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LINEAR FILTERING WITH FRACTIONAL NOISES: LARGE TIME

AND SMALL NOISE ASYMPTOTICS

D. AFTERMAN, P. CHIGANSKY, M. KLEPTSYNA, AND D. MARUSHKEVYCH

Abstract. The classical state-space approach to optimal estimation of stochastic pro-
cesses is efficient when the driving noises are generated by martingales. In particular, the
weight function of the optimal linear filter, which solves a complicated operator equation
in general, simplifies to the Riccati ordinary differential equation in the martingale case.
This reduction lies in the foundations of the Kalman-Bucy approach to linear optimal
filtering. In this paper we consider a basic Kalman-Bucy model with noises, generated by
independent fractional Brownian motions, and develop a new method of asymptotic anal-
ysis of the integro-differential filtering equation arising in this case. We establish existence
of the steady-state error limit and find its asymptotic scaling in the high signal-to-noise
regime. Closed form expressions are derived in a number of important cases.

1. Introduction

1.1. The Kalman-Bucy problem. In its most basic form, the Kalman-Bucy filtering
problem [12] is concerned with estimation of the state process, generated by the linear
stochastic equation

Xt = β

∫ t

0
Xsds+Wt, (1.1)

given a trajectory of the observation process

Yt = µ

∫ t

0
Xsds+

√
εVt. (1.2)

Here β and µ 6= 0 are fixed real constants, ε > 0 is the observation noise intensity parameter,
and W = (Wt; t ∈ R+) and V = (Vt; t ∈ R+) are independent Brownian motions.

The filtering problem consists of finding the optimal estimator X̂t = E(Xt|FYt ), whose
mean squared error Pt = E(Xt − X̂t)

2 is minimal among all functionals, measurable with
respect to F

Y
t = σ

{
Ys, s ≤ t

}
. For the linear Gaussian model (1.1)-(1.2), this problem has

a famously elegant solution, discovered in [12]. The filtering estimator in this case can be
generated by the stochastic differential equation

dX̂t = βX̂tdt+
µPt
ε

(dYt − µX̂tdt),
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and the corresponding minimal error Pt solves the Riccati o.d.e.

Ṗt = 2βPt + 1− (µ/
√
ε)2P 2

t , (1.3)

subject to zero initial conditions. Elementary analysis of (1.3) shows that the filtering
error converges to the steady-state limit

lim
T→∞

PT

(
β,

µ√
ε

)
=
β +

√
β2 + µ2/ε

µ2/ε
(1.4)

and reveals its scaling with respect to the noise intensity

PT

(
β,

µ√
ε

)
=

√
ε

µ

(
1 + o(1)

)
, as ε→ 0, ∀T > 0. (1.5)

These limiting quantities are of considerable interest, as they exhibit the fundamental
accuracy limitations in the problem.

1.2. Fractional noises. A natural generalization of the system (1.1)-(1.2) is obtained by
replacing W and V with independent fractional Brownian motions (fBm) with the Hurst
exponents H1 and H2, respectively. Recall that the fBm is a centred Gaussian process with
covariance function

K(s, t) =
1

2

(
s2H + t2H − |s− t|2H

)
, s, t ∈ R+, (1.6)

where H ∈ (0, 1) is its Hurst exponent.
This process coincides with the standard Brownian motion for H = 1

2 , but otherwise
exhibits a rich diversity of properties, which makes it an interesting mathematical object
and an important tool in modelling, [28]. In particular, it is neither a semi-martingale nor
a Markov process. For H > 1

2 increments of the fBm are positively correlated and have
long range dependence

∞∑

n=1

EV1(Vn+1 − Vn) = ∞.

This property makes it useful in design and analysis of engineering systems, [2].
Consider the integro-differential equation

∂

∂s

∫ T

0
gT (r)

∂

∂r
KV (r, s)dr +

µ2

ε

∫ T

0
KX(r, s)gT (r)dr =

µ√
ε
KX(s, T ), (1.7)

where KV (s, t) and KX(s, t) are the covariance functions of the fBm V and the state
process X. If this equation has a sufficiently regular solution gT (·) (see Appendix A for
some details) then standard calculations, see e.g. [23, Lemma 10.2], show the optimal
estimator is given by the stochastic integral

X̂T =
1√
ε

∫ T

0
gT (s)dYs,

and the filtering error is determined by the solution to (1.7) through the formula

PT

(
β,

µ√
ε

)
=

√
ε

µ

(
∂

∂s

∫ T

0
gT (r)

∂

∂r
KV (r, s)dr

)
∣∣s := T

. (1.8)
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In the standard Kalman-Bucy case these equations simplify in two ways. First, when
the observation noise is white, i.e., H2 =

1
2 , the integro-differential terms in (1.7) and (1.8)

reduce merely to gT (s), and (1.7) takes the form of an integral equation. Further, when
the state noise is white as well, H1 = 1

2 , the state process is Markov, and its covariance
kernel KX(s, t) factorizes into a product of exponentials. This allows to express solutions
to (1.7) in terms of the Riccati o.d.e. (1.3).

In the more general, fractional setting under consideration, equation (1.7) retains its
integro-differential form, and questions of solvability and asymptotic behaviour of its solu-
tion remained till now mainly open.

(1) How does the filtering error scale with observation noise intensity as ε→ 0?

(2) Does it converge to a limit as T → ∞?

(3) How are these two asymptotics related?

(4) Do the limits admit of reasonably explicit expressions?

Answering such questions requires an entirely different approach, which is the main focus
of the paper.

2. The main results

Let X and Y be the processes generated by equations (1.1) and (1.2), driven by inde-
pendent fBm’s W and V with the Hurst parameters H1,H2 ∈ (0, 1), respectively. Define

PT
(
β, µ√

ε

)
:= E

(
XT −E(XT |FYT )

)2
. To avoid trivialities µ 6= 0 is assumed throughout, but

the values of all other parameters can be arbitrary.

2.1. General asymptotics. Our principal result is the following theorem.

Theorem 2.1. The large time limit exists

P∞
(
β,

µ√
ε

)
= lim

T→∞
PT

(
β,

µ√
ε

)
, (2.1)

and, for any T > 0, the filtering error satisfies the scaling property

lim
ε→0

ε−νPT
(
β,

µ√
ε

)
= P∞

(
0, µ
)

with ν =
H1

1 +H1 −H2
. (2.2)

Remark 2.2.

a) As in the standard Kalman-Bucy problem, the first order term of the small noise asymp-
totics (2.2) does not depend on the interval length T or the drift of the state process β, cf.
(1.5). This is not entirely intuitive in the fractional case, since the memory of the optimal
filter in the non-Markov setup, and the more so for processes with long range dependence,
does not have to be a priori negligible as ε→ 0.

b) The rate ν in (2.2) coincides with the optimal minimax rate in the nonparametric prob-
lem of estimating a deterministic function observed in fractional type noise, [34]. This
agrees with the smoothness of the fBm paths, which are Holder continuous with an ex-
ponent arbitrarily close to H. In particular, the estimators suggested in [34] should be
rate optimal for the filtering problem under consideration, however, with a suboptimal
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constant. The dependence of ν on H1 and H2 agrees with the intuition, that the filtering
accuracy should improve with path regularity of the processes which generate the noises.

2.2. Special cases. In principle, the limit in (2.1) is derived in the proof as an explicit
but a rather cumbersome expression. It can be significantly simplified in a number of
meaningful cases, as detailed in the theorems below. The key ingredient of the emerging
formulas is the complex valued structural function

Λ(z;H1,H2) = (z2 − β2)κ(H2)
(z
i

)1−2H2

− µ2

ε
κ(H1)

(z
i

)1−2H1

, (2.3)

where z takes values in the upper half of the complex plane and

κ(H) = Γ(2H + 1) sin(πH). (2.4)

Its domain is extended to the lower half-plane through conjugation

Λ(z;H1,H2) = Λ(z;H1,H2).

The structure of the filtering problem turns out to be largely determined by the con-
figuration of zeros of this function. A simple calculation shows that Λ(z;H1,H2) has the
unique complex zero z0 in the first quadrant when H1 > H2. As H1 approaches H2 this
zero moves towards positive real semiaxis, and, at H1 = H2, degenerates to the purely real
value

t0 =
√
β2 + µ2/ε.

When H1 < H2 it has no zeros at all.

2.2.1. State/observation noises of the same type. The following result details the limiting
behaviour of the filtering error, when the state and observation noises have the same Hurst
exponent.

Theorem 2.3. Let H1 = H2 =: H ∈ (0, 1), then

P∞
(
β,

µ√
ε

)
=

1

2
Γ(2H + 1)t−2H

0

(
1 + sin(πH)

t0 + β

t0 − β

)
, (2.5)

and, consequently1,

PT

(
β,

µ√
ε

)
≍ 1

2
Γ(2H + 1)

(
1 + sin(πH)

)
(ε/µ2)H , as ε→ 0. (2.6)

Remark 2.4. Formula (2.5) was previously derived in [15] for H ∈ (12 , 1), using a com-
pletely different method, based on the innovation representation of the fBm from [25]. This
approach does not easily extend to the complementary case H ∈ (0, 12), unlike the method
suggested in this paper.

1here and below, g(ε) ≍ h(ε) stands for limε→0 g(ε)/h(ε) = 1
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2.2.2. Fractional state/white observation noise. To formulate further results, define the
limit

Λ+(t;H1,H2) = lim
Im(z)>0,z→t

Λ(z;H1,H2), t ∈ R+,

which coincides with the expression in (2.3) after replacing z with t ∈ R+. Let θ(t;H1,H2)
be the argument of Λ+(t;H1,H2), chosen so that it varies continuously with t ∈ R+ and
limt→∞ θ(t;H1,H2) ∈ [−π, π]. This choice defines θ(t;H1,H2) in the unique way, and it is
a completely explicit function.

The following theorem details the precise error asymptotics in the filtering problem with
fractional state process and white noise observations.

Theorem 2.5. Let H := H1 ∈ (0, 1) \ {1
2} and H2 =

1
2 , then

P∞
(
β,

µ√
ε

)
=

ε

µ2

(
1

π

∫ ∞

0
θ(t;H, 12)dt+ β +

{
2Re(z0) if H > 1

2

0 if H < 1
2

})
, (2.7)

where z0 is the unique zero of Λ(z;H, 12) in the first quadrant. Consequently,

PT

(
β,

µ√
ε

)
≍ κ(H)

1

2H+1

sin π
2H+1

(ε/µ2)
2H

2H+1 , as ε→ 0. (2.8)

Remark 2.6.

a) In the stable case with β < 0, the following alternative expression for the filtering error
can be obtained, using the spectral theory of stationary processes,

P∞
(
β,

µ√
ε

)
=

ε

µ2
1

2π

∫ ∞

−∞
log

(
1 +

µ2

ε
κ(H)

|ω|1−2H

β2 + ω2

)
dω. (2.9)

The spectral approach is not applicable in the non-stationary case β ≥ 0 and, in fact, this
formula can be seen to coincide with (2.7) only for β < 0, but not otherwise.

b) The expression in (2.7) has the right and the left limits at H = 1
2 , which coincide with

the classic formula (1.4). While the root of Λ(z;H1,H2) and the integral in (2.7) do not
seem to admit any closed form formulae, both are not hard to compute numerically for
any concrete values of the parameters.

c) Formula (2.8) can also be obtained using asymptotic approximation of the eigenvalues
and eigenfunctions of the covariance operator of the fractional Ornstein-Uhlenbeck (fOU)
process, [18]. This approximation however is not uniform with respect to T , and therefore
the large time limiting error (2.7) cannot be derived using the same method.

2.2.3. White state/fractional observation noise. To formulate the results in the comple-
mentary case of white state and fractional observation noises define

X(z) = (−z)3/2−H exp

(
1

π

∫ ∞

0

θ
(
t; 12 ,H

)

t− z
dt

)
, z ∈ C \R+, (2.10)

with H ∈ (0, 1). This function is holomorphic on the cut plane with a jump discontinuity
across the positive real semiaxis R+. In the course of the proof the limits X+(|β|) and
X−(|β|) are shown to coincide, and their common value will be denoted by X(|β|).
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Theorem 2.7. Let H1 =
1
2 and H := H2 ∈ (0, 1) \ {1

2}. Then

P∞
(
β,

µ√
ε

)
=

1

2β


X(−β)

X(β)





∣∣∣z0 + β

z0 − β

∣∣∣
2

if H < 1
2

1 if H > 1
2



− 1


 , (2.11)

where z0 is the zero of Λ(z; 12 ,H) in the first quadrant. Consequently,

P∞
(
β,

µ√
ε

)
≍ κ(H)

1

3−2H

sin π
3−2H

(
ε/µ2

) 1

3−2H , ε→ 0. (2.12)

Remark 2.8. Numerical evaluation of X(z) at z := β > 0 involves computation of the
Cauchy principal value of the integral in (2.10). The following identity, proved in Lemmas
7.1 and 7.4 below,

X(β)X(−β) = 1

κ(H)

µ2

ε

(
1

|β2 − z20 |2
)

1
{H<1

2
}

,

can be more convenient for this purpose.

3. Related literature

3.1. Integro-differential equations. To the best of our knowledge integro-differential
equations such as (1.7) do not have a general theory. As mentioned above, for the white
observation noise H2 = 1

2 , problem (1.7) reduces to integral equation of the second kind.
Such equations have been studied since the pioneering works of Fredholm, and their unique
solvability in various spaces is very well understood. Nevertheless, even in this relatively
standard setting, quantifying dependence of the solutions on parameters, such as T and
ε in our context, can be a highly nontrivial matter. Essentially, the only case in which
a complete theory is available is that of Kalman-Bucy, when reduction of (1.7) to the
Riccati o.d.e. is possible. This reduction has far reaching implications, way beyond the
scalar problem considered in this paper. It leads to a complete characterisation of the limit
behaviour of the optimal error in terms of such notions as controllability and observability
(see, e.g., [21]).

3.2. Stationary problem. The stationary version of the filtering problem for (1.7) on the
semi-infinite time horizon [0,∞) can be solved within the framework of the Kolmogorov-
Wiener spectral theory, [30]. In some cases it yields closed form formulas for the steady-
state error in the form of integrals over spectral densities such as (2.9). However this
approach is strictly limited to the stable state equation (1.1) with β < 0, even in the
standard Kalman-Bucy problem. In fact, overcoming this difficulty was the main impetus
behind the state-space approach pioneered in [12].

3.3. Nonlinear filtering. Optimal error analysis in the more general, nonlinear filtering
problem attracted much attention in the more recent past. Questions of existence and
uniqueness of the large time limit of the filtering error was addressed first in [20] and
continued to generate much research over the years; surveys of different approaches can
be found in [1], [3], [6], [19], [32]. The steady state error is never explicit beyond the
linear problem, and consequently various techniques of computing its lower bounds have
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been suggested, see [36]. Exact small noise error asymptotics was derived for a number of
models, including diffusions [27], [37], [26] and finite state chains [13], [31]. Let us stress,
however, that all these results are concerned exclusively with the Markov case and therefore
do not apply to the filtering models with fractional noises.

3.4. Filtering with fractional noises. Filtering in systems driven by the fractional
Brownian motion have been addressed by many authors, including [22], [8], [14], [16],
[35], [9], both in linear and nonlinear settings. However, most of the literature is concerned
with derivation of the filtering equation, rather than evaluation of the optimal error, which
remained mainly elusive so far.

3.5. Contribution of this paper. The contribution of this paper is twofold. From the
perspective of stochastic filtering theory, it suggests a method of asymptotic error analysis
in a non-Markov system with fractional type driving noises. Existence of the steady-state
error beyond the Markov setting remained largely unexplored, and this is probably one
of the first systematic takes on the subject. Besides a qualitative asymptotic picture as
in Theorem 2.1, our method yields closed form expressions for the filtering error limits in
several cases of interest, such as Theorems 2.3, 2.5 and 2.7.

