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HYDRODYNAMIC LIMIT OF THE BOLTZMANN EQUATION TO THE

PLANAR RAREFACTION WAVE IN THREE DIMENSIONAL SPACE

GUANFA WANG, YONG WANG, AND JIAWEI ZHOU

Abstract. In this paper, we establish the global in time hydrodynamic limit of Boltzmann
equation to the planar rarefaction wave of compressible Euler system in three dimensional space
x ∈ R

3 for general collision kernels. Our approch is based on a generalized Hilbert expansion, and
a recent L2

− L
∞ framework. In particular, we improve the L

2-estimate to be a localized version
because the planar rarefaction wave is indeed a one-dimensional wave which makes the source
terms to be not integrable in the L

2 energy estimate of three dimensional problem. We also point
out that the wave strength of rarefaction may be large.
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1. Introduction and main results

1.1. Introduction. In this paper, we consider the Boltzmann equation

F ε
t + v · ∇xF

ε =
1

ε
Q(F ε, F ε), (1.1)

where F ε(t, x, v) ≥ 0 is the density distribution function for the gas particles with position x ∈ R
3

and velocity v ∈ R
3 at time t > 0, and ε > 0 is Knudsen number which is proportional to the

mean free path. The Boltzmann collision term Q(F1, F2) on the right is defined in terms of the
following bilinear form

Q(F1, F2) ≡
∫

R3

∫

S2

B(v − u, θ)F1(u
′)F2(v

′) dωdu−
∫

R3

∫

S2

B(v − u, θ)F1(u)F2(v) dωdu

:= Q+(F1, F2)−Q−(F1, F2), (1.2)

where the relationship between the post-collision velocity (v′, u′) of two particles with the pre-
collision velocity (v, u) is given by

u′ = u+ [(v − u) · ω]ω, v′ = v − [(v − u) · ω]ω,
for ω ∈ S

2, which can be determined by conservation laws of momentum and energy

u′ + v′ = u+ v, |u′|2 + |v′|2 = |u|2 + |v|2.
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The Boltzmann collision kernel B = B(v − u, θ) in (1.2) depends only on |v − u| and θ with
cos θ = (v − u) · ω/|v − u|. Throughout this paper, we consider both the hard and soft potentials
under the Grad’s angular cut-off assumption, for instance,

B(v − u, θ) = |v − u|γb(θ), (1.3)

with

−3 < γ ≤ 1, 0 ≤ b(θ) . | cos θ|.

It was shown since its derivation that the Boltzmann equation is closely related to the fluid
dynamical systems for both compressible and incompressible flows, see the founding work of
Maxwell [24] and Boltzmann [4]. For this, Hilbert proposed a systematic formal expansion in
1912, and Enskog and Chapman independently proposed another formal expansion in 1916 and
1917, respectively. Either the Hilbert expansion or the Chapman-Enskog expansion yield the
compressible Euler equations in the leading order with respect to ε, and the compressible Navier-
Stokes equations in the subsequent orders. It is a challenging problem to rigorously justify these
formal approximation, that is, hydrodynamic limits. In fact, the purpose of Hilbert’s sixth problem
[16] is to establish the laws of motion of continua from the Boltzmann equation in mathematical
standpoint.

We review some previous works on the hydrodynamic limits of Boltzmann equation. For the
case when the compressible Euler equations have smooth solutions, the hydrodynamic limits of the
Boltzmann equation has been studied even in the case with an initial layer; cf. Caflisch [5], Guo
[15, 14], Lachowicz [22], Nishida [25], and Ukai-Asano [26]. However, as is well known, solutions
of the compressible Euler equations in general develop singularities, such as shock waves. The
Riemann problem was first formulated and studied by Riemann in the 1860s when he studied one-
dimensional isentropic gas dynamics with initial data being two constant states. The Riemann
solution turns out to be fundamental in the theory of hyperbolic conservation laws because it
not only captures the local and global behavior of solutions but also fully represents the effect
of nonlinearity in the structure of the solutions. It is now well known that for the compressible
Euler equations, there are three basic wave patterns, that is, shock wave, rarefaction wave, and
contact discontinuity. These three types of waves have essential differences: shock is compressive,
rarefaction is expansive, and contact discontinuity has some diffusive structure. Therefore, it is
a natural problem to verify the hydrodynamic limit from the Boltzmann equation to the Euler
equations with basic wave patterns. For the one dimensional Boltzmann equation with slab
symmetry, Yu [29] proved the validity of hydrodynamic limit when the solution of the compressible
Euler equations contains only noninteracting shocks; Xin-Zeng [28] proved the case for rarefaction
wave; the hydrodynamic limit to the contact discontinuity was proved by Huang-Wang-Yang [18].
For superposition of different types of waves, we refer to the work [17, 19, 20]. In particular,
Huang-Wang-Wang-Yang [20] justify hydrodynamic limit in the setting of a Riemann solution
that contains the generic superposition of shock, rarefaction wave, and contact discontinuity by
introducing hyperbolic waves with different solution backgrounds to capture the extra masses
carried by the hyperbolic approximation of the rarefaction wave and the diffusion approximation
of contact discontinuity.

For the case of incompressible flows, the program was initiated by Bardos, Golse, and Levermore
[1, 2] to justify the global weak solution of incompressible flows in the frame work of global
renormalized solution of DiPerna-Lions [6]. In particular, Golse and Saint-Raymond [10] proved
that the limits of the DiPerna-Lions renormalized solutions of the Boltzmann equation are the
Leray solutions to the incompressible Navier-Stokes equations. There are also many important
progresses on this topic such as [3, 8, 9, 11, 21, 23] and the references therein, we will not go into
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details about the incompressible limits since we will concentrate on the compressible Euler limit
in this paper.

