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DATA ASSIMILATION FOR THE NAVIER-STOKES EQUATIONS

USING LOCAL OBSERVABLES

ANIMIKH BISWAS, ZACHARY BRADSHAW, AND MICHAEL S. JOLLY

Abstract. We develop, analyze, and test an approximate, global data assimi-
lation/synchronization algorithm based on purely local observations for the two-
dimensional Navier-Stokes equations on the torus. We prove that, for any error
threshold, if the reference flow is analytic with sufficiently large analyticity radius,
then it can be recovered within that threshold. Numerical computations are in-
cluded to demonstrate the effectiveness of this approach, as well as variants with
data on moving subdomains. In particular, we demonstrate numerically that ma-
chine precision synchronization is achieved for mobile data collected from a small
fraction of the domain.

1. Introduction

For a given dynamical system, which is believed to accurately describe some as-
pect(s) of an underlying physical reality, the problem of forecasting is often hindered
by inadequate knowledge of the initial state and/or model parameters describing the
system. However, in many cases, such as in weather prediction, this is compensated
by the fact that one has access to data from (frequently noisy) measurements of the
system, collected either continuously in time or at discrete time points, albeit on a
much coarser spatial grid than the desired resolution of the forecast. The objective
of data assimilation and signal synchronization in geophysics is to use low spatial
resolution observational measurements to fine tune our knowledge of the state and/or
model to improve the accuracy of the forecasts [21, 42]. While atmospheric science,
geoscience and meteorology have provided the initial impetus for the subject, it has
now found widespread application, including, but not limited to, environmental sci-
ences, systems biology and medicine [45, 50], imaging science, traffic control and
urban planning, economics and finance and oil exploration [4].

An extensive literature exists on data assimilation using the Bayesian and varia-
tional framework (e.g., 3D Var and Kalman filter based approaches) [4, 11, 13, 15,
14, 38, 42, 43, 49, 58]. Despite this large body of work, as noted in [39, 60, 61],
the problems of stability, accuracy and catastrophic filter divergence, particularly for
infinite-dimensional chaotic dynamical systems governed by PDEs, continue to pose
serious challenges to rigorous analysis of these Bayesian/Kalman filter based schemes,
and are far from being resolved.
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Recently, Azouani, Olson and Titi developed a new approach to data assimilation
using a feedback control paradigm via nudging/Newtonian relaxation, which is sup-
ported by rigorous analytical proof of convergence of the scheme [5, 6]. This initiated
a lively field of research—see [1, 7, 8, 9, 17, 27, 31, 55] and the references therein.
More recently, it has been successfully implemented for the first time for efficient
dynamical downscaling of a global circulation model [22], where the authors assert
that “overall results clearly suggest that CDA provides an efficient new approach for
dynamical downscaling by maintaining better balance between the global model and the
downscaled fields.”

Rigorous results following in the vein of [5], or for instance [11] for variational
data assimilation, are based on the earlier work on determining parameters [32, 33]
and require global knowledge, either in the form of the low modes (which necessitates
global measurements to determine) or information from a global array of uniformly
distributed observables, usually nodal values or volume elements [5]. When mea-
suring data from real world systems, certain considerations impact the placement
of instruments. It is easier, for example, to measure fluid velocity or temperature
at shallow depths in the ocean than at extreme depths. Similarly, a wide array of
uniformly placed sensors are plainly infeasible when modeling the solar wind or the
ionosphere, thus necessitating data assimilation techniques based on local measure-
ments [3, 23, 24]. These examples illustrate the value of a global data assimilation
algorithm that is based on local measurements. The existing abstract approaches
to data assimilation require a global array of data points. In this paper, we intro-
duce a data assimilation algorithm based on local observables for the 2D periodic
Navier-Stokes equations that recovers a sufficiently regular reference solution within
a specified error. The key ingredient is a spectral inequality due to Egidi and Veselić
[25, 26] which bounds the L2 norm over the full domain in terms of that over a sub-
domain, enabling us to use the local data obtained from the subdomain for global
assimilation of the system. Moreover, we illustrate the efficacy of our algorithm by
extensive computational studies. Furthermore, we demonstrate numerically that ob-
servation on a small fraction of the domain suffices for global assimilation provided
the data collection domain moves with time to cover the entire domain, which may in
practice indeed be the case for data collected by satellites, air crafts or ships, which
are mobile. The efficacy of mobile data, i.e., moving point measurements for data
assimilation was also computationally observed recently by Larios and Victor [48] for
a one-dimsnsional model. Our numerical work shows that the same holds true for
data assimilation based on local observations for the Navier-Stokes equations.

The main results are stated in Section 2. After some preliminary material in Section
3, we establish existence of solutions to the nudged equation in Section 4, followed
by the proof of synchronization in Section 5. We provide in Section 6 computational
evidence to demonstrate the effectiveness of local sampling for the synchronization
of global spatial flow features. We then test in Section 7 variations of the algorithm
in which the subdomain moves with time and find the convergence to the reference
solution is greatly enhanced. A brief summary is given in Section 8. It should be
noted that while our local data assimilation results are established in the context of
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the Navier-Stokes equations, it is not difficult to extend these results to other dissi-
pative fluid models such as the magnetohydrodynamic equations or the Boussinesq
equations.

2. Statement of main results

Let Ω0 be a C2 domain in R2 or the periodic box [−L/2, L/2]2. The Navier-Stokes
equations in functional form are

d

dt
u+ νAu+B(u,u) = f in Ω0 × (0,∞); ∇ · u = 0 in Ω0 × (0,∞). (2.1)

In (2.1), B(u,v) = Pσ(u · ∇v) where Pσ is the Leray projection operator, A is the
Stokes operator, f is a given divergence free forcing and the velocity field u is unknown.
We further impose zero Dirichlet boundary conditions if working on a C2 domain and
periodic boundary conditions if working on the torus. Additionally assume the flow
evolves from an initial datum u0 in an appropriate function space. We use standard
notations for the function spaces commonly used to analyze (2.1) [20, 59].

Throughout this paper we consider a domain Ω0 and a sub-domain Ω. We partition
Ω in the following way: Form a lattice of points in Ω so that the distance between
neighboring points is h. This leads to a finite collection of M closed squares {Si}Mi=1

so that Ω ⊂ ∪1≤i≤MSi and Si ∩ Ω 6= ∅ for all 1 ≤ i ≤ M . Let xi denote the center of
each square.

For our first result, let Ω0 = [−L/2, L/2]2 and consider (2.1) with periodic boundary
conditions and analytic forcing f . Our goal is to obtain a global data assimilation
result using local observables. In particular, observations are limited to an open set
Ω compactly contained in Ω0.

