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Abstract. Numerical solutions of hyperbolic partial differential equations(PDEs) are ubiquitous
in science and engineering. Method of lines is a popular approach to discretize PDEs defined in
spacetime, where space and time are discretized independently. When using explicit timesteppers
on adaptive grids, the use of a global timestep-size dictated by the finest grid-spacing leads to
inefficiencies in the coarser regions. Even though adaptive space discretizations are widely used
in computational sciences, temporal adaptivity is less common due to its sophisticated nature. In
this paper, we present highly scalable algorithms to enable local timestepping (LTS) for explicit
timestepping schemes on fully adaptive octrees. We demonstrate the accuracy of our methods as
well as the scalability of our framework across 16K cores in TACC’s Frontera. We also present a speed
up estimation model for LTS, which predicts the speedup compared to global timestepping(GTS)
with an average of 0.1 relative error.
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1. Introduction. The numerical solution of hyperbolic Partial differential equa-
tions (PDEs) plays an important role in science in engineering, with a wide range of ap-
plications from modeling earthquakes [8] to simulating gravitational waves [24, 22, 33].
These show up commonly as initial value problems that are typically solved using the
method of lines by first discretizing in space and then solving the resulting set of
ordinary differential equations (ODEs). This is commonly done using timestepping
schemes, with explicit timestepping methods such as the Runge-Kutta methods [30]
being more common for evolving hyperbolic systems. Additionally, these systems are
characterized by the need for high levels of spatial adaptivity [43, 22, 24]. High levels
of adaptivity impose severe stability restrictions for the explicit timestepping schemes
popular for solving such systems. Therefore, it is common—especially for large scale
distributed memory codes—to use a global (everywhere in space) timestep, which is
dictated by the smallest grid resolution in space [21]. This is highly inefficient for large
systems with several orders of magnitude difference between the finest and coarsest
grid resolution, as the coarser regions are forced to take extremely small timesteps than
would be needed for stability [29, 38]. Local timestepping schemes can greatly speed
up such codes by ensuring that the adaptivity in space is matched by a corresponding
adaptivity in time. In this work, we develop an efficient, scalable local timestepping
scheme (LTS) for explicit single and multi-stage timestepping algorithms on octree-
adaptive spatial grids. We demonstrate the efficacy of our scheme using linear and
non-linear wave equations on up to 16K processes on TACC’s Frontera. We also
present a model to estimate the expected speedup from using our scheme with an
average of 10% relative error in the estimation of speedup. This provides a reliable
way to determine in which cases the use of local timesteping can be beneficial.

Our framework allows space adaptivity via the use of octrees (quadtrees in 2D)
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and uses high-order finite difference (FD) methods for space discretization. Octree
based adaptive space discretizations [18, 31, 27, 39, 46] are popular in large scale sim-
ulations because of their quasi-structured nature, allowing for efficient and scalable
data-structures and algorithms. Our framework targets applications in computational
relativity[24] and uses a 3+1 decomposition of spacetime operators, to compute a
space slice where time is constant and uses standard time integration methods (ex-
plicit) to evolve the space slice forward in time. The time integration method of
choice has been the Runge-Kutta methods because of the larger stability region and
the availability of low-storage versions. For the specific problem of simulating binary
black hole mergers to estimate gravitational waves, the spatial grid is characterized by
12-19 levels of adaptivity and by the need to evolve for extremely long times. These
results are simulations that need to run for months on thousands of processes. The
use of LTS for these simulations can provide 10-70x speed up, which can greatly
reduce the time and cost of obtaining gravitational waveforms.

While the theoretical aspects of LTS have been an area of active research in recent
years [36, 37, 32, 42, 5], performing LTS in a distributed computing environment
comes with additional challenges. A central bottleneck to scalability with LTS is the
variability in computational loads for different regions of space based on their spatial
adaptivity, as finely refined regions take exponentially more timesteps than coarser
regions. This requires partitioning approaches that can account for such variable
workloads. Additionally, since in our target applications, the meshes are dynamic,
frequent re-partitioning is required, requiring fast partitioning algorithms that are
able to adapt to the variable computational load. While the use of graph partitioning
approaches [42] is likely to produce superior partitions, the cost of partitioning our
meshes in parallel makes the approach infeasible. The key contributions presented in
the paper can be summarized as follows.

• Scalable LTS on octrees: We present a scalable LTS framework for
multi-stage explicit methods, on 2:1 balanced octree grids. While several
community octree frameworks are available[16, 49, 7, 48], to the best of our
knowledge, they are limited to space adaptivity.

• Load balancing in LTS: The number of local timesteps needed to reach
the coarsest time on the grid depends on the spatial adaptivity. This leads
to load balancing issues in LTS. In order to resolve this, we propose an
space filling curve (SFC)-based weighted partitioning scheme. Compared to
traditional SFC-based partitioning, we compute the weighted length of the
curve to achieve a balanced load for LTSpartitions.

• Low overhead of LTS compared to GTS: We present both strong
and weak scaling results for LTS and GTS approaches on octrees. These
results demonstrate that local block synchronization in LTS followed by time
interpolations have a lower cost compared to global block synchronization
present in GTS approach.

• Accuracy of LTS: We conduct numerical experiments to demonstrate the
correctness of the implemented LTS framework. The presented numerical
results demonstrate the accuracy of the LTS framework for both linear and
non-linear problems.

• LTS performance model: We present an analytical performance modelto
estimate the speed up of LTS over the GTS scheme. The analytical model
is extended to compute a theoretical upper bound for the speed up that can
be achieved for a given spatial adaptivity structure.