Another contribution is on the more technical side, and it consists of constructing a
solution to equation (1.7), which was previously known to be solvable in some special
cases, see e.g. [4]. Our approach is inspired by a technique, introduced in the mathematical
physics literature, [33], [11], and its recent applications to fractional stochastic processes,
[7], [5], [24]. Previously it was used in eigenproblems, i.e., homogeneous integral equations
of the second kind, with the objective of approximating the sequence of its solutions. The
non-homogeneous problem under consideration in this paper requires a complete revision of
this technique at least from two standpoints. First, equation (1.7) has the unique solution,
and this time the goal is its asymptotic analysis with respect to parameters. Moreover, the
main object of interest is not the solution itself, but its particular functional (1.8).

4. Preliminaries

4.1. Notations, conventions and tools. The proof uses some basic tools from complex
analysis. Unless otherwise stated, the standard range z ∈ (−π, π] will be used for principal
branches of the common multivalued functions. We will frequently encounter functions,
which are holomorphic on the cut planes C \R or C \R+, with a finite jump discontinuity
across the cut. For such a sectionally holomorphic function Ψ(z), the limits across the real
line will be denoted by

Ψ+(t) := lim
Im(z)>0,z→t

Ψ(z),

Ψ−(t) := lim
Im(z)<0,z→t

Ψ(z),
t ∈ R.

Often we will need to solve the Hilbert problem of finding a function Ψ(z), which is
sectionally holomorphic on C \R+ and satisfies the boundary condition

Ψ+(t)−Ψ−(t) = φ(t), t ∈ R+,
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for a given function φ(·). When φ(·) is Hölder on R+ ∪ {∞}, by the Sokhotski-Plemelj
theorem, the unique solution to this problem has the form

Ψ(z) =
1

2πi

∫ ∞

0

φ(t)

t− z
dt+ P (z),

where P (z) is a polynomial of a finite degree, whose growth as z → ∞ matches that of
Ψ(z). A comprehensive account of such boundary value problems can be found in, e.g.,
monograph [10].

When dependence on parameters is important, they will be added to the notations:
for example, g(x), gT (x) or g(x; ε, T ) will denote the same function, depending on the
context. It will also be convenient to use µε := µ/

√
ε and reparameterize the problem

by α1 := 2 − 2H1 and α2 := 2 − 2H2, which take values in (0, 2). Finally, we will write
r(u) ≍ q(u) when r(u) = q(u)(1 + o(1)) for both u := T → ∞ and u := ε→ 0.

4.2. Proof preview. In essence, the proof amounts to constructing the solution to (1.7)
in a form, more amenable to asymptotic analysis. This is done by exploiting the structure
of the Laplace transform of its solution,

ĝ(z) =

∫ T

0
e−zxg(x)dx, z ∈ C, (4.1)

revealed by the representation formula, which is derived in Lemma 5.1 below,

ĝ(z) = − 1

Λ(z)

(
(z + β)

(
Φ0(z) + e−zTΦ1(−z)

)
+ µ2εNα1

(z)
(
ψ(0) +

1

µε
e−zT

))
. (4.2)

This expression involves the following elements.

(i) The complex function

Nα(z) = κα

{(
z/i
)α−1

, Im{z} > 0,(
− z/i

)α−1
, Im{z} < 0,

(4.3)

where, cf. (2.4),

κα = κ
(
1− α

2

)
=

(1− α)(1 − α/2)

Γ(α)

π

cos α2π
> 0, α ∈ (0, 2) \ {1}.

This function is sectionally holomorphic on C\R, and its limits across the real line
satisfy the obvious symmetries

N+
α (t) = N−

α (−t) and N+
α (t) = N−

α (t). (4.4)

(ii) The structural function of the problem, cf. (2.3),

Λ(z) = (z2 − β2)Nα2
(z)− µ2εNα1

(z), (4.5)

which inherits the discontinuity of Nαj
(z)’s along the real line and is holomorphic

elsewhere. It does not vanish on the cut plane when α1 > α2 and has four simple
complex zeros, placed symmetrically in each quadrant, when α1 < α2. In the case
α1 = α2, it has two purely real zeros. Configuration of zeros has a determining
effect on the solution.
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(iii) Functions Φ0(z) and Φ1(z) are sectionally holomorphic on C\R+. They are defined
explicitly as certain functionals of g(·), involving the Cauchy integrals, but their
particular form is inessential, except for the growth (5.4) as z → 0 and z → ∞.

(iv) The quantity ψ(0), also determined by g(·), is constant with respect to z, see (5.3)
below.

The crucial feature of representation (4.2) is its singularities. Since the integration in
(4.1) is carried out over a finite interval, the Laplace transform ĝ(z) is an entire function,
and thus all singularities in (4.2) must be removable. This includes discontinuity across
the real line, whose removal yields equations (5.23) below. These equations bind together
the limits Φ±

0 (t) and Φ±
1 (t) at all t ∈ R+ and can be viewed as boundary conditions on R+

for the functions Φ0(z) and Φ1(z), which are holomorphic elsewhere.
Finding all such functions satisfying the particular growth estimates, mentioned in (iii),

is known as the Hilbert boundary value problem. In our case, all its solutions can be
expressed in terms of auxiliary integral equations of the general form

p(t) =
(
Aε,T p

)
(t) + f(t), t ∈ R+, (4.6)

where Aε,T is an integral operator with an explicit kernel, and f(·) is either a specific
function or a finite degree polynomial.

The functions Φ0(z) and Φ1(z) can be expressed in terms of solutions to these equations
and several unknown constants. The number of these constants is determined by the
configuration of zeros of Λ(z) as mentioned in (ii). Substitution of the expressions for
Φ0(z) and Φ1(z) into (4.2) yields an expression for the Laplace transform ĝ(z), which is
therefore determined by solutions to (4.6) and the constants. The solution to (1.7) can then
be found by inverting the Laplace transform. Consequently, the filtering error, determined
by the functional (1.8), can also be expressed in terms of solutions to equations (4.6).

For example, when α1 > α2, there are no zeros, and as it turns out, the only unknown
constant in this case is ψ(0) from (4.2). It can be found using the a priori condition

(
∂

∂s

∫ T

0
g(r)

∂

∂r
KV (r, s)dr

)
∣∣s := 0

= 0, (4.7)

implied by (1.7) as KX(0, t) = 0 for all t ∈ [0, T ]. When α1 ≤ α2, the function Λ(z)
has several zeros, which appear in (4.2) as simple poles. Removing these poles leads to a
system of linear algebraic equations, which along with (4.7), determine all the unknown
coefficients.

At the first glance, so constructed representation does not appear any simpler than
the original problem itself, since equations (4.6) cannot be solved explicitly. Remarkably
though, a significant simplification is possible due to the properties of operator Aε,T , which
force the first term in the right hand side of (4.6) to vanish asymptotically as either
T → ∞ or ε→ 0. Consequently, otherwise non-explicit function p(t) can be approximated
asymptotically by the forcing function f(t). This is where the assertions of Theorem 2.1
come from. In fact, the limit P∞

(
β, µ√

ε

)
can be found in a closed, though rather complicated

form.
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Further simplifications are possible in the special cases, when either of the functions
Nα1

(z) or Nα2
(z) in formula (4.2) degenerate to 1, as in Theorem 2.5 and Theorem 2.7, or

when they remain non-degenerate, but coincide as in Theorem 2.3. The ultimate expres-
sions in all three cases are obtained by somewhat different calculations, which are detailed
in Sections 6-7.

5. Proof of Theorem 2.1

In the notations introduced above, the covariance function of the fBm in (1.2) has the
form, cf. (1.6),

KV (s, t) =
1

2

(
s2−α2 + t2−α2 − |s− t|2−α2

)
, (5.1)

with α2 ∈ (0, 2). The covariance function of the fractional Ornstein-Uhlenbeck state process
X, generated by (1.1), is

KX(s, t) =

∫ s

0
eβ(s−u)

∂

∂u

∫ t

0
eβ(t−v)

∂

∂v
KW (u, v)dvdu, (5.2)

where KW (s, t) is the kernel in (5.1) with α2 replaced by α1.

5.1. The Laplace transform. The following lemma details the structure of the Laplace
transform of the solution to the main filtering equation and its relation to the filtering
error.

Lemma 5.1. Let g(·) solve equation (1.7) with KV (s, t) and KX(s, t) as above.

1. The Laplace transform ĝ(z), defined in (4.1), satisfies representation (4.2) where

ψ(r) = e−βr
∫ T

r
eβτg(τ)dτ − 1

µε
eβ(T−r), (5.3)

and the functions Φ0(z) and Φ1(z) are sectionally holomorphic on C \ R+, satisfying

|Φ1(z)| ∨ |Φ0(z)| =
{
O
(
z(α1∧α2−1)∧0), z → 0,

O
(
z(α2−1)∨0), z → ∞.

(5.4)

2. The following condition holds

lim
Re(z)→∞

z

(
Nα2

(z)ĝ(z) − 1

2πi

∫ ∞

0

1

t− z

(
N+
α2
(t)−N−

α2
(t)
)
ĝ(t)dt

)
= 0, (5.5)

and the filtering error (1.8) is given by the limit

PT =
1

µε
lim

Re(z)→∞
z

(
Nα2

(−z)e−zT ĝ(−z)

− 1

2πi

∫ ∞

0

1

t− z

(
N+
α2
(t)−N−

α2
(t)
)
e−tT ĝ(−t)dt

)
. (5.6)
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The proof of this lemma uses the operator

vf,α(s) :=
∂

∂s

∫ T

0
(1− α

2 )|s − r|1−α sign(s− r)f(r)dr, (5.7)

which acts on sufficiently regular functions f . Since for α ∈ (0, 2)

|x− y|1−α sign(x− y) =
1

Γ(α)

∫ ∞

0
tα−1(x− y)e−t|x−y|dt,

we can write

vf,α(x) =
1

cα

d

dx

∫ ∞

0
tα−1uf (x, t)dt, (5.8)

where cα := Γ(α)

1−α2
and

uf (x, t) :=

∫ T

0
(x− y)e−t|x−y|f(y)dy.

In addition, let us define another auxiliary function

wf (x, t) :=

∫ T

0
e−t|x−y|f(y)dy.

Lemma 5.2. The Laplace transform of (5.7) satisfies

v̂f,α(z) = Nα(z)f̂ (z) + e−zTΨf,1(−z) + Ψf,0(z) (5.9)

where Nα(z) is defined in (4.3) and

Ψf,1(z) :=
1

cα

∫ ∞

0

tα

t− z
uf (T, t)dt+

1

cα
z

∫ ∞

0

tα−1

(t− z)2
wf (T, t)dt,

Ψf,0(z) := − 1

cα

∫ ∞

0

tα

t− z
uf (0, t)dt+

1

cα
z

∫ ∞

0

tα−1

(t− z)2
wf (0, t)dt.

(5.10)

Proof. Differentiating uf (x, t) once with respect to x gives

u′f (x, t) =
d

dx

(∫ x

0
(x− y)e−t(x−y)f(y)dy −

∫ T

x
(y − x)e−t(y−x)f(y)dy

)
=

wf (x, t)− t

∫ x

0
(x− y)e−t(x−y)f(y)dy − t

∫ T

x
(y − x)e−t(y−x)f(y)dy,

and, consequently,

u′f (0, t) =wf (0, t) + tuf (0, t),

u′f (T, t) =wf (T, t)− tuf (T, t).
(5.11)

Similarly,

w′
f (x, t) =

d

dx

∫ x

0
e−t(x−y)f(y)dy +

d

dx

∫ T

x
e−t(y−x)f(y)dy =

− t

∫ x

0
e−t(x−y)f(y)dy + t

∫ T

x
e−t(y−x)f(y)dy
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and
w′
f (0, t) = t wf (0, t),

w′
f (T, t) =− twf (T, t).

(5.12)

Taking further derivative gives the system of equations

u′′f (x, t) = t2uf (x, t) + 2w′
f (x, t),

w′′
f (x, t) = t2wf (x, t)− 2tf(x).

(5.13)

Applying the Laplace transform to the first equation we obtain

û′′f (z, t) = 2ŵ′
f (z, t) + t2ûf (z, t).

or, equivalently,

e−zTu′f (T, t)− u′f (0, t) + e−zT zuf (T, t)− zuf (0, t) + z2ûf (z, t) =

2e−zTwf (T, t)− 2wf (0, t) + 2zŵf (z, t) + t2ûf (z, t).

Collecting the terms and using the boundary conditions (5.11), this can be written as

e−zT
(
(z − t)uf (T, t)− wf (T, t)

)
− (z + t)uf (0, t) + wf (0, t)

− 2zŵf (z, t) + (z2 − t2)ûf (z, t) = 0,

Due to the usual relation between Laplace transforms of a function and its derivatives, and
again, in view of the boundary conditions (5.11), we can further write

ûf (z, t) =
2z

z2 − t2
ŵf (z, t) − e−zT

(uf (T, t)
z + t

− wf (T, t)

z2 − t2

)

+
uf (0, t)

z − t
− wf (0, t)

z2 − t2
.

(5.14)

A similar calculation shows that the second equation in (5.13) along with the corresponding
boundary conditions (5.12) yields

e−zT (z − t)wf (T, t)− (z + t)wf (0, t) + (z2 − t2)ŵf (z, t) + 2tf̂(z) = 0

and

ŵf (z, t) = −e−zT wf (T, t)
z + t

+
wf (0, t)

z − t
− 2t

z2 − t2
f̂(z).

Combining this with (5.14), we obtain

ûf (z, t) = − 4zt

(z2 − t2)2
f̂(z) +

uf (0, t)

z − t
+
wf (0, t)

(z − t)2
− e−zT

(
uf (T, t)

z + t
+
wf (T, t)

(z + t)2

)
.

By definition (5.8),

cαv̂f,α(z) = e−zT
∫ ∞

0
tα−1uf (T, t)dt−

∫ ∞

0
tα−1uf (0, t)dt

+ z

∫ ∞

0
tα−1ûf (z, t)dt.



LINEAR FILTERING WITH FRACTIONAL NOISES 13

Substituting the expression for ûf (z, t), we arrive at (5.9) with

Nα(z) = − 1

cα
4z2

∫ ∞

0

tα

(t2 − z2)2
dt.

The simpler expression (4.3) is derived by the standard contour integration. �

We are now in position to proceed with the proof of Lemma 5.1.

Proof of Lemma 5.1.

1. Observe that KX(s, t) in (5.2) is differentiable in s ∈ (0, T ) and

∂

∂s
KX(s, t) =βKX(s, t) +

∂

∂s

∫ t

0
eβ(t−v)

∂

∂v
KW (s, v)dv.

Hence taking derivative of (1.7) we get

∂2

∂s2

∫ T

0
g(r)

∂

∂r
KV (r, s)dr + β

(
µ2ε

∫ T

0
KX(s, r)g(r)dr − µεKX(s, T )

)
+

µ2ε
∂

∂s

∫ T

0
g(r)

∫ r

0
eβ(r−v)

∂

∂v
KW (s, v)dvdr = µε

∂

∂s

∫ T

0
eβ(T−v)

∂

∂v
KW (s, v)dv.

In view of (1.7), the expression in brackets here can be replaced with

µ2ε

∫ T

0
KX(s, r)g(r)dr − µεKX(s, T ) = − ∂

∂s

∫ T

0
g(r)

∂

∂r
KV (r, s)dr,

and the last term in the left had side with
∫ T

0

∫ r

0
g(r)eβ(r−v)

∂

∂v
KW (s, v)dvdr =

∫ T

0

∂

∂r
KW (s, r)e−βr

∫ T

r
eβug(u)dudr,

after integration by parts. Plugging these expressions, we arrive at

∂2

∂s2

∫ T

0
g(r)

∂

∂r
KV (s, r)dr − β

∂

∂s

∫ T

0
g(r)

∂

∂r
KV (s, r)dr

+ µ2ε
∂

∂s

∫ T

0
ψ(r)

∂

∂r
KW (s, r)dr = 0,

with ψ(r) as defined in (5.3). In terms of the transformation introduced in (5.7), this
equation is equivalent to

∂

∂s
vg,α2

(s)− βvg,α2
(s) + µ2εvψ,α1

(s) = 0.

