact 2.3(i). Assume BAP-EB
as in the statement of the theorem and that the MAP sequence (xk)k∈N does not converge in a
finite number of steps. Thus, since MAP iterates satisfy

∥∥xk+1 − x∗
∥∥ ≤ ∥∥xk − x∗∥∥, all the terms

xk lie outside bapY (X) and, in particular, they are all different from x∗.
Note that BAP-EB consists of all points x ∈ X near x∗ fulfilling at least one of the two

inequalities (3.14) given in Definition 3.8. In the following we divide our proof in two cases.
First, let us assume that there is a subsequence of the MAP sequence satisfying the second

inequality in (3.14). So, we have an infinite set of indexes J ⊂ N, such that

ω dist(PXPY (xk−1),bapY (X)) ≤ dist(PXPY (xk−1),HY (X)), for all k ∈ J,
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which is the same as

(4.8) ω dist(xk,bapY (X)) ≤ dist(xk,HY (X)), for all k ∈ J.

Let us define the closed convex set S := cl
(
conv

(
(xk)k∈J ∪ bapY (X)

))
⊂ X. Clearly, x∗ ∈ S

and, since (4.8) holds and (xk)k∈J converges to x∗, Proposition 4.4 can be used. Then, for all
z ∈ S,

ω dist(z,bapY (S)) = ω dist(z,bapY (X)) ≤ dist(z,HY (X)) = dist(z,HY (S)).

This inequality means that the unilateral BAP-EB condition from Definition 3.3 is satisfied for
S and Y at x∗. Therefore, Lemma 3.5 applies because, for all k ∈ N sufficiently large, xk−1 is
near enough to x∗. Hence, for all large k, we have PSPY (xk−1) ∈ bapY (S) = bapY (X), where
the equality of the BAP sets follows from Proposition 4.4.

Recall that, for all k ∈ J , xk belongs to S ⊂ X. Moreover, for each k ∈ J there exists jk ∈ N
such that k + jk ∈ J and thus xk+jk ∈ S, and, in addition,

∥∥xk+jk − x∗
∥∥ ≤ ∥∥xk − x∗∥∥.

Note that xk+jk = PXPY (xk+jk−1) and that PY (xk+jk−1) approaches PY (x∗), when k goes
to infinity. Thus, for all large k ∈ J , PSPY (xk+jk−1) ∈ bapY (X). Then, by the characterization
of projection onto convex sets, we get〈

PY (xk+jk−1)− PSPY (xk+jk−1), xk+jk − PSPY (xk+jk−1)
〉
≤ 0.

Note that both vectors in the above inner product are different from zero, because PSPY (xk+jk−1)
is in bapY (X) but not in Y and xk+jk is in S but not in bapY (X). Then,∥∥PY (xk+jk−1)− xk+jk

∥∥ > ∥∥PY (xk+jk−1)− PSPY (xk+jk−1)
∥∥ .

On the other hand, since S ⊂ X, we have∥∥PY (xk+jk−1)− PSPY (xk+jk−1)
∥∥ ≥∥∥PY (xk+jk−1)− PXPY (xk+jk−1)

∥∥
=
∥∥PY (xk+jk−1)− xk+jk

∥∥
>
∥∥PY (xk+jk−1)− PSPY (xk+jk−1)

∥∥ ,(4.9)

which is a contradiction.
For second case, suppose now that there exists a subsequence (xk)k∈J′ of the MAP sequence

(xk)k∈N satisfying the first inequality in (3.14), that is,

ω dist(PY (xk),bapX(Y )) ≤ dist(PY (xk),HX(Y )), for all k ∈ J ′.

By defining the sequence (yk)k∈J′ , where yk := PY (xk), we have

(4.10) ω dist(yk,bapX(Y )) ≤ dist(yk,HX(Y )), for all k ∈ J ′.

Then, the proof can be carried out analogously to the one in the first case by changing the roles of
X and Y . Defining the closed convex set S

′
:= cl

(
conv

(
(yk)k∈J′ ∪ bapX(Y )

))
⊂ Y , we can use

Proposition 4.4, since (yk)k∈J′ converges to y∗ and (4.10) holds, to get the unilateral BAP-EB
now for S

′
and X at y∗. Therefore, Lemma 3.5 applies to prove that PS′PX(yk−1) ∈ bapX(S

′
) =

bapX(Y ), for all k sufficiently large. So, we also derive a contradiction similar to (4.9).
Thus, the MAP sequence (xk)k∈N converges to x∗ in a finite number of steps.

