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Abstract

We study a general convex optimization problem, which covers various classic problems

in different areas and particularly includes many optimal transport related problems arising

in recent years. To solve this problem, we revisit the classic Bregman proximal point algo-

rithm (BPPA) and introduce a new inexact stopping condition for solving the subproblems,

which can circumvent the underlying feasibility difficulty often appearing in existing inexact

conditions when the problem has a complex feasible set. Our inexact condition also cov-

ers several existing inexact conditions as special cases and hence makes our inexact BPPA

(iBPPA) more flexible to fit different scenarios in practice. As an application to the standard

optimal transport (OT) problem, our iBPPA with the entropic proximal term can bypass

some numerical instability issues that usually plague the popular Sinkhorn’s algorithm in

the OT community, since our iBPPA does not require the proximal parameter to be very

small for obtaining an accurate approximate solution. The iteration complexity of O(1/k)

and the convergence of the sequence are also established for our iBPPA under some mild

conditions. Moreover, inspired by Nesterov’s acceleration technique, we develop an iner-

tial variant of our iBPPA, denoted by V-iBPPA, and establish the iteration complexity of

O(1/kλ), where λ ≥ 1 is a quadrangle scaling exponent of the kernel function. In particular,

when the proximal parameter is a constant and the kernel function is strongly convex with

Lipschitz continuous gradient (hence λ = 2), our V-iBPPA achieves a faster rate of O(1/k2)

just as existing accelerated inexact proximal point algorithms. Some preliminary numerical

experiments for solving the standard OT problem are conducted to show the convergence

behaviors of our iBPPA and V-iBPPA under different inexactness settings. The experiments

also empirically verify the potential of our V-iBPPA on improving the convergence speed.

Keywords: Proximal point algorithm; Bregman distance; inexact condition; Nesterov’s

acceleration; optimal transport.

1 Introduction

We consider the following convex optimization problem

min
x

f(x) s.t. x ∈ C, (1.1)
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where f : E → (−∞,∞] is a proper closed convex function, C ⊆ E is a nonempty convex

open set, C is the closure of C and E is a real finite dimensional Euclidean space equipped with

an inner product 〈·, ·〉 and its induced norm ‖ · ‖. Problem (1.1) can cover a large class of

convex optimization problems in various areas. We are particularly interested in optimization

problems over the nonnegative octant arising in the area of optimal transport (OT); for example,

the standard OT problem (see problem (4.1)), the capacity constrained OT problem and the

problem of computing Wasserstein barycenters, just to name a few. All these problems have

found many applications and attracted considerable attention in recent years. We refer interested

readers to a recent comprehensive survey [42] (mainly from the computational point of view)

and references therein for more details on OT and its related problems.

Among different solution methods designed for solving problem (1.1), the proximal point

algorithm (PPA) is arguably the most fundamental one that basically generates a sequence

{xk} via the following scheme

xk+1 ≈ arg min
x

{
f(x) + γk d(x, xk) : x ∈ C

}
, (1.2)

where d(·, ·) is a certain proximity measure, γk > 0 is a given proximal parameter and “≈” means

that xk+1 is only required to be an approximate solution of (1.2) in some sense (to be specified

later) since computing an exact solution of (1.2) is in general too expensive. With the choice of

d(x,y) = 1
2‖x− y‖2, the above iterative scheme exactly reduces to the classical (inexact) PPA

which enjoys comprehensive convergence results; see, for example, [20, 21, 34, 37, 45, 46]. Besides

the half squared Euclidean distance, various researchers have also considered using some other

non-Euclidean proximity measures in (1.2); see, for example, [2, 12, 13, 14, 17, 18, 19, 26, 27,

28, 54, 55]. Such an idea stems not only from natural algorithmic generalizations, but also from

practical considerations on some specific applications. In particular, we find that, for OT and its

related problems, a proper choice of d (specifically, the entropic proximal term) may capture the

geometry/structure of the problem, which allows one to eliminate the constraint x ∈ C during

the PPA iterations and leads to a simpler subproblem (1.2). To date, there exist a variety of

general proximity measures such as the Bregman distance [8] and the ψ-divergence [16]; see [3]

for a comprehensive study on various proximity measures. In this paper, we will focus on the

scheme (1.2) based on the Bregman distance, which has a long history of being incorporated in

proximal-type methods and is still very popular nowadays (see, for example, [4, 7, 33, 56]), but

some results developed later can also be extended to other proximity measures.

We now consider the scheme (1.2) with the choice of d(x, y) = Dφ(x, y), namely,

xk+1 ≈ arg min
x

{
f(x) + γk Dφ(x, xk)

}
, (1.3)

where Dφ(·, ·) is the Bregman distance associated with the kernel function φ (see next section for

definition). This scheme is a generic template for an inexact Bregman proximal point algorithm

(iBPPA); see, for example, [3, 12, 13, 14, 17, 18, 28, 52]. In particular, we are interested in

a class of kernel functions φ satisfying certain desirable properties including domφ = C (see

Assumption A(iii)) so that the sequence {xk} is forced to stay in C and thus the constraint

x ∈ C is automatically eliminated in (1.3). But, even without such a constraint, the subproblem

(1.3) is still generally nontrivial to solve. Therefore, for the algorithm to be implementable

and practical, it must allow one to solve the subproblem approximately and the corresponding

stopping condition must be practically verifiable. This consideration then gives rise to different
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variants of the iBPPA. In the literature, a commonly used inexact framework is based on the

ν-subdifferential of f [9, 28, 55]. Basically, the iterate xk+1 needs to satisfy

0 ∈ ∂νkf(xk+1) + γk
(
∇φ(xk+1)−∇φ(xk)

)
, (1.4)

which allows the approximate computation of the subdifferential of f at xk+1. Another widely

used inexact framework was first considered by Rockafellar [46] for the classic PPA and later

extended by Eckstein [18] for the BPPA. Specifically, it requires xk+1 to satisfy

∆k ∈ ∂f(xk+1) + γk
(
∇φ(xk+1)−∇φ(xk)

)
with ‖∆k‖ ≤ ηk, (1.5)

which is typically easier to check than the ν-subdifferential-based condition (1.4). However, we

should be mindful that both conditions (1.4) and (1.5) implicitly require that the approximate

solution xk+1 must satisfy xk+1 ∈ dom f (for the nonemptyness of ∂νkf(xk+1) or ∂f(xk+1)) and

xk+1 ∈ dom∇φ (for the well-definedness of ∇φ(xk+1)) at the same time. But in practice, such a

requirement may be nontrivial to satisfy, especially when dom f is not a simple convex set. Thus

checking whether condition (1.4) or (1.5) holds could be very expensive, if not impossible. In [52],

Solodov and Svaiter proposed another inexact framework for the BPPA for which the stopping

condition is more practical and constructive when ∇φ is explicitly invertible. Specifically, this

approach requires a triple (xk+1,yk,vk) to satisfy

xk+1 = (∇φ)−1(∇φ(xk)− γ−1
k vk), vk ∈ ∂f(yk),

Dφ(yk, xk+1) ≤ σ2Dφ(yk, xk),
(1.6)

where yk is an intermediary point and σ ∈ [0, 1) is a constant. Note that it needs the exact

computation of an element vk in ∂f(yk), which sometimes could be difficult to satisfy when f is

not a simple function. We should point out that when φ is chosen as the classical half squared

Euclidean norm, this exactness requirement has been relaxed by allowing an element in ∂νf for

some ν ≥ 0 (see, e.g., [35, 49]), but it is not clear whether such an exactness requirement can

be relaxed for a general kernel function.

The aforementioned feasibility difficulty of requiring xk+1 ∈ dom f∩dom∇φ in (1.4) or (1.5)

and the difficulty of computing an element of ∂f(yk) in (1.6) thus motivate us to propose a new

inexact framework (see (3.2)), which relaxes the previous stringent requirements by allowing

∂νkf and ∇φ to be computed at two slightly different points, respectively. Though the idea is

simple, it is surprising that it has not been explored before. Later in Section 4, we show by a

concrete application to the standard OT problem that the verification of our inexact condition

(3.2) is implementable and more practical. Moreover, our iBPPA with the entropic proximal

term can bypass some numerical instability issues that often plague the popular Sinkhorn’s

algorithm used in the OT community. This is because in contrast to Sinkhorn’s algorithm, our

iBPPA does not require the proximal parameter to be very small in order to obtain an accurate

approximate solution, as evident from our numerical results in Section 6.

Over the last few decades, Nesterov’s series of seminal works [38, 39, 41] (see also [40]) on

accelerated gradient methods have inspired various extensions and variants, such as the classical

accelerated proximal point method of Güler [21] as well as its recent Bregman extension [61],

the accelerated interior gradient algorithm of Auslender and Teboulle [3], and the recent inertial

variants of the Bregman proximal gradient method in [23, 24]. Motivated by these studies, it is

natural for us to explore whether and how our iBPPA can be accelerated. Here, we should point
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out that the convergence rate (in terms of the objective function value) of PPA-type methods,

including our iBPPA, can usually be improved by simply choosing smaller proximal parameters

(see Remark 3.1). However, a smaller proximal parameter often leads to a harder and possibly

more ill-conditioned subproblem, which may not be efficiently solvable as in the case of many

OT related problems. Therefore, it is important to develop a possibly accelerated variant of our

iBPPA without explicitly resorting to using smaller proximal parameters.

The contributions of this paper are summarized as follows.

1. We have proposed a new stopping condition for inexactly solving the subproblems in

iBPPA. This condition can circumvent the difficulty of demanding the interior feasibility

or requiring the exact computation of ∂f in existing inexact conditions. Moreover, it is

flexible enough to fit different scenarios, and covers conditions (1.4) and (1.5) as special

cases. The iteration complexity of O(1/k) and the convergence of the sequence are also

established for our iBPPA under some mild conditions; see Section 3.

2. We have developed an inertial variant of our iBPPA, denoted by V-iBPPA, based on

Nesterov’s acceleration technique. By making use of the quadrangle scaling property

of the Bregman distance (see Definition 5.1), we show that the V-iBPPA possesses an

iteration complexity of O(1/kλ) under a proper inexactness control, where λ ≥ 1 is a

quadrangle scaling exponent; see Theorem 5.2. Moreover, when the proximal parameter

is a constant and the kernel function is strongly convex with Lipschitz continuous gradient

(hence λ = 2), our V-iBPPA achieves a faster rate of O(1/k2) just like the existing

accelerated inexact proximal point algorithms in, for example, [21, 36].

3. We have also conducted numerical experiments to evaluate the performances of our

iBPPA and V-iBPPA under different inexactness settings, in comparison to the inexact

hybrid proximal extragradient methods of Solodov and Svaiter [49, 52]. The computa-

tional results empirically verify the improved performance of our V-iBPPA and demon-

strate the promising potential of (V-)iBPPA for solving OT-related problems.

The rest of this paper is organized as follows. We present notation and preliminaries in

Section 2. We then describe a new iBPPA for solving (1.1) and establish the convergence

results in Section 3. A concrete application of our iBPPA to the standard OT problem is

given in Section 4. We next develop an inertial variant of our iBPPA by employing Nesterov’s

acceleration technique in Section 5. Some preliminary numerical results are reported in Section

6, with some concluding remarks given in Section 7.

2 Notation and preliminaries

Assume that f : E → (−∞,∞] is a proper closed convex function. For a given ν ≥ 0, the ν-

subdifferential of f at x ∈ dom f := {x ∈ E : f(x) <∞} is defined by ∂νf(x) := {d ∈ E : f(y) ≥
f(x) + 〈d, y − x〉 − ν, ∀y ∈ E}, and when ν = 0, ∂νf is simply denoted by ∂f . The conjugate

function of f is the function f∗ : E→ (−∞,∞] defined by f∗(y) := sup {〈y, x〉 − f(x) : x ∈ E}.
A proper closed convex function f is essentially smooth if (i) int dom f is not empty; (ii) f is

differentiable on int dom f ; (iii) ‖∇f(xk)‖ → ∞ for every sequence {xk} in int dom f converging

to a boundary point of int dom f ; see [44, page 251].
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For a vector x ∈ Rn, xi denotes its i-th entry, Diag(x) denotes the diagonal matrix whose

ith diagonal entry is xi, ‖x‖ denotes its Euclidean norm. For a matrix A ∈ Rm×n, aij denotes

its (i, j)th entry, A:j denotes its jth column, ‖A‖F denotes its Fröbenius norm. For a closed

convex set X ⊆ E, its indicator function δX is defined by δX (x) = 0 if x ∈ X and δX (x) = +∞
otherwise. The distance from a point x to X is defined by dist(x, X ) := infy∈X ‖y − x‖.

Given a proper closed strictly convex function φ : E→ (−∞,∞], finite at x, y and differen-

tiable at y, the Bregman distance [8] between x and y associated with the kernel function φ is

defined as

Dφ(x, y) := φ(x)− φ(y)− 〈∇φ(y), x− y〉.

It is easy to see that Dφ(x, y) ≥ 0 and equality holds if and only if x = y due to the strictly

convexity of φ. When E = Rn and φ(·) = 1
2‖ · ‖

2, Dφ(·, ·) recovers the half squared Euclidean

distance. Moreover, one can easily verify the following identity.

Lemma 2.1 (Four points identity). Suppose that a proper closed strictly convex function

φ : E→ (−∞,∞] is finite at a, b, c, d and differentiable at a, b. Then,

〈∇φ(a)−∇φ(b), c− d〉 = Dφ(c, b) +Dφ(d, a)−Dφ(c, a)−Dφ(d, b). (2.1)

We next recall the definition of a Bregman function, which plays an important role in the

convergence analysis of the Bregman-distance-based method.

Definition 2.1 (Bregman function [11, Definition 2.1]). Let S ⊆ E be a nonempty open

convex set with its closure denoted as S. We say that φ : S 7→ R is a Bregman function with

zone S if the following conditions hold.

(B1) φ is strictly convex and continuous on S.

(B2) φ is continuously differentiable on S.