We remark that all the works of hydrodynamic limit to the wave patterns of compressible
Euler equations mentioned above are concerned in one-dimensional case, i.e. x ∈ R. To the
best of our knowledge, the hydrodynamic limit of Boltzmann equation to the wave patterns of
compressible Euler equations in three dimensional space still remains open. The goal of this paper
is to justify the limiting process of the Boltzmann equation to the planar rarefaction wave solution
of compressible Euler equations in three dimensional case. The main difficulty is that the planar
wave is indeed a one-dimensional wave in three dimensional space, and hence it and its derivatives
are not integrable in R

3. Therefore it is hard to use the one-dimensional energy method to resolve
it. To remedy the difficulty, we shall use a generalized Hilbert expansion, and a recent L2-L∞

method [12, 15]. In particular, we improve the L2 estimation to be a localized version since the
background planar rarefaction wave and its derivatives are not integrable in R

3.

1.2. Hilbert expansion. We consider the Hilbert expansion of Boltzmann solution (1.1) with
the form

F ε =

5
∑

n=0

εnFn + ε3F ε
R.

where F0, ..., F5 are the first six terms of the Hilbert expansion, independent of ε, which solve the
equations:

ε−1 : 0 = Q(F0, F0),

ε0 : {∂t + v · ∇x}F0 = Q(F0, F1) +Q(F1, F0),

ε : {∂t + v · ∇x}F1 = Q(F0, F2) +Q(F1, F1) +Q(F2, F0),

...

ε5 : {∂t + v · ∇x}F5 = Q(F0, F6) +Q(F6, F0) +
∑

i+j=6
1≤i,j≤5

Q(Fi, Fj).

(1.4)

The reminder equation for F ε
R is given by

∂tF
ε
R + v · ∇xF

ε
R − 1

ε
{Q(F0, F

ε
R) +Q(F ε

R, F0)}

= ε2Q(F ε
R, F

ε
R) +

5
∑

i=1

εi−1{Q(Fi, F
ε
R) +Q(F ε

R, Fi)}

+ ε2
{

∑

i+j≥6
1≤i,j≤5

εi+j−6Q(Fi, Fj)− {∂t + v · ∇x}F5

}

. (1.5)

It follows from (1.4)1 and the celebrated H-theorem that F0 should be a local Maxwellian

F0(t, x, v) ≡
ρ0(t, x)

[2πθ0(t, x)]3/2
exp

{

−|v − u0(t, x)|2
2θ0(t, x)

}

, (1.6)

where ρ0(t, x), u0(t, x) = (u10, u
2
0, u

3
0)(t, x) and θ0(t, x) are defined as

∫

R3

F0dv = ρ0,

∫

R3

vF0dv = ρ0u0,

∫

R3

|v|2F0dv = ρ0|u0|2 + 3ρ0θ0,

which represent the macroscopic density, velocity and temperature, respectively. Projecting the

equation (1.4)2 onto 1, v, |v|2
2 , which are five collision invariants for the Boltzmann collision
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operator Q(·, ·), one obtains that (ρ0, u0, θ0) satisfies the compressible Euler system






















∂tρ0 + div(ρ0u0) = 0,

∂t(ρ0u0) + div(ρ0u0 ⊗ u0) +∇p = 0,

∂t[ρ0(
3θ0
2

) +
|u0|2
2

] + div[ρ0u0(
3θ0
2

+
|u0|2
2

)] + div(pu0) = 0,

(1.7)

where p = ρ0θ0 is the pressure function.

1.3. Planar rarefaction wave. In this article we shall consider the hydrodynamic limit of Boltz-
mann equation to the planar rarefaction wave solution of compressible Euler equations. We impose
(1.7) with the following Riemann initial data

(ρ0, u0, θ0)(0, x) =

{

(ρ−, u−, θ−), x1 < 0,

(ρ+, u+, θ+), x1 > 0,
(1.8)

where u± = (u1±, 0, 0) and ρ± > 0, θ± > 0, u1± are given constants. To construct a Riemann
solution of (1.7) and (1.8), we introduce the Riemann problem for the one dimensional inviscid
Burgers equation:











wt + wwx1
= 0,

w(x1, 0) =

{

w−, x1 < 0,

w+, x1 > 0.

(1.9)

If w− < w+, the Riemann problem (1.9) admits a rarefaction wave solution wr(x1, t) = wr(x1

t )
given by

wr(
x1
t
) =











w−,
x1

t ≤ w−,
x1

t , w− ≤ x1

t ≤ w+,

w+,
x1

t ≥ w+.

In this paper we consider only the 1-rarefaction wave without loss of generality, since the 3-
rarefaction wave can be treated similarly. Hence we assume that (ρ−, u1−, θ−) and (ρ+, u

1
+, θ+)

was connected by 1-rarefaction wave for the one-dimensional compressible Euler equations, then
the Riemann problem (1.7), (1.8) admits a planar rarefaction wave solution (ρr1 , ur1 , θr1)(t, x1)
defined by































sr1 = s(ρr1 , θr1) = s+,

wr(
x1
t
) = λ1(ρ

r1(t, x1), u
1r1(t, x1), s+) = u1r1 −

√

5

3
(ρr1)

1

3 exp(
s+
2
),

u1r1(t, x1) +
√
15(ρr1(t, x1))

1

3 exp(
s+
2
) = u1+ +

√
15ρ

1

3

+exp(
s+
2
),

u2r1 = u3r1 = 0,

(1.10)

where λ1(ρ, u
1, s) is the first eigenvalue of Euler equations, and s = ln θ − 2

3
ln ρ is the entropy.