Organization of the paper: The rest of the paper is organized as follows. In §2,
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we give a brief motivation on the importance of LTS and a quick overview of the
existing state-of-the-art approaches in the field. In §3, we present the algorithms and
methods developed in detail to compare its efficiency to GTS. In §4, we discuss the
experimental setup, demonstrate strong and weak scalability of our approach, and the
accuracy of our scheme. In §5, we conclude with directions for future work.

2. Background. In comparison to spatial adaptivity, local time adaptivity is
less frequently used by large-scale applications. Local timestepping requires addi-
tional corrections in mismatching regions in time using interpolations and/or extrap-
olations. Depending on the nature of the differential operator, these operations can
lead to problems in stability[28] of the numerical scheme. Recent LTS methods are
influenced by the split Runge-Kutta(RK) methods[41], where two ODE systems are
integrated using different step sizes (one called active with the smaller timestep and
the other called latent with the larger timestep size) on the grid. Corrections using in-
terpolations are performed for the interface between the two grid regions. A complete
numerical analysis of spacetime adaptive timestepping methods is complicated, but
early work by Berger provided the first mathematical analysis for adaptive schemes
for the wave equation [11, 12]. Algorithms presented in these papers, discuss two
main approaches, interpolation based and coarse-mesh approximations. In the inter-
polation methods, the solution at the coarse mesh is used to interpolate the values
needed for the finer mesh. In the coarse mesh approximation, the coarse mesh is used
to take a pseudo timestep that is used by the finer mesh. In [20], the authors present
methods for energy-conserving corrections in time for Maxwell’s equations. There
is a rich literature of LTS for discontinuous Galerkin methods with special focus on
energy-conserving time correction operators [45, 34, 38, 35] which are important for
complicated non-linear spacetime differential operators. As mentioned previously, to
enable LTS in a distributed parallel setting requires specialized partitioning methods
to ensure load balance. Dynamic load balancing for adaptive mesh refinement is an
active research area [9, 23, 19, 26]. Sophisticated hypergraph partitioning techniques
have been used for LTS for the wave equation [42], but the cost of partitioning makes
it prohibitively expensive for AMR applications requiring frequent re-meshing and
therefore re-partitioning.

AMR in space and spacetime is an area of active research area. Here we present
a brief overview of AMR packages that focus on both space and spacetime.Block-
structured or patch-based AMR is widely used in the astrophysics and computational
fluid dynamics (CFD) communities. In block-structured AMR, the adaptivity struc-
ture is predetermined and evolved during the simulation appropriately. Some codes
support LTS with block AMR[15, 22, 6], primarily based on the Berger-Oliger AMR
criteria[13]. Berger-Oliger AMR criteria supports adaptivity in space and time, but
requires strong constraints on the structure of the adaptivity, such as all grids at level
l+1(child grids) should be entirely contained within the grids at level l (parent grids)
while grid at the same level may overlap. There exist other block-AMR codes[2],
which only supports space adaptivity and no adaptivity in time.

Another commonly used approach for large-scale AMR is octree-based AMR[16,
49, 7, 48]. In octree-based AMR, the adaptive grid is represented using quadtrees
and octrees. Unlike block-based AMR, octree-based AMR has relaxed constraints
on refinement, providing highly adaptive quasi-structured (point-structured) grids in
space. To the best of our knowledge, currently available octree-AMR codes are limited
only to space adaptivity with no support to enable adaptivity in time. In this paper,
our main focus is to perform large scale LTS on adaptive octree grids, we choose the



4 MILINDA FERNANDO, HARI SUNDAR

simple time interpolation methods presented in the papers [36, 37] which form the
mathematical basis for the methods presented in this work. Additional details and
analysis can be found in these papers on the LTS scheme used in this paper.

˜

3. Methodology.

3.1. 3 + 1 decomposition of PDEs. In this paper, we focus on differential
operators defined on the traditional spacetime that is a 4d manifold (3 space + 1
time dimension). Let L be a differential operator (linear or non-linear), L : X → Y
where X,Y are appropriate functional spaces which L acts upon. For example, when
L ≡ ∂t − ∂2

xx, we get the heat operator or when L ≡ ∂2
tt − ∂2

xx one attains a linear
wave operator. Throughout this paper, we focus only on the operators L, which can
be transformed into evolution equation of the form (3.1), which we refer to as 3 + 1
decomposition of operator L

(3.1) ∂tu = F (t, u(t))

where, for T ∈ R+, F : [0, T ] ×W → X, and W ⊂ X. For a given s ∈ [0, T ) and
φ ∈ W , the solution or the integral curve of F with respect to s, and W is a map
where the range is C0([s, T ] ×W ) ∩ C1([s, T ] × X) that satisfies (3.1) on [s, T ] and
u(s) = φ. Analysis of the well-posed nature of these integral curves, are out of the
scope of this paper, hence we assume these integral curves are well-posed, and can
be computed with numerical timestepping, with the appropriate necessary stability
constraints.

3.2. Adaptivity and parallelism in space. While this paper is centered on
adaptivity in time, it is closely related to our realization of adaptivity in space using
octrees. We give a brief overview of our spatial adaptivity framework in this section.
The framework is freely available via an MIT license[25] and additional details on our
algorithms can be found in [23, 24, 47].

For a given spatial domain Ω = [0, 2L]3 where L is the maximum depth param-
eter, we use the octree data structure to represent spatial discretization. Octrees
are widely used [44, 17, 49, 10] in computational sciences for its simplicity, efficient
data-structures, ease of partitioning, and parallel scalability. For a given function
f : Ω → R, we use axis-aligned octrees to generate our space discretization. The
adaptive mesh refinement (AMR) criteria can be application specific, in this paper,
we focus on the wavelet based AMR schemes described in [24]. To perform numeri-
cal computations on adaptive octrees, we need to have neighborhood information for
elements (octants) as well as at the nodal level.