(B3) The left partial level set L(y, α) =
{
x ∈ S : Dφ(x, y) ≤ α

}
is bounded for every y ∈ S

and α ∈ R. Moreover, the right partial level set R(x, α) = {y ∈ S : Dφ(x, y) ≤ α} is

bounded for every x ∈ S and α ∈ R.

(B4) If {yk} ⊆ S converges to some y∗ ∈ S, then Dφ(y∗, yk)→ 0.

(B5) (Convergence consistency) If {xk} ⊆ S and {yk} ⊆ S are two sequences such that

{xk} is bounded, yk → y∗ and Dφ(xk, yk)→ 0, then xk → y∗.

Some remarks are in order concerning this definition. The above definition was originally

introduced by Censor and Lent [11]. However, it has already been noticed (for example, by

Eckstein [18, Section 2]) that the condition on the boundedness of the left partial level set in

(B3) is redundant because it follows automatically from the observation that L(y, 0) = {y} for

all y ∈ S, the convexity of Dφ(·, y) and [44, Corollary 8.7.1]. Moreover, Solodov and Svaiter

have shown in [52, Theorem 2.4] that the convergence consistency (B5) also holds automatically

as a consequence of the other conditions. But for ease of future reference, we still keep the left

partial level-boundedness and (B5) in the definition. When E = Rn, two popular Bregman

functions are φ(x) := 1
2‖x‖

2 with zone Rn and φ(x) :=
∑n

i=1 xi(log xi − 1) with zone Rn+. We

refer the reader to [5, 10] and [13, Chapter 2] for more details and examples, as well as a brief

historical review on Bregman functions.

Next, we give three supporting lemmas.
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Lemma 2.2 ([43, Section 2.2]). Suppose that {αk}∞k=0 ⊆ R and {βk}∞k=0 ⊆ R+ are two sequences

such that {αk} is bounded from below,
∑∞

k=0 βk <∞, and αk+1 ≤ αk +βk holds for all k. Then,

{αk} is convergent.

Lemma 2.3 ([30, Lemma 3.5]). Suppose that {λn}∞n=0 ⊆ R+ and {αn}∞n=0 ⊆ R are two se-

quences. Let tn :=
∑n

k=0 λk and βn := t−1
n

∑n
k=0 λkαk. If tn → +∞, then

(i) lim inf
n→+∞

αn ≤ lim inf
n→+∞

βn ≤ lim sup
n→+∞

βn ≤ lim sup
n→+∞

αn;

(ii) moreover, if α := lim
n→+∞

αn exists, then βn → α. (Silverman-Toeplitz theorem).

Lemma 2.4. Let g : E → (−∞,∞] be a proper closed convex function and φ be a convex,

essentially smooth function. For any y ∈ int domφ and ε > 0, let P εy(x) := g(x) + εDφ(x, y).

Suppose that an optimal solution (denoted by Jεy) of problem min
x

{
P εy(x)

}
exists. Then, we

have

P εy(u)− P εy(Jεy) ≥ εDφ(u, Jεy), ∀u ∈ dom g ∩ domφ. (2.2)

Moreover, if g is an affine function, then the above inequality holds with equality.

Proof. Since φ is essentially smooth, then Jεy must lie in int domφ and satisfy

0 ∈ ∂g(Jεy) + ε (∇φ(Jεy)−∇φ(y)) ⇐⇒ − ε (∇φ(Jεy)−∇φ(y)) ∈ ∂g(Jεy).

From the convexity of g, for any u ∈ dom g ∩ domφ,

g(u) ≥ g(Jεy)− ε〈∇φ(Jεy)−∇φ(y), u− Jεy〉
= g(Jεy)− ε (Dφ(u, y)−Dφ(u, Jεy)−Dφ(Jεy, y)) ,

where the equality follows from (2.1). Then, rearranging the above inequality results in (2.2).

Moreover, when g is an affine function, it is easy to see that g(u) = g(Jεy)+〈∇g(Jεy), u−Jεy〉
for any u ∈ domφ. This together with augments similar to those just presented above implies

the equality in (2.2). We completed the proof. 2

Finally, we make some blanket assumptions on our problem (1.1) and the kernel function

φ, which are essential for guaranteeing the well-definedness of our problem and subproblems as

well as the convergence of the presented algorithms.

Assumption A. Problem (1.1) and the kernel function φ satisfy the following assumptions.

(i) domf ∩ C is nonempty.

(ii) ρ := max
{
‖x− y‖ : x, y ∈ dom f ∩ C

}
<∞.

(iii) domφ = C, φ is a Bregman function with zone C and φ is essentially smooth.

One can see from Assumption A(i)&(ii) that dom(f + δC) is nonempty and f + δC is level-

bounded. Hence, a solution of problem (1.1) exists; see, for example, [47, Theorem 1.9]. Note

also that Assumption A(ii) actually requires the feasible set of problem (1.1) to be bounded.

This property then ensures the existence of a solution of each subproblem and the boundedness

of sequence generated by our algorithm. Some weaker assumptions are possible, but involve a

bit more analysis when we deal with the convergence of the iBPPA; see Remark 3.2. Here, we

simply impose Assumption A(ii). This assumption can be satisfied by many practical problems,

for example, the standard OT problem (4.1) and its various related problems [42].
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3 A new inexact Bregman proximal point algorithm

In this section, we develop a new inexact Bregman proximal point algorithm (iBPPA) for solving

problem (1.1). The complete framework is presented as Algorithm 1.

Algorithm 1 An inexact Bregman proximal point algorithm (iBPPA) for (1.1)

Input: Let {γk}∞k=0, {ηk}∞k=0, {µk}∞k=0, {νk}∞k=0 be four sequences of nonnegative scalars.

Choose x0 = x̃0 ∈ C arbitrarily and a kernel function φ. Set k = 0.

while a termination criterion is not met, do

Step 1. Find a pair (xk+1, x̃k+1) by approximately solving the following problem

min
x

f(x) + γkDφ(x, xk), (3.1)

such that xk+1 ∈ C, x̃k+1 ∈ dom f ∩ C and

∆k ∈ ∂νkf(x̃k+1) + γk
(
∇φ(xk+1)−∇φ(xk)

)
with ‖∆k‖ ≤ ηk, Dφ(x̃k+1, xk+1) ≤ µk.

(3.2)

Step 2. Set k = k + 1 and go to Step 1.

end while

Output: (xk, x̃k)

In the spirit of the PPA-type method, our iBPPA in Algorithm 1 basically solves the orig-

inal problem (1.1) via approximately solving a sequence of subproblems (3.1) each involving a

Bregman proximal term associated with the kernel function φ. Since domφ = C by Assumption

A(iii), the constraint x ∈ C can be removed in (3.1). Moreover, under Assumption A, one can see

that, at the k-th iteration, the solution xk,∗ of subproblem (3.1) exists and lies in C (= domφ).

Indeed, Assumption A(ii) and domφ = C imply that the objective function in subproblem (3.1)

is level-bounded. Thus, a solution exists (by [47, Theorem 1.9]) and must be unique since φ is

strictly convex (by Assumption A(iii) and condition (B1)). The essential smoothness of φ (by

Assumption A(iii)) and Assumption A(i) further imply that xk,∗ cannot be at the boundary of

C. Hence, the subproblem and iterate are well-defined. Our inexact condition (3.2) always holds

at xk+1 = x̃k+1 = xk,∗ and thus it is achievable.

The inexact condition (3.2) is rather broad for covering some existing approximation con-

ditions. When νk ≡ ηk ≡ µk ≡ 0, xk+1 (= x̃k+1) is obviously the exact optimal solution of

subproblem (3.1). In this case, our iBPPA reduces to the classical exact BPPA [12, 13, 14, 17].

When ηk ≡ µk ≡ 0, condition (3.2) reduces to condition (1.4) studied in [9, 28, 55]. More-

over, when νk ≡ µk ≡ 0, condition (3.2) reduces to condition (1.5) studied by Eckstein in [18].

More importantly, the inexact condition (3.2) can bypass the underlying difficulty of demanding

interior feasibility, which appears to be often overlooked in the literature.

As we have mentioned in the introduction, to check either condition (1.4) or (1.5), one has

to compute an approximate solution xk+1 that belongs to both dom f (for the nonemptyness

of ∂νkf(xk+1) or ∂f(xk+1)) and dom∇φ (for the well-definedness of ∇φ(xk+1)). However,

in practice, even finding a point in dom f ∩ dom∇φ can be nontrivial when dom f is not a

simple convex set. Thus, in this case, condition (1.4) or (1.5) may no longer be suitable. Our
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inexact condition (3.2) allows one to evaluate ∂νkf and ∇φ at two different points to deal with

dom f and dom∇φ separately. It is also interesting to compare our condition with condition

(1.6). Both conditions allow the error tolerance criteria to be checked at two different points.

But the mechanisms are different. Our condition (3.2) aims to relax the stringent requirement

xk+1 ∈ dom f ∩ dom∇φ, while condition (1.6) inherits the idea of a hybrid approach developed

by Solodov and Svaiter [49, 50, 51, 53] (now known as the hybrid proximal extragradient (HPE)

method [35, 36]) to use an intermediary point for computing xk+1. The latter condition is

constructive and does not need the usual summable-error requirement. However, it generally

needs the exact computation of an element in ∂f at an intermediary point. Note that, when φ

is chosen as the classical squared Euclidean norm, this exactness requirement has been relaxed

by allowing an element in ∂νf for some ν ≥ 0 (see, e.g., [35, 49]), but, to our knowledge, it is

still not clear whether such a requirement can be relaxed for a general kernel function. This

exactness requirement may limit the application of condition (1.6). Moreover, when employing

condition (1.6), one has to compute xk+1 via an extragradient step to guarantee the convergence.

In contrast, our condition (3.2) appears to be more straightforward and flexible. Later, we shall

illustrate the potential advantages of our condition through a concrete example on the standard

OT problem in Section 4.

We next establish the convergence of our iBPPA in Algorithm 1. Our analysis is inspired by

several existing works (see, for example, [18, 55]). We start by establishing a sufficient-descent-

like property in the following lemma.

Lemma 3.1 (Sufficient-descent-like property). Let {xk} and {x̃k} be the sequences gener-

ated by the iBPPA in Algorithm 1. Then, for any u ∈ dom f ∩ C,

f(x̃k+1) ≤ f(u) + γk
(
Dφ(u, xk)−Dφ(u, xk+1)−Dφ(x̃k+1, xk)

)
+ 〈∆k, x̃k+1 − u〉+ γkµk + νk.

(3.3)

Proof. From condition (3.2), there exists a dk+1 ∈ ∂νkf(x̃k+1) such that ∆k = dk+1+γk
(
∇φ(xk+1)−

∇φ(xk)
)
. Then, for any u ∈ domf ∩ C, we see that

f(u) ≥ f(x̃k+1) + 〈dk+1, u− x̃k+1〉 − νk
= f(x̃k+1) + 〈∆k − γk

(
∇φ(xk+1)−∇φ(xk)

)
, u− x̃k+1〉 − νk,

which implies that

f(x̃k+1) ≤ f(u) + γk〈∇φ(xk+1)−∇φ(xk), u− x̃k+1 〉+ 〈∆k, x̃k+1 − u〉+ νk.

Note from the four points identity (2.1) and Dφ(x̃k+1, xk+1) ≤ µk in (3.2) that

〈∇φ(xk+1)−∇φ(xk), u− x̃k+1〉 ≤ Dφ(u, xk)−Dφ(u, xk+1)−Dφ(x̃k+1, xk) + µk.

Combining the above two inequalities, we obtain (3.3). 2

Based on the sufficient-descent-like property, we can estimate the iteration complexity of our

iBPPA in terms of the function value as follows.

Theorem 3.1 (Iteration complexity of the iBPPA). Let {xk} and {x̃k} be the sequences

generated by the iBPPA in Algorithm 1. Then, for any optimal solution x∗ of problem (1.1), we

have

f(x̃N )− f(x∗) ≤ σ−1
N−1

(
Dφ(x∗,x0) +

∑N−1
k=0 µk +

∑N−1
k=0 γ

−1
k (ρηk + νk) +

∑N−1
k=0 σk−1ξk

)
, (3.4)
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where σ−1 := 0, σk :=
∑k

i=0 γ
−1
i and ξk := f(x̃k+1)−f(x̃k) ≤ γk(µk−1 +µk)+ρηk+νk for every

integer k ≥ 0. Moreover, if the summable-error condition that max
{∑

µk,
∑
γ−1
k νk,

∑
γ−1
k ηk,∑

σk−1ξk
}
<∞ holds, then

f(x̃N )− f(x∗) ≤ O

(
1∑N−1

k=0 γ−1
k

)
.

Proof. First, we see from (3.3) in Lemma 3.1 with u = x̃k that

ξk := f(x̃k+1)− f(x̃k)

≤ γk
(
Dφ(x̃k, xk)−Dφ(x̃k, xk+1)−Dφ(x̃k+1, xk)

)
+ 〈∆k, x̃k+1 − x̃k〉+ γkµk + νk

≤ γkDφ(x̃k, xk) + |〈∆k, x̃k+1 − x̃k〉|+ γkµk + νk

≤ γk(µk−1 + µk) + ρηk + νk,

(3.5)

where the last inequality follows from condition (3.2) and ‖x̃k+1 − x̃k‖ ≤ ρ (due to x̃k+1, x̃k ∈
domf ∩ C and Assumption A(ii)). Moreover, for any k ≥ 0,

f(x̃k+1) = f(x̃k) + ξk =⇒ (σk − γ−1
k )f(x̃k+1) = σk−1f(x̃k) + σk−1ξk

=⇒ γ−1
k f(x̃k+1) = σkf(x̃k+1)− σk−1f(x̃k)− σk−1ξk.