It is noted that a planar rarefaction wave is indeed a one dimensional wave in three dimensional
space, and the wave is independent of the variables x2 and x3.

Notice that the planar rarefaction wave solution constructed in (1.10) is only Lipschitz con-
tinuous at the edge of the rarefaction wave, and has singularity at t = 0, x = (0, x2, x3) for any
(x2, x3) ∈ R

2. To construct the linear part of Hilbert expansion Fi, i = 1, · · · , 5, we need more
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regularity on the planar rarefaction wave. Similar to [27, 20], we construct a smooth approximate
1-rarefaction wave. Hence we consider Burgers equation







wt +wwx1
= 0,

w(0, x1) = wσ(x1) = w(
x1
σ
) =

w+ + w−
2

+
w+ − w−

2
tanh

x1
σ
.

(1.11)

where σ > 0 is a parameter to be determined later. The solution wR
σ (t, x1) of the Burgers equation

is given by

wR
σ (t, x1) = wσ(x0(t, x1)), x1 = x0(t, x1) + wσ(x0(t, x1))t.

where x0(t, x1) = X(0; t, x1), and X(s; t, x1) is the characteristic line of Burgers equation

dX(s)

ds
= w(s,X(s)), X(t; t, x1) = x1.

Then the approximate planar rarefaction wave (ρR1 , uR1 , θR1)(t, x1) is given by






























sR1 = s(ρR1 , θR1) = s+,

wR
σ (t, x1) = λ1(ρ

R1(t, x1), u
1R1(t, x1), s+) = u1R1 −

√

5

3
(ρR1)

1

3 exp(
s+
2
),

u1R1(t, x1) +
√
15(ρR1(t, x1))

1

3 exp(
s+
2
) = u1+ +

√
15ρ

1

3

+exp(
s+
2
),

u2R1 = u3R1 = 0,

(1.12)

It is direct to know that the smooth approximate planar 1-rarefaction waves (ρR1 , uR1 , θR1)(t, x1)
also satisfies the compressible Euler equations (1.7). From Lemma 3.1 below, we have that

sup
x∈R

|(ρR1 , u1R1 , θR1)(t, x1)− (ρr1 , u1r1 , θr1)(
x1
t
)|

≤ C

t
[σ ln(1 + t) + σ| lnσ|] → 0, as σ → 0, (1.13)

for any given time t > 0. That means the smooth approximate planar 1-rarefaction wave
(ρR1 , uR1 , θR1)(t, x1) approximate the planar 1-rarefaction wave solution (ρr1 , ur1 , θr1)(t, x1) very
well after the initial time.

1.4. Main results. From now on, we denote

(ρ0, u0, θ0)(t, x) := (ρR1 , uR1 , θR1)(t, x1). (1.14)

Then it is noted that (ρ0, u0, θ0)(t, x) is a smooth solution to the compressible Euler equations
(1.7). We also define

F0 ≡ µσ(t, x, v) :=
ρ0(t, x)

[2πθ0(t, x)]3/2
exp

{

−|v − u0(t, x)|2
2θ0(t, x)

}

, (1.15)

and

µ(t, x1, v) :=
ρr1(t, x1)

[2πθr1(t, x1)]3/2
exp

{

−|v − ur1(t, x1)|2
2θr1(t, x1)

}

, (1.16)

where (ρ0, u0, θ0)(t, x) and (ρr1 , ur1 , θr1)(t, x1) are the ones defined in (1.14) and (1.10), respec-
tively. We point out that the solution (ρ0, u0, θ0)(t, x) depends on the parameter σ throughout
this paper even though we do not write it down explicitly.

For later use we define the linearized collision operator L by

Lg = − 1√
µσ

{

Q(µσ,
√
µσg) +Q(

√
µσg, µσ)

}

,
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and the nonlinear operator

Γ(g1, g2) =
1√
µσ

Q(
√
µσg1,

√
µσg2).

The null space N of L is generated by

χ0(v) ≡
1√
ρ0

√
µσ,

χi(v) ≡
vi − ui0√

ρ0θ0

√
µσ, i = 1, 2, 3,

χ4(v) ≡
1√
6ρ0

{ |v − u0|2
θ0

− 3

}√
µσ.

It is easy to check that

∫

R3

χi · χjdv = δij for 0 ≤ i, j ≤ 4. We also define the collision frequency

ν:

ν(t, x, v) ≡ ν(µσ) :=

∫

R3

∫

S2

B(v − u, θ)µσ(u)dωdu. (1.17)

It is direct to know that
1

C
(1 + |v|)γ ≤ ν(t, x, v) ≤ C(1 + |v|)γ ,

where the constant C > 0 depends only on ρ±, θ±, u±, but is independent of σ. Let Pg be the L2
v

projection with respect to [χ0, ..., χ4]. It is well-known that there exists a positive number c0 > 0
such that for any function g

〈Lg, g〉 ≥ c0‖{I −P}g‖2ν ,
where the weighted L2-norm ‖ · ‖ν is defined as

‖g‖2ν :=

∫

R3
x×R3

v

g2(x, v)ν(v)dxdv.

We point out that the constant c0 > 0 is independent of σ even though the projection P depends
on σ.