Applying the Laplace transform to both sides and using the condition vg,α2
(0) = 0, implied

by (1.7), we obtain

e−zT vg,α2
(T ) + (z − β)v̂g,α2

(z) + µ2εv̂ψ,α1
(z) = 0. (5.15)

Similarly, the Laplace transform of (5.3) yields the relation

(z + β)ψ̂(z) = ψ(0) +
1

µε
e−zT − ĝ(z). (5.16)
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Combining (5.15), (5.16) and (5.9) with f := g and f := ψ gives the representation, claimed
in (4.2)

ψ̂(z)Λ(z) = e−zTΦ1(−z) + Φ0(z) +Nα2
(z)(z − β)

(
ψ(0) +

1

µε
e−zT

)
,

with
Φ0(z) := Ψg,0(z)(z − β) + µ2εΨψ,0(z),

Φ1(z) := −Ψg,1(z)(z + β) + µ2εΨψ,1(z) + vg,α2
(T ).

(5.17)

The Cauchy integrals in (5.10) define sectionally holomorphic functions on C\R+, and the
estimates (5.4) are derived from (5.10) and (5.17) by standard calculations.

2. Subtracting the limits of equation

v̂g,α2
(z) = Nα2

(z)ĝ(z) + e−zTΨg,1(−z) + Ψg,0(z) (5.18)

as z → t ∈ R+ in the upper and lower half-planes, gives the boundary condition

Ψ+
g,0(t)−Ψ−

g,0(t) = −
(
N+
α2
(t)−N−

α2
(t)
)
ĝ(t), t > 0.

Since the function in the right hand side is Hölder on R+ ∪ {∞}, and Ψg,0(z) vanishes as
z → ∞, applying the Sokhotski-Plemelj formula gives

Ψg,0(z) = − 1

2πi

∫ ∞

0

1

t− z

(
N+
α2
(t)−N−

α2
(t)
)
ĝ(t)dt, z ∈ C \ R+.

Condition (5.5) now follows, since vg,α2
(0) = 0 and, in view of (5.18),

vg,α2
(0) = lim

Re(z)→∞
zv̂g,α2

(z) = lim
Re(z)→∞

z
(
Nα2

(z)ĝ(z) + Ψg,0(z)
)
.

Formula (5.6) is obtained similarly, since by (1.8),

PT =
1

µε
vg,α2

(T ) =
1

µε
lim

Re(z)→∞
ze−zT v̂g,α2

(−z).

�

Remark 5.3. For α2 ∈ (0, 1), the first term in the brackets in both (5.5) and (5.6) vanishes,
and these equations reduce to

1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
ĝ(t)dt = 0 (5.19)

and

PT =
1

µε

1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
e−tT ĝ(−t)dt, (5.20)

respectively. For α2 ∈ (1, 2) this first term diverges to infinity as z → ∞ and compensates
by the leading asymptotic term of the integral. Hence the useful information is actually
contained in the second order asymptotics of these expressions.

The next lemma reveals several important properties of the structural function.
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Lemma 5.4. The function Λ(z) defined in (4.5) is sectionally holomorphic on C \R with
a jump discontinuity across the real line, and its limits Λ±(t), t ∈ R satisfy

Λ+(t) = Λ−(−t) and Λ+(t) = Λ−(t). (5.21)

It does not vanish on the cut plane, except, possibly, at simple zeros. More precisely,

(a) Λ(z) has no zeros if α1 > α2, or

(b) a pair of purely real zeros at ±t0 with t0 =
√
β2 + µ2ε, if α1 = α2, or

(c) complex zeros at ±z0 and ±z0 for some z0 with arg(z0) ∈ (0, π2 ), if α1 < α2.

Proof. The analytic structure of Λ(z), the discontinuity and properties (5.21) are inherited
from Nα(z), cf. (4.4). The symmetric structure of zeros is obvious from the definition of
Λ(z), and hence it suffices to locate its zeros only in the first quadrant. Since Nα(z) may
vanish only at the origin, for z := ρeiφ with ρ ∈ R+ and φ ∈ [0, π2 ],

− Λ(z)

Nα2
(z)

= µ2ε
Nα1

(z)

Nα2
(z)

− z2 + β2 = µ2ε
κα1

κα2

ρα1−α2ei(φ−
π
2
)(α1−α2) − ρ2e2φi + β2.

Equating the imaginary and real parts of this expression to zero, we get

ρ2 sin(2φ) − µ2ε
κα1

κα2

ρ−δ sin(π2 − φ)δ = 0,

ρ2 cos(2φ) − µ2ε
κα1

κα2

ρ−δ cos(π2 − φ)δ = β2,

where δ := α2 − α1. The angle φ = π
2 is inconsistent with the second equation and φ = 0

with the first equation, unless δ = 0 as well. In this case, that is, when α1 = α2, φ = 0 is
the only possibility, and there are two real zeros as claimed.

If α1 > α2 the first equation is inconsistent for any ρ > 0, and hence Λ(z) does not have
zeros in this case. For α1 < α2 the absolute value ρ can be expressed in terms of φ using
the first equation

ρ =

(
µ2ε
κα1

κα2

) 1

2+δ
(
sin(π2 − φ)δ

sin(2φ)

) 1

2+δ

. (5.22)

Plugging this into the second equation we get

sin
(
φ̃δ
)− δ

2+δ sin(2φ̃)−
2

2+δ sin
(
φ̃(2 + δ)

)
= −β2

(
µ2ε
κα1

κα2

)− 2

2+δ

where φ̃ := π
2 − φ ∈ (0, π2 ) was defined for brevity. The left hand side is a continuous

decreasing function of φ̃, it diverges to −∞ as φ̃ → π
2 and has a positive finite limit at

φ̃ = 0. Hence this equation has the unique root φ0 and, consequently, Λ(z) has the unique
zero in the first quadrant at z0 := ρ0e

iφ0 with ρ0 given by (5.22) with φ replaced by φ0. �
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5.2. The equivalent problem. In this subsection we formulate a different problem, which
is equivalent to solving equation (1.7). The key observation to this end is that all singu-
larities in expression (4.2) must be removable, since the Laplace transform in (4.1) defines
an entire function ĝ(z). In particular, its limits as z → t ∈ R in the upper and lower
half-planes must coincide, which implies

(t+ β)
Φ+
0 (t) + e−tTΦ1(−t)

Λ+(t)
+ µ2ε

N+
α1
(t)

Λ+(t)

(
ψ(0) +

1

µε
e−tT

)
=

(t+ β)
Φ−
0 (t) + e−tTΦ1(−t)

Λ−(t)
+ µ2ε

N−
α1
(t)

Λ−(t)

(
ψ(0) +

1

µε
e−tT

)
, t ∈ R+

and

(t+ β)
Φ0(t) + e−tTΦ−

1 (−t)
Λ−(t)

+ µ2ε
N−
α1
(t)

Λ−(t)

(
ψ(0) +

1

µε
e−tT

)
=

(t+ β)
Φ0(t) + e−tTΦ+

1 (−t)
Λ(z)

+ µ2ε
N−
α1
(t)

Λ−(t)

(
ψ(0) +

1

µε
e−tT

)
, t ∈ R−

In view of symmetries (5.21) and formula (4.5), these equations can be written as

Φ+
0 (t)−

Λ+(t)

Λ−(t)
Φ−
0 (t) = e−tTΦ1(−t)

(Λ+(t)

Λ−(t)
− 1
)

+
(Λ+(t)

Λ−(t)
N−
α2
(t)−N+

α2
(t)
)
(t− β)

(
ψ(0) +

1

µε
e−tT

)
, t ∈ R+

Φ+
1 (t)−

Λ+(t)

Λ−(t)
Φ−
1 (t) = e−tTΦ0(−t)

(Λ+(t)

Λ−(t)
− 1
)

−
(Λ+(t)

Λ−(t)
N−
α2
(t)−N+

α2
(t)
)
(t+ β)

(
e−tTψ(0) +

1

µε

)
, t ∈ R+.

(5.23)

In addition, removal of the poles in (4.2) implies that the expression in the brackets therein
must vanish at the zeros of Λ(z),

(z + β)
(
Φ0(z) + e−zTΦ1(−z)

)
+ µ2εNα1

(z)
(
ψ(0) +

e−zT

µε

)
= 0,

∀z ∈
{
ζ : Λ(ζ) = 0

}
.

(5.24)

At this point the proof splits into several cases, corresponding to the three possible zeros
configurations of Λ(z), described in Lemma 5.4, and the computation of filtering error, as
explained in Remark 5.3. While the specific calculations are somewhat different in each
case, they are based on the same technique, which we will detail for α1 > α2 ∈ (0, 1),
omitting all other cases.

Define θ(t) := arg
(
Λ+(t)

)
, choosing the argument branch so that θ(t) is continuous on

(0,∞) and θ(∞) := limt→∞ θ(t) belongs to the interval (−π, π). This defines θ(t) uniquely,
and, for α1 > α2,

θ(∞) =
1− α2

2
π and θ(0+) =

1− α2

2
π + π.
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In what follows we will need a function X(z), which is sectionally holomorphic on C \R+,
satisfies the boundary condition

X+(t)

X−(t)
=

Λ+(t)

Λ−(t)
= e2iθ(t), t ∈ R+, (5.25)

and does not vanish on the cut plane. Finding all such functions is known as the Hilbert
boundary value problem, whose solutions are given by the Sokhotski-Plemelj formula

X(z) = (−z)k−θ(∞)/π exp

(
1

π

∫ ∞

0

θ(t)− θ(∞)

t− z
dt

)
, (5.26)

where k is an arbitrary integer. The choice of k controls the growth of X(z) at the origin
and at infinity

X(z) =

{
O(zk−θ(0+)/π), z → 0,

O(zk−θ(∞)/π), z → ∞.
(5.27)

Define a pair of auxiliary functions

S(z) :=
Φ0(z) + Φ1(z)

2X(z)
and D(z) :=

Φ0(z)− Φ1(z)

2X(z)
. (5.28)

In view of (5.23) and (5.25), these functions satisfy the decoupled boundary conditions

S+(t)− S−(t) = 2ie−tT h(t)S(−t) + fS(t),

D+(t)−D−(t) =− 2ie−tT h(t)D(−t) + fD(t),
t ∈ R+, (5.29)

where we defined

fS(t) :=
1

2

(N−
α2
(t)

X−(t)
− N+

α2
(t)

X+(t)

)
·

(
(t− β)

(
ψ(0) +

1

µε
e−tT

)
− (t+ β)

(
e−tTψ(0) +

1

µε

))
,

fD(t) :=
1

2

(N−
α2
(t)

X−(t)
− N+

α2
(t)

X+(t)

)
·

(
(t− β)

(
ψ(0) +

1

µε
e−tT

)
+ (t+ β)

(
e−tTψ(0) +

1

µε

))
,

(5.30)

and the real valued function

h(t) :=
X(−t)
X+(t)

eiθ(t) sin θ(t) = exp

(
− 1

π

∫ ∞

0
θ′(s) log

∣∣∣∣
t+ s

t− s

∣∣∣∣ ds
)
sin θ(t).

Due to estimates (5.4) and (5.27), the choice k = 1 in (5.26) guarantees that S(−t) and
D(−t) are integrable and, moreover, square integrable near the origin, and implies that
S(z) and D(z) vanish as z → ∞. Hence by the Sokhotski-Plemelj theorem, applied to
(5.29), these functions must satisfy the equations

S(z) =
1

π

∫ ∞

0

e−tTh(t)
t− z

S(−t)dt+ FS(z),

D(z) =− 1

π

∫ ∞

0

e−tTh(t)
t− z

D(−t)dt+ FD(z),

(5.31)
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where we defined

FS(z) :=
1

2πi

∫ ∞

0

fS(t)

t− z
dt and FD(z) :=

1

2πi

∫ ∞

0

fD(t)

t− z
dt. (5.32)

Consider now a pair of auxiliary integral equations

p(t) =
1

π

∫ ∞

0

e−τTh(τ)
τ + t

p(τ)dτ + FS(−t),

q(t) =− 1

π

∫ ∞

0

e−τTh(τ)
τ + t

q(τ)dτ + FD(−t),
t ∈ R+. (5.33)

In view of (5.30) the restrictions FS(−t) and FD(−t) are real valued functions. The
operator in the right hand side

(Af)(t) =
1

π

∫ ∞

0

e−τTh(τ)
τ + t

f(τ)dτ

is a contraction on L2(R+), see [7, Lemma 5.6], and a calculation as in [7, Lemma 5.7]
shows that FS , FD ∈ L2(R+). Consequently, equations (5.33) have unique solutions p, q ∈
L2(R+).

Comparing (5.31) and (5.33) shows that

S(z) = p(−z) and D(z) = q(−z), z ∈ C \ R+,

where p(z) and q(z) are the analytic extensions. Then, by definition (5.28),

Φ0(z) =X(z)
(
p(−z) + q(−z)

)
,

Φ1(z) =X(z)
(
p(−z)− q(−z)

)
.

(5.34)

Let us summarize our findings so far. Given the unique solutions to the integral equations
(5.33), we can compute the functions Φ0(z) and Φ1(z) by means of (5.34) and plug them
into (4.2). The constant ψ(0) can be found by plugging the obtained expression for ĝ(z)
into (5.5), or equivalently in this case, into (5.19). Applying the inverse Laplace transform

to ĝ(z), gives a function which solves (1.7) and belongs to L1([0, T ])∩Λ
H− 1

2

T , where Λ
H− 1

2

T
is a space of nonrandom functions, on which the stochastic integral with respect to fBm
can be defined and has suitable properties (see Appendix A). Thus the original equation is
reduced to an equivalent problem of solving integral equations (5.33). The filtering error
PT is found by substitution of the expression for ĝ(z) into (5.20).

5.3. Asymptotic analysis. While for any fixed values of the parameters, the equivalent
problem derived above does not appear any simpler than the original equation, it does
simplify drastically when either of the limits T → ∞ or ε → 0 is taken. The key to the
asymptotic analysis are the estimates

∣∣p(z)− FS(−z)
∣∣ ≤ C

1

z

1

T
,
∣∣q(z)− FD(−z)

∣∣ ≤ C
1

z

1

T
, (5.35)

where C is a constant independent of T and ε. These bounds are derived exactly as in [7,
Lemma 5.7] and we omit the proof.
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5.3.1. Large time asymptotics. Upon substitution of expression (4.2) into the integral in
(5.19), the latter simplifies, asymptotically as T → ∞, to

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
ĝ(t)dt ≍

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)(

(t+ β)
Φ+
0 (t)

Λ+(t)
dt+ ψ(0)µ2ε

N+
α1
(t)

Λ+(t)

)
dt.

Due to (5.34) and estimates (5.35), the first term satisfies
∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
(t+ β)

Φ+
0 (t)

Λ+(t)
dt ≍

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
(t+ β)

X+(t)

Λ+(t)

(
p−(−t) + q−(−t)

)
dt =

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
(t+ β)

X+(t)

Λ+(t)

(
F+
S (t) + F+

D (t)
)
dt,

where, by definitions (5.30),

FS(z) + FD(z) =
1

2πi

∫ ∞

0

fS(t) + fD(t)

t− z
dt =

1

2πi

∫ ∞

0

1

t− z

(N−
α2
(t)

X−(t)
− N+

α2
(t)

X+(t)

)
(t− β)

(
ψ(0) +

1

µε
e−tT

)
dt ≍

ψ(0)
1

2πi

∫ ∞

0

(N−
α2
(t)

X−(t)
− N+

α2
(t)

X+(t)

)t− β

t− z
dt =: ψ(0)R(z;β, µε).

(5.36)

It follows that ∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
ĝ(t)dt ≍ ψ(0)I(β, µε), (5.37)

where the quantity

I(β, µε) :=

1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)(

(t+ β)
X+(t)

Λ+(t)
R+(t;β, µε) + µ2ε

N+
α1
(t)

Λ+(t)

)
dt

does not depend on T . A lengthy but otherwise direct calculation shows that this expression
is nonzero and therefore condition (5.19) implies that ψ(0) → 0 as T → ∞.