Summing the above equality from k = 0 to k = N − 1 results in∑N−1
k=0 γ

−1
k f(x̃k+1) = σN−1f(x̃N )−

∑N−1
k=0 σk−1ξk. (3.6)

Let x∗ be an arbitrary optimal solution of problem (1.1). Then, using (3.3) with u = x∗ again,

we see that, for all k ≥ 0,

f(x̃k+1)− f(x∗)

≤ γk
(
Dφ(x∗,xk)−Dφ(x∗,xk+1)−Dφ(x̃k+1,xk)

)
+ 〈∆k, x̃k+1 − x∗〉+ γkµk + νk

≤ γk
(
Dφ(x∗,xk)−Dφ(x∗,xk+1)

)
+ ρηk + γkµk + νk,

where the last inequality follows from ∆k ≤ ηk and ‖x̃k+1 − x∗‖ ≤ ρ. Thus, we get

γ−1
k f(x̃k+1)− γ−1

k f(x∗) ≤ Dφ(x∗, xk)−Dφ(x∗, xk+1) + µk + γ−1
k (ρηk + νk).

Summing the above inequality from k = 0 to k = N − 1, we obtain that∑N−1
k=0 γ

−1
k f(x̃k+1)− σN−1f(x∗)

≤ Dφ(x∗, x0)−Dφ(x∗, xN ) +
∑N−1

k=0 µk +
∑N−1

k=0 γ
−1
k (ρηk + νk)

≤ Dφ(x∗, x0) +
∑N−1

k=0 µk +
∑N−1

k=0 γ
−1
k (ρηk + νk).

(3.7)

This together with (3.6) implies that

σN−1(f(x̃N )− f(x∗)) =
∑N−1

k=0 γ
−1
k f(x̃k+1) +

∑N−1
k=0 σk−1ξk − σN−1f(x∗)

≤ Dφ(x∗, x0) +
∑N−1

k=0 µk +
∑N−1

k=0 γ
−1
k (ρηk + νk) +

∑N−1
k=0 σk−1ξk.

Dividing the above inequality by σN−1, we can obtain (3.4). The remaining result readily follows

from (3.4) under given conditions. We then complete the proof. 2
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Remark 3.1 (Comments on iteration complexity). We see from Theorem 3.1 that, un-

der the summable-error condition, the convergence rate of {f(x̃k)} is mainly determined by(∑
γ−1
k

)−1
. Since the choice of {γk} can be quite flexible, one can obtain different convergence

rates of {f(x̃k)}. For example,

• if 0 < γ ≤ γk ≤ γ <∞, then f(x̃N )− f(x∗) ≤ O
(

1
N

)
;

• if γk = 1
1+k , then f(x̃N )− f(x∗) ≤ O

(
1
N2

)
;

• if γk = γ0%
k with 0 < % < 1, then f(x̃N )− f(x∗) ≤ O

(
%N
)
.

Indeed, it is not hard to see that an arbitrarily fast convergence rate can be achieved with a proper

decreasing sequence of {γk}. However, for a fast decreasing sequence of {γk}, the corresponding

choices of {µk}, {νk} and {ηk} also become more stringent to guarantee the summable-error

conditions. Thus, when applying the iBPPA for solving a specific problem, one needs to make

a tradeoff between the convergence rate and the tolerable inexactness. In addition, we should

mention that condition
∑
σk−1ξk <∞ is not as restrictive as it appears. For example, consider

the case 0 < γ ≤ γk ≤ γ < +∞ and for some p > 1, µk ≤ O
(
k−p

)
, νk ≤ O

(
k−p

)
, ηk ≤

O
(
k−p

)
. Then it follows from (3.5) that ξk ≤ γ(µk−1 + µk) + ρηk + νk ≤ O

(
k−p

)
. This together

with σk :=
∑k

i=0 γ
−1
i ≤ (k + 1)γ−1 implies that

∑
σk−1ξk ≤ O(

∑
k1−p). Hence, condition∑

σk−1ξk < ∞ holds whenever p > 2. Moreover, if the function values decrease monotonically

along the sequence {x̃k}, as we often observe in our experiments, then ξk := f(x̃k+1)−f(x̃k) ≤ 0

and the condition
∑
σk−1ξk <∞ is automatically met.

We next present the main convergence results for our iBPPA.

Theorem 3.2 (Convergence of the iBPPA). Suppose that Assumption A holds. Let {xk}
and {x̃k} be the sequences generated by the iBPPA in Algorithm 1, and f∗ := min

{
f(x) : x ∈ C

}
.

Then, the following statements hold.

(i) If supk{γk} <∞,
∑
µk <∞,

∑
νk <∞ and

∑
ηk <∞, then f(x̃k)→ f∗.

(ii) If supk{γk} < ∞,
∑
µk < ∞,

∑
γ−1
k νk < ∞ and

∑
γ−1
k ηk < ∞, then the sequences {xk}

and {x̃k} converge to the same limit that is an optimal solution of problem (1.1).

Proof. Statement (i). Let x∗ be an arbitrary optimal solution of problem (1.1). Then, from

(3.7), we have for any nonnegative integer n,

σ−1
n

∑n
k=0γ

−1
k f(x̃k+1)

≤ f(x∗) + σ−1
n Dφ(x∗, x0) + σ−1

n

∑n
k=0 µk + σ−1

n

∑n
k=0γ

−1
k

(
ρηk + νk

)
.

(3.8)

where σn :=
∑n

k=0 γ
−1
k for n = 0, 1, 2, . . .. Note that σn → +∞ since supk{γk} < +∞, and

ρηk + νk → 0 since
∑
νk < ∞ and

∑
ηk < ∞. Thus, from Lemma 2.3(ii), we see that

σ−1
n

∑n
k=0γ

−1
k (ρηk + νk) → 0. This together with (3.8),

∑
µk < ∞ and Lemma 2.3(i) implies

that

lim inf
n→∞

f(x̃n+1) ≤ lim inf
n→∞

σ−1
n

∑n
k=0γ

−1
k f(x̃k+1) ≤ f(x∗).

Note also that f(x̃n+1) ≥ f(x∗) for all n since x̃n+1 ∈ dom f ∩ C. Then, we have that

lim infn→∞ f(x̃n+1) = f(x∗). On the other hand, {f(x̃k)} is bounded from below since x̃k ∈
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dom f ∩C for all k and the solution set of problem (1.1) is nonempty (by Assumption A(i)&(ii)).

Finally, from (3.5) and Lemma 2.2, together with supk{γk} <∞ and the summability of {µk},
{νk}, {ηk}, we see that {f(x̃k)} is convergent and hence f(x̃k)→ f(x∗). This proves statement

(i).

Statement (ii). First, since supk{γk} < ∞, then infk{γ−1
k } > 0. This together with∑

γ−1
k νk < ∞ and

∑
γ−1
k ηk < ∞ implies that

∑
νk < ∞ and

∑
ηk < ∞. Thus, state-

ment (i) holds. Since {x̃k} is bounded (due to x̃k ∈ dom f ∩ C and Assumption A(ii)), it

has at least one cluster point. Suppose that x̃∞ is a cluster point and {x̃ki} is a conver-

gent subsequence such that limi→∞ x̃ki = x̃∞. Then, from the closedness of f , we have that

f(x̃∞) ≤ lim infi→∞ f(x̃ki) = f∗. Note that x̃∞ ∈ dom f ∩ C since dom f ∩ C is closed. Hence,

x̃∞ must be an optimal solution of (1.1).

Next, let x∗ be an arbitrary optimal solution of (1.1). Obviously, f(x∗) ≤ f(x̃k+1) for all

k ≥ 0 since x̃k+1 ∈ dom f ∩ C. By setting u = x∗ in (3.3) and recalling ‖x̃k+1 − x∗‖ ≤ ρ (by

Assumption A(ii)), we see that

0 ≤ Dφ(x∗,xk+1)

≤ Dφ(x∗,xk) + γ−1
k

(
f(x∗)−f(x̃k+1)

)
−Dφ(x̃k+1,xk) + µk + γ−1

k (ρηk+νk)

≤ Dφ(x∗,xk) + µk + γ−1
k (ρηk + νk).

(3.9)

Thus, we can conclude from (3.9), max
{∑

µk,
∑
γ−1
k νk,

∑
γ−1
k ηk

}
< ∞ and Lemma 2.2 that

{Dφ(x∗, xk)} is convergent. From this fact and condition (B3) in Definition 2.1, we further see

that {xk} is bounded and hence it has at least one cluster point. Suppose that x∞ is a cluster

point and {xkj} is a convergent subsequence such that limj→∞ xkj = x∞. Then, from the fact

that Dφ(x̃kj , xkj ) ≤ µkj−1 → 0, the boundedness of {x̃kj} and the convergence consistency

of φ (see condition (B5) in Definition 2.1), we have that limj→∞ x̃kj = x∞. Therefore, from

what we have proved in the last paragraph, x∞ is an optimal solution of (1.1). Moreover,

by using (3.9) with x∗ replaced by x∞, we can conclude that {Dφ(x∞, xk)} is convergent.

On the other hand, it follows from limj→∞ xkj = x∞ and condition (B4) of the Bregman

function that Dφ(x∞, xkj ) → 0. Consequently, {Dφ(x∞, xk)} must converge to zero. Now,

let x̂∞ be any cluster point of {xk} with a subsequence {xk
′
j} such that xk

′
j → x̂∞. Since

Dφ(x∞, xk) → 0, we have Dφ(x∞, xk
′
j ) → 0. Using the convergence consistency of φ again,

we see that x∞ = x̂∞. Since x̂∞ is arbitrary, we can conclude that limk→∞ xk = x∞. This,

together with the boundedness of {x̃k}, Dφ(x̃k, xk)→ 0 and the convergence consistency of φ,

implies that {x̃k} also converges to x∞. This completes the proof. 2

Remark 3.2 (Comments on the boundedness of dom f ∩ C). From the analysis in this

section, one can see that the boundedness of dom f ∩C in Assumption A(ii) is used to guarantee

the existence of solutions of problem (1.1) and the subproblem (3.1), as well as the boundedness of

{x̃k}, which is a key fact for developing the convergence of the sequence in Theorem 3.2. Here, we

would like to comment on some other (possibly weaker) assumptions in place of the boundedness

assumption. Indeed, one could just assume that f+δC is level-bounded and
∑
|〈∆k, x̃k+1−x̃k〉| <

∞. The former together with Assumption A(i) will ensure that the original problem and the

subproblem have solutions, while the latter, together with supk{γk} <∞, the summability of {µk}
and {νk}, (3.5) and Lemma 2.2, can ensure that {f(x̃k)} is convergent. Then, the convergence

of {f(x̃k)} and the level-boundedness of f + δC further imply that {x̃k} is bounded. With these

facts, one can establish the same results as in Theorems 3.1 and 3.2. Note that condition
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∑
|〈∆k, x̃k+1 − x̃k〉| < ∞ can often be met without much difficulty. One simple case is when

dom f ∩C is bounded and
∑
ηk <∞, as considered in this paper. Moreover, when ∆k ≡ 0, as is

the case in application to the optimal transport problem (see the next section for more details),∑
|〈∆k, x̃k+1 − x̃k〉| < ∞ holds trivially. In addition, one could check one more condition

|〈∆k, x̃k+1 − x̃k〉| ≤ η̃k along with condition (3.2) at each iteration, where {η̃k} is a given

summable nonnegative sequence. This then enforces
∑
|〈∆k, x̃k+1 − x̃k〉| <∞.

4 Application to the optimal transport problem

In this section, we present a concrete application to the optimal transport (OT) problem to show

the potential advantages of our iBPPA in Algorithm 1. The discrete OT problem is a classical

optimization problem that has received great attention in recent years. We refer interested

readers to a recent comprehensive survey [42] (mainly from the computational point of view)

and references therein for more details. Mathematically, the discrete OT problem is given as

follows:

min
X
〈C, X〉 s.t. X ∈ Ω :=

{
X ∈ Rm×n : Xen = a, X>em = b, X ≥ 0

}
, (4.1)

where C ∈ Rm×n+ is a given cost matrix, a := (a1, · · · , am)> ∈ Σm and b := (b1, · · · , bn)> ∈ Σn

are given probability vectors with Σm (resp. Σn) denoting the m (resp. n)-dimensional unit

simplex, and em (resp. en) denotes the m (resp. n)-dimensional vector of all ones. It is obvious

that the OT problem (4.1) falls into the form of (1.1) via some simple reformulations and thus

our iBPPA in Algorithm 1 is applicable. We will consider the following two cases.

4.1 iBPPA with the quadratic proximal term

In this case, we equivalently reformulate (4.1) as

min
X

δΩ(X) + 〈C, X〉 s.t. X ∈ Rm×n, (4.2)

which obviously takes the form of (1.1) with f(X) = δΩ(X) + 〈C, X〉 and C = Rm×n. Then,

we can apply our iBPPA with the quadratic kernel function φ(X) = 1
2‖X‖

2
F to solve (4.2). The

subproblem at each iteration takes the following generic form

min
X

δΩ(X) + 〈C, X〉+
γ

2
‖X − S‖2F (4.3)

for some given S ∈ Rm×n and γ > 0, which is equivalent to

min
X

1

2
‖X − S + γ−1C‖2F s.t. X ∈ Ω. (4.4)

Thus, solving the subproblem (4.3) amounts to computing the projection of G := S−γ−1C over

Ω. To the best of our knowledge, the state-of-the-art method for computing such a projection is

the semismooth Newton conjugate gradient (Ssncg) method proposed recently by Li, Sun and

Toh [31]. Specifically, they consider the following dual problem of (4.4):

min
y

Ψ(y) :=
1

2
‖Π+(A∗(y) +G)‖2F − 〈y, c〉 −

1

2
‖G‖2F s.t. y ∈ Ran(A), (4.5)
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where y ∈ Rm+n is the dual variable, A : Rm×n → Rm+n is the linear operator defined by

A(X) := [Xen;X>em], A∗ is the adjoint operator of A, Ran(A) is the range space of A,

Π+ : Rm×n → Rm×n+ is the projection operator over Rm×n+ , and c := [a; b]. It is easy to verify

that if ȳ is a solution of the nonsmooth equation

∇Ψ(y) = AΠ+(A∗(y) +G)− c = 0, y ∈ Ran(A),

then ȳ solves (4.5) and X := Π+(A∗(ȳ)+G) solves (4.4). In view of this, Ssncg is then adapted

to solve the above nonsmooth equation. Indeed, started from y0 ∈ Ran(A), Ssncg ensures that

the generated sequence {yt} always lies in Ran(A) and ‖∇Ψ(yt)‖ → 0 (see [31, Theorem 2]).