Two types of interpolant operators appear in the literature. Type 1 operators
satisfy an approximation inequality where the upper bound involves the H1-norm. A
relevant example of a Type 1 operator is the following based on averages over volume
elements:

(Ihf)(x) =
M
∑

i=1

χSi
(x)(f)Si

, (2.2)

where (f)Si
denotes the integral average of f over Si, i.e., (f)Si

= 1
|Si|

∫

Si
f . The

approximation property given in [5] for this operator is the following:

‖f − Ihf‖2L2(Ω0)
≤ c0h

2‖f‖2H1(Ω0)
. (2.3)

In our analysis we use a local version of this operator with an additional feature,
spectral filtering to the first N modes. Our spectrally filtered operator is given by

(Ih,N,Ωf)(x) = PN

M
∑

i=1

χSi∩Ω(x)(fχΩ)Si
, (2.4)

where PN is the projector onto the first N eigenvectors of A. Denoting

(Ih,Ωf)(x) =
M
∑

i=1

χSi∩Ω(x)(fχΩ)Si
, (2.5)
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we have (Ih,N,Ωf)(x) = PN(Ih,Ωf)(x). Note that supp Ih,Ωf = Ω. An identical
(modulo constants) approximation property to (2.3) will be proved in Section 3 for
this local operator.

Type 2 operators satisfy an approximation inequality where the upper bound in-
volves the H2-norm. A relevant example of a Type 2 operator is the following based
on nodal values:

(Ihf)(x) =
M
∑

i=1

χSi
(x)f(xi). (2.6)

The corresponding approximation property from [5] is

‖f − Ihf‖2L2(Ω0)
≤ c20h

4‖f‖2H2(Ω0)
. (2.7)

Again, we will investigate a local version of this operator. In particular, we define

(Ih,N,Ωf)(x) = PN

N
∑

i=1

χSi∩Ω(x)(χΩf)(xi) = PNIh(χΩf). (2.8)

Also let

(Ih,Ωf)(x) =
N
∑

i=1

χSi∩Ω(x)(χΩf)(xi). (2.9)

An analogous inequality to (2.7) will be proven in Section 3. Spectrally filtered op-
erators using global observables similar to these have been used for data assimilation
in [18].

The interpolant operators are used to feed information about a solution u to (2.1)
into the data assimilation equation

d

dt
vN + νAvN + PNB(vN ,vN) = PN f − µ(Jh,N,ΩvN − Jh,N,Ωu), (2.10)

where Jh,N,Ω ∈ {Ih,N,Ω, Ih,N,Ω}. Note that the samples used to drive vN are confined
to the sub-domain Ω. Furthermore vN lives in span(φ1, . . . , φN). Our main results
says that, within any given tolerance ǫ, vN captures the long time properties of u
provided N and µ are sufficiently large and h is sufficiently small, with quantities
determined by Ω, ν, the Grashof number G (defined in (3.1)) and ǫ. It requires the
solution u, and consequently the forcing f , to be uniformly in the L2 based Gevrey

class, i.e. u ∈ L∞((0,∞);D(A1/2eσA
1/2

)), with σ sufficiently large as determined by

Ω, ν, G and ǫ. The precise definition of D(A1/2eσA
1/2

) is given in Section 3.

Theorem 2.1 (Approximate convergence for local observations). Let Ω be an open
set in [−L/2, L/2]2. Let u be the solution to (2.1) for some u0 ∈ V and f ∈
L∞((0,∞);H)). Assume additionally that

M := lim sup
t→∞

‖u(t)‖
D(A1/2eσA1/2

)
= lim sup

t→∞
|A1/2eσA

1/2

u| < ∞. (2.11)

Let ǫ > 0 be given. There exists a spectral index N∗ = N∗(Ω, G, ν, ǫ,M) ∈ N, so
that, for any N ≥ N∗, there exists a large value µ(ν,Ω, G,N), a small value h∗ =
h∗(ν,Ω, G,N) and a large length scale σ∗ = σ∗(Ω) so that if h ∈ (0, h∗) and σ > σ∗,
then

‖u(t)− vN (t)‖L2(Ω0) < ǫ,
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for sufficiently large t, where vN is the global smooth solution to (2.10) taken with
either Jh,N,Ω = Ih,N,Ω or Jh,N,Ω = Ih,N,Ω and zero initial data.

Comments on Theorem 2.1:

(1) The assumptions are complicated so we elaborate on how they fit together:
• The needed analyticity radius σ is determined solely by the sub-domain.
Therefore Theorem 2.1 can be viewed as saying: For analytic flows with
analyticity radius large as determined by the sub-domain Ω, we can ap-
proximately recover the solution. In this sense Theorem 2.1 is a condi-
tional result.

• Next, N∗ is chosen large in a manner depending on ǫ, M and a priori
bounded quantities associated with u. For N ≥ N∗, we can execute the
data assimilation argument for sufficiently large µ and sufficiently small
h. For technical convenience, we fix µ in Theorem 2.1 based on N .

(2) The existence of vN is implicit in Theorem 2.1. The details are worked out in
Section 4.

(3) If the solution u is replaced by a Galerkin approximation in span(φ1, . . . , φN),
then the conclusion of Theorem 2.1 holds whenever f ∈ L∞(0,∞;H). Alterna-
tively, if a condition is imposed on the forcing that results in the flow remaining
spectrally local, e.g. if the forcing and data are supported on finitely many
Fourier modes, then the flow can be recovered exactly as t → ∞. This implies
numerically simulated flows—which are spectrally localized—can be recovered
up to machine precision and round-off error using observations confined to a
sub-domain provided sufficiently many observations are taken. The number
of observations depends exponentially on N , although as demonstrated nu-
merically in Section 6, a far smaller value of N is necessary. While this is
interesting from a numeric perspective, in practical applications the observed
data comes from nature and is not spectrally localized. When the flow is not
spectrally local we lose exactness and also require analyticity.

(4) In Azouani-Olson-Titi data assimilation, the large parameter µ is attached to
a large positive global quantity and is used to hide large contributions in the
energy inequality for the difference of the solution to (2.1) and the solution
to the data assimilation equation. In our localized setup, µ is attached to a
large positive local quantity while the contributions in the energy inequality
remain global. To bridge the gap between global and local in this setting
we use spectral inequalities developed to study control problems. These are
compiled in Section 3

An exact convergence result follows as a corollary of Theorem 2.1 provided (2.11)
holds and one has full knowledge of u|Ω. This means we solve

d

dt
vN + νAvN + PNB(vN ,vN) = PN f − µPNχΩ(vN − u) . (2.12)

In particular, we can construct a vector field v that converges to u as t → ∞ in an
appropriate average sense by increasing the sample size in Theorem 2.1.

Corollary 2.1. Under the assumptions of Theorem 2.1, i.e. (2.11), there exists a
vector field v ∈ L∞(0,∞;H) ∩ L2(0, T ;V ) for all T > 0 so that v is a limit (in
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an appropriate sense) of a sequence of vector fields satisfying (2.12) and for every
measurable set U we have

• for every ∆ > 0,

lim
t→∞

∫ t+∆

t

∫

U

(u− v) dx dt = 0,

at an exponential rate;
• there exists a set of times S with |Sc| = 0 so that

lim
t→∞

χS(t)

∫

U

(u− v)(x, t) dx = 0,

at an exponential rate.

This asserts only that a vector field matching the long time behavior of u exists
given complete local knowledge of u. The fact that it is obtained as a limit of the
solution to (2.12) means it can be approximated numerically. However, this corollary
does not say what system governs v. This is an interesting direction for future
research.