3.2.1. Octree partitioning. The problem size or the load varies significantly
during octree construction, balancing, and meshing during the simulation. This ne-
cessitates the efficient partitioning of the octree. As is common, we use a Hilbert
curve based partitioning scheme similar to [23], but with minor modifications.

3.2.2. Octree Construction and Refinement. The octree construction is
based on expanding user-specified functions in accordance with the specified AMR
criteria, but for the work presented in this paper, we use the wavelet transform and
truncate the expansion (i.e. stopping the refinement at that level) when the coef-
ficients are smaller than a user-specified tolerance ε > 0. Intuitively, the wavelet
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Fig. 1: A 2D example of octant local nodes (in the center) and shared octant nodes (the
rightmost figure) nodal representation (for octant order of 2) of the adaptive quadtree shown
in the leftmost figure. Note that in octant local nodes, representation nodes are local to each
octant and contain duplicate nodes. By removing all the duplicate and hanging nodes by
the rule of nodal ownership, we get the shared octant nodes representation. Note that the
nodes are color-coded based on the octant level.

coefficient measures the failure of the field to be interpolated from the coarser level.
In distributed memory, all processes start from the root and refine until at least p2

octants are produced. These are equally partitioned across all processes. Subsequent
refinements happen in an element-local fashion and are embarrassingly parallel. A
re-partition is performed at the end of construction to ensure load balance.

3.2.3. 2:1 Balancing. Following the octree construction, we enforce a 2:1 bal-
ance condition, i.e., any octant can have a neighbor that is either the same size, half
as big, or twice as big. This makes subsequent operations simpler without affecting
the adaptive properties. Our balancing algorithm is similar to existing approaches for
balancing octrees [14, 48] with minor changes in the choice of data structures, and
process-local balancing algorithms.

3.2.4. Mesh generation. By meshing, we refer to the construction of the data
structures required to perform dth order numerical computations octree data. One of
the key steps of the mesh generation phase is to construct neighborhood information
for octants. Primarily, there are two maps that are produced. The first map o2o to
determine the neighboring octants of a given octant and a map o2n to compute
the nodes corresponding to a given octant. o2o map is generated, by performing
parallel searches similar to approaches described in [23, 16] and optimized as per the
methods described in [24]. Assuming we have n octants per partition, these search
operations and building required o2o and o2n data structures can be performed
in O(n log(n)) and O(n) complexity, respectively. Computation of the o2n map
is a local operation, where we start with octant local nodes( with duplicate nodes
for shared octant boundaries), and eliminating duplicate nodes with a globally well
defined criteria such as space filling curve (SFC) ordering operator(see figure 1).

3.2.5. Octree to block decomposition. For a given octree T , we compute a
compressed octree of T , denoted as B (blocks) where each leaf node in B is a node
in T with uniformly refined sub-octree. Octree to block decomposition allows, to
perform finite difference (FD) computations on adaptive octrees, as well as simplifies
the computation of data structures required to perform LTS (see figure 2).

3.3. Finite difference computations on adaptive octrees.. We use the fi-
nite difference method (FDM) to discretize differential operators in space. Performing
FD computations on adaptive octrees require additional processing, to ensure that
each refinement level has neighboring points available at the same resolution. This
is achieved by performing octree to block decomposition where for each block, we
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octree to blocks

(b1, 0) (b2, 1)

(b3, 0)(b4, 1)

Fig. 2: A simplistic example of octree (T ) to block decomposition. The left figure shows
the considering adaptive octree, and its block decomposition is shown in the right. Each
block (bk, l) is associated with uniform grid level parameter l, where l denotes the level of
refinement of the sub-tree rooted at bk node in T .

compute a padding region of a specific width corresponding to the FD stencil. In
order to compute the padded blocks, we use the computed octant to octant (o2o)
and octant to nodal (o2n) information with the corresponding space interpolations.
For example, between finer and coarser grid blocks, we use coarser to finer interpo-
lation to compute the padding region for the finer block, while using finer to coarser
injections for the padding region of the coarser block. Note that in the paper, the
octant shared node representation is also referred to as zipped representation (see
figure 1) and block with padding computed referred to as the unzipped representation.
All the FD stencils are applied at the unzipped representation, while just prior to
the communication, we perform zip operation so the inter-process communication
happens in the efficient more compact form (see figure 3).

Fig. 3: A simplistic example of octree to block decomposition and unzip operation. The
leftmost figure shows the considering adaptive octree with shared octant nodes, and its block
decomposition is shown in the middle. Note that the given octree is decomposed into four
regular blocks of different sizes. The rightmost figure shows the decomposed blocks padded
with values coming from neighboring octants with interpolation if needed. In order to per-
form unzip operation, both o2o and o2n mappings are used.

3.4. Explicit timestepping schemes. Explicit timestepping (ETS) is a class
of numerical schemes that compute the solution curve for (3.1). In explicit methods,
the solution at time tn+1, un+1 ≡ un+1(tn+1, ·) is computed directly from the solution
at the previous timestep un and does not require a linear solve. In order to numerically



SCALABLE LOCAL TIMESTEPPING ON OCTREE GRIDS 7

evolve (3.1), we discretize F , i.e., discretization in space first. The resulting set of
ODEs are discretized using explicit time integration. Depending on the properties on
L, there can be additional constraints on ∆t,∆x. For most hyperbolic operators, the
Courant–Friedrichs–Lewy (CFL) condition [21] is a necessary condition for stability
for numerical time evolution. The CFL condition ∆t

∆x < C, where C is a constant that
specifies a necessary condition for stability. Intuitively, it imposes the constraint that
we cannot propagate spatial information in time, faster than the speed of information
propagation defined by operator L. Runge-Kutta (RK) [40] schemes are widely used
explicit timesteppers (see equation (3.2)), that will be our main focus for spatially
adaptive local timestepping.

k1 = F (un)

k2 = F (un + a2,1k1)

...

kp = F (un + ap,1k1 + ...+ ap,p−1kp−1)

un+1 = un + ∆t(

p∑
i=1

wiki)(3.2)

Being one-step methods, they do not require a starting procedure, have a large
stability region, and from a large-scale computational perspective can easily be con-
verted into low-storage versions.