Thus, in practice, an approximate solution Xt := Π+(A∗(yt) + G) of (4.4) can be returned

when ‖∇Ψ(yt)‖ ≤ ε for a given tolerance ε > 0. Extensive numerical results have been reported

in [31] to show the high efficiency of Ssncg for computing the projection over Ω. Hence, it is

natural to use Ssncg as a subroutine for our iBPPA employing the quadratic kernel function.

A possible feasibility issue, however, may occur when one tries to verify the stopping con-

dition for solving the subproblem (4.3) via Ssncg, because an approximate solution Xt =

Π+(A∗(yt)+G) returned by Ssncg may not be exactly feasible (indeed, we only have ‖A(Xt)−
c‖ ≤ ε). Therefore, an additional projection or rounding procedure may be needed to produce

a feasible point in Ω when performing a certain inexact rule. But its computation is in general

nontrivial especially for a complicated feasible region Ω. Fortunately, in our iBPPA, we are able

to avoid explicitly computing a feasible point and allow an approximately feasible Xt to be the

next proximal point based on the observations given in the next two paragraphs.

We first assume that there is a procedure, denoted by GΩ, such that for any X ≥ 0, after

performing GΩ on X, we can obtain that GΩ(X) ∈ Ω and ‖X−GΩ(X)‖F ≤ c ‖A(X)−c‖ for some

constant c > 0. Since Ω is a polyhedron, such a procedure is indeed achievable. One natural

example is the projection operator denoted by PΩ. By the Hoffman error bound theorem [25],

there must exist a constant c > 0 such that ‖X − PΩ(X)‖F ≤ c ‖A(X) − c‖ for any X ≥ 0.

Moreover, one can also consider the rounding procedure in [1, Algorithm 2] as GΩ, which can be

computationally more efficient than the projection.

Next we discuss how the stopping condition (3.2) for the subproblem (4.3) in our iBPPA can

be verified. When an approximate solution Xt = Π+(A∗(yt) + G) ≥ 0 is returned by Ssncg,

with the aid of GΩ, we have that

‖Xt − GΩ(Xt)‖F ≤ c ‖A(Xt)− c‖ = c ‖∇Ψ(yt)‖. (4.6)

Thus, for any Y ∈ Ω, we see that

〈−C − γ(Xt − S), Y − GΩ(Xt)〉
= γ 〈G−Xt, Y − GΩ(Xt)〉 = γ 〈A∗(yt) +G−Xt, Y − GΩ(Xt)〉
= γ 〈A∗(yt) +G−Xt, Y −Xt〉+ γ 〈A∗(yt) +G−Xt, Xt − GΩ(Xt)〉
≤ γ 〈A∗(yt) +G−Xt, Xt − GΩ(Xt)〉
≤ γ ‖min{A∗(yt) +G, 0}‖F ‖Xt − GΩ(Xt)‖F ≤ γ c′ c ‖∇Ψ(yt)‖,

(4.7)

where the first equality follows fromG := S−γ−1C, the second equality follows from 〈A∗(yt), Y−
GΩ(Xt)〉 = 〈yt, A(Y )−A(GΩ(Xt))〉 = 0, and the first inequality follows from Xt = Π+(A∗(yt)+

G) and Y ≥ 0. The last inequality follows from (4.6) and the fact that {yt} is convergent [31,
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Theorem 2], and hence ‖min{A∗(yt) +G, 0}‖F must be bounded from the above by some con-

stant c′ > 0. Then, for any ν ≥ 0 such that γ c′ c ‖∇Ψ(yt)‖ ≤ ν, we can obtain from (4.7)

that

0 ∈ ∂νδΩ(GΩ(Xt)) + C + γ(Xt − S).

In view of this relation and (4.6), our inexact condition (3.2) is checkable at the pair of points

(Xt, GΩ(Xt)) and it can be satisfied as long as ‖∇Ψ(yt)‖ is sufficiently small. It is worth noting

that, though the procedure GΩ is used in above discussion, it turns out that one does not need to

explicitly compute GΩ(Xt) and a possibly infeasible point Xt is allowed to be the next proximal

point within our framework.

In contrast, the classic inexact conditions 0 ∈ ∂νδΩ(X) +C+γ(X−S) (condition (1.4)) and

dist(0, ∂δΩ(X) + C + γ(X − S)) ≤ η (condition (1.5)) have to be checked at a single feasible

point. Note that, for any Y ∈ Ω,

〈−C − γ(GΩ(Xt)− S), Y − GΩ(Xt)〉
= 〈−C − γ(Xt − S), Y − GΩ(Xt)〉+ γ〈Xt − GΩ(Xt), Y − GΩ(Xt)〉
≤ 〈−C−γ(Xt−S), Y −GΩ(Xt)〉+γc′′‖Xt−GΩ(Xt)‖F ≤ γc(c′+c′′)‖∇Ψ(yt)‖,

(4.8)

where the first inequality follows from ‖Y − GΩ(Xt)‖F ≤ c′′ for some constant c′′ > 0 (since Ω

is bounded) and the last inequality follows from (4.6) and (4.7). Then, for any ν ≥ 0 such that

γ c (c′ + c′′)‖∇Ψ(yt)‖ ≤ ν, the inequality (4.8) implies that

0 ∈ ∂νδΩ(GΩ(Xt)) + C + γ(GΩ(Xt)− S),

from which we see that condition (1.4) is verifiable at GΩ(Xt) and can also be satisfied as long

as ‖∇Ψ(yt)‖ is sufficiently small. However, within this framework, one has to compute GΩ(Xt)

explicitly and use it as the next proximal point, which can bring more computational burden.

Next, we consider the hybrid proximal extragradient (HPE) method, which is developed

and studied in [35, 36, 49, 50, 51, 53] as a constructive variant of the inexact proximal point

algorithm (using the quadratic proximal term). In HPE, a relative error criteria is used for

the subproblem involved. In our context, for a given σ ∈ [0, 1), one needs to find a triple

(Y, V, ε) ∈ Rm×n × Rm×n × R+ such that

V ∈ ∂ε
(
δΩ + 〈C, ·〉

)
(Y ), ‖γ−1V + Y − S‖2F + 2γ−1ε ≤ σ2‖Y − S‖2F .

Indeed, recall (4.7), we have that

V t := −γ(Xt − S) ∈ ∂εtδΩ(GΩ(Xt)) + C = ∂εt
(
δΩ + 〈C, ·〉

)(
GΩ(Xt)

)
with εt := γ c′c‖∇Ψ(yt)‖. Thus, the above relative error criterion is verifiable at (GΩ(Xt), V t, εt)

and can be satisfied whenever

‖Xt − GΩ(Xt)‖2F + 2c′c‖∇Ψ(yt)‖ ≤ σ2‖GΩ(Xt)− S‖2F .

But this criterion may not be easy to check directly since the constants c and c′ are generally

unknown. We now recall (4.6) and the fact that c2‖∇Ψ(yt)‖2 ≤ ‖∇Ψ(yt)‖ holds for all suffi-

ciently large t (since ‖∇Ψ(yt)‖ → 0 along the sequence generated by Ssncg). Thus, one could

check whether ‖∇Ψ(yt)‖ ≤ σ̃2‖GΩ(Xt)−S‖2F for some σ̃ ∈ [0, σ] in order to guarantee the above

condition. Note that, in practical implementations, one could simply choose any σ̃ ∈ [0, 1) since
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σ can be any number in [0, 1). After obtaining such a triple, an extragradient step is performed

to compute the new point S− γ−1V t, which is exactly Xt in this case (since V t = −γ(Xt−S)).

Thus, similar to our framework, HPE also allows the possibly infeasible point Xt to be the next

proximal point, but the quantity ‖GΩ(Xt)−S‖2F requires the explicit computation of GΩ(Xt) (if

not impossible) for the verification of the relative error criteria, which brings more computational

burden. Finally, note that here we only focus on the comparisons with the primal application

of the HPE (as presented above), which is more straightforward for problem (4.2) and is closer

to our approach.

4.2 iBPPA with the entropic proximal term

In this case, we equivalently reformulate (4.1) as

min
X

δΩ◦(X) + 〈C, X〉 s.t. X ≥ 0, (4.9)

where Ω◦ :=
{
X ∈ Rm×n : Xen = a, X>em = b

}
is an affine space. This problem takes the

form of (1.1) with f(X) = δΩ◦(X)+〈C, X〉 and C = Rm×n++ . Then, we apply our iBPPA with the

entropy kernel function φ(X) =
∑

ij xij(log xij − 1) for solving (4.9). The subproblem involved

at each iteration takes the following generic form

min
X

δΩ◦(X) + 〈C, X〉+ γDφ(X, S)

for some given S ∈ Rm×n and γ > 0, which is equivalent to

min
X
〈M, X〉+ γ

∑
ijxij(log xij − 1), s.t. Xen = a, X>em = b, (4.10)

where M := C−γ logS. Note that the constraint X ≥ 0 is implicitly imposed by domφ = Rm×n+ .

Moreover, the subproblem (4.10) has the same form as the entropic regularized OT problem and

hence can be readily solved by the popular Sinkhorn’s algorithm [42, Section 4.2]. Specifically,

let K := e−M/γ . Then, given an arbitrary initial positive vector v0, the iterative scheme is given

by

ut = a./Kvt−1, vt = b./K>ut, (4.11)

where ‘./’ denotes the entrywise division between two vectors. When a pair (ut, vt) is obtained

based on a certain stopping criterion, an approximate solution of (4.10) can be recovered by

setting Xt := Diag(ut)K Diag(vt). Sinkhorn’s algorithm in (4.11) only involves matrix-vector

multiplications/divisions with O(m + n) memory complexity and hence can be implemented

highly efficiently in practice. However, it should be noted that Sinkhorn’s algorithm may suffer

from severe numerical instabilities (due to loss of accuracy involving overflow/underflow opera-

tions) and very slow convergence speed when the proximal parameter γ takes a small value. The

former issue can partially be alleviated by some stabilization techniques (e.g., the log-sum-exp

operation [42, Section 4.4]) at the expense of losing some computational efficiency, while the

latter is hard to circumvent. Fortunately, in our iBPPA, we have the freedom not to choose

a small γ and thus the aforementioned two issues can be avoided. More details on Sinkhorn’s

algorithm for solving the entropic regularized OT problem can be found in [42, Section 4].

We next discuss how to use Sinkhorn’s algorithm as a subroutine in our iBPPA employing the

entropic proximal term. Note that an approximate solution Xt := Diag(ut)KDiag(vt) returned
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by Sinkhorn’s algorithm is in general not exactly feasible. Thus, some existing inexact conditions

such as (1.4) and (1.5) cannot be directly verified at Xt. Therefore, a certain projection or

rounding procedure is needed. Moreover, such a procedure would be more restrictive than

that in the case of using the quadratic proximal term because conditions like (1.4) and (1.5)

can only be checked at a point in Ω◦ ∩ Rm×n++ , that is, the relative interior of Ω. Therefore,

one needs to have a procedure, denoted by GΩ+ , such that GΩ+(Xt) ∈ rel int Ω, which is in

general more difficult to construct than a procedure, denoted by GΩ, such that GΩ(Xt) ∈ Ω.

Fortunately, our iBPPA only requires the latter procedure GΩ. Recall that M = C − γ logS,

Xt = Diag(ut)K Diag(vt) and K = e−M/γ . Then, for any Y ∈ Ω◦, we see that

〈−C − γ (logXt − logS), Y − GΩ(Xt)〉 = 〈−M − γ logXt, Y − GΩ(Xt)〉
= 〈−M − γ log(Diag(ut)K Diag(vt)), Y − GΩ(Xt)〉
= 〈−γ (logut) e>n − γ em (log vt)>, Y − GΩ(Xt)〉
= −γ 〈 logut, Y en − GΩ(Xt)en 〉 − γ 〈 log vt, Y >em − (GΩ(Xt))>em 〉 = 0,

where the last equality follows from Y en = a = GΩ(Xt)en and Y >em = b = (GΩ(Xt))>em.

This relation implies that

0 ∈ ∂δΩ◦(GΩ(Xt)) + C + γ
(

logXt − logS
)
. (4.12)

In this case, the quantity ∆k on the left-hand-side of (3.2) is 0. Thus, our inexact condition (3.2)

is verifiable at the pair (Xt, GΩ(Xt)) and can be satisfied when Dφ(GΩ(Xt), Xt) is sufficiently

small. Moreover, we further have ‖Xt−GΩ(Xt)‖F ≤ c
(
‖Xten−a‖+ ‖(Xt)>em− b‖

)
for some

c > 0 as in subsection 4.1. Thus, when the feasibility violation ‖Xten − a‖ + ‖(Xt)>em − b‖
is small, the quantity Dφ(GΩ(Xt), Xt) is also likely to be small. Indeed, we can observe from

Figure 1 that both quantities decrease in tandem. Thus, in practice, one may only check the

quantity ‖Xten − a‖+ ‖(Xt)>em − b‖ = ‖ut �Kvt − a‖ without explicitly computing GΩ(Xt)

to save cost.

Note that ∇φ is explicitly invertible in this case and V t := −γ (logXt − logS) ∈ ∂
(
δΩ◦ +

〈C, ·〉
)
(GΩ(Xt)) from (4.12). Thus, we see that the relative error condition (1.6) is also check-

able, and by some simple manipulations, it can be shown to hold at (Xt, GΩ(Xt), V t) when

Dφ(GΩ(Xt), Xt) ≤ σ2Dφ(GΩ(Xt), S). Comparing to our framework, the verification of this con-

dition requires one to compute one more quantity Dφ(GΩ(Xt), S) and thus incurs extra cost.