For each i ≥ 1, we define the macroscopic and microscopic part of
Fi√
µσ

as

Fi√
µσ

= P

(

Fi√
µσ

)

+ {I −P}
(

Fi√
µσ

)

≡







ρi√
ρ0

χ0 +

3
∑

j=1

√

ρ0
θ0

uji · χj +

√

ρ0
6

θi
θ0

χ4







+ {I−P}
(

Fi√
µσ

)

. (1.18)

Theorem 1.1 (Estimates on the linear terms). Let σ ∈ (0, 1], (ρ0, u0, θ0)(t, x) be the smooth
approximate planar rarefaction wave of Euler equations constructed in (1.14), and F0 defined in
(1.15). For each i ≥ 1, we assume the initial data of macroscopic part

(ρi, ui, θi)(0, x1) := (ρi0, ui0, θi0)(x1) ∈ Hs(R), (1.19)

where s > 0 is some positive constant, and ‖(ρi0, ui0, θi0)‖Hs is independent of σ > 0. Then the
linear problem (1.4) is well-posed. Furthermore, there exists positive constants C0, Ci, Ci,n ≥ 1, i =
1, · · · 5, n = 1, · · · such that

|Fi(t, x1, v)| ≤ Ci(σ + t)C0iσ−C0i(1 + |v|)3i+(i−1)γ̄µσ, (1.20)

|∂n
τ Fi(t, x1, v)| ≤ Ci,n(σ + t)C0iσ−n−C0i(1 + |v|)3i+2n+(i+n−1)γ̄µσ, (1.21)

where γ̄ = max {0, γ}, and C0, Ci, Ci,n ≥ 1 depend only on ‖(ρi, ui, θi)(0)‖Hs and θ±.
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Remark 1.2. We can not use the classical results [5] on the linear terms Fi, i = 1, 2, 3, 4, 5 since
the F0 depends on the parameter σ. Indeed, from (1.20) and (1.21), we know that Fi grows
polynomially as σ → 0+, and this fact is very important for us to prove the hydrodynamic limit
below.

We shall construct a sequence of solution of Boltzmann equation near the local Maxwellian µσ,
so it is natural to rewrite the remainder as

F ε
R =

√
µσf

ε. (1.22)

To use the L2-L∞ framework [14], we also introduce a global Maxwellian

µM :=
1

(2πθM )3/2
exp

{

− |v|2
2θM

}

,

where θM satisfies the condition

θM < max
t∈[0,∞),x∈Ω

θ0(t, x) < 2θM . (1.23)

Since θR1(t, x1) is a monotonic function of x1, and min{θ−, θ+} ≤ θR1(t, x1) ≤ max{θ−, θ+}, then
we can always choose θM satisfying (1.23) if

max{θ−, θ+} < 2min{θ−, θ+}. (1.24)

By the assumption (1.24), one can easily deduce that there exists positive constant C > 0 such
that for some 1

2 < α < 1 and for each (t, x, v) ∈ [0,∞) ×R
3 × R

3, the following holds:

1

C
µM ≤ µσ(t, x, v) ≤ Cµα

M , (1.25)

where both C and α are independent of σ. We further define

F ε
R = {1 + |v|2}−β√µMhε ≡ 1

w(v)

√
µMhε, (1.26)

with w(v) := {1 + |v|2}β for any fixed β ≥ 9
4 + 2(3− γ).

Theorem 1.3. Under the assumption of Theorem 1.1, and let (1.24) hold and σ = εη, a = ε−2η.
Assume the initial data

F ε(0, x, v) = µσ(0, x1, v) +
5
∑

n=1

εnFn(0, x1, v) + ε3F ε
R(0, x, v) ≥ 0,

and

sup
x0∈R3

‖f ε(0, ·, ·)I{|·−x0|≤2a}‖L2
x,v

. ε−
1

8a3, ‖ε
3/2

a3
hε(0)‖L∞

x,v
. 1. (1.27)

Then there are small positive constants η ∈ (0, 1
100 ) and ε0 > 0 depending only on θ± such that

the Cauchy problem of Boltzmann equation (1.1), (1.27) has a unique solution for ε ∈ (0, ε0]

F ε(t, x, v) = µσ(t, x1, v) +

5
∑

n=1

εnFn(t, x1, v) + ε3F ε
R(t, x, v) ≥ 0, t ∈ [0, ε−η ], (1.28)

with

sup
0≤t≤ε−η

sup
x0∈R3

‖f ε(t, ·, ·)I{|·−x0|≤2a}‖L2
x,v

. ε−
33

200 a3, (1.29)

sup
0≤t≤ε−η

{

‖ε
3

2

a3
hε(t)‖L∞

x,v

}

. ε−
1

4 . (1.30)
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Remark 1.4. Under the condition (1.24), the wave strength of the rarefaction wave may be large
in some cases. For example, for 1-rarefaction wave, one can choose θ+ = 3

4θ−, then it is easy to

check that (1.24) holds. The wave strength |θ+ − θ−| = 1
4θ− is large when θ− is large.

Remark 1.5. Since the approximate planar rarefaction wave depends on σ (or ε), unlike [15],
the uper bound of L2 and L∞-norms can not be kept. Indeed, from (1.30) and (1.29), these norm
of Boltzmann solution will increase with higher rate than the initial data.

Remark 1.6. We notice that the functions µσ, F1, · · · , F5 are independent of the space variables
x2, x3. However, F ε(t, x, v) is indeed a nontrivial Boltzmann solution in three dimensional space
since the remainder term F ε

R(t, x, v) depends on x1, x2 and x3.

Remark 1.7. Both µσ and linear terms F1, · · · , F5 depend on the ε > 0 in Theorem 1.3, hence we
call (1.28) as a generalized Hilbert expansion (The linear part are independent of ε in the classical
Hilbert expansion [5, 15]).

Remark 1.8. Under the conditions (1.27) and (1.19), one can indeed construct initial data F ε
0 ≥ 0

(we shall not present the details of construction for simplicity), hence the positivity of Boltzmann
solution F ε(t, x, v) can be guaranteed.