We finalize this subsection with a necessary and sufficient condition for a MAP sequence to
converge in a finite number of steps.
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Theorem 4.6 (Finite convergence of a MAP sequence under infeasibility and BAP-EB).
Let X,Y ⊂ Rn be closed convex sets such that X ∩ Y = ∅, assume that the distance between
them is attained. Let x0 ∈ Rn be given and consider the MAP sequence (xk)k∈N, defined by
xk+1 := PXPY (xk) with limit point x∗ ∈ bapY (X). The sequence (xk)k∈N converges in a finite
number of steps if, and only if, there exists ω > 0 such that, for all k ∈ N\{0}, at least one of the
two inequalities holds

(4.11)
ω dist(PY (xk),bapX(Y )) ≤ dist(PY (xk),HX(Y )),

ω dist(xk+1,bapY (X)) ≤ dist(xk+1,HY (X)).

Proof. Assume that the MAP sequence (xk)k∈N converges in a finite number of steps to x∗
and reaches this limit point for the first time at iteration k̄ ∈ N\{0}. Thus, for any positive ω
both inequalities in (4.11) are trivially satisfied for all k ≥ k̄. That said, we are done if k̄ = 1.
Suppose k̄ ≥ 2. Then, the positive ω defined by

ω := min
0≤k<k̄−1

{
dist(xk+1,HY (X))

dist(xk+1,bapY (X))

}
yields the result, since for all 1 ≤ k < k̄, we have xk /∈ bapY (X) and xk /∈ HY (X).

Reciprocally, assume the existence of ω > 0 as in the statement of the corollary. Then, we
can follow the exact same lines of the proof of Theorem 4.5 just replacing the sequence at the
beginning of that proof by the MAP sequence (xk)k∈N and the result follows.

4.2. Finite termination of other projection methods. In this subsection, we present
extensions of some results of Subsection 4.1. We address two families of convex feasibility prob-
lems. The first deals with two closed convex sets with empty intersection, while the second
concerns finite number of closed convex sets having no point in common.

4.2.1. Best-pair tracking. Here we discuss how our results apply to a broader class of
methods tracking best approximation pairs. Interestingly, one may have a method generating a
sequence of infinitely many distinct points for which a MAP step intrinsically provides a finite
termination criterion. This is formally presented in the next theorem which, in turn, will serve to
identify finite termination of the well-known Cimmino method and the famous Douglas-Rachford
method.

For this subsection, let X,Y ⊂ Rn be closed convex sets such that X ∩ Y = ∅ and assume
that the distance between X and Y is attained.

Lemma 4.7 (Intrinsic finite termination). For a given z0 ∈ Rn, consider a method generating
a sequence (zk)k∈N such that the shadow sequence onto X, (PX(zk))k∈N, converges to a point
x̂ ∈ bapY (X). If the unilateral BAP-EB from Definition 3.3 is satisfied at x̂, then there exists an
index k̂ ≥ 0, such that for all k ≥ k̂, we have PXPY (PX(zk)) = PXPY (PX(zk̂)) ∈ bapY (X).

Proof. The result is a consequence of Lemma 3.5. Indeed, let x̂ play the role of x∗ in
Lemma 3.5. Since the shadow sequence (PX(zk))k∈N converges to x̂, there exists k̂ such that
PX(zk) ∈ Br(x̂) for all k ≥ k̂ where r = min

{
ω dist(X,Y ), δ2

}
. Hence, Lemma 3.5 can be

employed and the result follows.

We proceed by enforcing Lemma 4.7 for the Cimmino method [29].

Corollary 4.8 (Cimmino’s intrinsic finite termination). For a given z0 ∈ Rn, consider
the Cimmino sequence (zk)k∈N given by zk+1 := 1

2 (PX(zk) + PY (zk)). Then, there exists a best
approximation pair (x̄, ȳ) ∈ bap(X,Y ) such that zk → 1

2 (x̄ + ȳ). If, in addition, the unilateral
BAP-EB from Definition 3.3 is satisfied at x̄, then there exists an index k̂ ≥ 0, such that for all
k ≥ k̂, we have PXPY (PX(zk)) = PXPY (PX(zk̂)) ∈ bapY (X).
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Proof. The convergence of the sequence (zk)k∈N to the midpoint of a best approximation pair
can be found in [11, Theorem 6.3]. Then, of course, both shadow sequences (PX(zk))k∈N and
(PY (zk))k∈N converge to best points x̄ and ȳ, respectively. Thus, the hypotheses of Lemma 4.7
are fulfilled, providing the corollary.