We also obtain an exact data assimilation scheme for rougher forcing provided the
sub-domain is sufficiently large within the domain. For convenience we work with
a bounded domain Ω0 with smooth boundary and impose zero Dirichlet boundary
conditions. We consider a variant of the local data assimilation equation, namely,

d

dt
v + νAv +B(v,v) = f − µIh,Ω(v − u). (2.13)

Note that the interpolant operators are localized but there is no spectral projection.
We manage this by requiring the sub-domain occupy almost the full domain as this
allows us to use a helpful observability inequality [62].

Theorem 2.2 (Exact convergence for large subdomains). Let Ω ⊂ Ω0 be an open
set with smooth boundary. Let u be the solution to (2.1) for some u0 ∈ V and
f ∈ L∞((0,∞);H). Let ǫ > 0 be given. Then there exists a large value µ∗ = µ∗(ν,Ω, f)
and a small value h∗ = h∗(ν,Ω, µ) so that for any µ > µ∗ and h ∈ (0, h∗), we have

‖u(t)− v(t)‖L2(Ω0) → 0, as t → ∞
at an exponential rate provided dH(∂Ω, ∂Ω0) ∼ (

√
λ1G)−1, where v is the solution to

(2.13) taken with Jh,N,Ω = Ih,N,Ω and zero initial data and dH denotes the Hausdorff
distance between two compact sets.

As we will explain in Remark 5.3, this result allows one to avoid the collection of
measurements near the (possibly turbulent) boundary layer, which may be inherently
error prone. Due to Remark 5.3, dH(∂Ω, ∂Ω0) is comparable to the value h found in
[5] meaning that the volume elements adjacent to the boundary of Ω0 can be elimi-
nated from the interpolant operators in [5]. Although this may be a small number of
volume elements, they are adjacent to the boundary layer, which may be turbulent
for flows with large Reynolds numbers and, consequently, subject to large measure-
ment error. It is interesting also from a mathematical viewpoint as well, since it is
an exact convergence result based on a local interpolant. As the argument is similar
to Theorem 2.1, we only sketch the details of a proof—see Remarks 4.1 and 5.3
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We note that the localization problem for determining nodes in the sense of [41] has
been solved for analytic forcing [36, 35]. A general theme is that data assimilation
implies determining quantity type results but not the other away around. For the
localization problem, this appears to be the case. Indeed, the argument in [36, 35]
is applied at the level of elements of the attractor, and both solutions are analytic.
In data assimilation, the solution to the localized data assimilation equation does
not a priori converge to the global attractor for f . Furthermore, vN is not analytic
because it is driven by a term with compact support. Hence there are clear barriers
to adapting the methods in [36, 35] to the data assimilation problem.

3. Preliminaries

3.1. Strong solutions to the 2D Navier-Stokes. Recall that given u0 ∈ V and
f ∈ L∞((0,∞);H), (2.1) has a unique global solution u so that

u ∈ C([0, T ];V ) ∩ L2((0, T );D(A)) and
du

dt
∈ L2((0, T );H),

for every T > 0 [20]. Furthermore we have that there exists a time t0 = t0(u0) so
that, for all t ≥ t0,

‖u(t)‖2L2(Ω0)
≤ 2ν2G2 and

∫ t+T

t

‖A1/2u(s)‖2L2(Ω0)
ds ≤ 2(1 + Tνλ1)νG

2,

where T > 0 is fixed and G denotes the Grashof number which is defined to be

G =
1

ν2λ1

lim sup
t→∞

‖f(t)‖L2(Ω0). (3.1)

The above are true for both Dirichlet boundary conditions on a bounded domain with
C2 boundary or for periodic boundary conditions. For the periodic case we have the
following improvement: There exists a time t0 = t0(u0) so that, for all t ≥ t0,

‖A1/2u(t)‖2L2(Ω0)
≤ 2ν2λ1G

2 and

∫ t+T

t

‖Au(s)‖2L2(Ω0)
ds ≤ 2(1 + Tνλ1)νλ1G

2,

where T > 0 is fixed.

3.2. L2 Gevrey classes. Recall that if u ∈ L2(Ω0) is periodic and has zero mean
and Ω0 = [−L/2, L/2]2, then

u(x) =
∑

k∈Z2\{0}
ûke

2πi
L

k·x,

where

ûk =

∫

Ω0

u(y)e−
2πi
L

k·y dy.

Working on the periodic box [−L/2, L/2]2, we define the Gevrey space D(eσA
s
) to

be those elements of H satisfying

‖u‖2D(eσAs) := L2
∑

k∈Z2

e2σ|2π
k
L
|2s|ûk|2 < ∞.



8 ANIMIKH BISWAS, ZACHARY BRADSHAW, AND MICHAEL S. JOLLY

Analyticity corresponds to s = 1/2. Note that for Gevrey class forcing, a solution
u to (2.1) becomes and remains Gevrey regular for positive times. Indeed, for large
enough times we have the following uniform bound [30, p. 74]

|ûk|2 ≤ Cλ1ν
2|k|−2e−4πδ0|k|/L[1 +G2]

where δ0 is inversely related to G. For our applications, this is insufficient so we must
impose an explicit assumption that the analyticity radius is large. In particular, we
assume

lim sup
t→∞

‖u(t)‖
D(A1/2eσA1/2

)
=: M < ∞,

where

‖u(t)‖
D(A1/2eσA1/2

)
= |A1/2eσA

1/2

u|.
The preceding condition implies

lim sup
t→∞

|ûk|2(t) ≤ M2|k|−2e−4πσ|k|/L

Gevrey class and analytic solutions to (2.1) and other fluid models have been studied
extensively. A partial list is [10, 12, 16, 34, 37, 46].

3.3. The Stokes operator. We denote by φi the eigenvectors and λi the eigen-
values of the Stokes operator. PN denotes the projection operator from L2 onto
span(φ1, . . . , φN).

Recall from [20] that for periodic domains and restricting to functions with zero
mean that the Stokes operator A agrees with −∆. Furthermore, abusing notation

slightly, the eigenfunctions φk of A can be written explicitly in terms of {e2πi kL ·x}k∈Z2

as

φk = akL
−1e2πi

k

L
·x + ākL

−1e−2πi k
L
·x,

where ak ∈ C
2 satisfy ak · k = 0. For each k ∈ Z

2 \ {0} there are actually two
eigenfunctions of the above form but we suppress this. Note that {φk} is orthonormal
and all elements have mean zero. The eigenvalues of A are the values 4π2L−2|k|2 for
k ∈ Z2 \ 0. The eigenfunctions can be ordered as {φj}j∈N so that the corresponding
eigenvalues λj are nondecreasing. By symmetry, the multiplicity of the eigenvalue λj

is

#{k ∈ Z
2 : |k|2 = λjλ

−1
1 }.

If we are given an eigenvalue λj , then this corresponds to points k ∈ Z2 \ {0} in the
square [−K,K]2 where K2 ∼ j. Furthermore, we have asymptotically that

λj . j,

implying

K2 . j.