From (1.13) and Theorems 1.1 and 1.3, one can obtain the hydrodynamic limit of the nontriv-
ial three dimensional Boltzmann solution to the planar rarefaction wave of compressible Euler
equations.

Corollary 1.9 (Hydrodynamic limit to the planar rarefaction wave). Recall the definition of
µ(t, x1, v) in (1.16). Under the conditions of Theorem 1.3, we have the following hydrodynamic
limit of Boltzmann equation to the planar rarefaction wave of compressible Euler equations

sup
t∈[εζ ,ε−η ]

∥

∥

∥

∥

F ε(t, x, v)− µ(t, x1, v)√
µM

∥

∥

∥

∥

L∞
x,v

. εη−ζ | ln ε| → 0+, as ε → 0+,

for any given positive constant ζ ∈ (0, η).

Remark 1.10. As pointed out in the introduction, all the results [29, 28, 17, 18, 19, 20] on
hydrodynamic limit of Boltzmann equation to the wave pattern solution of Euler system are one
dimensional case, i.e. x ∈ R. In the present paper, we provide the first result on the hydrodynamic
limit of Boltzmann equation to the planar wave pattern solution of compressible Euler system in
three dimensional space x ∈ R

3. On the other hand, the validity time in the hydrodynamic limit
is ε−η for some small positive constant η > 0, which implies the global in-time convergence from
Boltzmann solution to planar rarefaction wave of the compressible Euler system.

We now comment on the analysis of this paper. For the linear part F1, · · · , F5, we can not use
the classical results [5] since the local Maxwellian µσ (see (1.15) for definition) depends on the
parameter σ > 0, and the linear part Fi may grow to infinity when σ vanishes. Hence one needs
to obtain a growth estimation as σ → 0. Noting the properties (2.1) of approximate rarefaction
wave, one can prove that the linear parts F1, · · · , F5 satisfy

|Fi(t, x1, v)| ≤ Ci(σ + t)C0iσ−C0i(1 + |v|)3i+(i−1)γ̄µσ,

which grow to infinity with polynomial rate as σ → 0+, see section 3 for details.
For the estimation of reminder term F ε

R, our method of proof relies on a recent L2 − L∞

framework initiated in [12, 14]. Since the planar rarefaction wave and linear parts are independent
of x2, x3, the source term Ā(t, x1, v) defined in (4.2) is not integrable in L2(R3

x×R3
v). To overcome

such difficulty, we introduce a localized L2
x,v estimation for f ε. In fact, we consider the equation
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of f ε(t, x, v)ϕa(x− x0) for any given x0 ∈ R
3 to obtain

∂t(f
εϕa) + v · ∇x(f

εϕa) +
1

ε
L(f εϕa)

= −{∂t + v · ∇x}
√
µσ√

µσ
f εϕa + (v · ∇x)ϕaf

ε + ε2Γ(f ε, f εϕa)

+

5
∑

i=1

εi−1
{

Γ(
Fi√
µσ

, f εϕa) + Γ(f εϕa,
Fi√
µσ

)
}

+ ε2Ā(t, x1, v)ϕa,

where ϕa is a cut-off function on x defined in (4.3) and a = ε−2η. Compared to [13, 14, 15], the
term (v ·∇x)ϕaf

ε is new. To close the estimate, we have to be careful since we need some ε power
to macth the term ‖hε‖L∞ . Noting the definition of ϕ in (4.3), one has

|(v · ∇x)ϕa| ≤ Cλa
−1−3λ|v| · |ϕa|1−λ for λ ∈ (0, 1),

which provides an additional ε decay, i.e., a−1 = ε2η. And this is the main reason why we choose
the cut-off parameter a to depend on ε. Hence the energy estimate of this term can be bounded
as

∣

∣

∣

∣

∫

R3

∫

R3

v · ∇xϕa|f ε|2ϕadxdv

∣

∣

∣

∣

≤ Cλ

a1+
3

2
λ
‖hε‖λL∞ · ‖f εϕa‖2−λ

L2

≤ Cλε
3

2
η

(

ε
1

4 ‖ε
3

2

a3
hε(t)‖L∞

)λ

· ‖f εϕa‖2−λ
L2 ,

by taking λ = 1
21η, see (4.9) for more details. We emphasize that the gain of ε power from the

∇ϕa is one of the key point. For the other terms in the energy estimates, one can bound them by
similar arguments as in [14, 15]. Hence, by choosing σ = εη with η > 0 being suitably small, we
can obtain that

d

dt
‖f ε(t)ϕa(· − x0)‖2L2 +

c0
2ε

‖{I−P}(f ε(t)ϕa(· − x0))‖2ν

≤ 4C̃1

σ + t
· (‖f ε(t)ϕa(· − x0)‖2L2 + 1), for t ∈ [0, ε−η ], (1.31)

where we have used the a priori assumption sup0≤t≤ε−η

{

ε
1

4‖ε
3
2

a3 h
ε(t)‖L∞

}

≤ 1, see Lemma 4.1

and (4.40)-(4.42) for details. The key point is that the positive constant C̃1 is independent of
x0 ∈ R

3. The second step is to estimate the weighted L∞-norm so that we can close the a priori
assumption, and the key obsevation is that such local L2-estimate is enough to close the weighted
L∞-estimate, i.e.,

sup
0≤s≤t

‖ε
3/2

a3
hε(s)‖L∞ ≤ C

{

‖ε
3/2

a3
hε(0)‖L∞ + C

ε9/2

a3
(1 + t)10C0 · σ−10C0

}

+Cε3/2a3 sup
0≤s≤t

‖ε
3/2

a3
hε(s)‖2L∞ + C sup

x0∈R3

sup
0≤s≤t

‖f ε(s)ϕa(· − x0)‖L2 . (1.32)

where have used the fact t ∈ [0, ε−η ]. With the help of (1.31), (1.32) and the continuity argument,
we can finally prove Theorem 1.3.