Similarly, we can simplify expression (5.20),

PT =
1

µε

1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
e−tT ĝ(−t)dt ≍

1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)(

(t− β)
1

µε

Φ+
1 (t)

Λ+(t)
− N+

α1
(t)

Λ+(t)

)
dt ≍

1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
(t− β)

1

µε

X+(t)

Λ+(t)

(
F+
S (t)− F+

D (t)
)
dt

− 1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)N+

α1
(t)

Λ+(t)
dt,
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where e−tT ĝ(−t) is computed using (4.2). Since ψ(0) remains bounded as T → ∞, (5.30)
implies

FS(z) − FD(z) =
1

2πi

∫ ∞

0

fS(t)− fD(t)

t− z
dt ≍ (5.38)

1

2πi

1

µε

∫ ∞

0

(N+
α2
(t)

X+(t)
− N−

α2
(t)

X−(t)

)t+ β

t− z
dt =: Q(z;β, µε),

and hence, as claimed in (2.1), PT converges to the limit

P∞(β, µε) :=
1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)( t− β

µε

X+(t)

Λ+(t)
Q+(t;β, µε)−

N+
α1
(t)

Λ+(xt)

)
dt. (5.39)

5.3.2. Small noise asymptotics. To emphasise the dependence on ε and other parameters
we will add them to the notations, writing Λ(z;β, µε) for Λ(z), etc. In view of definitions
(4.3) and (4.5), the structural function satisfies the scaling property

Λ
(
ε−γz;β, µε

)
= ε−γ(1+α2)Λ

(
z; εγβ, µ

)
, γ :=

1

2 + α2 − α1
> 0.

Consequently, θ(ε−γt;β, µε) = θ
(
t; εγβ, µ

)
and, by definition (5.26),

X
(
ε−γz;β, µε

)
= (−ε−γz)1−

1−α2
2 exp

(
1

π

∫ ∞

0

θ(t; εγβ, µ)− θ(∞)

t− z
dt

)
=

ε−
1

2
γ(1+α2)X

(
z; εγβ, µ

)
.

Substituting formula (4.2), expressions (5.34) and estimates (5.35) into the integral in
(5.19) and changing the integration variable accordingly, we obtain

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
ĝ(t)dt ≍

− ε−γ
1+α2

2

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
(t+ εγβ)

X+
(
t; εγβ, µ

)(
F+
S (ε−γt) + F+

D (ε−γt)
)

Λ+
(
t; εγβ, µ

) dt

− ε−γα2µ2ψ(0)

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
) N+

α1
(t)

Λ+
(
t; εγβ, µ

)dt,

as ε→ 0. Here, in view of (5.30) and (5.32),

FS(ε
−γz) + FD(ε

−γz) =
1

2πi

∫ ∞

0

fS(ε
−γt) + fD(ε

−γt)
t− z

dt ≍

ε
1

2
γ(1−α2)ψ(0)

1

2πi

∫ ∞

0

(
N−
α2
(t)

X−(t; εγβ, µ
) − N+

α2
(t)

X+
(
t; εγβ, µ

)
)
t− εγβ

t− z
dt =

ε
1

2
γ(1−α2)ψ(0)R

(
z; εγβ, µ

)
,

where R(·) was defined in (5.36). Consequently, cf. (5.37),
∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
ĝ(t)dt ≍ ε−γα2ψ(0)I(εγβ, µ),

and thus condition (5.19) implies ψ(0) = o(εγα2) as ε→ 0.
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The filtering error asymptotics is deduced from (5.20) by similar calculations,

PT (β, µε) ≍ εγ(2−α1) 1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
·

(
ε−

γ
2
(3−α1)(t− εγβ)

1

µ

X+
(
t; εγβ, µ

)

Λ+
(
t; εγβ, µ

)
(
F+
S (ε−γt)− F+

D (ε−γt)
)
− N+

α1
(t)

Λ+
(
t; εγβ, µ

)
)
dt.

Here, cf. (5.38),

FS(ε
−γz)− F+

D (ε−γz) =
1

2πi

∫ ∞

0

fS(ε
−γt)− fD(ε

−γt)
t− z

dt =

ε
1

2
+ 1

2
γ(1−α2) 1

2πi

1

µ

∫ ∞

0

( N+
α2
(t)

X+
(
t; εγβ, µ

) − N−
α2
(t)

X−(t; εγβ, µ
)
)t+ εγβ

t− z
dt,

and consequently

PT (β, µε) ≍ εγ(2−α1) 1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
·

(
(t− εγβ)

1

µ

X+
(
t; εγβ, µ

)

Λ+
(
t; εγβ, µ

)Q(t; εγβ, µ)− N+
α1
(t)

Λ+
(
t; εγβ, µ

)
)
dt ≍ εγ(2−α1)P∞(0, µ),

where P∞(·) is exactly the function obtained in (5.39). This proves the asymptotics claimed
in (2.2).

6. Proof of Theorem 2.3

In this section we derive the large time limit (2.5), from which small noise asymptotics
(2.6) follows by Theorem 2.1 in the obvious way.

6.1. The equivalent problem. For α1 = α2 =: α ∈ (0, 2), expression (4.2) for the
Laplace transform reduces to

ĝ(z) = − z + β

z2 − t20

Φ0(z) + e−zTΦ1(−z)
Nα(z)

− µ2ε
z2 − t20

(
ψ(0) +

1

µε
e−zT

)
, (6.1)

where t20 = β2 + µ2ε, cf. (4.5). In this case,

Λ+(t)

Λ−(t)
=
N+
α (t)

N−
α (t)

= e(1−α)πi, t ∈ R,

and equations (5.23) simplify to

Φ+
0 (t)− e(1−α)πiΦ−

0 (t) = e−tTΦ1(−t)
(
e(1−α)πi − 1

)
,

Φ+
1 (t)− e(1−α)πiΦ−

1 (t) = e−tTΦ0(−t)
(
e(1−α)πi − 1

)
,

t ∈ R+.

The sectionally holomorphic function in (5.26) reduces to

X(z) = (−z)α−1

2 , z ∈ C \ R+, (6.2)
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with the constant jump across the real line

X+(t)

X−(t)
= e(1−α)πi, t ∈ R+.

In this case the functions defined in (5.28) satisfy, cf. (5.29),

S+(t)− S−(t) = 2ie−tT hS(−t),
D+(t)−D−(t) = −2ie−tT hD(−t),

t ∈ R+,

with the constant h = sin
(
1−α
2 π

)
. In view of estimates (5.4) and expression (6.2), functions

S(z) and D(z) grow sublinearly as z → ∞ and their restrictions to negative reals are
(square) integrable near the origin. Consequently, by the Sokhotski-Plemelj theorem, cf.
(5.31),

S(z) =
1

π

∫ ∞

0

e−tTh
t− z

S(−t)dt+ kS0

D(z) =− 1

π

∫ ∞

0

e−tTh
t− z

D(−t)dt+ kD0 ,

where kS0 and kD0 are some constants, yet to be determined. The relevant auxiliary integral
equations in this case are

p0(t) =
1

π

∫ ∞

0

e−τTh
τ + t

p0(τ)dτ + 1,

q0(t) =− 1

π

∫ ∞

0

e−τTh
τ + t

q0(τ)dτ + 1,

t ∈ R+.

They have unique solutions, such that Ap0, Aq0 ∈ L2(R+) and, by linearity, S(z) =
kS0 p0(−z) and D(z) = kD0 q0(−z), so that, cf. (5.34),

Φ0(z) =X(z)
(
kS0 p0(−z) + kD0 q0(−z)

)
,

Φ1(z) =X(z)
(
kS0 p0(−z)− kD0 q0(−z)

)
.

(6.3)

Substituting these formulas into (6.1), we obtain an expression for the Laplace transform,
which depends on the unknown constants ψ(0), kS0 and kD0 . These constants can be found
from the linear algebraic system, consisting of (5.5) and the two additional equations,
obtained by the poles removal in (6.1),

(t0 + β)
Φ+
0 (t0) + e−t0TΦ1(−t0)

N+
α (t0)

+ µ2ε

(
ψ(0) +

1

µε
e−t0T

)
= 0,

(t0 − β)
e−t0TΦ0(−t0) + Φ−

1 (t0)

N−
α (t0)

− µ2ε

(
e−t0Tψ(0) +

1

µε

)
= 0.

(6.4)

Once this system is solved, the Laplace transform ĝ(z) becomes completely specified and
the filtering error can be computed by means of equation (5.6).
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6.2. Large time limit α ∈ (0, 1). The main element of the asymptotic analysis is the
estimates similar to (5.35),

∣∣p0(z)− 1
∣∣ ≤ C

1

z

1

T
,
∣∣q0(z)− 1

∣∣ ≤ C
1

z

1

T
.

Due to these bounds and equations (6.3), conditions (6.4) simplify as T → ∞ to

(t0 + β)
X+(t0)

N+
α (t0)

kS0 + (t0 + β)
X+(t0)

N+
α (t0)

kD0 + µ2εψ(0) ≍ 0,

(t0 − β)
X−(t0)

N−
α (t0)

kS0 − (t0 − β)
X−(t0)

N−
α (t0)

kD0 ≍ µε.

(6.5)

Further calculations are carried out somewhat differently, depending on the values of α, as
explained in Remark 5.3.

Let us first consider the case α ∈ (0, 1). The restriction of ĝ(z) to the real line, needed
in (5.19), is found by taking the limit z → t ∈ R+ in (6.1), either in the upper or lower
half planes. By subtracting from ĝ(t) the first equation in (6.4), plugging the result into
(5.19) and taking T → ∞ we obtain the asymptotics

1

2πi

∫ ∞

0

(
N+
α2
(t)−N−

α2
(t)
)
ĝ(t)dt ≍

(kS0 + kD0 )
1

2πi

∫ ∞

0

N+
α (t)−N−

α (t)

t2 − t20

(
(t0 + β)

X+
0 (t0)

N+
α (t0)

− (t+ β)
X+

0 (t)

N+
α (t)

)
dt.

(6.6)

The latter integral is well defined, since singularity at t0 is integrable, and it does not
vanish for all α ∈ (0, 1). Therefore (5.19) implies that kS0 + kD0 → 0 as T → ∞ and, due to
(6.5), we also have ψ(0) → 0 and

kS0 − kD0 −−−−→
T→∞

µε
t0 − β

N−
α (t0)

X−(t0)
. (6.7)

The expression (2.5) can now be derived by using (5.20):

P∞(β, µε)
(a)
≍

kS0 − kD0
µε

1

2πi

∫ ∞

0

N+
α (t)−N−

α (t)

t2 − t20

(
(t− β)

X−(t)

N−
α (t)

− (t0 − β)
X−(t0)

N−
α (t0)

)
dt

(b)
≍

1

2πi

∫ ∞

0

N+
α (t)−N−

α (t)

t2 − t20

( t− β

t0 − β

N−
α (t0)

X−(t0)
X−(t)

N−
α (t)

− 1
)
dt

(c)
=

κα
cos α2π

π

∫ ∞

0

tα−1

t2 − t20

( t− β

t0 − β
(t/t0)

1−α
2 − 1

)
dt

(d)
=

Γ(3− α)

2
tα−2
0

(
1 + sin(α2π)

t0 + β

t0 − β

)
,

(6.8)

where (a) is obtained by plugging e−Ttĝ(−t) from (6.1) and subtracting the second equation
from (6.4), the limit (b) holds due to (6.7), equality (c) follows by by substitution of
the explicit formulas from (4.3) and (6.2) and (d) is computed by the standard contour
integration and simplified using elementary trigonometry.
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6.3. Large time limit α ∈ (1, 2). In view of (6.1) and (6.3), the first term in the brackets
in (5.5) satisfies

zNα(z)ĝ(z) =− Φ0(z) +O(zα−2) = −X(z)
(
kS0 + kD0

)
+O(zα−2) =

− (−z)α−1

2

(
kS0 + kD0

)
+O(zα−2), as Re(z) → ∞.

(6.9)

Similarly to (6.6), the second term satisfies, as T → ∞,

1

2πi

∫ ∞

0

1

t− z

(
N+
α (t)−N−

α (t)
)
ĝ(t)dt ≍

kS0 + kD0
2πi

∫ ∞

0

N+
α (t)−N−

α (t)

t− z

1

t2 − t20

(
(t0 + β)

X+(t0)

N+
α (t0)

− (t+ β)
X+(t)

N+
α (t)

)
dt.

The latter integral can be written as the sum of three parts,

J1(z) :=
1

2πi

∫ ∞

0

N+
α (t)−N−

α (t)

t− z

t0 + β

t2 − t20

(X+(t0)

N+
α (t0)

− X+(t)

N+
α (t)

)
dt,

J2(z) :=
1

2πi

∫ ∞

0

N+
α (t)−N−

α (t)

t− z

t0
t(t+ t0)

X+(t)

N+
α (t)

dt,

J3(z) := − 1

2πi

∫ ∞

0

N+
α (t)−N−

α (t)

t− z

1

t

X+(t)

N+
α (t)

dt,

where both zJ1(z) and zJ2(z) converge to finite limits as z → ∞ and

−zJ3(z) =z
1

2πi

∫ ∞

0

N+
α (t)−N−

α (t)

t− z

1

t

X+(t)

N+
α (t)

dt =

− z
sin(α−1

2 π)

π

∫ ∞

0

t
α−1

2
−1

t− z
dt = (−z)α−1

2 .

This term cancels out with (6.9) in the limit (5.5), which therefore, takes the form

(
kS0 + kD0

)
lim

Re(z)→∞

(
zJ1(z) + zJ2(z)

)
= 0.

A calculation shows that the limit here remains non-zero for all α ∈ (1, 2). Consequently,
kS0 + kD0 → 0 as T → ∞ and (6.7) remains true. Similarly, the first term in (5.6) has the
asymptotics

zNα(−z)e−zT ĝ(−z) = (−z)α−1

2 (kS0 − kD0 ) +O(zα−2), z → ∞,

which compensates the leading order term in the integral. Hence we obtain

PT (β, µε) ≍

(kS0 − kD0 )
t0 − β

µε

1

2πi

∫ ∞

0

(
N+
α (t)−N−

α (t)
) 1

t2 − t20

(X+(t)

N+
α (t)

− X+(t0)

N+
α (t0)

)
dt

− (kS0 − kD0 )
t0
µε

1

2πi

∫ ∞

0

(
N+
α (t)−N−

α (t)
) 1

t(t+ t0)

X+(t)

N+
α (t)

dt, T → ∞.
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Upon substitution of (4.3) and (6.2) these integrals can be evaluated explicitly by means of
standard contour integration. Then plugging the limit (6.7) and simplifying the obtained
trigonometric formulas, we arrive at the very same expression, derived in (6.8).

7. Proof of Theorem 2.7

7.1. The equivalent problem. The equivalent problem in Subsection 5.2 was derived for
α2 ∈ (0, 1), and in the complementary case α2 ∈ (1, 2) it takes a somewhat different form.
The function θ(t) = arg

(
Λ+(t)

)
is now negative with θ(0+) = −π and θ(∞) = 1−α2

2 π, and,
consequently, in view of estimates (5.4) and (5.27), the appropriate choice of the factor in
(5.26) is k = −1. The functions S(z) and D(z), defined in (5.28), grow at most linearly as
z → ∞ and, therefore,

S(z) =− kS1 p1(−z) + kS0 p0(−z) + p(−z),
D(z) =− kD1 q1(−z) + kD0 q0(−z) + q(−z),

(7.1)

where pj(z), qj(z) and p(z), q(z) are solutions to auxiliary integral equations (8.11) and
(5.33), respectively. Combining (5.28) with (7.1) yields the expressions for Φ0(z) and Φ1(z)
and, in turn, for the Laplace transform ĝ(z) in (4.2), specified up to unknown constants
kSj , k

D
j and ψ(0). These constants are found using (5.5) and the conditions, implied by

removal of the poles,

(z0 + β)
(
Φ0(z0) + e−z0TΦ1(−z0)

)
+ µ2ε

(
ψ(0) +

1

µε
e−z0T

)
= 0,

(z0 − β)
(
Φ1(z0) + e−z0TΦ0(−z0)

)
− µ2ε

( 1

µε
+ e−z0Tψ(0)

)
= 0.