Plainly then, if u ∈ span(φ1, . . . , φN), there exists K ∼
√
N so that û is supported

in [−K,K]2.
For other properties of the Stokes operator, as well as its eigenvectors and eigen-

values, see [30, II.6] as well as [20, 59].
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3.4. Approximation property of local interpolant operators. We prove ana-
logues of (2.3) and (2.7) for local interpolant operators. The local volume interpolant
operator (2.5) satisfies the approximation property

‖Ih,Ωf − f‖2L2(Ω) ≤ c0h
2‖f‖2H1(Ω0)

. (3.2)

Structurally this is identical to (2.3) but the operator is local so we check details. By
the Poincaré inequality,

‖Ih,Ωf − f‖2L2(Ω) ≤
M
∑

i=1

|Si ∩ Ω|CSi∩Ω‖∇(fχΩ)‖2L2(Si∩Ω),

where CSi∩Ω is the Poincaré constant for Si∩Ω and | · | denotes 2D Lebesgue measure.
These constants are uniformly bounded because the sets CSi∩Ω all have bounded
diameters. We thus obtain

‖Ih,Ωf − f‖2L2(Ω) ≤ c0h
2

M
∑

i=1

‖∇f‖2L2(Si∩Ω) = c0h
2‖f‖2H1(Ω) ≤ c0h

2‖f‖2H1(Ω0)
,

which is (3.2).
The local nodal interpolant operator (2.9) satisfies the approximation property

‖Ih,Ωf − f‖2L2(Ω) ≤ c20h
4‖f‖2H2(Ω0)

. (3.3)

Again, this follows essentially the original argument in [5] which is adapted from [41].
Recall from [41, 5] that if Q is a cube of side length h and x,y ∈ Q, then

|φ(x)− φ(y)| ≤ c0h‖Aφ‖L2(Q). (3.4)

Then,

|χΩf − Ih,Ωf |2 =
N
∑

i=1

∫

Si∩Ω
|f(x)− f(xi)|2 dx

≤
N
∑

i=1

∫

Si

|f(x)− f(xi)|2 dx

≤
N
∑

i=1

c20h
2|Si|‖Af‖2L2(Si)

≤ c20h
4‖f‖2H2(Ω0)

.

(3.5)

3.5. Spectral inequalities. For our approximate data assimilation result, we use a
spectral inequality of Egidi and Veselić for the torus [25, 26]. This extends earlier
work on Rd [44]. The spectral inequality applies to “thick” sets. A set S is thick in
R2 if there exists γ ∈ (0, 1] and a = (a1, a2) where ai > 0 so that for every x ∈ R2,

|(S + x) ∩ ([0, a1]× [0, a2])| ≥ γa1a2 .

It is easy to see that any open set in [−L/2, L/2]2 which is periodically extended to
R2 is thick. The spectral theorem on the torus is the following.
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Theorem 3.1 ([25]). Let f ∈ L2(Ω0) where Ω0 denotes the torus [0, L1] × [0, L2].

Assume supp f̂ ⊂ J where J is a rectangle in R2 with sides parallel to coordinate
axes and of length b1 and b2. Let b = (b1, b2). Let S ⊂ R2 be a (γ, a)-thick set with
a = (a1, a2) so that 0 < aj < 2πLj for j = 1, 2. Then

‖f‖L2(Ω0) ≤ Cγ−ca·b− 13

2 ‖f‖L2(S∩Ω0).

For simplicity we take L1 = L2 = L and S to be the periodic extension of a ball
with radius r < L/2 to all of R2. It is not difficult to see that this set is thick with

ai = L− r , and γ =
πr2

4(L− r)2
.

We can also take b1 = b2 = 2K where K ∈ N is fixed and J centered at the origin.
Then, for any open set Ω contained in Ω0, we have as a consequence of Theorem 3.1
applied to a ball of radius r contained in Ω0 that

∑

k∈[−K,K]2∩Z2

|f̃k|2 ≤ Cγ−2c(L−r)K−13

∫

Ω

∣

∣

∣

∣

∑

k∈[−K,K]2∩Z2

f̃ke
2πi k

L
·x
∣

∣

∣

∣

2

dx. (3.6)

where f̃k is the Fourier coefficient for k ∈ Z2. We prefer to re-write this inequality in
the following form

‖f‖2L2(Ω0)
≤ CΩe

CΩK‖f‖2L2(Ω), (3.7)

where CΩ represents positive constants which are independent of K and range f̂ ⊂
[−K,K]2. Based on the discussion in Section 3.3, we can also formulate this result
in terms of the Stokes operator: If f ∈ span(φ1, . . . , φN), then

‖f‖2L2(Ω0)
≤ CΩe

CΩ

√
N‖f‖2L2(Ω). (3.8)

For bounded domains, there is a spectral inequality for the Stokes operator due to
Chaves, Silva and Lebeau [19].

Theorem 3.2 ([19]). Let Ω ⊂ Ω0 be a nonempty open set. There exist constants
M > 0 and K > 0 so that for every sequence of complex numbers zj and every real
Λ > 0 we have

∑

λj≤Λ

|zj |2 =
∫

Ω0

∣

∣

∣

∣

∑

λj≤Λ

zjφj

∣

∣

∣

∣

2

dx ≤ MeK
√
Λ

∫

Ω

∣

∣

∣

∣

∑

λj≤Λ

zjφj(x)

∣

∣

∣

∣

2

dx (3.9)

where φj are the eigenvectors and λj are the eigenvalues of the Stokes operator.

Spectral inequalities of this form were established earlier for elliptic operators on a
bounded domain in [53, 51] using Carleman inequalities and a pointwise interpolation
estimate from [52]. Although in Theorem 2.1, we consider only the case of the periodic
boundary conditions, similar techniques can be employed for the bounded domain as
well —see Remark 5.1.
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3.6. An observation inequality. Theorem 2.2 is an exact convergence result when
the observation domain is almost the entire domain. Our main technical tool for this
is the following observation inequality due to Xin and Yongyong [62].

Lemma 3.1 ([62]). Let Ω and Ω0 be bounded domains with smooth boundary so that
Ω ⊂ Ω0. For any ǫ > 0, there exists K(ǫ) > 0 so that for k > K, the following
inequality holds

∫

Ω0

|∇u|2 + kχΩ|u|2 dx ≥ (λ1(Ω)− ǫ)

∫

Ω0

|u|2 dx, (3.10)

for u ∈ H1
0 (Ω0) and λ1 the first eigenvalue of the Laplace operator on the domain

Ω0 \ Ω with zero-Dirichlet boundary conditions. As |Ω| → |Ω0| , λ1(Ω) increases
without bound.

As a final comment let us note that an observation inequality for (2.1) is given in
[54] for the difference of two solutions. It cannot, however, be applied to the difference
of the reference solution and the data assimilation solution.

4. Solving the data assimilation equations

In this section we construct solutions to the data assimilation equations introduced
in Section 1. Recall the data assimilation equation is

d

dt
vN + νAvN + PNB(vN ,vN) = PN f − µJh,N,Ω(vN − u), (4.1)

where Jh,N,Ω is either Ih,N,Ω or Ih,N,Ω. We focus on periodic boundary conditions.
Notice that the data assimilation equation has the form

d

dt
vN + νAvN = FN(u,vN , f),

where FN ∈ span(φ1, . . . , φN). Provided the data vN 0 is also in span(φ1, . . . , φN),
we may seek a solution vN(t) ∈ span(φ1, . . . , φN) for all t. Formally taking vN(t) ∈
span(φ1, . . . , φN) for all t results in a finite system of ODEs which possesses a local-
in-time unique strong solution. We take vN to be this solution and let T (vN 0) be
the maximal existence time for vN for data vN 0. Since the solution is strong, we
have vN ∈ C([0, T (vN 0));H). Note that if T (vN 0) is maximal and finite, then the
L2 norm of vN must blow up at T (vN 0). Hence, a uniform in time bound for the L2

norm implies T (vN 0) = ∞. The next lemma provides such a bound and implies vN

is a global solution provided h is sufficiently small.