The paper is organized as follows. In Section 2, we introduce some useful lemmas which will be
used later. In Section 3, we construct the coefficients Fi for the Hilbert expansion for any given
µσ, and obtain some estimates depending on σ. In Section 4, we derive the localized L2 energy
estimate for the remainder f ε in terms of weighted L∞-norm, and also the weighted L∞-norm in
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terms of the localized L2-norm. The main Theorem 1.3 is proved based on the interplay of L2-L∞

estimates.

Notations. Throughout this paper, C denotes a generic positive constant which may depend on
ρ±, u±, θ± and vary from line to line but independent of ε, σ, t. And Ca, Cb, · · · denote the generic
positive constants depending on a, b, · · · , respectively, but independent of ε, σ, t, which also may
vary from line to line. ‖ · ‖L2 denotes the standard L2(R3

x × R
3
v)-norm, and ‖ · ‖L∞ denotes the

L∞(R3
x × R

3
v)-norm.

2. Preliminaries

We introduce the following notation

∂α
τ = ∂α0

t ∂α1

x1
.

We denote |α| = α0 + α1 where α0, α1 ∈ N, α0, α1 ≥ 0. For simplicity, we represent ∂α
τ by ∂n

τ for
the case |α| = n. The properties on the approximate rarefaction wave (ρR1 , uR1 , θR1)(t, x1) can
be summarized as follows.

Lemma 2.1 (Xin [27]). The approximate rarefaction waves (ρR1 , uR1 , θR1)(t, x1) constructed in
(1.12) have the following properties:

(1) For any 1 ≤ p ≤ +∞ and k ≥ 2, the following estimates holds,

‖∂τ (ρR1 , uR1

1 , θR1)(t, ·)‖Lp(dx1) ≤ C(σ + t)−1+ 1

p ,

‖∂α
τ (ρ

R1 , uR1

1 , θR1)(t, ·)‖Lp(dx1) ≤ C(σ + t)−1 · σ−k+1+ 1

p , |α| = k ≥ 2
(2.1)

where the positive constant C depends only on p, k and the wave strength |θ+ − θ−|.
(2)There exist positive constants C > 0 and σ0 > 0 such that for σ ∈ (0, σ0) and t > 0,

sup
x1∈R

∣

∣

∣(ρR1 , uR1

1 , θR1)(t, x1)− (ρr1 , ur11 , θr1)(
x1
t
)
∣

∣

∣ ≤ C

t
[σ ln(1 + t) + σ| ln σ|]. (2.2)

A direct calculation shows that ∂τµσ = µσJτ where

Jτ (t, x1, v) :=
∂τρ0
ρ0

− 3

2

∂τθ0
θ0

+
(v − u0)∂τu0

θ0
+

|v − u0|2∂τθ0
2θ0

. (2.3)

For k ≥ 0, it follows from (2.1) that

|∂k
τ Jτ | ≤

k
∑

i=0

Ckσ
−k+i · |(∂i+1

τ ρ0, ∂
i+1
τ u0, ∂

i+
τ θ0)| · (1 + |v|)2

≤ Ck
σ−k

σ + t
(1 + |v|)2 ≤ Ckσ

−(k+1)(1 + |v|)2, (2.4)

where Ck is a constant depending on k and wave strength |θ+ − θ−|.
For later use, we introduce some linear spaces, functions and operators. Based on Jτ , we define

the operators Ak

A0(f) = f, A1(f) = ∂τf +
1

2
fJτ , Ak+1(f) = A1 ◦ Ak(f), (2.5)

and the linear spaces Bk

B1 = span{Jτ}, B2 = span{∂τJτ , J2
τ }, ..., Bk = span

{

k
∏

i=1

∂mi−1
τ Jτ

}

|m(k)|=k
, (2.6)
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where m(k) = (m1, ...,mk) is a multiple index with mi ∈ N,mi ≥ 0 and |m(k)| = k. For later use,
we also denote ∂−1

τ Jτ = 1, ∂0
τJτ = Jτ and b0 = 1.

Now we give some useful lemmas which will be used in section 3. The proofs of Lemmas 2.2,
2.3, 2.4 and 2.5 are presented in the Appendix.

Lemma 2.2. For the linear space Bi, i ≥ 1, we have the following properties

1) Let bp ∈ Bp and bq ∈ Bq, then it holds that bpbq ∈ Bp+q;

2) Let bn ∈ Bn and f be any smooth function, then there exists a bn+1 ∈ Bp+1 such that

∂τ bp = bp+1 ∈ Bp+1 and ∂τ (bnf) = bn+1f + bn∂τf ; (2.7)

3) Let bk ∈ Bk be the basis of Bk, i.e. bk =
∏k

i=1 ∂
mi−1
τ Jτ for some m(k), then it holds that

|bk| ≤ Ckσ
−k(1 + |v|)2k, (2.8)

where Ck is a positive constant depending on k and wave strength |θ+ − θ−|.

Let f ∈ N⊥ and bi ∈ Bi, bj ∈ Bj , we define a new operators

Γi,j(f) =
1√
µσ

[

Q(biµ
1

2
σL

−1f, bjµσ) +Q(bjµσ, biµ
1

2
σL

−1f)
]

, i ≥ 0, j ≥ 1, (2.9)

and we also define Γ0,0 = id. For simplicity of presentation, we may still use the same notation

Γi,j(f) even though bi ∈ Bi, bj ∈ Bj are replaced by other b̃i ∈ Bi, b̃j ∈ Bj. And such simplification
will not cause problem in the following estimations.