3.5. GTS: Global timestepping. In this section, we describe how we perform
global timestepping (GTS) on adaptive octrees with FD computations (see figure 4).
In GTS, the finest space resolution will determine the timestep size for the entire
grid, and the entire domain will march in a synchronized fashion. In most cases,
this is not efficient especially when the overall percentage of finer octants across the
grid is low, which is the case for many computational science applications [1, 43, 24].
Let us assume we have the solution Un defined on the adaptive grid. Then for each
explicit stage, we unzip the intermediate timestep, loop over all the blocks to compute
the block internal using FD stencils, perform zip operation and compute the next
intermediate timestep(see algorithm 3.1). In order to synchronize the block padding
regions we need inter-process communication, therefore before each unzip, we perform
data exchange with neighboring processes using the compact zipped representation.
Note that all blocks do not depend on the values from neighboring processes. We
label these as independent blocks, and those requiring values from other processes as
dependent blocks. We exploit this property to overlap the unzip computation with
communication, i.e., we initiate the communication before starting the computation
of padding for independent blocks, and upon receiving the data from neighboring
processes perform the unzip operation for dependent blocks.

3.6. LTS: Local timestepping. We now describe how to enable LTS for
explicit single and multi-stage timesteppers on 2:1 balanced octree grids. Since ∆t =
c∆x, where c is the CFL constant, we know that timestep sizes between coarser (∆tc)
and finer (∆tf ) grids are also 2:1 balanced, therefore, ∆tc = 2∆tf .

3.6.1. Single stage explicit schemes. For single stage explicit schemes such as
forward Euler, we can enable the correction between coarser (bc) and finer (bf ) blocks,
by making bc takes a pseudo timestep, for block bf (see figure 5). This approach is
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unzip

GTS t loop

RK stages

global blk sync

LTS t loop

block level l loop

RK stages Bl ⊂ B={ k ≥ lmax to l}

local blk sync

zip

Fig. 4: This figure illustrates the overview of time evolution using GTS and LTS for
multi-stage explicit timestepping, on octree grids. In order to perform FD computations,
the adaptive grid is decomposed into uniform block patches with appropriate padding and
spatial derivatives are evaluated on equispaced block representation(unzipped) computed us-
ing previous timestep solution un. The unzip operation results in a sequence of that which
are used to compute the solution on the internal block (�), using the padding values at the
block boundary (�). After time evolution, the next timestep un+1 is projected back to sparse
grid (zip) representation. In GTS, for each explicit stage, we evolve all the blocks using
∆tfinest, followed by a global block synchronization operation. This global synchronization
operation consists of projection of block local solution for zipped representation (shared
octant nodes ), followed by inter-process communication and project back to unzipped rep-
resentation. Note that shared octant nodes are used for inter-process communication, since
it is compact and does not contain node duplicate values. In LTS, we have a block level loop
which selects subset of blocks Bl which are eligible to evolve, followed by the explicit stage
loop. Once Bl is evolved, we perform block synchronization for Bl, hence this is a local block
synchronization. For this local block synchronization, for inter-process communication we
use octant local nodes representation (unzipped) without padding region). Unlike GTS we
cannot use shared octant nodes representation, since blocks evolved are at different times.

Algorithm 3.1 Global timestepping (GTS)

Require: Un previous timestep, ∆t, B sequence of blocks
Ensure: Un+1 = U(tn∆t, ·)
1: u unzip← unzip(Un)
2: for s = 1 : k do
3: for b ∈ B do
4: k[b, s]← compute stage(u unzip, k[1, .., s− 1])

5: k[s]← blk sync(k[s])

6: Un+1 ← compute step(Un, k)

simple for single stage timesteppers, since only a single layer of coarser blocks that
needs to take a pseudo timestep, as a correction for the finer blocks. Extending this
to multi-step schemes is complicated and loses the local adaptive timestepping, since
Ns stage timestepper require Ns layer of coarser blocks to take pseudo timesteps to
make stage corrections. Therefore, we approach the multi-stage LTS differently (see
figure 4).

3.6.2. Multi-stage explicit schemes. In this section, we present how we per-
form LTS for multi-stage explicit schemes (see algorithm 3.2), on 2:1 balanced distrib-
uted octrees. The main challenge extending the single-stage timestepping approach
for multi-stage schemes, is that the layers of blocks which have to perform pseudo
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tnb1 b2 b3 b4

tn+ 1
4

tn+ 1
2

tn+ 3
4

tn+1

Fig. 5: Simple illustration of local timestepping for single-stage schemes on 2:1 balanced
adaptive grids. Here we have a refined block b1 with neighbor b2 that can be at most twice
as large. We also consider block b3 that doesn’t have any neighbors smaller than itself. Note
that 2:1 balancing ensures that these are the only cases that can exist for any adaptive mesh.
Block b1 and b3 take timesteps corresponding to the size of the blocks. Block b2 however
takes 2× as many timesteps compared to b3, first a half-step to help its neighbor b1 take its
second timestep, and then a full size timestep to reach tn+1.