(7.2)

Finally, the limit filtering error can be computed using (5.6).

7.2. Large time limit α ∈ (0, 1). Let α1 = 1 and α2 = α ∈ (0, 1). Our starting point
is the expression for the limiting error (5.39). Using the special form of the structural
function in this case,

Λ(z) = (z2 − β2)Nα(z)− µ2ε, (7.3)

and property (5.25), the integral in (5.38) simplifies to

Q(z) =
1

2πi

1

µε

∫ ∞

0

t+ β

t− z

(N+
α (t)

X+(t)
− N−

α (t)

X−(t)

)
dt =

µε
1

2πi

∫ ∞

0

1

t− z

1

t− β

( 1

X+(t)
− 1

X−(t)

)
dt =

µε
z − β

(
H(z)−H(β)

)
,

where we defined

H(z) :=
1

2πi

∫ ∞

0

1

t− z

( 1

X+(t)
− 1

X−(t)

)
dt, (7.4)

and H(β) stands for the common value of H+(β) = H−(β). These two limits coincide,
since Λ(z) in (7.3) satisfies Λ+(β) = Λ−(β) and hence, in view of (5.25),

X+(β) = X−(β) =: X(β) ∈ R, β > 0.
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By the Sokhotski-Plemelj theorem

H+(t)−H−(t) =
1

X+(t)
− 1

X−(t)
, t ∈ R+,

and hence H(z)−1/X(z) is an entire function. Since it vanishes as z → ∞, it must coincide
with the zero function and hence

Q(z) =
µε

z − β

( 1

X(z)
− 1

X(β)

)
. (7.5)

Plugging this formula into (5.39) yields

P∞(β, µε) = − 1

X(β)

1

2πi

∫ ∞

0

(
N+
α (t)−N−

α (t)
)X+(t)

Λ+(t)
dt. (7.6)

Further simplification is possible due to the following lemmas.

Lemma 7.1.

X(z)X(−z) = − 1

κα
Λ(z), z ∈ C \ R. (7.7)

Proof. By definition (5.26) with k = 1,

X(z)X(−z) = (−z)1−θ(∞)/πz1−θ(∞)/π exp
(
Υ(z)

)
, (7.8)

where

Υ(z) :=
1

π

∫ ∞

0

θ(t)− θ(∞)

t− z
dt+

1

π

∫ ∞

0

θ(t)− θ(∞)

t+ z
dt.

Define the function, cf. (7.3),

Λ̃(z) :=
Λ(z)

z2Nα(z)
= 1− β2z−2 − µ2ε

z2Nα(z)
.

Since arg
(
N+
α (t)

)
= θ(∞) and in view of symmetries (4.4) and (5.21),

θ(t)− θ(∞) = arg
(
Λ̃+(t)

)
=

1

2i
log

Λ̃+(t)

Λ̃−(t)
=: θ̃(t).

The angle function θ̃(t) is odd, θ̃(t) = −θ̃(−t), and hence we can write

Υ(z) =
1

π

∫ ∞

0

θ̃(t)

t− z
dt+

1

π

∫ ∞

0

θ̃(t)

t+ z
dt =

1

π

∫ ∞

−∞

θ̃(t)

t− z
dt =

1

2πi

∫ ∞

−∞

log Λ̃+(t)

t− z
dt− 1

2πi

∫ ∞

−∞

log Λ̃−(t)
t− z

dt.

The latter integrals are well defined since log Λ̃±(t) = O(|t|−1−α) as |t| → ∞. An el-

ementary calculation shows that Λ̃(z) does not cross the branch cut of the logarithm
for any z ∈ C \ R. Hence these integrals can be computed by integrating the function

f(ζ) = log Λ̃(ζ)/(ζ − z) over the circular arcs in the lower and upper half planes. Standard

residue calculus then shows that Υ(z) = log Λ̃(z), and the claimed formula is obtained by
plugging this into (7.8). �

The large time limit (2.11) for H > 1
2 follows from (7.6) and the following expression.
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Lemma 7.2.

1

2πi

∫ ∞

0

(
N+
α (t)−N−

α (t)
)X+(t)

Λ+(t)
dt = −µ

2
ε

κα

1

2β

( 1

X(β)
− 1

X(−β)
)
.

Proof. In view of (4.3) and identity (7.7), this integral equals −1
2

1

sin(α2π)
I with

I =
sin(πα)

π

∫ ∞

0

tα−1

X(−t)dt.

Integrating the function f(z) = zα−1/X(z) over semicircular contours in the upper and
lower half-planes, applying Jordan’s lemma and subtracting the results, we obtain an al-
ternative expression

I =
1

2πi

∫ ∞

0
tα−1

( 1

X+(t)
− 1

X−(t)

)
dt.

This can also be viewed as the limit I = − limz→∞ zF (z) for

F (z) :=
1

2πi

∫ ∞

0

tα−1

t− z

( 1

X+(t)
− 1

X−(t)

)
dt.

Now define the sectionally holomorphic function

G(z) := (z2 − β2)
(
F (z) +

(−z)α−1

X(z)

)
, z ∈ C \ R+.

Its limits across the positive real semiaxis satisfy

G+(t)−G−(t) = (t2 − β2)

(
F+(t)− F−(t) +

(e−πit)α−1

X+(t)
− (eπit)α−1

X−(t)

)
=

2
cos(α−1

2 π)

κα

(
(t2 − β2)N+

α (t)

X+(t)
− (t2 − β2)N−

α (t)

X−(t)

)
=

2
sin(α2 π)

κα

(
Λ+(t) + µ2ε
X+(t)

− Λ−(t) + µ2ε
X−(t)

)
= 2

sin(α2π)µ
2
ε

κα

(
1

X+(t)
− 1

X−(t)

)
,

where the last equality holds by virtue of (5.25). Since G(z) = −Iz
(
1+o(1)

)
and 1/X(z) →

0 as z → ∞, by the Sokhotski-Plemelj theorem

G(z) = 2µ2ε
sin(α2π)

κα

1

X(z)
− Iz + C,

with a constant C. By definition of G(z) it must vanish at ±β and hence

I =
µ2ε
β

sin(α2π)

κα

( 1

X(β)
− 1

X(−β)
)
.

�
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7.3. Small noise asymptotics α ∈ (0, 1). The formula in (2.12) is obtained using (2.2),
continuity of (2.11) with respect to β and the following limit.

Lemma 7.3. For ε = 1,

lim
β→0+

1

β
log

X(−β)
X(β)

=
2

sin π
1+α

(
κα
µ2

) 1

1+α

.

Proof. Let θ̃(t) := θ(t)− θ(∞) and note that θ̃(t) = arg
(
Λ̃+(t)

)
where, c.f. (4.5),

Λ̃(z) =
Λ(z)

Nα(z)
= z2 − β2 − µ2

Nα(z)
.

By definition (5.26), for β > 0,

X(β)

X(−β) =− exp

(
− 1

π

∫ ∞

0

θ̃(t)

t+ β
dt+

1

π
−
∫ ∞

0

θ̃(t)

t− β
dt+ iθ(β)

)
=

exp

(
2β

π
−
∫ ∞

0

θ̃(t)

t2 − β2
dt

)
=: exp(J),

where the integral is in the sense of the Cauchy principal value and the second equality
holds since θ(β) = π. Due to symmetry (5.21),

θ̃(t) =
1

2i
log

Λ̃+(t)

Λ̃−(t)
,

and since −
∫ ∞

0

1

t2 − β2
dt = 0, we can write

J =
β

πi

∫ ∞

0

log Λ̃+(t)− log Λ̃+(β)

t2 − β2
dt− β

πi

∫ ∞

0

log Λ̃−(t)− log Λ̃−(β)
t2 − β2

dt.

Integrating the function

f(z) =
log Λ̃(z) − log Λ̃+(β)

z2 − β2

over the closed contour in the first quadrant, formed by the axes and a circular arc, and
applying Jordan’s lemma, we find that

1

2πi

∫ ∞

0

log Λ̃+(t)− log Λ̃+(β)

t2 − β2
dt = − 1

2π

∫ ∞

0

log Λ̃r(it)− log Λ̃+(β)

t2 + β2
dt,

where Λ̃r(it) stands for the limit of Λ̃(z) as z → it in the right half-plane. Integrating the
function

h(z) =
log Λ̃(z) − log Λ̃−(β)

z2 − β2

over similar contour in the fourth quadrant, we get

1

2πi

∫ ∞

0

log Λ̃−(t)− log Λ̃−(β)
t2 − β2

dt =
1

2π

∫ ∞

0

log Λ̃r(−it)− log Λ̃−(β)
t2 + β2

dt.
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Subtracting, we obtain

J = −β
π

∫ ∞

0

log Λ̃r(it)− log Λ̃+(β)

t2 + β2
dt− β

π

∫ ∞

0

log Λ̃r(−it)− log Λ̃−(β)
t2 + β2

dt

=
1

2

(
log Λ̃+(β) + log Λ̃−(β)

)
− 2β

π

∫ ∞

0

Re
(
log Λ̃r(it)

)

t2 + β2
dt.

A standard calculation, which uses the explicit expressions

Re
(
log Λ̃r(it)

)
= log

(
t2 + β2 +

µ2

κα
t1−α

)

and

log Λ̃+(β) + log Λ̃−(β) = 2 log

(
µ2

κα
β1−α

)
,

yields the claimed asymptotics

J = − 2β

sin π
1+α

(
κα
µ2

) 1

1+α (
1 + o(1)

)
, β → 0.

�

7.4. Large time limit α ∈ (1, 2). We can use (5.28) and (7.1) to express Φ0(z) and
Φ1(z) in terms of solutions to (5.33) and (8.11). If we plug the obtained expressions into
equations (7.2) and apply the estimates (5.35) and (8.12), we arrive at the large time
asymptotic relations, T → ∞,

(z0 + β)X(z0)
(
(kS1 + kD1 )z0 + kS0 + kD0 + FS(z0) + FD(z0)

)
+ µ2εψ(0) ≍ 0,

(z0 − β)X(z0)
(
(kS1 − kD1 )z0 + kS0 − kD0 + FS(z0)− FD(z0)

)
− µε ≍ 0,

(7.9)

In the case α ∈ (1, 2) the functionH(z) in (7.4) can no longer be defined, but nevertheless
the formula in (7.5) remains valid, as can be checked directly using the Sokhotski-Plemelj
theorem. Hence the second equation in (7.9) is equivalent to

(kS1 − kD1 )z0 + kS0 − kD0 ≍ µε
z0 − β

1

X(β)
.

Since X(β) is purely real, this implies

kS1 − kD1 ≍ − µε
X(β)

1

|z0 − β|2 ,

kS0 − kD0 ≍ − µε
X(β)

β − z0 − z0
|z0 − β|2 .

(7.10)

The filtering error can now be computed using (5.6). To this end, note that, in view of
(4.2) and (7.1), the first term satisfies

Nα(−z)e−zT ĝ(−z) =
(
kS1 − kD1

)
(−z)α−1

2
−1 +O

(
z

α−1

2
−2
)
, Re(z) → ∞, (7.11)

where

(−z)α−1

2
−1 = −cos(α2 π)

π

∫ ∞

0

t
α−1

2
−1

t− z
dt.
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Due to (4.2) and (4.3), the integral in (5.6) takes the form

1

2πi

∫ ∞

0

1

t− z

(
N+
α (t)−N−

α (t)
)
e−tT ĝ(−t)dt =

κα
cos(α2π)

π

∫ ∞

0

tα−1

t− z

(
(t− β)

Φ+
1 (t)

Λ+(t)
− µε

Λ+(t)

)
dt+ z−1R(z, T ),

(7.12)

where the residual R(z, T ) vanishes as T → ∞, uniformly over z. The value of the latter
integral will not change asymptotically as T → ∞, if we replace

Φ+
1 (t) ≍ (kS1 − kD1 )t+ kS0 − kD0 +Q+(t).

Thus, substituting approximations (7.11) and (7.12) into (5.6) and using formula (7.5), we
arrive at

PT (β, µε) ≍
κα
µε

cos(α2 π)

π

((
kS1 − kD1

)
I2 +

(
kS0 − kD0

)
I1 + I0

)
, (7.13)

with

I0 :=− µε
X(β)

∫ ∞

0
tα−1X

+(t)

Λ+(t)
dt,

I1 :=

∫ ∞

0
tα−1(t− β)

X+(t)

Λ+(t)
dt,

I2 :=

∫ ∞

0

(
tα(t− β)

X+(t)

Λ+(t)
+

1

κα
t
α−1

2
−1
)
dt.

(7.14)

To simplify the expression in (7.13) we will need the following identity.

Lemma 7.4.

X(z)X(−z) = − 1

κα

Λ(z)

(z2 − z20)(z
2 − z20)

, z ∈ C \ R. (7.15)

Proof. For X(z) defined in (5.26) with k = −1,

X(z)X(−z) = (−z)−1+α−1

2 z−1+α−1

2 exp
(
Υ(z)

)
,

where

Υ(z) :=
1

π

∫ ∞

0

θ(t)− θ(∞)

t− z
dt+

1

π

∫ ∞

0

θ(t)− θ(∞)

t+ z
dt.

Define the function

Λ̃(z) :=
Λ(z)

z2Nα(z)
= 1− β2z−2 − µ2ε

z2Nα(z)
.

Since arg
(
N+
α (t)

)
= θ(∞) for all t ∈ R+,

θ(t)− θ(∞) = arg
(
Λ̃+(t)

)
=

1

2i
log

Λ̃+(t)

Λ̃−(t)
=: θ̃(t),

and, therefore,

Υ(z) =
1

π

∫ ∞

0

θ̃(t)

t− z
dt+

1

π

∫ ∞

0

θ̃(t)

t+ z
dt

†
=

1

π

∫ ∞

−∞

θ̃(t)

t− z
dt =

1

2πi

∫ ∞

−∞

log Λ̃+(t)

t− z
dt− 1

2πi

∫ ∞

−∞

log Λ̃−(t)
t− z

dt,

(7.16)
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where the equality † holds by the antisymmetry θ̃(t) = −θ̃(−t). The last two integrals

in (7.16) are well defined since limt→±∞ Λ̃±(t) = 1. They can be evaluated by contour
integration of the function

f(ζ) :=
log Λ̃(ζ)

ζ − z
, (7.17)

which must take into account the branch cut of the logarithm,

C =
{
ζ ∈ C : Λ̃(ζ) ∈ R−

}
= C1 ∪ C2 ∪ C3 ∪ C4, (7.18)

where Cj denotes the intersection of C with the j-th quadrant.

Let us determine the geometric shapes of each curve Cj ’s starting with C1. For z = ρeiφ

in the first quadrant, with ρ ∈ R+ and φ ∈ (0, π2 ),

Λ̃(z) = 1 + β2ρ−2e2φ̃i +
µ2ε
κα
ρ−1−αe(α+1)φ̃i,

where φ̃ := π
2 − φ ∈ (0, π2 ). Hence Im

(
Λ̃(z)

)
= 0 holds if and only if either ϕ̃ = 0 or

ρα−1 = − 1

β2
µ2ε
κα

sin((α+ 1)φ̃)

sin(2φ̃)
. (7.19)

This equation has a solution only if the right hand side is positive, that is, when φ̃ ∈
( π
α+1 ,

π
2 ). For all such φ̃ and with ρ as in (7.19),

Re
(
Λ̃(z)

)
=1 + β2ρ−2 cos(2φ̃) +

µ2ε
κα
ρ−1−α cos((α+ 1)φ̃) =

1 + ρ−2β2
sin((α − 1)φ̃)

sin((α + 1)φ̃)
= 1 +

(
β2
)α+1

α−1

(
κα
µ2ε

) 2

α−1

g(φ̃),

where we defined

g(φ̃) :=

(
− sin(2φ̃)

sin((α + 1)φ̃)

) 2

α−1
sin((α − 1)φ̃)

sin((α + 1)φ̃)
.