Lemma 2.3. 1). There exist bi ∈ Bi, i = 0, · · · , k such that

Akf =
k
∑

i=0

bi∂
k−i
τ f, k ≥ 1. (2.10)

2). There exist b1 ∈ B1, bi+1 ∈ Bi+1 and bj+1 ∈ Bj+1 such that

A1 ◦ Γi,j(f) = b1Γi,j(f) + Γi+1,j(f) + Γi,j+1(f) + Γi,j ◦ Γ0,1(f)

+ Γi,j ◦ A1(f) i ≥ 0, j ≥ 1. (2.11)

Lemma 2.4. There exist index sets

Ns(i, j, l) =
{

(im, jm, lm) ∈ N
3
+|

s
∑

m=1

(im, jm, lm) = (i, j, l), and im = jm = 0 as lm = 0
}

,

such that

∂n
τ L

−1f =
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

(im,jm,lm)∈Ns(i,j,l)

(bi1Γj1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦ Apf ], (2.12)

for any f ∈ N⊥, n ≥ 0.

Lemma 2.5. Let f ∈ N⊥ and |f(t, x, v)| ≤ S(t, x)(1 + |v|)m√
µσ where S(t, x) ≥ 0, then it holds

that

|Γi,j(f)| ≤ Ci,jσ
−(i+j)S(x, t)(1 + |v|)m+2i+2j+γ√µσ, (2.13)

where Ci,j is positive constant independent of σ.
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3. Estimates on the linear terms

In this section, we will derive the estimates of F1(t, x1, v), · · · F5(t, x1, v) for given µσ which
is defined (1.15). We also point out that all the functions are independent of x2 and x3 in this

section. We define fk :=
Fk√
µσ

. Firstly, we present a useful lemma in [13] which will be used to

estimate the bound of linear terms.

Lemma 3.1 (Guo-Jang [13]). For each given nonnegative integer k, assume fk’s are found. Then
the microscopic part of fk+1 is determined through the equation for Fk in (1.4):

{I−P}fk+1 = L−1






−
{∂t + v1∂x1

}(√µσfk)−
∑

i+j=k+1
i,j≥1

Q(
√
µσfi,

√
µσfj)

√
µσ






. (3.1)

For the macroscopic part, ρk+1, uk+1, θk+1 satisfy the following:

∂tρk+1 + ∂x1
(ρ0u

1
k+1 + ρk+1u

1
0) = 0,

ρ0

{

∂tu
1
k+1 + u1k+1∂x1

u10 + u10∂x1
u1k+1

}

− ρk+1

ρ0
∂x1

(ρ0θ0) + ∂x1
(
ρ0θk+1 + 3θ0ρk+1

3
) = f̄k,1,

ρ0{∂tu2k+1 + u10∂x1
u2k+1} = f̄k,2,

ρ0{∂tu3k+1 + u10∂x1
u3k+1} = f̄k,3,

ρ0

{

∂tθk+1 +
2

3
(θk+1∂x1

u10 + 3θ0∂x1
u1k+1) + u10∂x1

θk+1 + 3u1k+1∂x1
θ0

}

= ḡk,

(3.2)

where

f̄k,i = −∂x1

(

θ0

∫

R3

Bi,1Fk+1dv

)

,

ḡk = −∂x1

(

θ
3

2

0

∫

R3

A1Fk+1dv + 2u10θ0

∫

R3

B1,1Fk+1dv

)

− 2u10fk,1,

(3.3)

and

Ai =
vi − ui0√

θ0

( |v − u0|2
θ0

− 5

)

, Bi,j =
(vi − ui0)(v

j − uj0)

θ0
− δij

|v − u0|2
3θ0

,

where we use the subscript k for forcing terms f̄k,i and ḡk,i in order to emphasize that the right
hand side depends only on Fi’s for 0 ≤ i ≤ k.

Remark 3.2. The original version of Lemma 3.1 in [13] is for the Hilbert expansion of Vlasov-
Poisson-Boltzmann equations, and one can obtain Lemma 3.1 by dropping the electric field and
noting that all the functions are independent of variables x2 and x3.

Proof of Theorem 1.1. Firstly we consider the microscopic part {I−P}f1. It follows from
(3.1) that

{I−P}f1 = L−1

(

−{∂t + v1∂x1
}µσ√

µσ

)

= L−1(−Jt
√
µσ − v1Jx1

√
µσ). (3.4)

Since L−1 preserves decay of v [5], and ρ0, θ0 are bounded from below and above, then using (2.4)
to obtain

|{I −P}f1| ≤ C|(∂τρ0, ∂τu0, ∂τθ0)| · (1 + |v|)3√µσ

≤ Cσ−1(1 + |v|)3√µσ. (3.5)
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It follows from (3.5) and (2.1) that

‖{I −P}f1‖L2
x1

L∞
v
+ ‖{I −P}f1‖L2

x1
L2
v

≤ C‖(∂τρ0, ∂τu0, ∂τθ0)‖L2
x1

≤ C(σ + t)−
1

2 ≤ Cσ− 1

2 . (3.6)

Next we consider the space-time derivatives of {I −P}f1. It follows from (3.4) and Lemma 2.4
that

∂n
τ {I−P}f1 = ∂n

τ L
−1(−Jt

√
µσ − v1Jx1

√
µσ)

=
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1
[

∑

i+j+l=s
i,j,l≥0

∑

(im,jm,lm)∈Ns(i,j,l)

(bi1Γj1,l1) ◦

· · · ◦ (bisΓjs,ls) ◦Ap(−Jt
√
µσ − v1Jx

√
µσ)
]