Lemma 4.1. Let u0 ∈ V be given and let u be the solution to (2.1) for data u0 ∈ V
and f ∈ L∞(0,∞;H). Fix N ∈ N, h > 0 and µ > 0 and Jh,N,Ω ∈ {Ih,N,Ω, Ih,N,Ω}.
Assume vN 0 ∈ span(φ1, . . . , φN) and let vN be the unique strong solution to (2.10)
on [0, T (vN 0)) for some h > 0. Then, provided h is sufficiently small, vN satisfies

vN ∈ L∞((0, T (vN 0));H) ∩ L2((0, T ′);V ), (4.2)

for every 0 < T ′ < T (vN 0). The first inclusion implies T (vN 0) = ∞.

For type 1 interpolants, the requirement on h in [5] is 2µc0h
2 ≤ ν. This is better

than ours by a factor of 4.
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Because vN is confined to span(φ1, . . . , φN), we may deduce bounds on higher order
derivatives freely using properties of the eigenvectors of the Stokes operator. Hence
we do not need to prove such estimates as required in [5].

We do not require any Gevrey regularity of f at this point.

Proof. We first focus on Jh,N,Ω = Ih,N,Ω. Take the inner product of (2.10) with vN

and integrate in space to obtain

1

2

d

dt
‖vN‖2L2(Ω0)

+ ν‖A1/2vN‖2L2(Ω0)
= (f + µIh,N,Ωu,vN)− µ(Ih,N,ΩvN ,vN) ,

where (·, ·) = (·, ·)L2(Ω0). We estimate each term on the right hand side. For the
source terms we have

|(f ,vN)| ≤
4

νλ1
‖f‖2L2(Ω0)

+
ν

4
‖A1/2vN‖2L2(Ω0)

,

and

|(µIh,N,Ωu,vN )| ≤
4µ2

νλ1
‖Ih,Ωu‖2L2(Ω0)

+
ν

4
‖A1/2vN‖2L2(Ω0)

,

where we used the fact that vN is projected onto the first N modes to eliminate PN

in the inner product. A direct computation confirms that

‖Ih,Ωu‖2L2(Ω0)
≤ ‖u‖2L2(Ω0)

.

where we used (2.3). Hence

|(µIh,N,Ωu,vN )| ≤
4µ2

νλ1

‖u‖2L2(Ω0)
+

ν

4
‖A1/2vN‖2L2(Ω0)

.

For the remaining term we have

−µ(Ih,N,ΩvN ,vN) = −µ(Ih,ΩvN ,vN) = −µ(Ih,ΩvN − χΩvN ,vN)− µ

∫

Ω

|vN |2 dx.
(4.3)

The last term above has a good sign while, using (3.2), the second to last is bounded
as

µ|(Ih,ΩvN − χΩvN ,vN)| ≤ µ‖Ih,ΩvN − χΩvN‖L2(Ω0)‖A1/2vN‖L2(Ω)

≤ 2µc0h
2‖A1/2vN‖2L2(Ω0)

+
µ

2
‖vN‖2L2(Ω).

(4.4)

We now require

2µc0h
2 ≤ ν

4
. (4.5)

Granting this and absorbing terms where possible we obtain

1

2

d

dt
‖vN‖2L2(Ω0)

+
ν

4
‖A1/2vN‖2L2(Ω0)

≤ 4

νλ1
‖f‖2L2(Ω0)

+
4µ2

νλ1
‖u‖2L2(Ω0)

− µ

2
‖vN‖2L2(Ω).

(4.6)

Using the Poincaré inequality and dropping the term with a good sign we have

1

2

d

dt
‖vN‖2L2(Ω0)

+
νλ1

4
‖vN‖2L2(Ω0)

≤ 4

νλ1
‖f‖2L2(Ω0)

+
4µ2

νλ1
‖u‖2L2(Ω0)

. (4.7)

Since the right hand side is uniformly bounded in t, this leads to a uniform in time
bound on |vN | in the usual way [5]. Note that this bound is independent of N
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The proof is the same if we replace Ih,N,Ω with Ih,N,Ω with one modification: Instead
of (4.4) we have

µ|(χΩvN − Ih,ΩvN ,vN)| ≤ µ‖χΩvN − Ih,ΩvN‖L2(Ω0)‖vN‖L2(Ω0)

≤ 2µc20h
4‖vN‖2H2(Ω0)

+
µ

2
‖vN‖2L2(Ω)

≤ 2µc20h
4λN‖A1/2vN‖2L2(Ω0)

+
µ

2
‖vN‖2L2(Ω).

(4.8)

After fixing N and µ we therefore take h small so that 2µc20h
4λN < ν

4
and proceed as

in the case of Ih,N,Ω.
�

Remark 4.1. We discuss the existence problem for (2.13). Because the localization
in (2.13) does not involve a spectral projection, it is very similar to the usual existence
result [5], using the usual Galerkin approximation procedure. Therefore we include
only the needed a priori bound and direct the reader to [5] as well as [20, 59] for more
details. For the a priori bound, starting with (2.13) we have

1

2

d

dt
‖vN‖2L2(Ω0)

+ ν‖A1/2vN‖2L2(Ω0)
= (f ,vN)− µ(Ih,ΩvN ,vN ) + µ(Ih,Ωu,vN).

As in the proof of Proposition 4.1, the source terms lead to time-independent quan-
tities on the right hand side while

−µ(Ih,ΩvN ,vN) = −µ(Ih,ΩvN − χΩvN ,vN)− µ‖vN‖2L2(Ω).

This is identical to (4.3) and we can conclude following the identical argument. In
particular, for µ fixed and h chosen to satisfy 8µc0h

2 ≤ ν, we obtain a uniform bound
on vN in terms of µ, u and f . To rigorously construct a solution, we would now apply
this a priori bound to a Galerkin scheme and pass to the limit using the standard
compactness argument.

This existence result does not require Ω to occupy most of Ω0. This constraint will
be needed for data assimilation.