The last result of this section shows that we can as well suit Lemma 4.7 for the Douglas-
Rachford method [38]. Although this method always diverges under inconsistency [15, Theorem
3.13(ii)], one of its shadows detects a best point. This enables us to apply Lemma 4.7.

Corollary 4.9 (Douglas-Rachford’s intrinsic finite termination). For a given z0 ∈ Rn,
consider the Douglas-Rachford sequence (zk)k∈N given by zk+1 := 1

2 (zk + RYRX(zk)), where
RX := 2PX − Id and RY := 2PY − Id are the reflectors through X and Y , respectively. Then,
there exists x̄ ∈ bapY (X) such that the shadow sequence (PX(zk))k∈N converges to x̄. If, in
addition, the unilateral BAP-EB from Definition 3.3 is satisfied at x̄, then there exists an index
k̂ ≥ 0, such that for all k ≥ k̂, we have PXPY (PX(zk)) = PXPY (PX(zk̂)) ∈ bapY (X).

Proof. The convergence of the shadow sequence (PX(zk))k∈N to a point x̄ ∈ bapY (X) is
ensured by [15, Theorem 3.13 and Remark 3.14(ii)]. So, Lemma 4.7 applies and the result follows.

Finally, it is worth commenting that the famous Dykstra’s method is also contemplated by
Lemma 4.7, as it generates a sequence converging to a best approximation pair; see [11, Theorem
3.7].

4.2.2. Inconsistent multi-set intersection. In this section, we consider a finite number
of closed convex sets X1, X2, . . . , Xm ⊂ Rn. If these sets have nonempty intersection, a point
common to them is found, for instance, by the method of Cyclic projections [14, Corollary 5.26]
(which is an extension of MAP) or by the Cimmino method [29] applied to multi-set intersection
problems (also called simultaneous projection method or method of barycenters); for further
discussions see [25, 26]. When X1 ∩ X2 ∩ · · · ∩ Xm = ∅ and one of the target sets is bounded,
the method of Cyclic projections converge to a point that provides what we call a cycle (see [42,
Theorem 2], [13, Theorem 5.4.1], [14, Corollary 5.24]) and the Cimmino method converges to a
point minimizing the sum of the squares of the distances to the target sets [31, Theorem 4].

A point ȳ ∈ Rn is said to provide a cycle with respect to the index order {1, 2, . . . ,m} if
PX1

(ȳ) is a fixed point of the Cyclic projection operator PX1
PX2
· · ·PXm . The correspondent

cycle is the tuple (ȳ1, ȳ2, . . . , ȳm) ∈ X1 ×X2 × · · · ×Xm, such that ȳ1 = PX1
(ȳ) and

ȳ1 = PX1(ȳ2), . . . , ȳm−1 = PXm−1(ȳm), ȳm = PXm(ȳ1).

Note that in the two-set case, cycles reduce to best approximation pairs. Also, any best approxi-
mation pair is a cycle in both possible index orders.

Our aim is to establish sufficient conditions for finite convergence of Cyclic projections and
the Cimmino method when the underlying sets have empty intersection. This is done in two
statements, both connected to Lemma 3.5 and Theorem 4.3. In the first one, we look at Cyclic
projections. The second theorem explores the bond between the Cimmino method for the multi-
set intersection problem and MAP applied to Pierra’s product space reformulation.

It is worth reemphasizing that a Cimmino limit point has the nice variational characterization
of minimizing the sum of the squares of the distances to the target sets. We point out that cycles
coming from Cyclic projections do not have a variational characterization; this was proven by
Baillon, Combettes, and Cominetti in [7]. Recent advances in the study of Cyclic projections
were derived in [2].

Next, we present a result tracking limit points of Cyclic projections in a finite number of
iterations.

Corollary 4.10 (Finite convergence of Cyclic projections). Let X1, X2, . . . , Xm ⊂ Rn be
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closed convex sets with empty intersection. Assume also that a cycle exists, that is, the operator
PX1

PX2
· · ·PXm has a fixed point. Let x0 ∈ Rn be given and consider the Cyclic projection

sequence (xk)k∈N defined by
xk+1 := PX1

PX2
· · ·PXm(xk).

(i) Then, (xk)k∈N converges to a point ȳ1 ∈ X1, which provides the cycle (ȳ1, ȳ2, . . . , ȳm), where
ȳ1 = PX1

(ȳ2), . . . , ȳm−1 = PXm−1
(ȳm), ȳm = PXm(ȳ1).