Algorithm 3.2 Local timestepping (LTS)

Require: Un previous timestep, ∆t, B sequence of blocks
Ensure: Un+1 = U(tn∆t, ·)
1: V ← Un

2: u unzip← unzip(Un)
3: for l = lmax to lmin do
4: Bl ← compute blk subset(B, l)
5: for b ∈ Bl do
6: for s = 1 : k do
7: k[b, s]← compute stage(u unzip, k[1, .., s− 1])
8: k[s]← blk sync local(k[s], Bl)

9: V ← compute step partial(V, k,Bl)

10: U(tn + ∆tcoarsest, ·)← V

timestep increases with the number of stages in the timestepping scheme. In order
to avoid this, we need to decouple the stages ki from the timestep size used to evolve
the solution. The linear relation (see equation 3.3) between stages ki and the ∂itU can
be derived as described in [37, 36], where C is a lower triangular coefficient matrix,
coefficients are derived from aij coefficients of the explicit scheme.

(3.3) K =


k1

k2

...
kp

 = P∆t × C ×


∂tUt=tn

∂2
tUt=tn

...
∂pt Ut=tn


where P∆t and C are matrices defined as,

(3.4) P∆t =


1 0 · · · 0
0 ∆t · · · 0
...

...
. . .

...
0 0 · · · ∆tp−1

 , C =


1 0 · · · 0
1 c2,2 · · · 0
...

...
. . .

...
1 cp,2 · · · cp,p


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Due to the 2:1 balancing, any given coarser and finer octant interfaces can differ at
most by 1 refinement level. Hence timestep size ratio between coarser and finer levels
are 2:1 balanced as well. Initially, we assume that all the blocks are synchronized
in time. Let’s consider adjacent finer block bf and coarser block bc (see Figure 6).
Initially, both blocks have the solution at tn. Both blocks compute the stage ki using
their corresponding timestep size ∆tf and ∆tc, but we need to apply a correction
between the finer Kf and coarser Kc stages as per (3.5), where Bdt denotes an upper
triangular matrix containing the coefficients computed from the Taylor expansion of
each stage [37].

(3.5) Kc|t=tn = P∆tcCB0P
−1
∆tf

C−1Kf |t=tn = M
(1)
fc Kf |t=tn

Note that during the first step of the bf correction is applied to both coarse and finer
blocks, after the first step of bf , bc has already reached the coarser timestep, hence
for the second step of bf the correction comes only from coarser grid (see equation
(3.6) and Figure 6).

(3.6) Kf |t=tn+1/2 = P∆tfCB∆fP
−1
∆tc

C−1Kc|t=tn = M
(2)
cf Kc|t=tn

More details on the error and stability analysis of these correction operators can be
found in [37, 36].

t

∆tc = 2∆tf

∆tf

bf bc

Kf |t=tn Kc|t=tn

Kf |t=tn+1/2

M
(1)
fc & [M

(1)
fc ]−1

[M
(2)
cf ]

Fig. 6: Example of finer (bf ) to coarser (bc) and coarser(bc) to finer (bf ) grid corrections.

M
(1)
fc is finer to coarser correction between fine step 1 and coarse step. M

(1)
fc applied to

finer grid we get the stage correction to coarser grids, and [M
(1)
fc ]−1 applied to coarser grid

stages, we get the finer step 1 corrections. For the step 2 of the finer grid, we need the stage
correction from coarser which is computed by applying, [M

(2)
cf ] to coarser step.

3.6.3. Synchronization between blocks. The computed correction operators
allows us to relax the data dependency between adjacent blocks. The error caused
by correction operators can be written as O(∆t)p, where p is the order of accuracy
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in the explicit timestepping method. Therefore it is important to make sure that
these correction operators are computed between blocks where the time difference is
minimal. For a given octree T let lmax and lmin be the finest and the coarsest levels
of refinement of the blocks. Then we evolve, the finest block with frequency of 1, next
finest with frequency of 1

2 and coarsest with the frequency of 1
2∆L where ∆L = lmax−

lmin, until all the blocks reached the next coarsest time (see figure 7). The above with
2:1 balancing the maximum time gap between two adjacent blocks (bf , bf ) is bounded
by ∆tf , the step-size of the finer block. Once all the blocks that can be processed
have been computed and stored in the octant local nodes representation (see figure
1), we perform data exchange between partitions to update ghosted values. Note that
unlike GTS, we cannot use the shared octant nodes representation for communication
since different grid points can be at a different time during LTS. Therefore we need
duplicate degrees of freedoms at octant level to perform LTS ghost synchronization.
Following ghost synchronization, we perform the block-wise correction as per (3.5)
and (3.6). These are applied and copied to the block padding region (see figure 6) of
the neighboring blocks.

3.6.3.1. Partial block synchronization. At a given time level l, we evolve a subset
of blocks Bl, hence at the time of the inter-process synchronization (ghost exchange),
we only need to communicate data corresponding to Bl. We pre-compute maps for
each time level to perform partial ghost synchronization, to reduce the amount of
data communicated between processors. This is more efficient than the global block
synchronization performed in GTS, and in addition to the reduction of work by
reducing the number of timesteps taken by coarser regions, it also reduces the amount
of data synchronization needed.