5. Local data assimilation

Proof of Theorem 2.1. Let ǫ > 0 be given. Let ǭ = ǫνλ1

8
. Let u and vN be as in the

statement of Theorem 2.1. Note that for any N ∈ N, PNu solves

d

dt
PNu+ νAPNu+ PNB(PNu,u) = PN f − PNB(QNu,u), (5.1)

where QN = I − PN . We will eventually specify a value for N .
Let w = vN − PNu. Then w is divergence free and satisfies

d

dt
w + νAw + PNB(PNu,w) + PNB(w,w) + PNB(w, PNu)

= −µIh,N,Ωw + µIh,N,ΩQNu+ PNB(QNu,u) + PNB(PNu, QNu).
(5.2)

Throughout this proof, unless otherwise adorned, ‖ · ‖ = ‖ · ‖L2(Ω0). We have

1

2

d

dt
‖w‖2 + ν‖A1/2w‖2 + (B(w, PNu),w)

= −µ(Ih,N,Ωw,w) + µ(Ih,N,ΩQNu,w) + (B(QNu,u) +B(PNu, QNu),w),
(5.3)
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where we made some obvious simplifications. As in Section 4 we have

−µ(Ih,N,Ωw,w) = µ(χΩw − Ih,Ω(w),w)− µ

∫

Ω

|w|2 dx, (5.4)

and

|µ(χΩw− Ih,Ω(w),w)| ≤ Cµc0h
2‖A1/2w‖2L2(Ω0)

+
µ

4
‖w‖2L2(Ω). (5.5)

The Hölder, Ladyzhenskaya and Young inequalities lead to

|(B(w, PNu),w)| ≤ C

ν
‖A1/2u‖2‖w‖2 + ν

4
‖A1/2w‖2. (5.6)

Applying the spectral inequality (3.8) we obtain

C

ν
‖A1/2u‖2‖w‖2 ≤ Cνλ1G

2CΩe
CΩ

√
N‖w‖2L2(Ω). (5.7)

Also by standard interpolation inequalities, we have

(B(QNu,u) +B(PNu, QNu),w)

≤ C(‖QNu‖1/2‖A1/2QNu‖1/2‖u‖1/2‖A1/2u‖1/2

+ ‖PNu‖1/2‖PNA
1/2u‖1/2‖QNu‖1/2‖QNA

1/2u‖1/2)‖A1/2w‖
≤ C‖QNu‖1/2‖A1/2QNu‖1/2‖u‖1/2‖A1/2u‖1/2‖A1/2w‖

≤ C

ν2
‖QNu‖‖A1/2QNu‖‖u‖‖A1/2u‖+ ν

4
‖A1/2w‖2 .

Note that

C

ν2
‖QNu‖‖A/2QNu‖‖u‖‖A1/2u‖ ≤ C

ν2λ
1/2
N

‖A1/2u‖3‖u‖

≤ C

ν2λ
1/2
N

(2ν2λ1G
2)3/2(2ν2G2)1/2

≤ C

λ
1/2
N

ν2λ
3/2
1 G4,

(5.8)

which can be made small by taking N large. Finally we have

µ|(Ih,N,ΩQNu,w)| ≤ µ‖Ih,ΩQNu‖‖χΩw‖
≤ µ‖χΩQNu‖‖wχΩ‖ ≤ Cµ‖χΩQNu‖2 +

µ

4
‖w‖2L2(Ω).

(5.9)

By our assumption on uniform Gevrey bounds for u we have

µ‖χΩQNu‖2 ≤ Cµ
∑

√
N.|k|

|ûk|2 ≤ Cµ
∑

√
N.|k|

M2

√

2π|Ω0|

∣

∣

∣

∣

L

k

∣

∣

∣

∣

2

e−4πσ

∣

∣ k

L

∣

∣

,

and this bound holds uniformly in time for sufficiently large times. We will return to
this term later after specifying a connection between µ and N .
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Collecting the above estimates and dropping terms where appropriate we obtain

1

2

d

dt
‖w‖2 + ν

2
‖A1/2w‖2 + µ

2

∫

Ω

|w|2 dx ≤ Cνλ1G
2CΩe

CΩ

√
N‖w‖2L2(Ω)

+ Cµc0h
2‖A1/2w‖2 + Cµ

∑

√
N.|k|

M2

√

2π|Ω0|

∣

∣

∣

∣

L

k

∣

∣

∣

∣

2

e−2πσ

∣

∣ k

L

∣

∣

+
C

λ
1/2
N

ν2λ
3/2
1 G4.

(5.10)

Provided N is sufficiently large we have

C

λ
1/2
N

ν2λ
3/2
1 G4 ≤ ǭ

2
. (5.11)

Assuming this holds, let

µ = 2Cνλ1G
2CΩe

CΩ

√
N and h∗ =

√

ν

4Cµc0

and take h ≤ h∗. Then (5.10) simplifies to

1

2

d

dt
‖w‖2 + ν

4
‖A1/2w‖2 ≤ Cµ

∑

√
N.|k|

M2

√

2π|Ω0|

∣

∣

∣

∣

L

k

∣

∣

∣

∣

2

e−2πσ

∣

∣ k

L

∣

∣

+
ǭ

2
. (5.12)

Using the definition of µ in terms of N we obtain

Cµ
∑

√
N.|k|

M2

√

2π|Ω0|

∣

∣

∣

∣

L

k

∣

∣

∣

∣

2

e−2πσ

∣

∣ k

L

∣

∣

= Cνλ1G
2CΩ

∑

√
N.|k|

M2

√

2π|Ω0|

∣

∣

∣

∣

L

k

∣

∣

∣

∣

2

eCΩ

√
N−2πσ

∣

∣ k

L

∣

∣

≤ Cνλ1G
2CΩM

2

N

∑

√
N.|k|

eCΩ

√
N−2πσ

∣

∣ k

L

∣

∣

,

(5.13)

where we have hidden some global parameters. Take δ0 large enough so that
∑

√
N.|k|

eCΩ

√
N−2πσ

∣

∣ k

L

∣

∣ ≤ 1.

This is achieved if
CΩ . σ.

In addition to (5.11), we require that

N ≥ 2Cνλ1G
2CΩM

2

ǭ
.

This leads to
1

2

d

dt
‖w‖2 + ν

4
‖A1/2w‖2 ≤ ǭ. (5.14)

The Poincaré inequality implies

d

dt
‖w‖2 + ν

2
λ1‖w‖2 ≤ 2ǭ. (5.15)

By the Gronwall inequality we obtain

‖w(t)‖2 ≤ ‖u0‖2e−νλ1t/2 +
4ǭ

νλ1
(1− e−νλ1t/2) ≤ ‖u0‖2e−νλ1t/2 +

ǫ

2
,
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where we used the definition of ǭ from the beginning of the proof. To complete the
proof note that

‖u(t)− vN (t)‖2 ≤ ‖w(t)‖2 + ‖QNu(t)‖2 ≤ C‖u0‖2e−νλ1t/2 +
3

4
ǫ,

provided we take N large enough so that

‖QNu‖2 ≤
ǫ

4
.

This plainly implies
‖u(t)− vN(t)‖ < ǫ,

for t sufficiently large.
The proof for Ih,N,Ω is similar but we need to modify our treatment of (5.5) as we

did at the end of the proof of Lemma 4.1. �

Remark 5.1. Essentially the same proof goes through for bounded domains if we
use (3.9) and assume that u ·φN decay sufficiently fast in N . The other modifications
are standard [5].

Proof of Corollary 2.1. Let vN be as in Theorem 2.1. Inspecting the proof of Theorem
2.1 we see that

‖vN‖ ≤ ‖vN − PNu‖+ ‖PNu‖ < ‖u0‖2e−νλ1t/4 + ǫ+ ‖u‖ .