(ii) Suppose there exists an index ı̄ ∈ {1, . . . ,m} such that the cycle points ȳı̄ and ȳı̄+1 form a
best approximation pair to Xı̄ and Xı̄+1, that is, (ȳı̄, ȳı̄+1) ∈ bap(Xı̄, Xı̄+1) and assume that
Xı̄ and Xı̄+1 satisfy the BAP error bound (3.3) from Definition 3.3 at ȳı̄ ∈ bapXı̄+1

(Xı̄),
that is,

(4.12) ω dist(x,bapXı̄+1
(Xı̄)) ≤ dist(x,HXı̄+1(Xı̄)), for all y ∈ Bδ(ȳı̄) ∩Xı̄,

with bound ω > 0 and radius δ > 0, and if ı̄ = m, ȳı̄+1 = ȳ1. Then, we have the existence of
an index k̄ ≥ 0, such that xk = ȳ1 for all k ≥ k̄, that is, in this case, the Cyclic projection
sequence (xk)k∈N converges in at most k̄ steps.

Proof. The convergence of the method of Cyclic projections, under the existence of a cycle,
to a point ȳ1 ∈ X1 that lies in FixPX1PX2 · · ·PXm can be found in [42]. It is straightforward to
see that ȳ1 = PX1(ȳ2), . . . , ȳm−1 = PXm−1(ȳm), ȳm = PXm(ȳ1). Thus, item (i) follows.

Now, the proof of item (ii) relies entirely on Lemma 3.5, except for a few details we are going
to check. Assume, without loss of generality, that ı̄ = 1.

We will show the existence of a radius r > 0 such that for all z ∈ Br(ȳ2) ∩ X2 we have
PX1(z) = ȳ1, which suffices to establish item (ii). This will indeed complete the proof, because
(xk)k∈N converging to ȳ1 implies that the sequence (PX2 · · ·PXm(xk))k∈N converges to ȳ2, minding
the continuity of projections. Hence, there exists an index k̄ ≥ 0 such that PX2

· · ·PXm(xk̄−1) ∈
Br(ȳ2). Thus,

xk̄ = PX1
PX2
· · ·PXm(xk̄−1) = ȳ1

and then for all k ≥ k̄, we have xk = ȳ1 because ȳ1 is a fixed point of the Cyclic projection
operator PX1

PX2
· · ·PXm .

Lemma 3.5 guarantees the existence of a radius r > 0 such that for all v ∈ Br (ȳ1),
PX1PHX1

(X2)(v) ∈ bapHX1
(X2)(X1) = bapX2

(X1). Take an arbitrary but fixed v ∈ Br(ȳ1) and
define z = PX2(v). By the nonexpansiveness of projections, z ∈ Br(ȳ2). Now when projecting
this point z onto X1 we cross the optimal supporting hyperplane HX1(X2) at z�.

Note that z�+d belongs to Br(ȳ1), where d = ȳ1−ȳ2 is the displacement vector. Furthermore,
PX1

(z) = PX1
(z�) = PX1

PHX1
(X2)(z

� + d) ∈ bapHX1
(X2)(X1) = bapX2

(X1). Therefore, PX1
(z) ∈

bapX2
(X1) must be ȳ1 because of the convergence of the sequence (xk)k∈N to ȳ1.

We have just investigated the obtainment of a cycle by Cyclic projections in a finite number
of iterations. It is easy to see that our hypotheses are sufficient but not necessary. Indeed, if
one takes three non-intersecting parallel lines in R2, the method of Cyclic projections always
captures a cycle in a finite number of iterations, although some hypotheses of Corollary 4.10 are
not fulfilled, including the error bound condition (4.12). Note that this error bound holds, for
instance, when the normal cone regarding one of the targets sets, say Xi, at a respective cycle
point ȳi contains a neighborhood of the previous cycle point ȳi+1 ∈ Xi+1. However, the result in
Corollary 4.10 has to be taken with moderate enthusiasm, as even for a very simple problem with
plenty of structure, Cyclic projections may not converge finitely when we have more than two
sets. Consider, for instance, three segments as target sets forming an equilateral triangle in R2

and fix an order for the sets. The associated cycle is not archived by cyclic projections in finite
number of steps for every point near the cycle.
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We now move towards the investigation of finite convergence of the Cimmino method. The
Cimmino iteration regarding the sets X1, X2, . . . , Xm computed at a point zk ∈ Rn is given
by C(zk) := 1

m (PX1
+ PX2

+ · · ·+ PXm) (zk). We remark that this iteration does not depend
on any index order, as it works in parallel. Moreover, it can be seen as a MAP step under
Pierra’s product space reformulation [48]. Pierra’s approach considers the Cartesian product
X := X1 ×X2 × · · · ×Xm and the diagonal subspace D := {(z, . . . , z) ∈ Rmn | z ∈ Rn}. Clearly,
the intersection of X1, X2, . . . , Xm is related to the intersection of X and D, that is, z ∈

⋂m
i=1Xi

if, and only if, the diagonal point (z, . . . , z) ∈ D lies in X.
It is well-known that, for any zk ∈ Rn,

PDPX(zk, zk, . . . , zk) = (C(zk), C(zk), . . . , C(zk));

see [48, Theorem 1.1]. Hence, Cimmino iterations can indeed always be regarded as MAP steps.
This allows us to connect Lemma 3.5 with the sought of a Cimmino limit point in a finite number
of iterations. Formally, we have the following result.