time

1∆t

2∆t

3∆t

4∆t

bh b2h b4h

l = 0
l = 0

l = 0
l = 1

l = 2
l = 2

l = 3

Fig. 7: A simple illustration of block set B = {bh, b2h, b4h} that is evolving at each level
l of the time level loop. Assume in the beginning, all the blocks are synchronized in time.
At level l = 0, B0 = {bh, b2h, b4h}, perform timestep of its corresponding timestep size
{∆t, 2∆t, 4∆t}. Note now the block b4h already reached the coarsest time over B. Similarly,
for l = 1, B1 = {bh} , for l = 2, B2 = {bh, b2h} and for l = 3, B3 = {bh}, are evolved
with corresponding timestep sizes. After B3, all the blocks have reached the next coarsest
timestep size over B. Note that, appropriate time interpolation and corrections are applied
across different refinement regions (see figure 6).
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3.6.4. Weighted partitioning. We use SFC based partitioning scheme to dis-
tribute work among the processors. For each local partition τk, the amount of work
that each block has to perform to reach to the global coarsest timestep depends on
the block refinement level. For example a block of level l has to perform 2x timesteps
compared to its adjacent coarser block at level l − 1. A partitioning scheme with
equal weights assigned to each octant will result in load imbalanced partitions for
LTS timestepping. In order to overcome that, we perform weighted partitioning,
where the relative weight of block increases with the refinement level (see Figure 8).
We modified our SFC-based partitioning scheme to account for the specified weights
of the blocks. A 3d SFC curve can be considered to be an injective mapping between
1d domain to 3d octree domain. Using SFC ordering, we can sort the octants which
results in a linear ordering of the octants, while ensuring spatial locality. Once ordered
according to the SFC, partitioning the domain reduces to partitioning a 1D curve. In
weighted SFC-partitioning, we use weighted length of the curve i.e. we aim for equal∑
e∈τk we, where we denotes the weight of the octant, τk a given partition. Note that

for GTS, we use we = 1,∀e ∈ τk.
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400

processor id (rank) →

n
u

m
b

er
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octants

0

5 · 109

1 · 1010

1.5 · 1010

2 · 1010

w
ei

gh
t
→

partition weight

Fig. 8: A simple illustration of our weighted SFC-based partitioning scheme for an
adaptive octree partitioned across 32 processors. The bar plot shows the number
of octants each partition has, and the line plot represents the total weight of each
partition. Note that partitions with low octant counts have highly refined regions;
hence they need to perform a larger number of timesteps to reach the coarser level
timestep and vice versa, but the total weight of each partition is roughly equal, i.e.,
all partitions perform roughly the same amount of work.

3.7. GTS Vs. LTS: Approximating the speedup. Here we present theo-
retical bounds for the work performed by the GTS and LTS timesteping approaches,
on 2:1 balanced octrees. Let L = (lmax − lmin) be the difference between the max-
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imum and minimum refinement levels for a given octree. Let W = {α0, ..., αL}, be
the corresponding work for a block sequence B = {bl}lmax

l=lmin
, then for matching the

finest timestep sizes between GTS and LTS finest levels, the work performed by the
GTS and LTS schemes can be written as (3.8) and (3.7). Assuming constant time
to perform a work unit, for speedup S, 1/S can be written as (3.9). Since, α0

|W | <
1
S ,

maximum theoretical speedup that can achieved, for a given block distribution can

be written as S < |W |
α0

.

Wlts =

L∑
l=0

2L−lαl(3.7)

Wgts = 2L
L∑
l=0

αl(3.8)

Wlts

Wgts
=

1

|W |
(α0 +

α1

2
+ ...+

αL
2L

) < 1 Where,(3.9)

|W | =
L∑
l=0

αl(3.10)

4. Results.

4.1. Experimental setup. The large scalability experiments reported in this
paper were performed on TACC’s Frontera supercomputer. Frontera is an Intel
supercomputer at Texas advanced computing center (TACC) with a total of 8,008
nodes, each consisting of a Xeon Platinum 8280 (”Cascade Lake”) processor, with a
total of 448,448 cores. Each node has 192GB of memory. The interconnect is based
on Mellanox HDR technology with full HDR (200 Gb/s) connectivity between the
switches and HDR100 (100 Gb/s) connectivity to the compute nodes.

4.2. Non-linear and linear wave propagation. In this section, we introduce
a simple model to demonstrate LTS, the classical wave equation. We write the clas-
sical wave equation in a form with first derivatives in time and second derivatives in
space. This allows us to easily apply the specified, explicit schemes.

For a scalar function χ(t, xi), the classical wave equation in Cartesian coordinates
(t, x, y, z) with a non-linear source term can be written as,

(4.1)
∂2χ

∂t2
−
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
χ = −c sin(2χ)

r2
,

where r =
√
x2 + y2 + z2. We write the equation as first order in time system by

introducing the variable φ as

∂χ

∂t
= φ(4.2)

∂φ

∂t
=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
χ− c sin(2χ)

r2
.(4.3)

For non-linear wave propagation results presented in this paper, we used c = 1. We
choose outgoing radiative boundary conditions for this system [4]. We assume that
the variables χ and φ approach the form of spherical waves as r → ∞, which decay

https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
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as 1/rk. The radiative boundary conditions then have the form

(4.4)
∂f

∂t
=

1

r

(
x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z

)
− k(f − f0),

where f represents the functions χ and φ, and f0 is an asymptotic value. We assume
k = 1 for χ and k = 2 for φ.

For the linear wave propagation results presented, we simply zero out the non-
linear source term (i.e. set c = 0). The analytical solution for the 1d linear wave
operator in (4.1) with zero source term can be written as,

(4.5) χ(t, x) =
f(x− t) + f(x+ t)

2
, where χ(0, x) = f(x)

Fig. 9: Plots for linear wave propagation with LTS with a velocity vector (1, 1, 1) using a
Gaussian pulse centered at (0, 0, 0) as the initial condition. Images shown from left to right
and top to bottom in increasing order of simulation time.