This function is strictly increasing on the interval ( π
α+1 ,

π
2 ) and maps it onto (−∞, 0).

Hence Re
(
Λ̃(z)

)
vanishes at the unique angle φ̃0 ∈ ( π

α+1 ,
π
2 ), and Re

(
Λ̃(z)

)
< 0 if and only

if φ̃ ∈ ( π
α+1 , φ̃0). Therefore C1 is the curve, which starts with φ̃ = π

α+1 at the origin and

terminates at z0 = ρ0e
iφ0 , where φ0 = π

2 − φ̃0 and the absolute value ρ0 is determined by

(7.19). The terminal point z0 is precisely the zero of Λ(z), and hence also of Λ̃(z), in the
first quadrant.

The imaginary part Im(Λ̃(z)) vanishes on the positive imaginary semiaxis and on the

continuation of C1 corresponding to φ̃ ∈ [φ̃0,
π
2 ), where Re(Λ̃(z)) remains positive. Hence

Im(Λ̃(z)) preserves its sign on the subset of the first quadrant, which lies between these
curves, and it is readily checked to be positive. The rest of Cj’s have similar forms, starting
at the origin and terminating at the other zeros of Λ(z), as shown on Figure 1. Along with
the real and imaginary axes they divide the plane into eight subsets, on which the sign of

Im(Λ̃(z)) is constant.
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z0
C1

z0
C4

−z0
C2

−z0
C3

>>

>>

>>>>

>>

>>

>>>>

+−

+ −

+ −

− +

Figure 1. The branch cut C in (7.18) is depicted in solid blue; Im(Λ̃(z))
changes signs across the blue lines, both dashed and solid, being encircled
over the corresponding regions; the two integration contours are coloured
in red.

For definiteness, suppose Im(z) > 0. Then integrating f(ζ) from (7.17) along the closed
contour in the upper half plane, applying Jordan’s lemma and Cauchy’s residue theorem,
we obtain

1

2πi

∫ ∞

−∞

log Λ̃+(t)

t− z
dt = log Λ̃(z) − 1

2πi

∮

C1

log Λ̃(ζ)

ζ − z
dζ − 1

2πi

∮

C2

log Λ̃(ζ)

ζ − z
dζ,

where the last two terms stand for the limiting values of the integrals over the shrinking

contours around C1 and C2. Since
∣∣Λ̃(ζ)

∣∣ is continuous across Cj’s and taking into account

the signs of Λ̃(ζ),

1

2πi

∮

C1

log Λ̃(ζ)

ζ − z
dζ =

2πi

2πi

[
log(ζ − z)

]z0
0

= log
z − z0
z

and
1

2πi

∮

C2

log Λ̃(ζ)

ζ − z
dζ =

2πi

2πi

[
log(ζ − z)

]−z0
0

= log
z + z0
z

.

Similarly, integration over the contour in the lower half plane gives

1

2πi

∫ ∞

−∞

log Λ̃−(t)
t− z

dt =
1

2πi

∮

C3

log Λ̃(ζ)

ζ − z
dζ +

1

2πi

∮

C4

log Λ̃(ζ)

ζ − z
dζ =

log
z + z0
z

+ log
z − z0
z

.

Plugging this into (7.16) we obtain

Υ(z) = log Λ̃(z)
z4

(z2 − z20)(z
2 − z20)
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and, consequently,

X(z)X(−z) =(−z)−1+α−1

2 z−1+α−1

2
Λ(z)

z2Nα(z)

z4

(z2 − z20)(z
2 − z20)

=

−(−z)α−1

2 z
α−1

2

Nα(z)

Λ(z)

(z2 − z20)(z
2 − z20)

= − 1

κα

Λ(z)

(z2 − z20)(z
2 − z20)

.

�

Using formula (7.15), the integrals in (7.14) can now be written as

I0 =
µε
X(β)

J0
κα
, I1 =

βJ0 − J1
κα

, I2 =
βJ1 − J2

κα
, (7.20)

where the basic elements are

J0 :=

∫ ∞

0

1
∣∣t2 − z20

∣∣2
tα−1

X(−t)dt,

J1 :=

∫ ∞

0

t
∣∣t2 − z20

∣∣2
tα−1

X(−t)dt,

J2 :=

∫ ∞

0

(
t2

∣∣t2 − z20
∣∣2

tα−1

X(−t) − t
α−1

2
−1

)
dt.

(7.21)

Closed form expressions for these integrals are derived in the following lemma.

Lemma 7.5. The integrals in (7.21) satisfy

J0 =
1

2

1

z20 − z20

(
L
(
α+1
2

)
− b̃0L

(
α−1
2

)

+ z−1
0 M(z0)− z−1

0 M(−z0)− z−1
0 M(z0) + z−1

0 M(−z0)
)
,

J1 =
1

2

1

z20 − z20

(
L
(
α+3
2

)
− b̃0L

(
α+1
2

)

+M(z0) +M(−z0)−M(z0)−M(−z0)
)
, (7.22)

J2 =
1

2

1

z20 − z20

(
L
(
α+5
2

)
− b̃0L

(
α+3
2

)

+ z0M(z0)− z0M(−z0)− z0M(z0) + z0M(−z0)
)
,

where

L(γ) =
π

sinπγ

(
zγ−1
0 + (−z0)γ−1 − zγ−1

0 − (−z0)γ−1
)

(7.23)
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and

M(z) =
1

κα

π

cos(α2π)

(
1

X(z)

Λ(z)

z2 − β2
−Nα(z)z

3−α
2

(
1− b̃0z

−1
)

(7.24)

+
1

2

µ2ε
z2 − β2

( 1

X(β)
+

1

X(−β)
)
− 1

2

µ2ε
z2 − β2

z

β

( 1

X(β)
− 1

X(−β)
))

.

Proof. Define the function

Y (z) :=
1

X(z)
− (−z) 3−α

2

(
1 + b̃0z

−1
)
, (7.25)

where

b̃0 :=
1

π

∫ ∞

0

(
θ(t)− θ(∞)

)
dτ < 0.

The integrals in (7.21) can be written as

J0 =

∫ ∞

0

1
∣∣t2 − z20

∣∣2 t
α−1Y (−t)dt+ U

(
α+1
2

)
− b̃0U

(
α−1
2

)
,

J1 =

∫ ∞

0

t
∣∣t2 − z20

∣∣2 t
α−1Y (−t)dt+ U

(
α+3
2

)
− b̃0U

(
α+1
2

)
,

J2 =

∫ ∞

0

t2
∣∣t2 − z20

∣∣2 t
α−1Y (−t)dt+ V

(
α−3
2

)
− b̃0U

(
α+3
2

)
,

(7.26)

where

U(γ) :=

∫ ∞

0

tγ

|t2 − z20 |2
dt =

1

2

1

z20 − z20
L(γ),

V (γ) :=

∫ ∞

0
tγ
( t4
∣∣t2 − z20

∣∣2 − 1
)
dt =

1

2

1

z20 − z20
L(γ + 4).

Here L(γ) is the function defined in (7.23) and the latter integrals are evaluated by standard
contour integration. The formulas in (7.22) are derived from (7.26), using the partial
fraction decompositions

1

|t2 − z20 |2
=
1

2

1

z20 − z20

( z−1
0

t− z0
− z−1

0

t+ z0
− z−1

0

t− z0
+

z−1
0

t+ z0

)
,

t
∣∣t2 − z20

∣∣2 =
1

2

1

z20 − z20

( 1

t− z0
+

1

t+ z0
− 1

t− z0
− 1

t+ z0

)
,

t2

|t2 − z20 |2
=
1

2

1

z20 − z20

( z0
t− z0

− z0
t+ z0

− z0
t− z0

+
z0

t+ z0

)
,

and the notation

M(z) :=

∫ ∞

0

tα−1

t− z
Y (−t)dt.

It is left to show that M(z) satisfies the claimed formula. To this end, integrating the

function f(ζ) = ζα−1

ζ−z Y (ζ) over semicircular contours in the upper and lower half planes
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and summing the obtained equations, we get

sin(απ)

π
M(−z) = zα−1Y (z)− P (z) (7.27)

where

P (z) :=
1

2πi

∫ ∞

0

tα−1

t− z

(
Y +(t)− Y −(t)

)
dt.

To evaluate this integral, define

H(z) = (z2 − β2)
(
P (z) + (−z)α−1Y (z)

)
. (7.28)

This function is sectionally holomorphic on C \ R+ and for t > 0

H+(t)−H−(t) =

(t2 − β2)
(
P+(t)− P−(t) + (e−πit)α−1Y +(t)− (eπit)α−1Y −(t)

)
=

2cos(α−1
2 π)(t2 − β2)tα−1

(
e−

α−1

2
πiY +(t)− e

α−1

2
πiY −(t)

)
=

2 sin(α2 π)(t
2 − β2)tα−1

(
e−

α−1

2
πi 1

X+(t)
− e

α−1

2
πi 1

X−(t)

)
=

2 sin(α2 π)
1

κα

( (t2 − β2)N+
α (t)

X+(t)
− (t2 − β2)N+

α (t)

X−(t)

)
=

2 sin(α2 π)
µ2ε
κα

( 1

X+(t)
− 1

X−(t)

)
.

Since H(z) grows not faster than linearly, it follows that

H(z) = 2 sin(α2 π)
µ2ε
κα

1

X(z)
+ c1z + c0, (7.29)

where constants c1 and c0 are identified using the equations H+(±β) = 0,

c0 =− sin(α2 π)
µ2ε
κα

( 1

X(β)
+

1

X(−β)
)
,

c1 =− sin(α2 π)
µ2ε
κα

1

β

( 1

X(β)
− 1

X(−β)
)
.

Plugging (7.25), (7.28) and (7.29) into (7.27) we obtain (7.24) since

Nα(z) =
κα

2 sin(α2 π)

(
zα−1 + (−z)α−1

)
.

�

Now we are ready to find the ultimate expression for the filtering error in this case.
Substituting (7.10), (7.20) and (7.22) into (7.13), we get

P∞(β, µε) =
1

X(β)

cos(α2π)

π

1

|z0 − β|2
(
J2 − J1(z0 + z0) + J0z0z0

)
=

1

X(β)

cos(α2π)

π

1

|z0 − β|2
(
B1 +B2 +B3

)
,
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where

B1 :=
1

2

1

z20 − z20

(
L
(
α+5
2

)
− (z0 + z0)L

(
α+3
2

)
+ z0z0L

(
α+1
2

))
=

1

z0 − z0

π

cos α2π

(
z

α+1

2

0 − z
α+1

2

0

)
,

B2 := − b̃0
2

1

z20 − z20

(
L
(
α+3
2

)
− (z0 + z0)L

(
α+1
2

)
+ z0z0L

(
α−1
2

))
=

b̃0
1

z0 − z0

π

cos α2π

(
z

α−1

2

0 − z
α−1

2

0

)
,

B3 :=
1

z0 − z0

(
M(−z0)−M(−z0)

)
.

Since −z0 and −z0 are zeros of Λ(z), equation (7.24) yields

M(−z0)−M(−z0) =
π

cos(α2π)

{
z

α+1

2

0 − z
α+1

2

0 + b̃0

(
z

α−1

2

0 − z
α−1

2

0

)

+
1

2

µ2ε
κα

1

β

(
1

X(−β)
1

z0 + β
− 1

X(β)

1

z0 − β
+

1

X(β)

1

z0 − β
− 1

X(−β)
1

z0 + β

)}

and, collecting all parts together, we finally get

P∞(β, µε) =
1

X(β)

1

|z0 − β|2
µ2ε
κα

1

2β

(
1

X(β)|z0 − β|2 − 1

X(−β)|z0 + β|2
)

=

1

2β

( |z0 + β|2
|z0 − β|2

X(−β)
X(β)

− 1

)
,

where identity (7.15) was used in the last equality. This is the large time limit claimed in
(2.11) for H < 1

2 .

7.5. Small noise asymptotics α ∈ (1, 2). The corresponding small noise asymptotics
(2.12) is derived as in Lemma 7.3.

8. Proof of Theorem 2.5

The limit expression for the filtering error (5.39) was derived when α2 < α1 < 1, in
which case the structural function does not have zeros. To demonstrate how the method
works in presence of zeros, in this section we will also detail the proof for α1 = α ∈ (0, 1)
and α2 = 1. To derive the analog of formula (5.39) in this case, we will have to return
to the point, where the proof splits into cases, and reformulate the equivalent problem
accordingly.

8.1. The equivalent problem. For α1 =: α ∈ (0, 2) and α2 = 1, cf. (4.5),

Λ(z) = z2 − β2 − µ2εNα(z). (8.1)
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Since Nα2
(z) = 1, equations (5.23) can be written as

Φ̃+
0 (t)−

Λ+(t)

Λ−(t)
Φ̃−
0 (t) = e−tT Φ̃1(−t)

(Λ+(t)

Λ−(t)
− 1
)
,

Φ̃+
1 (t)−

Λ+(t)

Λ−(t)
Φ̃−
1 (t) = e−tT Φ̃0(−t)

(Λ+(t)

Λ−(t)
− 1
)
,

t ∈ R+, (8.2)

where we defined, cf. (5.17),

Φ̃0(z) :=Φ0(z) + ψ(0)(z − β),

Φ̃1(z) :=Φ1(z)−
1

µε
(z + β).

(8.3)

Unlike (5.23) equations (8.2) do not contain additional free term in the right hand side.
When α ∈ (0, 1) the structural function Λ(z) has four zeros, see Lemma 5.4. In view of

(8.1) and definitions (8.3), the expression (4.2) takes the form

ĝ(z) = −(z + β)
Φ̃0(z) + e−zT Φ̃1(−z)

Λ(z)
+ ψ(0) +

1

µε
e−zT ,

and hence removal of the poles implies the conditions, cf. (5.24),

Φ̃0(z0) + e−z0T Φ̃1(−z0) = 0,

Φ̃1(z0) + e−z0T Φ̃0(−z0) = 0.
(8.4)

Finally, when α2 = 1, the integral terms in (5.5) and (5.6) vanish, and in view of (4.2),
limz→∞Φ0(z) = 0 and limz→∞Φ1(z) = vg,1(T ), or equivalently,

Φ̃0(z) ≍ ψ(0)(z − β),

Φ̃1(z) ≍ vg,1(T )−
1

µε
(z + β),

z → ∞. (8.5)

8.2. Large time limit α ∈ (0, 1). For α ∈ (0, 1) the angle θ(t) = arg
(
Λ+(t)

)
is negative

with the limits

θ(0+) =
1− α

2
π − π and θ(∞) = 0.

Define, cf. (5.28),

S̃(z) :=
Φ̃0(z) + Φ̃1(z)

2X(z)
and D̃(z) :=

Φ̃0(z)− Φ̃1(z)

2X(z)
. (8.6)

Since the functions in (8.3) have the same growth near the origin as in (5.4) and in view
of (5.27), the choice k = −1 in (5.26) guarantees (square) integrability of the restrictions

S̃(−t) and D̃(−t), t ∈ R+ near the origin. Due to the additional linear terms in (8.3), it

also implies that S̃(z) and D̃(z) are asymptotic to polynomials of degree two as z → ∞
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and therefore, by the Sokhotski-Plemelj theorem, cf. (5.31),

S̃(z) =
1

π

∫ ∞

0

e−tTh(t)
t− z

S̃(−t)dt+ PS(−z),

D̃(z) =− 1

π

∫ ∞

0

e−tTh(t)
t− z

D̃(−t)dt+ PD(−z),
(8.7)

with polynomials

PS(z) = kS2 z
2 + kS1 z + kS0 and PD(z) = kD2 z

2 + kD1 z + kD0 , (8.8)

where the coefficients are constants, possibly dependent on T and ε.
In this case θ(t) = O(tα−3) as t→ ∞ and hence the exponent in (5.26) satisfies

Xc(z) := exp

(
1

π

∫ ∞

0

θ(t)

t− z
dt

)
= exp

(
− 1

z
m0 −

1

z2
m1 +O(zα−3)

)
=

1− 1

z
b0 −

1

z2
b1 +O(zα−3), z → ∞, (8.9)

where b0 = m0, b1 = m1 − 1
2m

2
0 and

mj =
1

π

∫ ∞

0
tjθ(t)dt.