Corollary 4.11 (Finite termination of multi-set Cimmino (MAP in product space)). Let
X1, X2, . . . , Xm ⊂ Rn be closed convex sets with no point in common, assume that at least one
the sets is bounded and define D := {(z, . . . , z) ∈ Rmn | z ∈ Rn} and X := X1 ×X2 × · · · ×Xm.
For a given x0 ∈ Rn, set x0 := (x0, . . . , x0) ∈ D and consider the MAP sequence (xk)k∈N such
that xk+1 := PDPX(xk).
(i) Then, the MAP iterates xk = (xk, . . . , xk) converge to a point x̂ := (x̂, . . . , x̂) ∈ bapX(D),

with x̂ ∈ Rn being the limit point of the Cimmino sequence (xk)k∈N ruled by xk+1 := C(xk) =
1
m

∑m
i=1 PXi(x

k).
(ii) The Cimmino limit point x̂ is a solution of the least squares problem of minimizing the sum

of the squares of the distances to the target sets X1, . . . , Xm.
(iii) If, in addition, there exists an error bound ω > 0 and a radius δ > 0 such that

ω dist(x,bapX(D)) ≤ dist(x,HX(D)),

for all x ∈ Bδ(x̂)∩D, where HX(D) is the optimal supporting hyperplane to D regarding X
given in Definition 3.2, then there exists an index k̄ ≥ 0, such that xk = x̂, for all k ≥ k̄.
Proof. Since there is no common point to the target setsX1, . . . , Xm, it follows thatD∩X = ∅.

We note that, by [31, Proposition 4], bapX(D) = FixPDPX = {(z, . . . , z) ∈ Rmn | z ∈ FixC},
where FixC is the set of fixed points of the Cimmino operator C. Now, since one of the sets Xi is
bounded, [31, Proposition 7] guarantees that bapX(D) 6= ∅. In particular, the distance between
D and X is attained. That said, items (i) and (ii) are completely covered by [31, Theorems 1
and 4] and then item (iii) follows as a direct application of Lemma 3.5, with D playing the role
of X and X playing the role of Y .

One has to humble their expectations as for the range of instances covered by Corollary 4.11,
since BAP-EB in the original space may not be transported to the product space. We present, in
Example 5.4, one problem where BAP-EB is transported to the product space and one where it
is not.

5. Examples and applications discussing our results. This section illustrates our re-
sults upon insightful examples, one of which raises a conjecture.

We start connecting Linear Programming with Lemma 3.1 and Theorem 4.1. Second, we
present an example showing that local linear regularity (subtransversality) combined with infea-
sibility is not sufficient for finite convergence of MAP. Example 5.4 contains an important remark
on BAP-EB in Pierra’s product space. We then present an example in which we raise a con-
jecture regarding the substitution of the Lipschitzian error bound of BAP-EB by a Hölder one.
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Finally, we look at an application of MAP for non-smooth convex minimization given by min-max
problems.

Example 5.1 (MAP for LP). A curious geometrical interpretation of Linear Programming
(LP) follows from Lemma 3.1 and Theorem 4.1. Consider the following linear program

(5.1)
minimize 〈c, x〉
subject to Ω := {x ∈ Rn | Ax ≤ b, x ≥ 0}

where A ∈ Rm×n, c ∈ Rn with c 6= 0 and b ∈ Rm are given. Let us assume that (5.1) is solvable
and denote its solution set by Ω∗. These hypotheses guarantee the existence of a dual feasible
point ŷ ∈ Rm, i.e., A>ŷ ≥ c and ŷ ≥ 0. Take any ε > 0, some x̂ ∈ Rm such that 〈c, x̂〉 = 〈b, ŷ〉−ε,
and define H := {x ∈ Rn | 〈c, x̂− x〉 = 0}. Note that finding such x̂ is a trivial task. Now, strong
duality yields Ω∩H = ∅, so Theorem 4.1 applies. This means that for any starting point x0 ∈ Rn
the MAP sequence xk+1 := PΩPH(xk) finds a best point x̄ ∈ Ω after a finite number of iterations.
It is easy to see that the displacement vector d = x̄ − PH(x̄) between H and Ω is a positive
multiple of the cost c. Therefore, x̄ solves the LP (5.1). We could indeed find x̄ in a single MAP
step by pushing the hyperplane H sufficiently away from Ω in the direction of −c. A similar
conclusion is derived in [47] for LP using a projection-based scheme, nevertheless uniqueness of
primal and dual solutions of (5.1) is required. In turn, our results hold regardless of solutions
being unique.