4.3. Accuracy. We conduct numerical experiments using linear and non-linear
wave propagation to test the accuracy of our methods and implementation. For linear
wave propagation, we compute the analytical solution for wave propagation in the x
direction and compare the analytical solution with the computed solution using global
and local timestepping. For the above experiments, we used a third-order RK scheme
with increasing spacetime resolution. Figure 10 shows numerical error for LTS and
GTS approaches with increase resolution.

Since the computation of the analytical solution for the 1d wave operator with
non-linear source term is complicated, we compare the l∞ norm computed on the
numerical difference between global and local evolved timesteps. In table 1 we present
the difference between the solution χ evolved using GTS and LTS for increasing
maximum refinement level(maxdepth) 8 and 10. Again, both GTS and LTS are
in agreement to machine precision. This demonstrates that we can use LTS in lieu
of GTS without sacrificing accuracy or stability for both linear as well as non-linear
problems.

4.4. LTS efficiency and space adaptivity. As mentioned in §3.7, we can
approximate the speed up S between LTS and GTS for a given octant distribution.
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Fig. 10: Discrete l2 error compared to the analytical solution for the 1d wave operator
in 3d for GTS and LTS timestepping. For this experiment we used maxdepth of
8 and 10 with refinement trigger tolerance of 10−5.

Time(s) ||χlts − χgts||∞
maxdepth=8 maxdepth=10

0.000000 0 0

0.130208 9.93E-39 2.22E-16

0.260417 6.92E-34 1.11E-15

0.390625 4.86E-30 1.50E-15

0.520833 6.20E-27 2.08E-15

0.651042 1.39E-17 5.11E-15

0.781250 5.55E-17 1.09E-14

0.911458 1.39E-16 9.69E-15

1.041670 2.09E-16 9.21E-15

Table 1: l∞ difference between GTS and LTS at corresponding timesteps for non-
linear wave propagation. For this experiment we used maxdepth of 8 and 10 with
refinement trigger tolerance of 10−5. Note that for maxdepth 8, 8 global timesteps
and for maxdepth 10, 32 global timesteps were equivalent for a single LTS step.

Since we can end up with meshes where the use of LTS will not provide significant
advantages over GTS, we can selectively use LTS based on the expected speed up.
To evaluate our speed up model (3.9), and to assess the overhead of applying the
LTS correction operators, we computed the actual speed up reported for the linear
wave propagation with increasing maxdepth. The estimated and reported speed up
values are presented in the table 2. As can be seen, the estimated speed up values are
sufficiently close to the predicted ones, allowing applications to determine when it is
beneficial to use LTS.

Adaptivity in spacetime can be vital for some computational applications, es-
pecially when spacetime adaptivity is necessary to make these simulations feasible
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Fig. 11: Weak scaling results on TACC’s Frontera for RK3 timestepping using LTS(left)
and GTS(right) approaches. For this experiment, the maximum and minimum refinement
levels are lmax = 8 and lmin = 3, hence ∆L = 5. Therefore a single LTS step is equivalent to
2∆L = 32 global timesteps. For LTS, the plot shows the overall cost breakdown between block
synchronization (blk sync), applying time interpolations between blocks (LTS interp.),
computing the right hand side (rhs) and communication costs (comm). For GTS, we show the
cost breakdown between blk sync, rhs and comm. Note that for GTS time interpolations
are not required. Note the significant difference of blk sync cost between LTS and GTS.
For GTS blk sync is a global operation, while in LTS blk sync is a local operation, where
synchronization performed only on the subset of blocks, which are currently being evolved.
These weak scaling results were performed using a grain size of ∼ 100K unknowns per core,
with the number of cores ranges from 8 to 16, 384 cores. The largest problem recorded had
1.6 × 109 unknowns. The above results are generated for radial wave propagation with a
maxdepth 10 and a refinement tolerance of 10−5.

even on leadership architectures. Here we present estimated speed up by using LTS,
for the simulation of binary black hole mergers and the computation of the resulting
gravitational waves[1, 3, 33, 24]. The computational cost of these simulations increase
significantly when the mass ratio q of the two black holes increases. Assuming we need
n grid points in 1d to capture the larger black hole, to capture the smaller black hole
in the presence of the larger black hole we need qn in 1d, hence, increase of q3 points
in 3d. This makes the large mass ratio gravitational wave simulations infeasible at the
time. We use these large mass ratio binary black hole grids(see figure 12) to estimate
the speed up that can be enabled by the time adaptivity (see table 3). For mass
ratios of 10, one can expect up to 70x speed up, which is a significant reduction in
the cost (runtime and energy) of estimating the gravitational waves and can reduce
the burden on supercomputing resources.

https://frontera-portal.tacc.utexas.edu/
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d lmin lmax GTS(s) LTS(s) est. speed up reported speed up
9 2 7 2.91 0.88 3.31 3.30
10 3 8 26.69 9.26 3.31 2.87
11 2 9 114.74 36.76 3.49 3.12
12 2 10 238.05 73.94 3.56 3.21

Table 2: The estimated vs. reported speed up for LTS over GTS for linear wave
propagation with increasing maxdepth for adaptive octrees.

Fig. 12: Example octree grids generated for black hole binaries with mass ratio 1,10,100.