Moreover, condition (1.6) generally requires one to compute an element in ∂f (rather than a

larger set ∂νf for some ν > 0) at an intermediary point and then performs an ‘extragradient’

step to compute a new proximal point. Such a requirement on an element of ∂f at some inter-

mediate point may be expensive to satisfy when f is not simple; see, for example, the class of

linear programming problems studied in [15].

Finally, we end this section with a few remarks on some potential numerical issues that may

be encountered when employing the inexact condition (1.5). Assume that we have at hand a

procedure GΩ+ that is able to find a point in the relative interior of Ω. Using similar arguments

for deducing (4.12), we can get

γ
(

log GΩ+(Xt)− logXt
)
∈ ∂δΩ◦(GΩ+(Xt)) + C + γ

(
log GΩ+(Xt)− logS

)
.

Thus, condition (1.5) is verifiable at GΩ+(Xt) and can be satisfied when the error γ‖ log GΩ+(Xt)−
logXt‖F = γ‖ log

(
GΩ+(Xt)./Xt

)
‖F is sufficiently small. However, as observed from our experi-

ments, checking the quantity γ‖ log
(
GΩ+(Xt)./Xt

)
‖F is numerically less stable than checking the
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quantity Dφ(GΩ+(Xt), Xt) in our framework, as one can observe from Figure 1. To better illus-

trate this issue, we generate some instances of subproblem (4.10) as follows: we set m = n = 1000

and set S to be a matrix of ones; moreover, we choose γ ∈ {0.1, 0.01, 0.001} and randomly gen-

erate (a, b, C) by the same way in subsection 6.1. Then, we apply Sinkhorn’s algorithm and

terminate it after some iterations. During the iterations, we record the feasibility accuracy of

Xt as well as the quantities γ‖ log
(
GΩ+(Xt)./Xt

)
‖F and Dφ(GΩ+(Xt), Xt), where the rounding

procedure in [1, Algorithm 2] is chosen as GΩ+ . Moreover, to avoid the possible overflow or un-

derflow in computation, we set Xt := max
{
Xt, 10−16

}
and GΩ+(Xt) := max

{
GΩ+(Xt), 10−16

}
when computing the quantities γ‖ log

(
GΩ+(Xt)./Xt

)
‖F and Dφ(GΩ+(Xt), Xt). The compu-

tational results are presented in Figure 1. One can see that γ‖ log
(
GΩ+(Xt)./Xt

)
‖F always

stays at a large value and it hardly decreases as Xt gets close to the feasible set, especially

when γ is small. This is mainly because some entries of GΩ+(Xt)./Xt could be close to zero

and that leads to large negative numbers after performing the log operations. Thus, using

γ‖ log
(
GΩ+(Xt)./Xt

)
‖F ≤ η for some η ≥ 0 as a stopping criterion (hence condition (1.5))

could be impractical. In contrast, the quantity Dφ(GΩ+(Xt), Xt) decreases much more rapidly

to zero as the iteration proceeds. Therefore, it can provide a reliable stopping criterion. This

indeed highlights another advantage of our inexact framework with the entropic kernel function.
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Figure 1: Comparisons between Dφ(GΩ+(Xt), Xt) and γ‖ log
(
GΩ+(Xt)./Xt

)
‖F , where “feasibil-

ity” denotes the feasibility accuracy of Xt, defined as the value of ‖Xten−a‖+‖(Xt)>em−b‖.

5 An inertial variant of the iBPPA

In this section, we develop an inertial variant of our iBPPA, denoted by V-iBPPA for short.

The inspiration comes from Güler’s first classical accelerated proximal point method [21] and

its recent Bregman extension [61]. The basic idea used there actually originates from Nesterov’s

ingenious technique (called estimate sequence) in [39] that has motivated many kinds of accel-

erated methods (see, for example, [3, 29, 57, 58]). We also adapt such an idea to develop the

V-iBPPA to achieve the possible acceleration. Specifically, our estimate sequence of functions

{Hk(x)}∞k=0 are constructed recursively as follows:

H0(x) := f(x̃0) + πDφ(x, x0),

Hk+1(x) := (1− θk)Hk(x)

+ θk
(
f(x̃k+1) + γk〈∇φ(yk)−∇φ(xk+1), x− x̃k+1 〉 − ρηk − νk

)
,

(5.1)
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where π and γk are positive numbers, ηk and νk are nonnegative numbers, θk is a number in

[0, 1) (to be specified by (5.9)), x0 = x̃0 ∈ C (= int domφ) and ρ > 0 is the diameter of the

feasible set (by Assumption A(ii)). Resorting to this estimate sequence of functions {Hk(x)}∞k=0,

we then present the complete framework of the V-iBPPA in Algorithm 2.

Algorithm 2 An inertial variant of iBPPA (V-iBPPA) for (1.1)

Input: Let {γk}∞k=0, {νk}∞k=0, {ηk}∞k=0 and {µk}∞k=0 be four sequences of nonnegative scalars.

Choose x0 = x̃0 = z0 ∈ C arbitrarily and a kernel function φ. Set k = 0.

while a termination criterion is not met, do

Step 1. Choose θk ∈ [0, 1) satisfying (5.9) and set yk = θkz
k + (1− θk)xk.

Step 2. Find a pair (xk+1, x̃k+1) by approximately solving the following problem

min
x

f(x) + γkDφ(x, yk), (5.2)

such that xk+1 ∈ C, x̃k+1 ∈ domf ∩ C and

∆k ∈ ∂νkf(x̃k+1) + γk
(
∇φ(xk+1)−∇φ(yk)

)
with ‖∆k‖ ≤ ηk, Dφ(x̃k+1, xk+1) ≤ µk.

(5.3)

Step 3. Set Hk+1(x) by (5.1) and compute zk+1 = arg min
x
{Hk+1(x)}.

Step 4. Set k = k + 1 and go to Step 1.

end while

Output: (xk, x̃k)

Comparing to the iBPPA in Algorithm 1, the V-iBPPA in Algorithm 2 uses an intermediary

point yk as the proximal point. When θk ≡ 0, we have yk ≡ xk and the V-iBPPA readily

reduces to the iBPPA, while with the special choice of θk in (5.9), we shall see later that the

V-iBPPA enjoys a flexible convergence rate depending on the property of the kernel function

and is able to achieve a faster rate in some scenarios. From arguments similar to those following

Algorithm 1, the subproblem (5.2) and the inexact condition (5.3) are also well-defined under

Assumption A, provided yk ∈ C (= int domφ). Note from the construction of Hk(x) in (5.1)

that

Hk(x) = Lk(x) + πck Dφ(x, x0), (5.4)

where Lk(·) is an affine function and ck is a positive scalar depending on k. Since Dφ(·, x0) is

level-bounded (by condition (B3) in Definition 2.1), then Hk(x) is level-bounded. Hence, an

optimal solution zk of problem minx{Hk(x)} exists [47, Theorem 1.9] and must also be unique

since φ is strictly convex (by condition (B1) in Definition 2.1). The essential smoothness of φ

(by Assumption A(iii)) further imposes that zk ∈ C. This together with xk ∈ C ensures that

the intermediary point yk, as a convex combination of xk and zk, always lies in C. Therefore,

Algorithm 2 is well-defined. Here, we would also like to point out that, when using φ(·) = 1
2‖ ·‖

2

(hence domφ = int domφ = E), one can have more freedom to choose other updating formulas

for yk, and they give rise to different variants of the accelerated PPA such as Güler’s second

accelerated proximal point method [21, Section 6] and the so-called catalyst acceleration method
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proposed recently in [32]. Our inexact criterion can also be incorporated into those variants.

We will leave this topic for future investigation.

In the following, we shall study the convergence property of our V-iBPPA in Algorithm 2.

Since we now use the intermediary point yk as the proximal point in the subproblem (5.2), the

analysis for Algorithm 2 turns out to be different from that for Algorithm 1. In particular, all

convergence results presented later are in terms of the objective function value, as is the case

in most existing works on various accelerated methods. Our analysis is motivated by several

existing works (e.g., [3, 21, 24, 61]) that are based on the Nesterov’s estimate sequence. Before

proceeding, we introduce the following quadrangle scaling property for the Bregman distance.

Definition 5.1 (Quadrangle scaling property). Let φ be a proper closed convex function

which is differentiable on int domφ. We say φ has the quadrangle scaling property (QSP) if

there exist an exponent λ ≥ 1 and two constants τ1, τ2 > 0 such that, for any a, c ∈ domφ and

b, d ∈ int domφ, the following inequality holds for any θ ∈ [0, 1],

Dφ( θa + (1− θ)c, θb + (1− θ)d ) ≤ τ1 θ
λDφ(a, b) + τ2 (1− θ)λDφ(c, d). (5.5)

Here, λ is called the quadrangle scaling exponent (QSE) of φ, and τ1, τ2 are called the quadrangle

scaling constants (QSCs) of φ.

Note that when c = d, the QSP reduces to a so-called intrinsic triangle scaling property

(TSP) introduced recently in [24, Section 2] for developing accelerated Bregman proximal gra-

dient methods. Thus, our QSP is an extension of the TSP. Two representative examples for the

QSP are given as follows.

• If φ is µφ-strongly convex and ∇φ is Lφ-Lipschitz, i.e.,
µφ
2 ‖x−y‖

2 ≤ Dφ(x, y) ≤ Lφ
2 ‖x−y‖

2,

then for any a, c ∈ domφ, b, d ∈ int domφ and θ ∈ [0, 1],

Dφ( θa + (1− θ)c, θb + (1− θ)d ) ≤ Lφ
2 ‖θ(a− b) + (1− θ)(c− d)‖2

≤ Lφθ2‖a−b‖2 + Lφ(1−θ)2‖c−d‖2 =
2Lφ
µφ
θ2 µφ

2 ‖a−b‖
2 +

2Lφ
µφ

(1−θ)2 µφ
2 ‖c−d‖

2

≤ 2Lφ
µφ
θ2Dφ(a, b) +

2Lφ
µφ

(1− θ)2Dφ(c, d).

Thus, in this case, φ has the QSP with λ = 2 and τ1 = τ2 = 2Lφ/µφ.

• If Dφ(·, ·) is jointly convex, which can be satisfied by the entropy kernel function φ(x) =∑
i xi(log xi − 1) (see [6] for more examples), then for any θ ∈ [0, 1],

Dφ(θa + (1− θ)c, θb + (1− θ)d) ≤ θDφ(a, b) + (1− θ)Dφ(c,d)

Thus, in this case, φ has the QSP with λ = τ1 = τ2 = 1.

We now start the analysis with a lemma concerning the difference Hk(x)− f(x).

Lemma 5.1. Let the estimate sequence of functions {Hk(x)}∞k=0 be generated by (5.1). Then,

for all k ≥ 0, we have

Hk+1(x)− f(x) ≤ (1− θk)(Hk(x)− f(x)), ∀x ∈ dom f ∩ C.
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Proof. From condition (5.3), there exists a dk+1 ∈ ∂νkf(x̃k+1) such that ∆k = dk+1+γk
(
∇φ(xk+1)−

∇φ(yk)
)
. For notational simplicity, let

Ξk(x) := 〈∇φ(yk)−∇φ(xk+1), x− x̃k+1〉. (5.6)

Then, for any x ∈ domf ∩ C, we see that

f(x) ≥ f(x̃k+1) + 〈dk+1, x− x̃k+1〉 − νk
= f(x̃k+1) + 〈∆k − γk

(
∇φ(xk+1)−∇φ(yk)

)
, x− x̃k+1〉 − νk

≥ f(x̃k+1) + γk Ξk(x) + 〈∆k,x− x̃k+1〉 − νk
≥ f(x̃k+1) + γk Ξk(x)− ρηk − νk,

(5.7)

where the last inequality follows from 〈∆k, x − x̃k+1〉 ≥ −‖x − x̃k+1‖‖∆k‖ ≥ −ρηk due to

x, x̃k+1 ∈ domf ∩ C and Assumption A. Using (5.7) and the construction of Hk(x) in (5.1), we

see that

Hk+1(x)− f(x) = (1− θk)Hk(x) + θk

(
f(x̃k+1) + γk Ξk(x)− ρηk − νk

)
− f(x)

= (1− θk)(Hk(x)− f(x)) + θk

(
f(x̃k+1) + γk Ξk(x)−ρηk−νk−f(x)

)
≤ (1− θk)(Hk(x)− f(x)).

This completes the proof. 2

One can easily see from Lemma 5.1 that, at k-th iteration, the difference Hk(x) − f(x) is

reduced by a factor 1− θk. Then, by induction, we further obtain that

Hk(x)− f(x) ≤ ck(H0(x)− f(x)), ∀x ∈ dom f ∩ C, (5.8)

where

c0 := 1, ck :=
∏k−1
i=0 (1− θi) for k ≥ 1.

To further evaluate the reduction in the original objective (that is, f(x̃k)−f(x)) based on (5.8),

we only need to explore the relation between f(x̃k) and Hk(z
k), where zk = arg minx {Hk(x)}

by Step 3 in Algorithm 2. Indeed, we have the following result.

Lemma 5.2. Let {xk} and {x̃k} be the sequences generated by the V-iBPPA in Algorithm 2.

Suppose that Assumption A holds, φ has the QSP with an exponent λ ≥ 1 and QSCs τ1, τ2 > 0,

and θk is chosen such that

τ1 γk θ
λ
k = πck (1− θk). (5.9)

If f(x̃k) ≤ Hk(z
k) + δk for some k ≥ 0 and δk ≥ 0, then

f(x̃k+1) ≤ Hk+1(zk+1) + (1− θk)δk + γk(µk + τ2 µk−1) + ρηk + νk.