Consequently, in view of (8.5), the asymptotic terms in (8.6) and (8.7) match, if the
coefficients in (8.8) satisfy

kS2 = − 1

2

(
ψ(0) − 1

µε

)
, kS1 = − kS2 b0 −

β

2

(
ψ(0) +

1

µε

)
+
vg,1(T )

2
,

kD2 =− 1

2

(
ψ(0) +

1

µε

)
, kD1 =− kD2 b0 −

β

2

(
ψ(0) − 1

µε

)
− vg,1(T )

2
.

(8.10)

As in the previous sections, the auxiliary integral equations

pj(t) =
1

π

∫ ∞

0

e−τTh(τ)
τ + t

pj(τ)dτ + tj ,

qj(t) =− 1

π

∫ ∞

0

e−τTh(τ)
τ + t

qj(τ)dτ + tj,

(8.11)

have unique solutions, whose analytic extensions satisfy, cf. (5.35),

|pj(z) − zj | ≤ C
1

z

1

T
and |qj(z)− zj | ≤ C

1

z

1

T
. (8.12)

By linearity

S̃(z) = kS2 p2(−z) + kS1 p1(−z) + kS0 p0(−z),
D̃(z) = kD2 q2(−z) + kD1 q1(−z) + kD0 q0(−z).

(8.13)

We can now use (8.6) and (8.13) to express Φ̃0(z) and Φ̃1(z) in terms of the above constants
and solutions to integral equations (8.11). Then plugging these expressions into (8.4) and
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using the estimates (8.12) we obtain, as T → ∞,

z20k
S
2 − z0k

S
1 + kS0 + z20k

D
2 − z0k

D
1 + kD0 ≍ 0,

z20k
S
2 − z0k

S
1 + kS0 − z20k

D
2 + z0k

D
1 − kD0 ≍ 0.

(8.14)

Powers of z0 have nonzero complex parts and hence these are, in fact, four equations
with real valued coefficients. Thus we arrive at a system of eight linear equations (8.10)
and (8.14) for the limiting values of the eight unknowns, namely ψ(0), vg,1(T ) and k

S
j and

kDj , j = 0, 1, 2.

Taking the imaginary part of the equations above we get rid of kS0 and kD0 :

Im(z20)(k
S
2 + kD2 )− Im(z0)(k

S
1 + kD1 ) ≍ 0,

Im(z20)(k
S
2 − kD2 )− Im(z0)(k

S
1 − kD1 ) ≍ 0.

Now from (8.10)

kS2 + kD2 = − ψ(0), kS1 + kD1 =(b0 − β)ψ(0)

kS2 − kD2 =
1

µε
, kS1 − kD1 = − 1

µε
(b0 + β) + vg,1(T )

and hence

− Im(z20)ψ(0) − Im(z0)(b0 − β)ψ(0) ≍ 0,

Im(z20)
1

µε
+ Im(z0)

1

µε
(b0 + β)− Im(z0)vg,1(T ) ≍ 0.

This implies that ψ(0) ≍ 0 and

PT (β, µε) =
1

µε
vg,1(T ) ≍

1

µ2ε

(
b0 + β +

Im(z20)

Im(z0)

)
=

1

µ2ε

(
b0 + β + 2Re(z0)

)
,

which is the formula claimed in (2.7).

8.3. Small noise asymptotics α ∈ (0, 1). The expression in (2.8) follows from Theorem
2.1, since for β = 0 and ε = 1, the zero of Λ(z) in the first quadrant can be found explicitly,

z0 = (µ2κα)
1

3−α exp
(
1−α
3−α

π
2 i
)
,

and the first moment of θ(t) can be computed in the closed form

b0 = −(µ2κα)
1

3−α
sin π

2
1+α
3−α

sin π
3−α

.

8.4. Large time limit α ∈ (1, 2). In this case, θ(t) = arg
(
Λ+(t)

)
is positive and

θ(0+) = π and θ(∞) = 0.

In view of estimates (5.4) and (5.27), the suitable choice of the power factor in (5.26) is
k = 1, which guarantees that the restrictions of (8.6) to R− are (square) integrability near

the origin. This choice and (8.3) imply that S̃(z) and D̃(z) are of order O(1) as z → ∞.
Hence representation (8.7) hold with PS(z) = kS0 and PS(z) = kD0 , and hence, by linearity,

S̃(z) = kS0 p0(−z) and D̃(z) = kD0 q0(−z).
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Comparing this with (8.6) implies

kS0 = −1

2

(
ψ(0) − 1

µε

)
and kD0 = −1

2

(
ψ(0) +

1

µε

)
. (8.15)

The filtering error can now be found from (5.6), where for α2 = 1 the last term vanishes.
Plugging (8.3) into (4.2) yields

PT =
1

µε
lim

Re(z)→0
ze−zT ĝ(−z) = 1

µε
lim

Re(z)→0
z(z − β)

Φ̃1(z) +
1
µε
(z + β)

Λ(−z) =

1

µε
lim

Re(z)→0

z(z − β)

Λ(−z)

(
X(z)

(
kS0 p0(−z)− kD0 q0(−z)

)
+

1

µε
(z + β)

)
≍

1

µ2ε
(b0 + β) = P∞(β, µε),

where we used (8.15) and the approximation, cf. (8.9),

X(z) = −z
(
1− b0z

−1 + o(z−1)
)
, z → ∞.

8.5. Small noise asymptotics α ∈ (1, 2). In this case, for β = 0 and ε = 1,

b0 = (µ2κα)
1

3−α
1

sin π
3−α

,

and the small noise asymptotics follows by virtue of Theorem 2.1.

Appendix A. More on solvability of (1.7)

Solvability of equation (1.7) in a space, suitable for our purposes, is a subtle matter.
In essence, we construct such a solution which, moreover, turns out to be amenable to
asymptotic analysis. The roadmap of our construction is outlined in Section 4.2. and this
section gives an extended discussion of the solvability question, outlines several alternative
approaches and elaborates on the construction in this paper.

A.1. Integration of nonrandom functions with respect to fBm. Let us briefly recall
a construction of stochastic integrals with respect to fBm BH for nonrandom integrands
(see, e.g., [17]). For any H ∈ (0, 1) \ {1

2}, consider the function space,

Λ
H− 1

2

T =
{
f : [0, T ] 7→ R such that

∫ T

0

(
s

1

2
−H(ΨT f)(s)

)2
ds <∞

}
,

where ΨT is the operator

(ΨT f)(s) := −2H
d

ds

∫ T

s
f(r)rH− 1

2 (r − s)H− 1

2dr.

The bilinear form

〈f, g〉
Λ
H− 1

2
T

=
2− 2H

λH

∫ T

0
s1−2H(ΨT f)(s)(ΨT g)(s)ds, (A.1)
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where λH is an explicit constant, defines a scalar product on Λ
H− 1

2

T . It can be shown that

〈f, g〉
Λ
H− 1

2
T

=

∫ T

0
f(s)

∂

∂s

∫ T

0
g(t)

∂

∂t
K(s, t)dtds =

H

∫ T

0
f(s)

∂

∂s

∫ T

0
g(t)|s − t|2H−1 sign(s − t)dtds,

(A.2)

where K(s, t) is the covariance function (1.6) of the fBm. These and other related formulas
can be found in, e.g., [4, Subsection 3.3] for a quick reference.

Remark A.1. Various useful relations of Λ
H− 1

2

T to other spaces are known. In particular,

it can be shown that L2([0, T ]) ⊂ Λ
H− 1

2

T for H > 1
2 , and Λ

H− 1

2

T ⊂ L2([0, T ]) for H < 1
2 ,

see [28]. Also these inclusions follow from the eigenvalues asymptotics of the covariance
operator of the fractional noise, the formal derivative of the fBm, see [7].

Let E be the space of all simple functions. For g ∈ E, the stochastic integral IT (f) :=∫ T
0 g(s)dBH

s is defined as the Riemann-Stieltjes sum. In view of (A.2), for f, g ∈ E,

E

∫ T

0
f(s)dBH

s

∫ T

0
g(s)dBH

s = 〈f, g〉
Λ
H− 1

2
T

. (A.3)

Hence the stochastic integral IT defines an isometry between E with the scalar product
(A.1) and the linear subspace spT (B

H) ⊂ L2(Ω) of the finite linear combinations of incre-
ments of BH with the scalar product 〈ξ, η〉 = Eξη for ξ, η ∈ spT (B

H).

It can be shown that E is dense in Λ
H− 1

2

T and this allows to extend the isometry IT to

any g ∈ Λ
H− 1

2

T by means of the L2(Ω) limit. Namely, let gn be any sequence of simple
functions, such that ‖gn − g‖

Λ
H− 1

2
T

→ 0, then, by the isometry property (A.3),

E
(
IT (g

n)− IT (g
m)
)2

= ‖gn − gm‖
Λ
H−1

2
T

−−−−−→
n,m→∞

0,

which means that IT (g
n) is Cauchy in L2(Ω). By completeness of L2(Ω), the limit

IT (g) := lim
n→∞

IT (g
n) =:

∫ T

0
g(s)dBH

s

exists. This limit does not depend on the choice of approximating sequence (gn) ⊂ E

and hence defines the stochastic integral of any g ∈ Λ
H− 1

2

T unambiguously. Moreover, the

extended map IT : Λ
H− 1

2

T 7→ L2(Ω) preserves the isometric property (A.3).

Let spT (B
H) be the closure of spT (B

H) in L2(Ω), that is, the subspace of all L2(Ω)
limits of linear combinations of increments of BH . The image of the extended isometry
IT is some linear subspace of spT (B

H). Does it coincide with the whole closure spT (B
H)?

Since spT (B
H) is a complete subspace and IT is an isometry, the answer to this question

is affirmative if and only if the space Λ
H− 1

2

T is complete. Indeed, by definition, for any
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ξ ∈ spT (B
H) there is a sequence of random variables ξn = IT (g

n) such that ξn → ξ in
L2(Ω). Since L2(Ω) is complete, ξn is a Cauchy sequence and thus

‖gn − gm‖
Λ
H− 1

2
T

= E(IT (g
n)− IT (g

m))2 −−−−−→
n,m→∞

0,

that is, gn is Cauchy in Λ
H− 1

2

T . Now if Λ
H− 1

2

T is complete, then g = limn g
n ∈ Λ

H− 1

2

T exists

and IT (g) = ξ, P-a.s. Conversely, let gn be a Cauchy sequence in Λ
H− 1

2

T , then IT (g
n) is

Cauchy in L2(Ω). By completeness of L(Ω2) there is ξ = limn ξn ∈ spT (B
H). Assume now

that any random variable in spT (B
H) is an image of IT , then there exists g ∈ Λ

H− 1

2

T such
that ξ = IT (g) and

‖gn − g‖
Λ
H− 1

2
T

= E(IT (g
n)− IT (g))

2 = E(ξn − ξ)2 → 0,

which means that gn is convergent in Λ
H− 1

2

T and hence the latter is complete.

It was shown in [28] that the space Λ
H− 1

2

T is complete for H < 1
2 , but it is incomplete

for H > 1
2 . An important implication is that there are random variables in spT (B

H) which

cannot be represented as stochastic integrals of functions in Λ
H− 1

2

T with respect to fBm

with H > 1
2 .

An additional insight is given by the canonical innovation representation of the fBm, see
[17]. The innovation Brownian motion

Wt =

∫ t

0

√
2− 2H

λH
(Ψ−1

t uH− 1

2 )(s)dBH
s

generates the same filtration as BH . Then by the martingale representation theorem for
any ξ ∈ spT (B

H) there exists a function f ∈ L2([0, T ]) such that

ξ =

∫ T

0
f(s)dWs. (A.4)

Moreover, ∫ T

0
f(s)dWs =

∫ T

0

√
2− 2H

λH
(Ψ−1

T uH− 1

2 f(u))(s)dBH
s , (A.5)

whenever the integrand in the right hand side is well defined and belongs to Λ
H− 1

2

T . For

H > 1
2 it is possible to find a function f ∈ L2([0, T ]) such that (A.5) fails and for such

a function the random variable (A.4) will not be representable by the stochastic integral
with respect to the fBm.

A.2. The linear filtering problem. Let X be a zero mean Gaussian process with in-
tegrable cadlag paths and BH an independent fractional Brownian motion with Hurst
parameter H ∈ (0, 1). Define the process

Yt =

∫ t

0
Xsds+BH

t , t ≥ 0.

Since all the processes are Gaussian, for any T > 0, the conditional expectation X̂T =
E(XT |FYT ) is a random variable, which belongs to spT (Y ), the closure in L2(Ω) of all linear
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combinations of increments of Y on the interval [0, T ]. In view of the discussion in the
previous section, the following question arises.

Does there exist a non-random function g ∈ Λ
H− 1

2

T ∩ L1([0, T ]) such that

X̂T =

∫ T

0
g(s)dYs, P− a.s.?

If so how can it be found?

A.3. Refresh on the standard Brownian case (H = 1

2
). Let us briefly recall how an

affirmative answer to the above question is given in [23] in the standard Brownian case. Let

F
Y,n
T be the σ-algbera generated by the increments of process Y on the 2n-dyadic partition

of [0, T ]. Since Y is a cadlag process, FYT =
∨∞
n=1 F

Y,n
T and by Levy’s zero-one law,

X̂n
T = E(XT |FY,nT )

a.s.−−−→
n→∞

E(XT |FYT ) = X̂T ,

where the convergence holds in L2(Ω) as well. By the normal correlation theorem

X̂n
T =

∫ T

0
gn(t)dYt,

where gn(·) is a simple function. Being convergent, the sequence X̂n
T is Cauchy in L2(Ω).

On the other hand, by independence of X and B1/2,

E
(
X̂n
T − X̂m

T

)2 ≥
∫ T

0
(gn(s)− gm(s))2ds,

and hence gn(·) is Cauchy in L2([0, T ]). Since this space is complete, gn(·) converges to

some g ∈ L2([0, T ]). For such a function the stochastic integral
∫ T
0 g(s)dYs is well defined,

and

E

(
X̂T −

∫ T

0
g(t)dYt

)2
≤ 2E

(
X̂T − X̂n

T )
2 + 2E

( ∫ T

0

(
gn(t)− g(t)

)
dYt

)2
→ 0,

and hence

X̂T =

∫ T

0
g(t)dYt, P− a.s.

Now using the orthogonality property of the conditional expectation, the standard calcu-
lation shows that g(·) solves the equation

g(t) +

∫ T

0
g(s)KX (s, t)ds = KX(t, T ), for a.a. t ∈ [0, T ], (A.6)

where KX(s, t) is the covariance function of X.
Conversely, we could have started with the equation (A.6): if it has a solution g ∈

L2([0, T ]), then the stochastic integral X̂T :=
∫ T
0 g(s)dYs is well defined and satisfies the

usual properties. Then (A.6) implies that XT − X̂T is orthogonal to any random variable

in spT (Y ) and hence X̂T = E(XT |FYT ). In fact the Fredholm equation (A.6) does have such
a solution if the kernel KX(s, t) is Hilbert-Schmidt.
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A.4. The fractional case H ∈ (0, 1) \ {1
2}. The arguments from the previous section

apply to Λ
H− 1

2

T with H < 1
2 , since this subspace is complete and, moreover, Λ

H− 1

2

T ⊂
L2([0, T ]) ⊂ L1([0, T ]). The latter inclusion ensures that the limit weight function g is not
only integrable with respect to fBm, but also with respect to the time variable, so that∫ T
0 g(s)dYs is indeed well defined.