4.5. Weak and strong scaling. Parallel scalability of timesteppers is essen-
tial when dealing with large scale simulations. In this section, we present weak and
strong scalability results for the linear wave propagation problem, on octree meshes
using global and local timestepping. For both weak and strong scaling, we used
73 grid points per octant. For weak scaling, we set the computational domain to
[−10, 10]3, and used maxdepth 10. For the maxdepth 10 grid generated lmin = 3
and lmax = 8, hence 32 global timesteps is equivalent to a single LTS timestep.
Therefore, in order to make the GTS and LTS results comparable, in the follow-
ing scaling results, we present timing for 32 steps in GTS, 1 step (32 partial steps)
in LTS. In weak scaling, we increase the grid size, such that keeping the degrees of
freedom per core roughly constant (100K unknowns per core). Weak scaling results
for LTS and GTS are presented in figure 11. Each bar presents the corresponding
evolution time between LTS and GTS. For each scheme, we present the overall cost
breakdown between, computation of the right-hand side(rhs) of the PDE, and block
padding synchronization (blk sync) and inter-process communication (comm). The
blk sync cost consists of space interpolation, which is common for both LTS and
GTS schemes due to space adaptivity. We present an extra fraction of time interpo-
lation cost between blocks only present in the LTS. For GTS the blk sync operation
is a global synchronization, i.e., all the blocks are evolved and need to synchronize
the padding regions for the next rhs computation. In contrast, LTS scheme the
blk sync operation is a local(partial) synchronization limited to the blocks evolved
at the current partial step followed by time interpolation to correct the padding re-
gions between blocks. The weak scaling plot shows that the partial synchronization
with appropriate time interpolation is efficient than the global synchronization in
GTS scheme.

To perform strong scaling (see figure 13 ), we use the maxdepth 12 and recorded
lmin and lmax were 3 and 10, respectively. Therefore, 128 global timesteps are equiv-
alent to a single LTS timestep. For strong scaling tests, we keep the total grid size
fixed 262M unknowns and increase the number of cores from 64 to 8192. The strong
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mass ratio lmin lmax est. speed up
1 3 15 9.82
2 3 16 18.105
5 3 18 15.035
10 3 22 71.8302

Table 3: Estimated speed up for binary black hole grid with increasing mass ratios
from 1 to 10.
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Fig. 13: Strong scaling results on TACC’s Frontera for LTS(left) and GTS(right) timestep-
ping using the RK3 explicit scheme. For this experiment, the refinement levels are lmax = 10
and lmin = 3, hence ∆L = 7. Therefore a single LTS is equivalent to 2∆L = 128 global
timesteps. For LTS, the plot shows the overall cost breakdown between block synchro-
nization (blk sync), applying time interpolations between blocks (LTS interp.), computing
the right hand side (rhs) and the communication costs(comm). For GTS, we show the cost
breakdown between blk sync, rhs and comm (time interpolations are not required for GTS).
The significant difference of blk sync cost between LTS and GTS. For GTS blk sync

is a global operation, while in LTS blk sync is a local operation, where synchronization
performed only on the subset of blocks, which are currently being evolved.Presented strong
carried out for a fixed problem size of 262M unknowns where the number of cores ranging
from 64 to 8192 cores. Note that for strong scaling results re-meshing is disabled in order to
keep the problem size fixed and unchanged during evolution.

scaling plot shows, the same cost breakdown described above. The recorded average
parallel efficiencies between LTS and GTS schemes were 87% and 74%, respectively.
The low overhead of blk sync operation, allows LTS to demonstrate superior weak
and strong scalability compared to GTS scheme.

4.6. Weighted partitioning and mesh-generation. The performance of
data partitioning and mesh generation is crucial for AMR applications, especially
when the computational grid changes frequently. We refer to this process as re-
meshing, which require re-partitioning of the data (since the refinement change may
have caused load-imbalance), enforcing 2:1 balancing, and mesh data structure gen-

https://frontera-portal.tacc.utexas.edu/
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Fig. 14: Weak scaling results in TACC’s Frontera to perform SFC-based weighted partition-
ing (SFC Wpart) for Gaussian octant distribution centered at (0,0,0) followed by 2 : 1 balanc-
ing (bal.2:1) of the octants, which is used as the input for the mesh generation(mesh gen).
For this experiment, we used 1.6M grid points per core, using 73 points per octant, with the
number of cores varying from 8 to 2048. The largest problem reported had a total of 3.3B
grid points, where the mesh generation completed under 2s.
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Fig. 15: Strong scaling results in TACC’s Frontera to perform SFC-based weighted
partitioning (SFC Wpart) for Gaussian octant distribution centered at (0,0,0) followed by
2 : 1 balancing (bal.2:1) of the octants, which is used as the input for the mesh genera-
tion(mesh gen). For the depicted strong scaling, we keep the problem size fixed at 3.3B grid
points with the number of cores increasing from 32 to 2048.

eration. The performance of the re-meshing is crucial, but it is not the main focus
of this paper. In the current implementation, we trigger refinement in LTS when
all the blocks are synchronized in time. Figure 9 shows how the grid changes as
the wave propagate radially outwards. Figures 14 and 15 show the weak and strong
scalability of the operations related to re-meshing. The above experiments show that
mesh generation has a relatively high computational cost, compared to SFC weighted

https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
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partitioning and 2:1 balancing of octrees. This is mainly because mesh generation
performs a large number of search operations on the octree to build the neighborhood
data structures, which are essential to perform numerical computations.

5. Conclusions. In this paper, we presented methods to enable time adaptivity
for solving PDEs numerically on spatially adaptive grids. We presented experimental
results for the accuracy and scalability of the presented approaches. We show that
for some highly adaptive octrees with high levels of refinement, time adaptivity can
be essential to reduce overall time to solution. As future work, we will explore more
sophisticated energy-conserving time interpolation operators, with increased accuracy.
Currently, re-partitioning, and re-meshing are triggered as global operations when all
the blocks are synchronized in time. If only a localized portion of the mesh needs to
be refined, then ideally one should only require an update (remesh) of those regions.
This is complicated by the fact that different regions will no longer be syncronized
in time. While the proposed LTS scheme supports this, performing this efficiently
requires new partial remeshing algorithms, that will be the focus of future work.
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