Proof. First, from (5.4), Lemma 2.4 and the definition of zk as a minimizer of Hk(·) (by Step

3 in Algorithm 2), we see that

Hk(z
k+1) = Hk(z

k) + πck Dφ(zk+1, zk),
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which, together with the hypothesis of this lemma, implies that

Hk(z
k+1) ≥ f(x̃k) + πck Dφ(zk+1, zk)− δk. (5.10)

Moreover, recall the definition of Ξk(·) in (5.6), one can verify that

(1− θk) f(x̃k) + θk

(
f(x̃k+1) + γk Ξk(zk+1)− ρηk − νk

)
≥ (1− θk)

(
f(x̃k+1) + γkΞ

k(x̃k)− ρηk−νk
)

+ θk

(
f(x̃k+1) + γkΞ

k(zk+1)− ρηk−νk
)

= f(x̃k+1) + γk Ξk
(
θkz

k+1 + (1− θk)x̃k
)
− ρηk − νk

= f(x̃k+1) + γkDφ
(
θkz

k+1 + (1− θk)x̃k, xk+1
)

+ γkDφ(x̃k+1, yk)

− γkDφ
(
θkz

k+1 + (1− θk)x̃k, yk
)
− γkDφ(x̃k+1, xk+1)− ρηk − νk

≥ f(x̃k+1)− γkDφ
(
θkz

k+1 + (1− θk)x̃k, yk
)
− γkDφ(x̃k+1, xk+1)− ρηk − νk

≥ f(x̃k+1)− γkDφ
(
θkz

k+1 + (1− θk)x̃k, θkzk + (1− θk)xk
)
− γkµk − ρηk − νk

≥ f(x̃k+1)− γk τ1 θ
λ
k Dφ(zk+1, zk)− γk τ2 (1− θk)λDφ(x̃k, xk)− γkµk − ρηk − νk

≥ f(x̃k+1)− τ1 γk θ
λ
k Dφ(zk+1, zk)− γk(µk + τ2 µk−1)− ρηk − νk,

(5.11)

where the first inequality follows from (5.7) with x = x̃k, the second equality follows from the

four points identity (2.1), the third inequality follows from yk = θkz
k+(1−θk)xk (by Step 1 in

Algorithm 2) and Dφ(x̃k+1, xk+1) ≤ µk (by condition (5.3)), the second last inequality follows

from the QSP of Dφ and the last inequality follows from 1 − θk ≤ 1 and Dφ(x̃k, xk) ≤ µk−1.

Then, we see that

Hk+1(zk+1) = (1− θk)Hk(z
k+1) + θk

(
f(x̃k+1) + γk Ξk(zk+1)− ρηk − νk

)
≥ (1− θk)f(x̃k) + θk

(
f(x̃k+1) + γk Ξk(zk+1)− ρηk − νk

)
+ πck(1− θk)Dφ(zk+1, zk)− (1− θk)δk

≥ f(x̃k+1) +
[
πck(1− θk)− τ1 γk θ

λ
k

]
Dφ(zk+1, zk)− (1− θk)δk − γk(µk + τ2 µk−1)− ρηk − νk

≥ f(x̃k+1)− (1− θk)δk − γk(µk + τ2 µk−1)− ρηk − νk,

where the first equality follows from the construction of Hk(x) in (5.1), the first inequality

follows from (5.10), the second inequality follows from (5.11) and the last inequality follows

from the choice of θk in (5.9). This completes the proof. 2

Then, we have the theorem concerning the reduction of the objective value.

Theorem 5.1. Suppose that Assumption A holds, φ has the QSP and θk satisfies (5.9). Let

{xk} and {x̃k} be the sequences generated by the V-iBPPA in Algorithm 2. Then, for any

optimal solution x∗ of problem (1.1), we have

f(x̃N )− f(x∗) ≤ cN
(
f(x̃0)− f(x∗) + πDφ(x∗, x0)

)
+ δN , (5.12)

where the error sequence {δk}∞k=0 satisfies

δ0 = 0, δk+1 = (1− θk)δk + γk(µk + τ2 µk−1) + ρηk + νk, k = 0, 1, . . . . (5.13)

Proof. First, from Lemma 5.2, it is easy to prove by induction that f(x̃N ) ≤ HN (zN ) + δN
for any N ≥ 0. Moreover, note from (5.8) that HN (x∗) − f(x∗) ≤ cN (H0(x∗) − f(x∗)) for
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any N ≥ 0. These relations together with the fact that zN is the minimizer of the problem

minx{HN (x)} prove the desired result. 2

From the choice of θk in (5.9), we see that 0 < θk < 1 and hence cN → 0. This together with

(5.12) shows that f(x̃N ) converges to f∗ := min{f(x) : x ∈ C} as long as δN → 0. Here, cN
and δN naturally determine the convergence rate and thus we must estimate their magnitudes.

The following estimate on cN extends [21, Lemma 2.2] to a more general setting.

Lemma 5.3. For any N ≥ 1, we have(
1 + (π/τ1)

1
λ
∑N−1

k=0 γ
− 1
λ

k

)−λ
≤ cN ≤

(
1 + λ−1(π/τ1)

1
λ
∑N−1

k=0 γ
− 1
λ

k

)−λ
. (5.14)

Moreover, if supk{γk} <∞, then cN = O
((∑N−1

k=0 γ
− 1
λ

k

)−λ)
.

Proof. First, it is easy to see that ck+1 = (1 − θk)ck and then θk = 1 − ck+1/ck for all k ≥ 0.

Substituting this in (5.9) results in

τ1 γk (1− ck+1/ck)
λ = πck+1 ⇐⇒ c−1

k+1 − c
−1
k = (π/τ1)

1
λ γ
− 1
λ

k c
1
λ
−1

k+1 . (5.15)

Note that ck+1 ≤ ck (since θk ∈ (0, 1)) and λ ≥ 1 (by definition of QSE). Hence,

c
1
λ
−1

k+1

(
c
− 1
λ

k+1 − c
− 1
λ

k

)
= c−1

k+1 − c
1
λ
−1

k+1 c
− 1
λ

k ≤ c−1
k+1 − c

−1
k .

Combing this and (5.15), we see that c
− 1
λ

k+1− c
− 1
λ

k ≤ (π/τ1)
1
λ γ
− 1
λ

k . Summing this inequality from

k = 0 to k = N − 1, we obtain that

c
− 1
λ

N ≤ 1 + (π/τ1)
1
λ
∑N−1

k=0 γ
− 1
λ

k ,

which gives the lower bound on cN . On the other hand, it is easy to show by Young’s inequality

that c
1
λ
−1

k+1 c
− 1
λ

k ≤ (1− λ−1)c−1
k+1 + λ−1c−1

k and thus

c−1
k+1 − c

−1
k ≤ λ c

1
λ
−1

k+1

(
c
− 1
λ

k+1 − c
− 1
λ

k

)
.

Combing this and (5.15), we see that c
− 1
λ

k+1 − c
− 1
λ

k ≥ λ−1(π/τ1)
1
λ γ
− 1
λ

k . Summing this inequality

from k = 0 to k = N − 1, we obtain that

c
− 1
λ

N ≥ 1 + λ−1(π/τ1)
1
λ
∑N−1

k=0 γ
− 1
λ

k ,

which gives the upper bound on cN . The other result follows immediately from (5.14). 2

We immediately have the following proposition.

Proposition 5.1. Suppose that all conditions in Theorem 5.1 and Lemma 5.3 hold. If δN ≤
O(cN ), then

f(x̃N )− f(x∗) ≤ O
((∑N−1

k=0 γ
− 1
λ

k

)−λ)
. (5.16)
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Notice from Proposition 5.1 that, when the QSE λ is strictly larger than 1, the convergence

rate (in terms of the function value) of the V-iBPPA is better than the convergence rate of the

iBPPA given in Theorem 3.1 since
(∑N−1

k=0 γ
− 1
λ

k

)λ
>
∑N−1

k=0 γ−1
k always holds for any λ > 1.

When λ = 2, this result recovers the related results in [21, 61] when the subproblem is solved

exactly. Moreover, using (5.16) and similar arguments as in Remark 3.1, we see that {f(x̃k)}
can also converge to f(x∗) arbitrarily fast with a proper decreasing sequence of {γk}. However,

we should be mindful that such a favorable convergence rate comes with the requirement that

δN ≤ O(cN ), which may impose stringent inexact tolerance requirement for each subproblem.

An estimate on δN under certain choices of {µk}, {νk}, {ηk} is given in the following lemma.

Lemma 5.4. Suppose that {δk}∞k=0 satisfies (5.13). Then, for all N ≥ 1, we have

δN ≤
1(

1 + λ−1(π/τ1)
1
λ
∑N−1

i=0 γ
− 1
λ

i

)λ N−1∑
k=0

(
1 +

(
π

τ1

) 1
λ

k∑
i=0

γ
− 1
λ

i

)λ
βk, (5.17)

where βk := γk(µk + τ2 µk−1) + ρηk + νk. Moreover, suppose that {γk} is non-increasing and for

some p > 1 such that p 6= λ+ 1,

µk ≤ O
(

1

(k + 1)p

)
, νk ≤ O

(
γk

(k + 1)p

)
, ηk ≤ O

(
γk

(k + 1)p

)
, ∀ k ≥ 0. (5.18)

Then, for all N ≥ 1, we have δN ≤ O
(

1
Np−1

)
.

Proof. Since 1−θk = ck+1/ck for all k ≥ 0, then δk+1 can be written as δk+1 = (ck+1/ck) δk+βk.

Dividing this equality by ck+1 and rearranging the terms, we have δk+1/ck+1− δk/ck = βk/ck+1.

Thus, summing this equality from k = 0 to k = N − 1 results in δN = cN
∑N−1

k=0 βk/ck+1. Using

this together with the lower and upper bounds on cN (N ≥ 1) in (5.14), we obtain (5.17).

Moreover, since {γk} is non-increasing (hence γk ≤ γ0 for all k), we have that
∑N−1

i=0 γ
− 1
λ

i ≥
γ
− 1
λ

0 N and
∑
γ
− 1
λ

i =∞. The latter further implies that there exists a constant a > 0 such that

1+(π/τ1)
1
λ
∑k

i=0 γ
− 1
λ

i ≤ a (π/τ1)
1
λ
∑k

i=0 γ
− 1
λ

i for any k ≥ 0. On the other hand, one can see from

(5.18) that there exist a constant a′ > 0 such that βk = γk(µk+τ2 µk−1)+ρηk+νk ≤ a′γk/(k+1)p

for all k ≥ 0. Thus, substituting these bounds in (5.17) results in

δN ≤
γ0 a

′aλλλ

Nλ

N−1∑
k=0

(
k∑
i=0

γ
− 1
λ

i

)λ
γk

(k + 1)p

=
γ0 a

′aλλλ

Nλ

N−1∑
k=0

(
k∑
i=0

(
γk
γi

) 1
λ

)λ
1

(k + 1)p
≤ γ0 a

′aλλλ

Nλ

N−1∑
k=0

(k + 1)λ−p.

Note also that there exists a constant ã > 0 such that

N−1∑
k=0

(k + 1)λ−p =
N∑
k=1

kλ−p ≤ ã
∫ N

1
tλ−p dt ≤ ã (λ+ 1− p)−1Nλ+1−p.

Using these relations, we complete the proof. 2

Using the estimates on cN and δN , together with (5.12), we can give the following concrete

convergence rate in terms of the function value for our V-iBPPA.
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Theorem 5.2. Suppose that all conditions in Theorem 5.1, Lemmas 5.3 and 5.4 hold. Let {xk}
and {x̃k} be the sequences generated by the V-iBPPA in Algorithm 2. Then, for any optimal

solution x∗ of problem (1.1), we have

f(x̃N )− f(x∗) ≤ O
((∑N−1

k=0 γ
− 1
λ

k

)−λ)
+O

(
1

Np−1

)
.

In particular, if γk satisfies 0 < γ ≤ γk ≤ γ < +∞ and p > λ+ 1, then we have

f(x̃N )− f(x∗) ≤ O
(

1

Nλ

)
.

Now, we see from Theorem 5.2 that, when 0 < γ ≤ γk ≤ γ < +∞, our V-iBPPA enjoys

a flexible convergence rate determined by the QSE λ of the kernel function φ. Thus, when

λ > 1, the V-iBPPA indeed improves the O(1/N) convergence rate of the iBPPA (see Remark

3.1), and in the particular case λ = 2, the V-iBPPA achieves the rate of O(1/N2) common to

existing accelerated (inexact) proximal point algorithms; see, for example, [21, 36, 48, 59]. But

the choices of {µk}, {νk}, {ηk} following the way of (5.18) may become more restrictive. For

example, for λ = 2, we need p > 3 for the V-iBPPA to achieve the rate of O(N−2).1 Before

ending this section, some remarks are in order regarding the practical implementations of our

V-iBPPA.

Remark 5.1 (Practical computation on zk+1). Note that, at each iteration of our V-iBPPA,

one needs to compute zk+1 as the minimizer of Hk+1(x) in order to form the next intermediary

point yk+1. Thanks to the favorable construction of {Hk(x)}∞k=0 in (5.1), we can show that

zk+1 actually admits a closed form expression based on the following observations. Indeed, we

see from (5.4), Lemma 2.4 and the definition of zk as a minimizer of Hk(·) that

Hk(x) = Hk(z
k) + πck Dφ(x, zk). (5.19)

Then we can show by using (5.1), (5.9) and (5.19) that

zk+1 = arg min
x
{Hk+1(x)} = arg min

x

{
τ1 θk Dφ(x, zk) + 〈∇φ(yk)−∇φ(xk+1), x 〉

}
= ∇φ∗

(
∇φ(zk) + τ−1

1 θ−1
k (∇φ(xk+1)−∇φ(yk))

)
,

where the last equality follows from the optimality condition together with [44, Theorem 26.5] and

the fact that φ is strictly convex and essentially smooth (by Assumption A(iii)). Therefore, one

can compute zk+1 via the above expression without generating Hk+1(x) explicitly. For example,

when φ(x) = 1
2‖x‖

2, we have that φ∗(x′) = 1
2‖x

′‖2 and zk+1 = zk + τ−1
1 θ−1

k (xk+1 − yk).