We now present an example showing that, in general, inconsistency combined with local
linear regularity (subtransversality) from Definition 3.6 alone does not imply finite convergence of
MAP. The example features two disjoint reverse lines forming forty-five degrees. In this example,
BAP-EB does not hold and thus, neither does intrinsic transversality.

Example 5.2 (Linear regularity does not imply finite convergence of MAP). Let

X := {(t, 0, 0) ∈ R3 | t ∈ R} and Yγ := {(t, t, γ) ∈ R3 | t ∈ R},

with γ ∈ R fixed. In this example, the unique best approximation pair consists of (x̄, ȳ), where
x̄ = (0, 0, 0) and ȳ = (0, 0, γ), but unilateral BAP-EB from Definition 3.3 is not satisfied, for
γ 6= 0. Indeed, in this case, the optimal supporting hyperplane to X regarding Yγ is given by
HY (X) = {(x1, x2, x3) ∈ R3 | x3 = 0} and obviously, X∩Yγ = ∅. Here, dist((0, 1, 0),bapYγ (X)) =
1, however dist((0, 1, 0),HY (X)) = 0, which prohibits the error bound inequality (3.3) to hold
if γ 6= 0. Let us now investigate the behavior of MAP in this case. Consider an arbitrary
starting point x0 = (a, b, c) ∈ R3 and the MAP sequence xk+1 = PXPYγ (xk). Straightforward
manipulations give us

xk =
( a

2k
, 0, 0

)
.

This sequence converges linearly with rate 1/2 to the unique best point to X, namely the origin
(0, 0, 0). Note that the sequence does not depend on the parameter γ, showing that, in this
example, infeasibility does not play a role at all. Thus, infeasibility together with polyhedrality is
not enough to guarantee finite convergence of MAP. This example also shows that the hyperplane
in both Lemma 3.1 and Theorem 4.1 cannot be replaced, in general, by an arbitrary polyhedron.
This is not even the case when the set H in the theorem and corollary is affine only. Furthermore,
this example satisfies local linear regularity, and thus this condition is not sufficient for finite
convergence of MAP.

The next example shows that BAP-EB is fulfilled for more problems than intrinsic transver-
sality.
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Example 5.3 (BAP-EB is more general than intrinsic transversality). Let us look at the
sets X := {(x1, x2) ∈ R2 | x2

1 − x2 + 1 ≤ 0 and − x1 − x2 + 1 ≤ 0} and Y := {(y1, y2) ∈
R2 | y1 + y2 ≤ 0 and y2

1 + y2 ≤ 0}. They have empty intersection, only a single best approxi-
mation pair is associated to them, namely (x∗, y∗) with x∗ = (1, 0) and y∗ = (0, 0), and clearly
BAP-EB from Definition 3.8 is satisfied. Thus, MAP applied to X and Y converges finitely. How-
ever, intrinsic transversality fails bilaterally. In order to see that, take the sequences determined
by xk :=

(
1
k ,

1
k2 + 1

)
∈ X\{x∗} and yk :=

(−1
k ,
−1
k2

)
∈ Y \{y∗} and note that the unit vector(

−2√
k2+4

, k√
k2+4

)
lies in −NX(xk)∩NY (yk). Hence, intrinsic transversality does not hold, even if

X and Y switch roles in Definition 3.9.

The aim of the following example is to show that BAP-EB in the original space is not neces-
sarily transported to the product space.