This is an upper bound for vN that is time-global and independent of µ and N . For

the same reason we get control of
∫ T

0

∫

Ω0
|vN |2 dx dt for finite T . In contrast, the

corresponding upper bounds obtained in Lemma 4.1 depended on µ and N . This
implies for any 0 < ǫ ≪ 1 we can construct a solution vNǫ for parameters Nǫ, µǫ and
hǫ to (2.10) with the usual energy class bounds holding independently of Nǫ and µǫ,
provided we have knowledge of u at all points in Ω. As ǫ → 0, we have Nǫ, µǫ → ∞
while hǫ → 0. By Banach-Alaoglu, we have that there exists v so that vNǫ → v in
the weak-star topology on L∞([0, T ];L2) for every T > 0 as well as the weak topology
on L2([0, T ];H1).

Fix a measurable set U . Let ∆ > 0 be a given time scale. Then for any t,
∫ t+∆

t

∫

U

(u− v) dx ds =

∫ t+∆

t

∫

U

(u− vNǫ) dx ds+

∫ t+∆

t

∫

U

(vNǫ − v) dx ds.

We have by Theorem 2.1 that
∫ t+∆

t

∫

U

(u− vNǫ) dx ds ≤ |U |1/2
(

sup
s∈[t,t+∆]

|u− vNǫ|2(s)
)1/2

≤ |U |1/2
(

sup
s∈[t,t+∆]

|u0|2e−νλ1t/4 +
3

4
ǫ

)1/2

.

(5.16)

Additionally we know that
∣

∣

∣

∣

∫ t+∆

t

∫

U

(vNǫ − v)(x, t) dx ds

∣

∣

∣

∣

→ 0,

by ∗-weak convergence in L∞L2. Hence we may choose ǫ so that ǫ < e−t and the
above quantity is smaller than e−t. This gives the advertised exponentially decaying
bound.
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For the second item in Corollary 2.1. By the Lebesgue differentiation theorem, for
almost every t we have

lim
∆t→0

1

∆t

∫ t+∆t

t

∫

U

(u− v)(x, t) dx ds =

∫

U

(u− v)(x, t) dx,

where ∆t is a time-scale that depends on t. Let S denote the set of times for which
this holds. Then |Sc| = 0 where | · | denotes Lebesgue measure on the line. Fix t > 0.
Then for ∆t sufficiently small we have

∫

U

(u− v)(x, t) dx

≤ 1

∆t

∫ t+∆t

t

∫

U

(u− v)(x, t) dx ds+ e−t

≤ 1

∆t

∫ t+∆t

t

∫

U

(u− vNǫ)(x, t) dx ds+
1

∆t

∫ t+∆t

t

∫

U

(vNǫ − v)(x, t) dx ds+ e−t.

(5.17)

We have already explained how the first two terms can be made exponentially small.
Since this holds for all t ∈ S we see that

χS(t)

∫

U

(u− v)(x, t) dx → 0,

at an exponential rate.
�

Remark 5.2. The precise dynamics of v are unclear because we have not obtained
a governing system for v via the limiting process. The challenge to doing so is that,
as µǫ → ∞, so does µǫIhǫ,Nǫ,γ(u). To make sense of the equations after taking limits,
would require µǫPNǫIhǫ(u − vN

ǫ) is bounded in some sense. Because vN
ǫ → v, we

would need u = v for such a bound. In this case, v recovers the flow exactly for all
times, not just as t → ∞. Even granting this, the rate of convergence of vN

ǫ → v

would need to be rapid enough to compensate for the exponential growth of µǫ.

Remark 5.3. We now sketch the proof of Theorem 2.2. Granted existence, the proof
follows the argument of Azouani-Olson-Titi in [5] except we do not have a positive
global term originating from the interpolant. Instead we have

µ

∫

Ω

|w|2 dx. (5.18)

This and diffusion are used to hide

1

2ν
‖u‖2|w|2.

Indeed, by the spectral inequality (3.10) from [62] we have

1

2ν
‖u‖2|w|2 ≤ cνλ1G

2

(

k

λ1(Ω0 \ Ω)
‖w‖2L2(Ω) +

1

λ1(Ω0 \ Ω)
‖w‖2

)

,
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where λ1(Ω0 \ Ω) is the Poincaré constant for the domain Ω0 \ Ω. We require Ω0 \ Ω
to be thin enough that

cλ1G
2

λ1(Ω0 \ Ω)
∼ 1, (5.19)

as this will allow us to hide the H1 term in the diffusion. We then choose µ large so
that the local quantity is absorbed by (5.18). Plainly this will allow us to execute the
remainder of the argument from [5].

We now analyze our choice of parameters. Let h0 be the thickness of Ω0 \Ω. Then
h0 is roughly λ1(Ω0 \ Ω)−1/2. Putting this in (5.19) gives

h0 ∼
1√
λ1G

.

This is on the order of the length scale of the global grid in [5]. Hence, Theorem 2.2
says that it is possible to ignore roughly the outer band of observables in the volume-
elements global data assimilation algorithm and still exactly recover the solution.

6. Computational results

Our computations were done on the NSE in vorticity form with a fully dealiased
pseudospectral code corresponding to N ×N nodal values in the physical space Ω0 =
[0, 2π]2. The force f , specified in Fourier space, was the same as that used in [56, 57],
time independent and concentrated on the annulus with wave numbers 10 ≤ |k| ≤ 12.
The reference solution was evolved from a zero initial value for 25,000 time units at
which point the energy, enstrophy and palinstrophy have all settled into time series
for a chaotic solution (see Figure 1) with steady statistics. The viscosity was set to
ν = 10−4, and a scalar multiple on the force is chosen so that the Grashof number
G = 106. Both the vorticity of the reference solution ωN = ∇ × uN and that of
the synchronizing solution ω̃N = ∇ × vN were solved using the third-order Adams-
Bashforth method in [56, 57] in which the linear term is handled exactly through an
integrating factor. The step size was ∆t = 0.01 with N = 512, consistent with [57]
at this Grashof number. We took data on square subdomains Ω = Ωj , j = 1, 2, 3, 4,
Ωj ⊂ Ωj−1, each centered in Ω0 and with relative size

|Ω1| = 0.7656|Ω0| , |Ω2| = 0.6602|Ω0| , |Ω3| = 0.5265|Ω0| , |Ω4| = 0.2500|Ω0| .

An interpolating operator J was computed by first applying an FFT−1 to the
Fourier coefficients of ω̃N−ωN . In order to use coarse data, the resulting difference was
used at only every 2p-th node in each direction, with results compared for p = 1, 2, 3, 4,
so that h = π/128, π/64, π/32 and π/16, respectively. Before transforming back via
an FFT, the field within the subdomain Ω was smoothened by the recursive averaging
operator Kp depicted in Figure 2 and set to zero on Ω0 \ Ω so that

J(ω̃N − ωN) = FFT ◦ χΩ ◦ Kp ◦ FFT−1(ω̃N − ωN) .