Moreover, when φ(x) =
∑

i xi(log xi − 1), we have that φ∗(x′) =
∑

i e
x′i and

zk+1 = zk �
(
xk+1./yk

)τ−1
1 θ−1

k
. (5.20)

Remark 5.2 (Practical computation on QSE and QSC). From the above analysis, one

can see that the QSP of a kernel function φ is crucial for developing the V-iBPPA, as is the

case in [24, 61] using the TSP for deriving their inertial methods. In particular, the choice

1It is worth noting from [21, Section 3] that, when φ(·) = 1
2
‖ · ‖2 and µk ≡ νk ≡ 0, a weaker condition p > 3

2

is sufficient for guaranteeing the rate of O(N−2).
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of θk by (5.9) requires the knowledge of the QSE λ as well as the QSC τ1, and λ would also

determine the convergence rate (see Theorem 5.2). From the discussions following Definition 5.1,

we know that the quadratic kernel function φ(x) = 1
2‖x‖

2 has λ = τ1 = 2 which can be readily

used in practical computation and grant a rate of O(k−2), while the entropy kernel function

φ(x) =
∑

i xi(log xi− 1) only has λ = τ1 = 1, which leads to a rate of O(k−1). Interestingly, for

the entropy kernel function, we observe that, for any θ ∈ [ε, 1− ε] with a given small ε > 0,

Dφ(θa + (1− θ)c, θb + (1− θ)d) ≤ θDφ(a, b) + (1− θ)Dφ(c,d)

≤ 1
θ θ

2Dφ(a, b) + 1
1−θ (1− θ)2Dφ(c,d) ≤ ε−1θ2Dφ(a, b) + ε−1(1− θ)2Dφ(c,d),

which implies that the inequality (5.5) holds for any θ ∈ [ε, 1− ε] with λ = 2 and τ1 = τ2 = ε−1.

This relation is indeed sufficient for studying the convergence behavior of the V-iBPPA within a

finite number of iterations (as is the case in practical implementations), because in the analysis

(precisely, in (5.11)), we only need the inequality (5.5) to be satisfied at a special θk ∈ [0, 1)

given by (5.9) and θk just asymptotically goes to 0. This then motivates us to use λ = 2 and

τ1 = ε−1 for the V-iBPPA with the entropy kernel function to obtain a possibly faster convergence

rate when θk ≥ ε, and moreover, we may reset ε to be a smaller value or simply terminate the

algorithm when θk < ε. But, as observed from our experiments, the choice of τ1 = ε−1 seems to

be too conservative to achieve a faster speed. Therefore, in our experiments in the next section,

we adapt a heuristic strategy to choose τ1. Specifically, we initially set τ1 = 1 and then increase

it by setting the new τ1 to be 2τ1 if τ1θk < 0.1.

6 Numerical experiments

In this section, we conduct some numerical experiments to test our iBPPA and V-iBPPA for

solving the standard OT problem (4.1). Our purpose here is to preliminarily show the conver-

gence behaviors of two methods under different inexact settings and evaluate the potential of

achieving accelerated performance of the V-iBPPA. More experiments of our iBPPA for solving

a class of linear programming problems has been reported in our recent technical report [15].

All experiments in this section are run in Matlab R2020b on a Windows workstation with Intel

Xeon Processor E-2176G@3.70GHz and 64GB of RAM.

6.1 Implementation details

One can show that the dual problem of (4.1) is

max
f , g

〈f , a〉+ 〈g, b〉 s.t. Z(f , g) := C − fe>n − emg
> ≥ 0, (6.1)

and the Karush-Kuhn-Tucker (KKT) system for (4.1) and (6.1) is

Xen = a, X>em = b, , 〈X, Z(f , g)〉 = 0, X ≥ 0, Z(f , g) ≥ 0, (6.2)

where f ∈ Rm and g ∈ Rn are the Lagrangian multipliers (or dual variables). Note that the

strong duality holds for (4.1) and (6.1), and (X,f , g) satisfies the KKT system (6.2) if and only

if X solves (4.1) and (f , g) solves (6.1), respectively. Based on (6.2), we define the relative KKT

residual for any (X, f , g) as follows:

∆kkt(X, f , g) := max
{

∆p,∆d, ∆c

}
,
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where ∆p := max
{
‖Xen−a‖

1+‖a‖ , ‖X
>em−b‖
1+‖b‖ , ‖min{X, 0}‖F

1+‖X‖F

}
, ∆d := ‖min{Z(f , g), 0}‖F

1+‖C‖F and ∆c := |〈X,Z(f , g)〉|
1+‖C‖F .

Obviously, (X,f , g) is a solution of the KKT system (6.2) if and only if ∆kkt = 0. Thus, it is

natural to use ∆kkt to measure the accuracy of an approximate solution returned by a method.

We then use ∆kkt to set up the stopping criterion for our iBPPA and V-iBPPA. Specifically, we

terminate both methods when

∆kkt(X
k+1, fk+1, gk+1) < Tol, (6.3)

where the value of Tol will be given later, and Xk+1 and (fk+1, gk+1) are respectively the

approximate optimal solutions of the subproblem ((3.1) or (5.2)) and its corresponding dual

problem at the k-th iteration.

For the kernel function φ, we adopt two choices: φ(X) = 1
2‖X‖

2
F (leading to the quadratic

proximal term) and φ(X) =
∑

ij xij(log xij − 1) (leading to the entropic proximal term). For

ease of future reference, in the following, we use iPPA/V-iPPA to denote iBPPA/V-iBPPA with

the quadratic proximal term and use iEPPA/V-iEPPA to denote iBPPA/V-iBPPA with the

entropic proximal term. For V-iPPA and V-iEPPA, the QSE λ and the QSC τ1 are chosen

based on Remark 5.2. Moreover, from the discussions in Section 4, we have the following facts.

For iPPA/V-iPPA, at the k-th iteration, the subproblem can be solved by the semismooth

Newton conjugate gradient (Ssncg) method and our inexact condition ((3.2) or (5.3)) can be

satisfied when ‖∇Ψk(y
k,t)‖ is sufficiently small, where ∇Ψk is the gradient of the dual objective

and {yk,t} is the sequence generated by Ssncg. At the k-th iteration (k ≥ 0), we terminate

Ssncg when
‖∇Ψk(y

k,t)‖ ≤ max
{

Υ/(k + 1)p, 10−10
}
.

For iEPPA/V-iEPPA, at the k-th iteration, the subproblem can be solved by Sinkhorn’s

algorithm and our inexact condition ((3.2) or (5.3)) can be satisfied when Dφ
(
GΩ(Xk,t), Xk,t

)
is

sufficiently small, where Xk,t := Diag(uk,t)Kk Diag(vk,t) with {(uk,t,vk,t)} generated by (4.11)

and GΩ is a rounding procedure [1, Algorithm 2]. At the k-th iteration (k ≥ 0), we terminate

Sinkhorn’s algorithm when

Dφ
(
GΩ(Xk,t), Xk,t

)
≤ max

{
Υ/(k + 1)p, 10−10

}
.

The above coefficient Υ controls the initial accuracy for solving the subproblem and, together

with p, would determine the tightness of the tolerance requirement. Generally, for a fixed p,

Υ should be neither too small to avoid excessive cost of solving each subproblem, nor too

large to avoid unnecessary large number of outer iterations. The optimal choice of Υ depends

on many factors such as the value of p, the kernel function φ and the proximal parameter

γk. In our experiments, we simply use Υ = 1, 10−3 and p = 1.001, 1.01, 1.1, 2.1, 3.1 without

delicate tunings. Moreover, at each iteration, we employ the warm-start strategy to initialize the

subroutine (Ssncg or Sinkhorn’s algorithm) by the solution obtained at the previous iteration.

For the choice of the proximal parameter γk, we simply fix it to be a constant γ throughout

the iterations. For iPPA/V-iPPA, we choose γ ∈ {10, 1, 0.1}, and for iEPPA/V-iEPPA, we

choose γ ∈ {1, 0.1, 0.01}. It is also possible to adaptively tune γk, together with careful tunings

of Υ and p, to further improve the numerical performance of the whole algorithm, but we will

skip such investigations in this paper.

We next discuss how we generate the simulated data. We first generate two discrete proba-

bility distributions
{

(ai, pi) ∈ R+×R3 : i = 1, · · · ,m
}

and
{

(bj , qj) ∈ R+×R3 : j = 1, · · · , n
}

.

Here, a := (a1, · · ·, am)> and b := (b1, · · ·, bn)> are probabilities/weights, which are generated
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from the uniform distribution on the open interval (0, 1) and further normalized such that∑m
i ai =

∑n
j bj = 1. Moreover, {pi} and {qj} are support points whose entries are drawn from

a Gaussian mixture distribution via the following Matlab commands:

num = 5; mean = [-20;-10;0;10;20]; sigma(1,1,:) = 5*ones(num,1);

weights = rand(num,1); distrib = gmdistribution(mean,sigma,weights);

Then, the cost matrix C is generated by cij = ‖pi − qj‖2 for 1 ≤ i ≤ m and 1 ≤ j ≤ n and

normalized by dividing (element-wise) by its maximal entry.

As discussed in section 4, the hybrid proximal extragradient (HPE) method and its Bregman

generalization using condition (1.6) (denoted by BHPE for short) are applicable for solving the

OT problem (4.1) using the same subroutines as our methods. Similarly, an accelerated variant

of the HPE (denoted by AHPE for short), developed in [36] based on Nesterov’s acceleration

technique, is also applicable. Thus, we include them in our comparisons. The error tolerance

constant σ is chosen from {0.999, 0.99, 0.9, 0.5, 0.1}. Moreover, since (4.1) is a linear program-

ming (LP) problem, we can also apply Gurobi 8.0.0 [22] (with default settings) to solve it. It is

well known that Gurobi is a powerful commercial package for solving LPs and is able to provide

a high quality solution. Therefore, we will use the objective function value obtained by Gurobi

as the benchmark in the following figures.

In the following comparisons, we choose m = n = 500 and initialize all methods with X0 :=

ab>. Moreover, we terminate iPPA/V-iPPA/HPE/AHPE when (6.3) holds with Tol < 10−7

or the number of Ssncg iterations reaches 1000, and terminate iEPPA/V-iEPPA/BHPE when

(6.3) holds with Tol < 10−5 or the number of Sinkhorn iterations reaches 10000.

6.2 Comparison results

Figures 2 and 3 show the comparison results of iPPA/V-iPPA/HPE/AHPE and iEPPA/V-

iEPPA/BHPE, respectively. In each figure, we plot the “nfval” against the number of Ss-

ncg/Sinkhorn iterations, where “nfval” denotes the normalized function value |〈C, GΩ(Xk,t)〉−
f∗| / |f∗|, f∗ is the highly accurate optimal function value computed by Gurobi andXk,t is the ap-

proximate solution computed by the subroutine at the t-th inner iteration of the k-th outer itera-

tion. Moreover, in Tables 1 and 2, we also show the terminating value of ∆kkt(X
k+1,fk+1, gk+1)

(denoted by “kkt”), the number of outer iterations (denoted by “out#”), the number of Ss-

ncg/Sinkhorn iterations (denoted by “ssn#”/“sink#”), and the computational time in seconds

(denoted by “time”). Note that Sinkhorn’s algorithm itself has been popularly used to approx-

imately solve OT by solving its entropic regularized counterpart (i.e., problem (4.10) with C in

place of M). Thus, we also include it in comparison with iEPPA/V-iEPPA/BHPE. From the

results, we have several observations as follows.

When p = 3.1 (giving a fast tolerance decay), for (V-)iPPA and (V-)iEPPA, a smaller

γ usually leads to a faster convergence speed in terms of the total number of outer iterations

incurred. This implies that the choice of γ dominates the convergence rate under a tight tolerance

requirement, matching the complexity results in Theorem 3.1 and Proposition 5.1. When p is

smaller, such phenomenon tends to disappear due to the loose accuracy control. But this does

not mean worse overall performance. For example, for (V-)iEPPA in Figure 3, the choice of

p = 1.1, along with a relatively large γ, can perform much better. Hence, setting a proper value

of p for faster convergence needs to take into account the choice of γ.
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For p = 3.1, V-iPPA/V-iEPPA always outperforms iPPA/iEPPA, and for p = 2.1, V-

iPPA/V-iEPPA also performs better when γ is large. Indeed, one can see from Tables 1&2,

together with Figures 2&3, that, for p = 3.1 (and for p = 2.1 in many cases), V-iPPA/V-iEPPA

usually takes less outer iterations to achieve a comparable “kkt”/“nfval” or takes comparable

outer iterations to achieve a better “kkt”/“nfval”. This (to some extent) verifies the favorable

iteration complexity of V-iPPA/V-iEPPA, as we expect from Remark 5.2. But note that the

improvement becomes less significant for a smaller γ, because a small γ would dominate the

convergence speed as observed in the last paragraph. For example, when γ = 0.1, Υ = 10−3 and

p = 3.1, both iPPA and V-iPPA only need 15 outer iterations to obtain a high accuracy solution

(“kkt” is about 10−8) and hence one cannot observe the improvement clearly. On the other

hand, when p = 1.1, the improvement is destroyed by the crude solutions of the subproblems.

This matches the results established in Theorem 5.2, which states that improved complexity

holds under a sufficiently tight tolerance requirement.

With proper choices of parameters, (V-)iPPA (resp. iEPPA) and (A)HPE (resp. BHPE)

can be comparable to each other when measuring “nfval” against the number of Ssncg (resp.

Sinkhorn) iterations, as shown in Figures 2 and 3. This is actually reasonable because (V-

)iPPA (resp. iEPPA) and (A)HPE (resp. BHPE) essentially use the similar (accelerated) PPA

(resp. BPPA) framework but with different stopping criteria for solving the subproblems. Since

(A)HPE and BHPE only involve an error tolerance constant σ ∈ [0, 1), they are more friendly to

parameter tunings, but they may incur non-negligible extra cost on checking the relative error

condition.