On the other hand, the space Λ
H− 1

2

T for H > 1
2 , being incomplete, must be treated

differently. It suffices to show that equation, cf. (1.7),

∂

∂s

∫ T

0
g(r)

∂

∂r
K(r, s)dr +

∫ T

0
KX(r, s)g(r)dr = KX(s, T ), s ∈ (0, T ), (A.7)

has a solution in L1([0, T ]). Note that in this case it also belongs to Λ
H− 1

2

T : indeed, taking
scalar product of (A.7) with g implies

‖g‖2
Λ
H− 1

2
T

≤
∫ T

0
g(s)KX(s, T )ds ≤ ‖KX(·, T )‖∞‖g‖1. (A.8)

This is a special feature of the solution to the above equation, since L1([0, T ]) 6⊆ Λ
H− 1

2

T .

For g ∈ L1([0, T ]) ∩ Λ
H− 1

2

T , the stochastic integral

X̂T =

∫ T

0
g(s)dYs :=

∫ T

0
g(s)dBH

s +

∫ T

0
g(s)Xsds

is well defined, if, e.g. X has continuous paths. Moreover, equation (A.7) implies that

E

(
XT −

∫ T

0
g(s)dYs

) ∫ T

0
h(s)dYs = 0

for any h ∈ Λ
H− 1

2

T . Since ξ ∈ spT (Y ) can be approximated in L2(Ω) by a sequence of
stochastic integrals of simple functions, in fact, we have

E

(
XT −

∫ T

0
g(s)dYs

)
ξ = 0,

for any such ξ and, therefore, X̂T is a version of conditional expectation. In Section A.6
we detail the calculations which show that the solution to (A.7) constructed in this paper
does indeed belong to L1([0, T ]).

A.5. Solvability through explicit inverse. For simplicity, let T = 1 and omit it from
the notations. Define the operators

(Af)(s) =
∂

∂s

∫ 1

0
f(s)

∂

∂r
K(r, s)dr = H

∂

∂s

∫ 1

0
f(t)|s− t|2H−1 sign(s − t)dt

and

(Rf)(s) =

∫ 1

0
KX(r, s)f(r)dr.

Then equation (A.7) reads

Ag +Rg = f, (A.9)
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where f(s) = KX(s, 1). The operator A is invertible, see e.g. [22],

(A−1f)(s) = (A.10)

− cHs
1

2
−H d

ds

∫ 1

s
dww2H−1(w − s)

1

2
−H d

dw

∫ w

0
z

1

2
−H(w − z)

1

2
−Hf(z)dz,

where cH is an explicit constant. If A−1 is applicable to both sides of (A.9), then g solves
the equation

g +A−1Rg = A−1f. (A.11)

If moreover, the operator A−1R and the function A−1f are sufficiently regular, then (A.11)
is a Fredholm equation of the second kind, and its solvability in an appropriate space follows
from the general theory.

A.5.1. Case H < 1
2 . In this case, the derivatives and integrals in (A.10) are interchangeable

and the inverse of A turns out to be a weakly singular integral operator, see [4, Theorem
5.1 (iv)],

(A−1f)(s) =

∫ 1

0
L(u, v)f(v)du,

where L(u, v) = |u − v|−2HN(u, v) with N ∈ C([0, 1]2). Since KX ∈ C([0, 1]2) it follows
that A−1R in this case is an integral operator with continuos kernel. Similarly, A−1f is a
continuous function. This reduces (A.7) to a Fredholm equation with continuous kernel.
The homogeneous equation g + A−1Rg = 0, or equivalently, Ag +Rg = 0 has only trivial
solutions, since all eigenvalues of A are positive, see [7]. Hence by the Fredholm alternative,
the non-homogeneous equation (A.11) has the unique (continuous) solution (see, e.g., [29]).

Then, in view of (A.8), g ∈ Λ
H− 1

2

T ∩ L1([0, T ]).

A.5.2. Case H > 1
2 . Note that f(z) =

∫ z
0 f

′(r)dr and hence (A.10) in this case can be
rewritten as

(A−1f)(x) =

∫ 1

0
f ′(r)p(x, r)dr,

where

p(x, u) = −cHx
1

2
−H
(
(2− 2H)

∫ 1

r
z

1

2
−Hρ(x, z)dz + r

3

2
−Hρ(x, r)

)
,

and

ρ(x, r) =
d

dx

∫ 1

x∨r
w2H−2(w − x)

1

2
−H(w − r)

1

2
−Hdw.

A calculation shows that

|ρ(x, r)| ≤ C|x− r|1−2H(x ∨ r)2H−2 + (1− x)
1

2
−H(1 − r)

1

2
−H1{x>r}.

Further computations become cumbersome, but if pushed, seem to lead to a Fredholm
equation of the second kind, with L2([0, T ]2) kernel and L1([0, T ]) forcing function. Then
it remains to be checked that such equations have L1([0, T ]) solution. We will not pursue
this direction here.
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A.6. Solvability by construction in this paper. Let us recap the main steps of the
construction in this paper, considering, for definiteness, the case α2 ∈ (0, 1) and α1 > α2,
which corresponds to H2 >

1
2 and H1 < H2; all other cases can be treated similarly. In

order to avoid confusion with the notations used in the text, all the objects produced in
the course of construction will be marked by asterisk.

(a) Solve the integral equations (5.33), treating the constant ψ(0), which appears in
(5.30) and thus also in (5.32), as a free parameter and denote it by c. As explained in
the text, these equations have unique solution in L2(R+), at least for all sufficiently
large T or all sufficiently small ε > 0.

(b) Form the functions Φ∗
0(z) and Φ∗

1(z) using the formulas (5.34), whereX(z) is defined
by (5.26).

(c) Compute the function ĝ∗(z) by the formula (4.2) using Φ∗
0(z) and Φ∗

1(z) and the
parameter c in place of ψ(0). Substitute this expression into condition (5.19) and
solve the obtained equation for c. Denote the obtained value by c∗. Thus we obtain

ĝ∗(z) = − 1

Λ(z)

(
(z + β)

(
Φ∗
0(z) + e−zTΦ∗

1(−z)
)
+ µ2εNα1

(z)
(
c∗ +

1

µε
e−zT

))
. (A.12)

(d) Compute g∗(x) by applying the inverse Laplace transform to ĝ∗(z).

Our goal is to show that

(i) g∗ ∈ L1([0, T ]) and

(ii) g∗ does indeed solve equation (A.7).

Note that if (i) and (ii) hold, then the bound (A.8) implies g∗ ∈ Λ
H−1/2
T as well.

A.6.1. Proof of (i). The proof is by a careful inspection of all the functions involved in
the construction. Let us estimate the growth of the functions fS(t) and fD(t) defined in
(5.30) at infinity and near the origin. To this end, write

∣∣∣∣
N−
α2
(t)

X−(t)
− N+

α2
(t)

X+(t)

∣∣∣∣ =
∣∣∣∣
N−
α2
(t)

X−(t)

∣∣∣∣
∣∣∣∣
N−
α2
(t)Λ+(t)−N+

α2
(t)Λ−(t)

N−
α2
(t)Λ+(t)

∣∣∣∣ =

µ2ε
1

|X−(t)|
1

|Λ+(t)|
∣∣∣N+

α2
(t)N−

α1
(t)−N−

α2
(t)N+

α1
(t)
∣∣∣,

where the last equality is obtained by plugging the expression (4.5). In view of the formula
(4.3) and the estimates (5.27) (with k = 1) and since α1 > α2, it follows that

∣∣∣∣
N−
α2
(t)

X−(t)
− N+

α2
(t)

X+(t)

∣∣∣∣ =
{
O(tα1−4+

1−α2
2 ), t→ ∞,

O(tα1−1+
1−α2

2 ), t→ 0.

Consequently, cf. (5.30),

{
fS(t), fD(t)

}
=

{
O(tα1−3+

1−α2
2 ), t→ ∞,

O(tα1−1+
1−α2

2 ), t→ 0,
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and, by definitions (5.32),

{
FS(−t), FD(−t)

}
=

{
O
(
t−1∨(α1−3+

1−α2
2

)
)
, t→ ∞,

O(t0∧(α1−1+
1−α2

2
)), t→ 0.

Note that FS , FD ∈ L2(R+) and hence equations (5.33) have unique solutions in L2([0, T ]),
as explained in the text. Then in view of estimates (5.35), the formulas (5.34) imply that
Φ∗±
0 (t),Φ∗±

1 (t) are locally square integrable on R+ and

{
Φ∗±
0 (t),Φ∗±

1 (t)
}
= O(tα1−2) as t → ∞.

By construction ĝ∗(z) is an entire function, the Laplace transform inversion can be
carried out by integration on the imaginary axis

g∗(x) =
1

2πi

∫ i∞

−i∞
ĝ∗(z)ezxdz. (A.13)

Since ĝ∗(z) is analytic and ĝ∗(z) → 0 as z → ∞ and Re(z) > 0, its inverse Laplace
transform vanishes on R−, i.e., g∗(x) = 0 for x < 0. Similarly, since ezT ĝ∗(z) → 0 as
z → ∞ and Re(z) < 0, it follows that g∗(x) = 0 for x > T . For x ∈ (0, T ), (A.13) can be
evaluated by plugging the expression (A.12) and integrating along arc sector counters in
each quarter of the complex plane. After a rearrangement this gives

g∗(x) =− 1

2πi

∫ i∞

−i∞

1

Λ(z)

(
(z + β)Φ∗

0(z) + µ2εNα1
(z)c∗

)
ezxdz

− 1

2πi

∫ i∞

−i∞

1

Λ(z)

(
(z + β)Φ∗

1(−z) + µεNα1
(z)
)
ez(x−T )dz =

− 1

2πi

∫ ∞

0

1

Λ−(t)

(
(−t+ β)Φ∗

0(−t) + µ2εN
−
α1
(t)c∗

)
e−txdt

+
1

2πi

∫ ∞

0

1

Λ+(t)

(
(−t+ β)Φ∗

0(−t) + µ2εN
+
α1
(t)c∗

)
e−txdt

− 1

2πi

∫ ∞

0

1

Λ+(t)

(
(t+ β)Φ∗

1(−t) + µεN
+
α1
(t)
)
e−t(T−x)dt

+
1

2πi

∫ ∞

0

1

Λ−(t)

(
(t+ β)Φ∗

1(−t) + µεN
−
α1
(t)
)
e−t(T−x)dt =

1

2πi

∫ ∞

0
e−txR0(t)dt−

1

2πi

∫ ∞

0
e−t(T−x)R1(t)dt,

(A.14)

where we defined

R0(t) =(β − t)Φ∗
0(−t)

( 1

Λ+(t)
− 1

Λ−(t)

)
+ µ2ε

(N+
α1
(t)

Λ+(t)
− N−

α1
(t)

Λ−(t)

)
c∗,

R1(t) =(β + t)Φ∗
1(−t)

( 1

Λ+(t)
− 1

Λ−(t)

)
+ µε

(N+
α1
(t)

Λ+(t)
− N−

α1
(t)

Λ−(t)

)
.



48 D. AFTERMAN, P. CHIGANSKY, M. KLEPTSYNA, AND D. MARUSHKEVYCH

In view of the above estimates these functions are bounded and decay to zero as a power
function as t → ∞. This implies the desired claim:

‖g∗‖1 ≤
∫ ∞

0
|R0(t)|

∫ T

0
e−txdxdt+

∫ ∞

0
|R1(t)|

∫ T

0
e−t(T−x)dxdt

∫ ∞

0
|R0(t)|

1− e−Tt

t
dt+

∫ ∞

0
|R1(t)|

1− e−Tt

t
dt <∞.

A.6.2. Proof of (ii). The expression (A.14) reveals that g∗ is continuous on (0, T ), possibly
with integrable singularities at the endpoints. Thus g∗ is in the domain of both operators
in equation (A.7) and can be substituted into its left hand side. We want to show that

∂

∂s

∫ T

0
g∗(r)

∂

∂r
K(r, s)dr +

∫ T

0
KX(r, s)g

∗(r)dr = KX(s, T ), ∀s ∈ (0, T ). (A.15)

To do so we can apply the Laplace transform to both sides, extending them by zero outside
the interval (0, T ), and check that equality is obtained on the whole plane. This amounts
to repeating the calculations in the proof of Lemma 5.1. Thus proving (A.15) is equivalent
to showing that, cf. (4.2),

∫ T

0
g∗(x)e−zxdx+

1

Λ(z)

(
(z + β)

(
Ξ0(z) + e−zTΞ1(−z)

)
+

µ2εNα1
(z)
(
ψ∗(0) +

1

µε
e−zT

))
= 0, (A.16)

where Ξ0(z), Ξ1(z) are the functions computed by plugging g∗(x) and the corresponding
function ψ∗(x), defined by (5.3), into (5.17).

As explained in the proof of (i) (see the paragraph following (A.13)), the function g∗(x)
vanishes outside [0, T ]. Thus the first term in (A.16) coincides with the Laplace transform
ĝ∗(z) and hence (A.16) is equivalent to

ĝ∗(z) +
1

Λ(z)

(
(z + β)

(
Ξ0(z) + e−zTΞ1(−z)

)
+ µ2εNα1

(z)
(
ψ∗(0) +

1

µε
e−zT

))
= 0.

After plugging the expression for ĝ∗(z) constructed in the steps (a)-(c), we see that this
equality holds if Ξ0(z) and Ξ1(z) coincide with Φ0,∗(z) and Φ1,∗(z), and ψ∗(0) coincides
with the constant c∗ found in step (c).

Let us first argue that ψ∗(0) = c∗. Since ĝ∗(z) is an entire function, so is ψ̂∗(z). Letting
z := −β in (5.16), shows that ψ∗(0) = ĝ∗(−β)− 1

µε
eβT . On the other hand, by taking z → β

in the upper half plane in (A.12) implies c∗ = ĝ∗(−β) − 1
µε
eβT . Thus indeed ψ∗(0) = c∗.

Now we can show that Ξ0(z) = Φ0,∗(z). The functions in the right hand side of (5.17) are
sectionally holomorphic on C \R+ and the first equation implies that for t > 0,

Ξ+
0 (t)− Ξ−

0 (t) = (t− β)
(
Ψ+
g∗,0(t)−Ψ−

g∗,0(t)
)
+ µ2ε

(
Ψ+
ψT,∗,0

(t)−Ψ−
ψT,∗,0

(t)
)
. (A.17)

A direct calculation shows that the operator defined in (5.10) takes the form

Ψf,0(z) = −
∫ ∞

0

N+
α (t)−N−

α (t)

t− z
f̂(t)dt,
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when either α ∈ (0, 1) and f̂ is locally bounded or α ∈ (1, 2) and f̂ vanishes at the origin
at a suitable rate. Hence this formula is valid for both f := g and f := ψ.

Since Φ0,∗(z) and Φ1,∗(z) satisfy, by construction, the boundary conditions (5.23), the
function ĝ∗(z) is holomorphic and hence (A.17) becomes

Ξ+
0 (t)− Ξ−

0 (t) =

− (t− β)
(
N+
α2
(t)−N−

α2
(t)
)
ĝ∗(t)− µ2ε

(
N+
α1
(t)−N−

α1
(t)
)
ψ̂∗(t)

†
=

− (t− β)
(
N+
α2
(t)−N−

α2
(t)
)
ĝ∗(t)− µ2ε

N+
α1
(t)−N−

α1
(t)

t+ β

(
ψ∗(0) +

1

µε
e−zT − ĝ∗(z)

)
=

− 1

t+ β

((
Λ+(t)− Λ−(t)

)
ĝ∗(t) + µ2ε

(
N+
α1
(t)−N−

α1
(t)
)(
ψ∗(0) +

1

µε
e−zT

)) ‡
=

Φ+
0,∗(t)− Φ−

0,∗(t), t > 0,

where in † we used the expression for ψ̂∗(z) in (5.16) and in ‡ the definition of ĝ∗(z) through
(A.12) (where, as we already showed, c∗ = ψ∗(0)).

By construction, both Ξ0(z) and Φ0,∗(z) are sectionally holomorphic on C \ R+, share
the same asymptotic as z → ∞ and, by the above calculations, have the same jump on the
boundary. Hence they coincide, which is what we wanted to show. The same arguments
apply to Ξ1(z) and Φ1,∗(z).
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