Example 5.4 (BAP-EB in the original space and in the product space). Consider the polyhe-
dron X := {(x1, x2) ∈ R2 | |x1| − x2 + 2 ≤ 0}, the polyhedron Y := {(y1, y2) ∈ R2 | |y1|+ y2 ≤ 0}
and the hyperplane H := {(x1, x2) ∈ R2 | x2 = 0}. Note that bap(X,Y ) = bap(X,H) =
{(x∗, y∗)}, where x∗ = (0, 2) and y∗ = (0, 0). MAP applied to either H and X, or Y and X
has finite convergence wherever one starts in R2. Cimmino, however, only converges finitely to
(x∗ + y∗)/2 = (0, 1) when applied to the pair Y and X. The relation between MAP and Cimmino
discussed in Subsection 4.2 thus guarantees that MAP converges finitely in Pierra’s product space
regarding Y and X. Actually, the BAP-EB between Y and X is transported to the product space.
Nevertheless, BAP-EB holds for H and X but Cimmino does not converge finitely to (0, 1) for
this pair of sets, which means, again due to the relation between MAP and Cimmino, that MAP
does not converge in a finite number of steps in the product space, preventing BAP-EB to hold
there.

It is well-known that for the consistent case, Lipschitzian/Hölder error bound gives us in
general linear/sublinear convergence of MAP [12, 21, 22, 40, 42]. With that said, Theorem 4.3
consists of a striking jump in the rate of convergence of MAP, namely from linear to finite. In
this regard, the final example of this section incites the formulation of an intriguing question: Do
we get linear convergence of MAP under infeasibility together with a Hölder error bound?

Example 5.5 (A ball and a hyperplane in R2). Consider the closed ball X in R2 with radius
1 centered in (0, 1), that is, X := {(x1, x2) ∈ R2 | x2

1 + (x2− 1)2 ≤ 1} and the family of horizontal
hyperplanes of the form Yε := {(t,−ε) ∈ R2 | t ∈ R}, where ε is a nonnegative parameter. Note
that Y0 coincides with the optimal supporting hyperplane HYε(X), for all positive ε. We have that
X ∩ Y0 consists of the origin. If ε > 0, X ∩ Yε = ∅ and there exists a unique best approximation
pair, namely {(0, 0), (0,−ε)}.

We would like to draw our attention to a MAP iteration betweenX and Y0, and one concerning
X and Yε. These MAP iterations are given below and illustrated in Figure 3. For a number a > 0,
consider (a, 0) ∈ Y0 and (a,−ε) ∈ Yε. Note that

PY0PX(a, 0) =

(
a√

a2 + 1
, 0

)
∈ Y0

and

PYεPX(a,−ε) =

(
a√

a2 + (1 + ε)2
,−ε

)
∈ Yε.

Note also that

(5.2) lim
a→0+

‖PY0PX(a, 0)− (0, 0)‖
‖(a, 0)− (0, 0)‖

= lim
a→0+

1√
a2 + 1

= 1,
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Y0 = HYε
(X)

Yε

X

0 aa√
a2 + 1

a√
a2 + (1 + ε)2

a0

Fig. 3: Hölder error bound between X and HYε(X).

and

(5.3) lim
a→0+

‖PYεPX(a,−ε)− (0,−ε)‖
‖(a,−ε)− (0,−ε)‖

= lim
a→0+

1√
a2 + (1 + ε)2

=
1

1 + ε
.

The limit being 1 in (5.2) means that a MAP sequence between X and Y0, monitored on Y0,
converges to the origin sublinearly. On the other hand, in view of (5.3), the gap of size ε leads
to a linear convergence of a MAP sequence to the best point (0,−ε) with asymptotic rate 1

1+ε ,
where this MAP sequence regards X and Yε and belongs to Yε. For simplicity, we are looking
at MAP shadows on Y0/Yε, but of course, due to the nonexpansiveness of projections, the rates
would be sublinear/linear for the correspondent shadows on X.

Apparently, this leap from sublinear to linear convergence occurs in view of the presence of
a Hölder error bound condition between X and HYε(X). In fact, we have the existence of ω > 0
such that

(5.4) ω dist(x,X ∩HYε(X))1+q ≤ dist(x,HYε(X)),

x ∈ X in a neighborhood of X ∩ HYε(X) = {(0, 0)}, with q = 1. We remark that the Hölder
parameter q = 1 can be effortlessly derived in this example by taking into account that X is
entirely contained in the epigraph of the quadratic function g(t) = t2

2 .

The previous example presented a particular instance where adding inconsistency led to a gain
in the convergence rate of MAP from sublinear to linear. We understand this is not something
one can expect without assuming some Hölder regularity. Probably, the improvement of MAP
would be more limited if we considered MAP for a Cauchy bowl getting apart from a hyperplane.
By Cauchy bowl [3] we mean something like the epigraph of the function f : D → R defined
such that f(0) = 0 and f(x) = e‖x‖

−2

elsewhere, where D = {x ∈ Rn | ‖x‖ ≤ 1/
√

3}. This
function f is known to be infinitely differentiable in the interior of its domain, but not analytic.
Furthermore, its epigraph does not satisfy a Hölder error bound with respect to the hyperplane
H =

{
(x, 0) ∈ Rn+1 | x ∈ Rn

}
.
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We have just risen the conjecture of whether Hölder regularity, with q = 1, provides linear
convergence for MAP in the inconsistent case. This looks very plausible and if indeed correct, it
can establish MAP as a practical and (perhaps) competitive method for non-smooth optimization,
at least for convex min-max problems featuring convex quadratic functions. Perhaps KŁ-theory
[5, 46] may shed some light on the question.