• As discussed in subsection 4.1, HPE (similarly, AHPE) has to compute a feasible intermedi-

ary point and thus would need to perform projection/rounding per iteration, while our iPPA

can avoid such computations during the iterations. One can also observe from Table 1 that,

for each γ, our (V-)iPPA always takes less time than (A)HPE within comparable number of

Ssncg iterations. Thus, our (V-)iPPA can be more advantageous for a large-scale problem

with a complex polyhedra set.

• As discussed in subsection 4.2, for implementing iEPPA and BHPE, we have to explic-

itly retrieve an approximate solution Xk,t := Diag(uk,t)Kk Diag(vk,t), find its projec-

tion/rounding GΩ(Xk,t) and then compute their Bregman distance Dφ
(
GΩ(Xk,t), Xk,t

)
.

Moreover, BHPE has to compute one more quantity Dφ
(
GΩ(Xk,t), Xk

)
and thus incurs

extra cost. Since the operation complexity of computing the Bregman distance is roughly

5mn, which is about 2.5 times more than that of Sinkhorn iteration itself (4.11), this extra

cost is not negligible. From Table 2, one can also see that, for each γ, our iEPPA usually

takes less time than BHPE within a comparable number of Sinkhorn iterations.

Finally, one can see from Figure 3 that Sinkhorn’s algorithm with a relatively large γ is highly

efficient for obtaining a rough approximate solution, but when driving γ to a smaller value to

obtain a more accurate solution, it rapidly becomes very slow. Moreover, when γ = 10−4,

numerical instabilities occur and one needs to carry out the computations of (4.11) via some

stabilization techniques (e.g., the log-sum-exp technique [42, Section 4.4]) at the expense of

losing some computational efficiency. In contrast, under a broad range of tolerance settings, our

(V-)iEPPA is able to achieve an approximate solution of reasonable quality even when γ = 1.

Thus, we can safely use the efficient iterative scheme (4.11) as a subroutine without worries

on possible numerical instabilities. We also notice that the similar framework of iEPPA has
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been considered for solving OT in [42, Remark 4.9] and [60]. However, the inexact condition

used there is either heuristic (using a fixed number of inner iterations) without the rigorous

theoretical guarantee or rather stringent so that it is nontrivial to implement. Thus, our (V-

)iEPPA somewhat reduces the gap between the theory and the practical implementation when

applying the BPPA-type method for solving OT. We believe that there is still ample room for

improving our (V-)iEPPA with a dedicated tolerance adjustment and our (V-)iEPPA has great

potential to solve other OT-related problems, which we leave for future research.

Table 1: Comparisons among iPPA, V-iPPA, HPE and AHPE. In the table, “out#” denotes

the number of outer iterations, “ssn#” denotes the the number of Ssncg iterations, and “–”

means that the number of Ssncg iterations reaches 1000.

γ = 10 γ = 1 γ = 0.1
method kkt out# ssn# time kkt out# ssn# time kkt out# ssn# time

iPPA (Υ = 1)
p = 1.001 2.35e-3 363 – 7.9 3.55e-4 323 – 7.5 2.74e-3 329 – 7.9
p = 1.01 1.27e-3 344 – 7.6 2.79e-3 335 – 7.5 8.14e-4 340 – 7.9
p = 1.1 4.44e-4 385 – 7.3 1.16e-4 372 – 7.4 9.96e-4 365 – 7.6
p = 2.1 4.67e-7 558 – 7.5 9.60e-8 475 924 6.9 3.26e-7 526 – 7.6
p = 3.1 3.20e-7 533 – 7.8 9.26e-8 126 284 2.2 8.06e-8 75 241 2.1

V-iPPA (Υ = 1)
p = 1.001 2.71e-3 228 – 7.3 1.43e-3 216 – 7.6 1.87e-3 232 – 8.1
p = 1.01 1.34e-3 233 – 7.2 3.52e-3 218 – 7.5 8.91e-4 223 – 7.9
p = 1.1 6.06e-4 244 – 7.3 7.02e-4 238 – 7.5 1.61e-3 233 – 8.0
p = 2.1 5.70e-7 375 – 7.1 3.19e-6 366 – 7.5 4.59e-6 322 – 8.3
p = 3.1 9.27e-8 143 475 3.5 6.56e-8 81 270 2.1 3.66e-8 80 303 2.6

iPPA (Υ = 10−3)
p = 1.001 7.81e-7 549 – 7.3 8.26e-8 330 643 4.8 7.65e-8 466 871 7.0
p = 1.01 3.47e-7 552 – 7.3 9.78e-8 304 582 4.3 9.99e-8 299 596 4.6
p = 1.1 4.53e-7 541 – 7.4 6.52e-8 227 455 3.3 7.67e-8 219 452 3.6
p = 2.1 4.53e-7 444 – 7.6 9.16e-8 125 327 2.5 3.87e-8 24 154 1.3
p = 3.1 8.45e-7 291 – 7.7 9.16e-8 125 398 3.2 8.79e-8 15 188 1.5

V-iPPA (Υ = 10−3)
p = 1.001 1.76e-6 368 – 7.3 1.69e-7 377 – 7.8 9.15e-8 301 874 7.4
p = 1.01 4.93e-7 380 – 7.2 8.88e-8 338 880 6.8 3.11e-7 361 – 8.3
p = 1.1 3.52e-7 371 – 7.2 6.85e-8 360 925 7.3 9.85e-8 163 513 4.3
p = 2.1 9.28e-8 140 583 4.1 9.63e-8 55 236 1.8 6.11e-8 28 176 1.5
p = 3.1 9.58e-8 139 775 5.9 8.69e-8 45 259 2.0 5.78e-8 15 154 1.3
HPE

σ = 0.999 7.58e-7 328 – 10.6 9.16e-8 125 412 4.4 9.40e-8 13 162 1.8
σ = 0.99 7.58e-7 326 – 10.5 9.16e-8 125 416 4.4 9.40e-8 13 162 1.8
σ = 0.9 7.58e-7 319 – 10.4 9.16e-8 125 423 4.5 9.40e-8 13 180 1.9
σ = 0.5 8.29e-7 292 – 10.5 9.16e-8 125 450 4.8 9.17e-8 13 201 2.1
σ = 0.1 1.44e-6 217 – 10.6 9.16e-8 125 514 5.6 9.31e-8 13 277 2.9
AHPE
σ = 0.999 9.78e-8 105 697 7.2 7.78e-8 33 251 2.7 8.40e-8 11 187 2.0
σ = 0.99 9.78e-8 105 697 7.1 7.78e-8 33 251 2.6 8.40e-8 11 187 2.0
σ = 0.9 9.56e-8 105 696 7.1 7.49e-8 33 259 2.7 8.89e-8 11 170 1.9
σ = 0.5 9.01e-8 105 751 7.7 7.76e-8 33 266 2.8 9.89e-8 10 225 2.3
σ = 0.1 8.99e-8 105 874 9.2 7.71e-8 33 309 3.3 9.00e-8 10 300 3.1

7 Concluding remarks

In this paper, we propose a new inexact Bregman proximal point algorithm (iBPPA) for solving

a general class of convex problems. Compared to existing iBPPAs, we introduce a more flexible

stopping condition for solving the subproblems to circumvent the underlying feasibility issue

that often appears, but overlooked, in existing inexact conditions when the problem has a

complicated feasible set. Our inexact condition also covers some existing inexact conditions

as special cases. The iteration complexity of O(1/k) and the convergence of the sequence are

established for our iBPPA under some mild conditions. In addition, we successfully develop an
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Table 2: Comparisons among iEPPA, V-iEPPA and BHPE. In the table, “out#” denotes the

number of outer iterations, “sink#” denotes the the number of Sinkhorn iterations, and “–”

means that the number of Sinkhorn iterations reaches 10000.

γ = 1 γ = 0.1 γ = 0.01
method kkt out# sink# time kkt out# sink# time kkt out# sink# time

iEPPA (Υ = 1)
p = 1.001 1.00e-5 5800 5800 46.1 1.00e-5 581 581 4.5 1.00e-5 747 2383 13.7
p = 1.01 1.00e-5 5800 5800 45.3 1.00e-5 581 581 4.5 9.94e-6 709 2311 13.2
p = 1.1 1.00e-5 5800 5800 45.2 9.99e-6 584 586 4.5 9.96e-6 428 1511 8.5
p = 2.1 5.51e-5 1860 – 53.1 9.98e-6 581 5808 29.2 9.96e-6 59 1149 5.7
p = 3.1 8.53e-4 308 – 48.5 1.16e-4 116 – 48.5 1.01e-5 58 – 49.0

V-iEPPA (Υ = 1)
p = 1.001 9.95e-6 1007 1007 15.3 3.79e-4 963 – 56.1 4.71e-5 432 – 51.4
p = 1.01 9.95e-6 1007 1007 15.1 1.64e-4 912 – 55.8 1.53e-4 376 – 50.2
p = 1.1 9.95e-6 1007 1007 15.2 8.16e-5 994 – 56.2 7.33e-5 276 – 49.0
p = 2.1 9.99e-6 1029 3192 25.7 9.99e-6 106 1920 10.3 9.37e-6 34 3345 16.0
p = 3.1 5.29e-5 246 – 50.3 9.78e-6 106 8710 42.7 9.63e-6 19 2024 9.8

iEPPA (Υ = 10−3)
p = 1.001 1.81e-5 4195 – 59.9 1.42e-5 485 – 49.4 9.86e-6 59 8559 40.5
p = 1.01 2.02e-5 3838 – 58.4 1.56e-5 462 – 48.8 9.86e-6 59 8720 41.1
p = 1.1 6.09e-5 1747 – 52.4 2.72e-5 293 – 48.6 1.05e-5 57 – 47.0
p = 2.1 1.13e-3 255 – 44.0 2.00e-4 81 – 45.6 5.11e-5 20 – 48.7
p = 3.1 1.85e-3 184 – 18.3 3.52e-4 56 – 28.8 7.35e-5 16 – 39.0

V-iEPPA (Υ = 10−3)
p = 1.001 9.99e-6 1031 3281 26.2 1.00e-5 104 3240 16.7 8.87e-6 20 4206 20.0
p = 1.01 1.00e-5 1028 3422 26.7 1.00e-5 104 3305 17.0 8.86e-6 20 4247 20.2
p = 1.1 1.00e-5 1029 5010 34.4 9.94e-6 105 4154 21.0 8.80e-6 20 4664 22.1
p = 2.1 7.85e-5 181 – 48.6 2.65e-5 47 – 48.0 1.14e-5 18 – 48.7
p = 3.1 2.05e-4 110 – 25.7 4.38e-5 35 – 34.2 1.80e-5 13 – 44.0
BHPE
σ = 0.999 1.00e-5 5800 5800 55.4 9.99e-6 603 657 6.0 9.23e-6 187 3932 25.1
σ = 0.99 1.00e-5 5800 6259 58.2 9.98e-6 580 1150 9.1 9.94e-6 59 1280 8.2
σ = 0.9 2.46e-5 3163 – 72.8 9.98e-6 581 5206 34.9 9.80e-6 59 1894 12.2
σ = 0.5 1.34e-4 1051 – 68.4 2.65e-5 299 – 65.0 9.85e-6 59 5910 37.6
σ = 0.1 7.56e-4 334 – 67.9 1.41e-4 102 – 65.7 3.33e-5 26 – 63.8

inertial variant of our iBPPA (denoted by V-iBPPA) based on Nesterov’s acceleration technique.

Specifically, when the proximal parameter γk satisfies that 0 < γ ≤ γk ≤ γ <∞, the V-iBPPA

enjoys an iteration complexity of O(1/kλ), where λ ≥ 1 is a quadrangle scaling exponent of the

kernel function. Thus, if λ is strictly larger than 1, the V-iBPPA achieves acceleration. Some

preliminary experiments for solving the standard OT problem are conducted to illustrate the

influence of the inexact settings on the convergence behaviors of our iBPPA and V-iBPPA. The

experiments also empirically verify the potential of the V-iBPPA on improving the convergence

speed.
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Figure 2: Comparisons among iPPA, V-iPPA, HPE and AHPE.
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Figure 3: Comparisons among iEPPA, V-iEPPA and BHPE. As benchmarks, “Sinkhorn1” and
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[8] L.M. Bregman. The relaxation method of finding the common point of convex sets and

its application to the solution of problems in convex programming. USSR Comput. Math.

Math. Phys., 7(3):200–217, 1967.

[9] R.S. Burachik, A.N. Iusem, and B.F. Svaiter. Enlargement of monotone operators with

applications to variational inequalities. Set-Valued Analysis, 5(2):159–180, 1997.

[10] D. Butnariu, C. Byrne, and Y. Censor. Redundant axioms in the definition of Bregman

functions. J. Convex Anal., 10(1):245–254, 2003.

[11] Y. Censor and A. Lent. An iterative row-action method for interval convex programming.

J. Optim. Theory Appl., 34(3):321–353, 1981.

[12] Y. Censor and S.A. Zenios. Proximal minimization algorithm with D-functions. J. Optim.

Theory Appl., 73(3):451–464, 1992.

[13] Y. Censor and S.A. Zenios. Parallel Optimization: Theory, Algorithms, and Applications.

Oxford University Press, New York, 1997.

[14] G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm

using Bregman functions. SIAM J. Optim., 3(3):538–543, 1993.

32



[15] H. Chu, L. Liang, K.-C. Toh, and L. Yang. An efficient implementable inexact entropic

proximal point algorithm for a class of linear programming problems. arXiv:2011.14312,

2020.

[16] I. Csiszár. Information-type measures of difference of probability distributions and indirect

observation. Stud. Sci. Math. Hung., 2:229–318, 1967.

[17] J. Eckstein. Nonlinear proximal point algorithms using Bregman functions, with applica-

tions to convex programming. Math. Oper. Res., 18(1):202–226, 1993.

[18] J. Eckstein. Approximate iterations in Bregman-function-based proximal algorithms. Math.

Program., 83(1-3):113–123, 1998.

[19] P.P.B Eggermont. Multiplicative iterative algorithms for convex programming. Linear

Algebra Appl., 130:25–42, 1990.
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