Note that the final transformation by the FFT serves to filter, just as PN did in our
analysis sections, though N is no longer the number of Fourier modes. After some
experimentation we found that taking the relaxation parameter µ = 50 to be near
optimal under these conditions.
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Figure 1. Time series of enstrophy, ‖ωN‖2L2(Ω0)
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We begin by testing the effect of the size of the subdomain. The relative L2 and L∞

norms are compared in Figure 3 with the resolution of data fixed h = π/32 (p = 3).
To be clear, these errors are measured as

‖ω̃N − ωN‖L2(Ω0)

‖ωN‖L2(Ω0)

,
max0≤j,k≤N−1 |(ω̃N − ωN)(xj , yk)|

max0≤m,n≤N−1 |ωN(xm, yn)|
,

respectively. Machine precision is reached for data collected over Ω1 in 1000 time
units. By then, in the case of Ω2, the error is within 106, while for Ω3, it has barely
budged from unity.

We next vary the resolution of the observed data for two subdomains, Ω2 and Ω3

in Figure 4. Over both subdomains there is little difference between the relative L2

errors for p = 1, 2, 3. The resolution associated with p = 4 (h = π/16) appears
to be too coarse for nudging over Ω2, when measured in this sense. Likewise, finer
resolution in the case of Ω3 does not indicate convergence to the reference solution,
at least by 1000 time units. While the relative L2 error for p = 4 suggests little
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resemblance between ω̃N and ωN , particularly in the case of Ω3, we see from the
vorticity field plots in Figure 5 that the main spatial features over the full domain Ω0

are nevertheless captured.
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Figure 3. Relative L2 and L∞ error for Ω = Ω1,Ω2,Ω3, p = 3 (h = π/32).
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Figure 4. Relative L2 error for p = 1, 2, 3, 4. Left: Ω = Ω2, right: Ω = Ω3.

Since the L2 errors over Ω0 did not decay for data restricted to Ω3, we cannot expect
them to do so when restricting to Ω4. We consider then relative L2 errors that are
measured also over subdomains. We found that even using data at every other node,
the relative L2 error over Ω0 is nearly unity, after nudging all the way to t = 10000
(see Figure 6). The relative L2 error over Ω3 is nearly the same as that over Ω0. From
Figure 7 we see that despite the size of these errors, again the main features of the
vorticity field emerge already at t = 1000, but only to roughly the same extent at
t = 10000, consistent with the L2 error. We also note that while the relative L2 error
over Ω4, where the data is taken, is roughly 0.1, the plot of the difference ω̃N − ωN

within Ω4 is uniformly small.

7. Mobile data

Our emphasis to this point has been on how well nudging over a fixed subdomain
can recover the reference solution over the entire computational domain. The field
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Figure 5. Snapshots of ωN , ω̃N and difference, for Ω3, p = 4. Top:
t = 100, bottom: t = 1000.
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Figure 6. Relative L2 error over various domains, data in Ω4, h = π/128.

plot of the difference in Figure 5 (7) show that even with the coarsest data (smallest
subdomain), the reference solution within the subdomain is captured well, despite the
problem being global over Ω0.

This leads us to consider moving the subdomain where the data is collected as
the solution evolves. We start with Ω4(t), a subdomain with 1/4-th the area of the
computational domain, specified by the location of its lower left corner (nx, ny) on



22 ANIMIKH BISWAS, ZACHARY BRADSHAW, AND MICHAEL S. JOLLY

-1

 0

 1

 2

 3

 4

 5

 6

 7

-1  0  1  2  3  4  5  6  7

t=1000, reference soln

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

PSfrag replacements

x
y -1

 0

 1

 2

 3

 4

 5

 6

 7

-1  0  1  2  3  4  5  6  7

t=1000, synchronizing soln

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

PSfrag replacements

x
y -1

 0

 1

 2

 3

 4

 5

 6

 7

-1  0  1  2  3  4  5  6  7

t=1000, difference

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

PSfrag replacements

x
y

-1

 0

 1

 2

 3

 4

 5

 6

 7

-1  0  1  2  3  4  5  6  7

t=10000, reference soln

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

PSfrag replacements

x
y -1

 0

 1

 2

 3

 4

 5

 6

 7

-1  0  1  2  3  4  5  6  7

t=10000, synchronizing soln

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

PSfrag replacements

x
y -1

 0

 1

 2

 3

 4

 5

 6

 7

-1  0  1  2  3  4  5  6  7

t=10000, difference

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

PSfrag replacements

x
y

Figure 7. Snapshots of ωN , ω̃N and difference, for data in Ω4, p = 1.
Top: t = 1000, bottom: t = 10000.

the N × N discrete grid. The movement of the subdomain is determined by the
periodic extension of the functions shown in Figure 8. The subdomain thus moves
counterclockwise, covering the entire computational domain in one time unit. We
fix the local interpolating operator at our most coarse setting h = π/16 (p = 4).
The results over the initial cycle in Figure 9 shows that synchronization is already
well underway in just one time unit. The relative errors are plotted in Figure 11.
Convergence to near machine precision is reached in one-tenth the time needed using
finer data on the largest stationary subdomain, Ω1 (compare to Figure 3).PSfrag replacements
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Figure 9. Initial cycle of nudging with Ω4(t), h = π/16, starting at
t = .25. Reference solution and difference at t = 1 are on the right.

A similar route can be taken by a subdomain Ω5(t), where |Ω5(t)| = 1/16|Ω0|, such
as that shown in Figure 10. Note that in this case the periodic extension of ny(t) is
discontinuous. Though a bit slower than with Ω4(t), synchronization is still achieved
with this smallest small subdomain (see Figure 11).
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8. Summary

Previous rigorous results on data assimilation in the direction of [5] rely on uni-
formly distributed observations of the reference solution. We have rigorously shown
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Figure 11. Relative errors for Ω4(t), Ω5(t), both with h = π/16.

that, modulo an arbitrarily small error, the observations can be confined to a sub-
domain provided the solution is sufficiently regular and sufficiently many local samples
are used.

Analysis guarantees what should work in practice (up to numerical error). Con-
versely, when an algorithm works in practice, it suggests there might be some analysis
to support it. Computational work has demonstrated that nudging over the entire
computational domain works much better than required in the rigorous estimates
[2, 56, 28, 40, 47, 48]. The conditions in Theorem 2.1 are essentially

µ & νG2e
√
N , h .

√

ν

µ
∼ 1

G
e
√
N/2.

In our pseudospectral implementation, we have h = 2π/N , so strictly speaking The-

orem 2.1 would require N ∼ G exp(
√
N/2), which is far from obtainable.

Yet our computational results are promising. We have synchronized with a chaotic
reference solution to near machine double precision in relative L2 error using data on
every 8th grid point (in each direction) on a fixed subdomain that is roughly 3/4×
the area of the computational domain Ω0. The rate of exponential decay in the error
slows somewhat when data is restricted to a subdomain that is roughly 2/3× the
area of Ω0. The L2 error does not appreciatively decay at all if data is taken on a
subdomain of roughly 1/4× the area. Still, the main features of the vorticity field
are captured if data is taken on even just a quarter of the area. Overall then, this
constitutes another case of an algorithm working better than analysis suggests.

Preliminary tests of nudging on moving subdomains are even more encouraging.
Sliding subdomains of 1/4× and even 1/16× the area of Ω0 to cover Ω0 achieves
synchronization in one-tenth the time needed for a larger fixed domain, and does so
with coarser data. This suggests analysis of mobile local data assimilation is merited,
a matter we will explore in a future work.
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