Example 5.6 (MAP for convex min-max optimization). Consider the following problem

(5.5) min
x∈Rn

g(x) := max {f1(x), . . . , fm(x)} ,

where each fi : Rn → R is a convex function and assume that g has a minimizer. Let g∗ be the
optimal value of (5.5), take β < g∗ and define the hyperplane Hβ := {(x, β) ∈ Rn+1 | x ∈ Rn}.
Thus, the epigraph of g, epi g := {(x, t) ∈ Rn+1 | x ∈ Rn, g(x) ≤ t}, does not intersect Hβ and
bapHβ (epi g) consists of the minimizers of g. Moreover, due to Fact 2.3(i), for any starting point
(x0, t0) ∈ Rn+1 the MAP sequence defined by

(5.6) (xk+1, tk+1) := Pepi gPHβ ((xk, tk))

converges to a point (x∗, g∗) such that x∗ is a solution of (5.5).
Note that if all fi are affine, solving (5.5) relates to linear programming, in the sense discussed

in Example 5.1, and finite convergence of the MAP sequence (5.6) is assured by Theorem 4.1.
Now, Theorem 4.2 opens the possibility for the MAP sequence (5.6) to achieve finite con-

vergence in a more general setting. If, for instance, the solution x∗ of (5.5) is unique and if the
tangent cone of epi g at (x∗, g∗) is pointed, the Lipschitzian BAP-EB (3.4) holds and the MAP
sequence (5.6) converges to (x∗, g∗) after a finite number of steps.

Of course that addressing a non-affine setting in practice relies on the calculation of projections
onto epigraphs and a lower bound β for g in hand. Getting β is potentially an easier task. For
instance, if there is an index ı̂ for which fı̂ has a minimizer x̂, we have that any β < fı̂(x̂) provides
a strict lower bound for g as fı̂(x̂) ≤ g∗.

With that said, one can think of using MAP for quadratic min-max, that is, when all fi’s are
convex quadratic functions. In this case, finding β is easy and projecting onto the epigraph of g
is somehow manageable [32]. As for the BAP-EB (3.4), it may or may not be satisfied. However,
the Hölder condition (5.4) holds with q = 1, in view of the quadratic growth of g. Hence, if the
conjecture raised in Example 5.5 is true for q = 1, we would get either finite or linear convergence
of the MAP sequence (5.6) for convex quadratic min-max problems.

Furthermore, the conjecture being true would echo as well in min-max problems featuring
strongly convex functions. The maximum of a finite number of strongly convex functions is
strongly convex, has a unique minimizer and one can bound g below by a strictly convex quadratic
function with minimum value g∗. So, Hölder regularity holds with q = 1 in the strongly convex
setting of (5.5) and again, one would either get finite or linear convergence of the MAP sequence
(5.6).

The bonds between min-max problems and Hölder regularity together with the validity of
the conjecture formulated in Example 5.5 would be an asset in the field of non-smooth convex
optimization.

6. Concluding remarks. We have derived finite convergence of alternating projections for
two non-intersecting closed convex sets satisfying a Lipschitzian error bound condition, which has
been to proven be more general than the well known concept of intrinsic transversality. This result
strengthens the theory on MAP, a widely acclaimed method in Mathematics. In addition to being
interesting from a theoretical point of view, our main theorem may also have an impact on practical
issues regarding projection-type algorithms in general, as inconsistency has been seen favorable for
MAP. A question left open is to what extent MAP can improve when embedding inconsistency to
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a problem satisfying a Hölder error bound condition. As discussed within an example, a positive
answer in this direction may turn MAP into an attractive method for minimizing the maximum
of convex functions, a central problem in non-smooth optimization. Although our main results
are for finite convergence of MAP, we have as well stated theorems on other projection/reflection-
based methods for both two-set and multi-set inconsistent feasibility problems. In particular, the
Cimmino method, the Douglas-Rachford method and Cyclic projections have been addressed.

Acknowledgments. The authors would like to thank the associate editor and the anony-
mous referees for their valuable suggestions, which significantly improved this manuscript.
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