. (3.7)

It is noted that there exists some bk ∈ Bk (see (2.6) for the definition of Bk) such that ∂k
τ
√
µσ =

bk
√
µσ for k ≥ 0. By using Lemmas 2.2 and 2.3, it holds that

Ap(Jt
√
µσ + v1Jx1

√
µσ)

=

p
∑

i=0

p−i
∑

j=0

bi∂
p−i−j
τ

√
µσ · ∂j

τJt + v1
p
∑

i=0

p−i
∑

j=0

bi∂
p−i−j
τ

√
µσ · ∂j

τJx1

=

p
∑

j=0

[

bp−j∂
j
τJt + v1bp−j∂

j
τJx1

]√
µσ,

= (bp+1 + v1b̃p+1)
√
µσ. (3.8)

Substituting (3.8) into (3.7), then using (2.1) and (2.8), Lemmas 2.4 and 2.5, one obtains that

|∂n
τ {I−P}f1| ≤ Cn

n
∑

j̄=0

σ−n+j̄(1 + |v|)2n+3+nγ̄ · |∂ j̄+1
τ (ρ0, u0, θ0)|

√
µσ (3.9)

≤ Cnσ
−n−1(1 + |v|)2n+3+nγ̄√µσ, for n ≥ 1, (3.10)

where γ̄ = max {γ, 0}. Using (3.9) and (2.1), it holds that for n ≥ 1

‖∂n
τ {I −P}f1‖L2

x1
L∞
v
+ ‖∂n

τ {I −P}f1‖L2
x1

L2
v
≤ Cσ−n− 1

2 . (3.11)

To estimate Pf1, we rewrite the linear system (3.2) as a symmetric hyperbolic equations with
the corresponding symmetrizer Ā0

Ā0∂tUk+1 + Ā1∂x1
Uk+1 + B̄Uk+1 = F̄k, (3.12)

where Uk+1 = (ρk+1, uk+1, θk+1)
t, and Ā0, Ā1, B̄ and F̄k are given by

Ā0 ≡













(θ0)
2 0 0 0 0

0 (ρ0)
2θ0 0 0 0

0 0 (ρ0)
2θ0 0 0

0 0 0 (ρ0)
2θ0 0

0 0 0 0 (ρ0)2

6













,
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Ā1 ≡















(θ0)
2u10 ρ0(θ0)

2 0 0 0

ρ0(θ0)
2 (ρ0)

2θ0u
1
0 0 0 (ρ0)2θ0

3
0 0 (ρ0)

2θ0u
1
0 0 0

0 0 0 (ρ0)
2θ0u

1
0 0

0 (ρ0)2θ0
3 0 0

(ρ0)2u1

0

6















,

and

B̄ ≡















(θ0)
2∂x1

u10 (θ0)
2∂x1

ρ0 0 0 0

θ0∂x1
(ρ0θ0) ρ0θ0∂x1

u10 0 0
ρ0θ0∂x1ρ0

3
0 0 0 0 0
0 0 0 0 0

0
(ρ0)2∂x1θ0

2 0 0
(ρ0)2∂x1u

1

0

9















, F̄k ≡













0
ρ0θ0f̄k,1
ρ0θ0f̄k,2
ρ0θ0f̄k,3
(ρ0)2

6 ḡk













.

Using (2.1), it is easy to know that

‖∂x1
(Ā0, Ā1)‖L∞

x1
+ ‖B̄‖L∞

x1
≤ C̄

σ + t
, (3.13)

where C̄ ≥ 1 is a positive constant depending only on θ±. Applying the standard energy method
of the linear symmetric hyperbolic system to (3.12) and using (3.13), then one can obtain the
following energy inequality

d

dt
‖Uk+1‖2L2

x1
≤
{

[

‖∂x1
(Ā0, Ā1)‖L∞

x1
+ ‖B̄‖L∞

x1

]

‖Uk+1‖2L2
x1

+ ‖F̄k‖L2
x1
‖Uk+1‖L2

x1

}

≤ C̄

σ + t
‖Uk+1‖2L2

x1
+C‖F̄k‖L2

x1
‖Uk+1‖L2

x1
. (3.14)

To estimate ‖F̄k‖L2
x1
, we only calculate the term ‖ρ0θ0f̄k,i‖L2

x1
since all the other terms can be

bounded in a similar way. Noting that

∫

R3

Bi,j
√
µσ ·Pf1dv = 0 (see [1] for more details), one has

that

ρ0θ0f̄k,i = −ρ0θ0

∫

R3

∂x1
(θ0Bi,1

√
µσ) · {I −P}fk+1dv

− ρ0(θ0)
2

∫

R3

Bi,1
√
µσ · ∂x1

({I−P}fk+1)dv,

which, together with (2.1), yields that

‖ρ0θ0f̄k,i‖L2
x1

≤ C‖∂x1
(θ0Bi,1

√
µσ)‖L∞

x1
L2
v
· ‖{I −P}fk+1‖L2

x1
L2
v

+ C‖Bi,1
√
µσ‖L∞

x1
L2
v
· ‖∂x1

{I −P}fk+1‖L2
x1

L2
v
.

It follows from (2.1) that

‖Bi,1
√
µσ‖L∞

x1
L2
v
≤ C, ‖∂x1

(θ0Bi,1
√
µσ)‖L∞

x1
L2
v
≤ C

σ + t
,

which yields immediately that

‖ρ0θ0f̄k‖L2
x1

≤ C

σ + t
‖{I −P}fk+1‖L2

x1
L2
v
+ C‖∂x1

{I−P}fk+1‖L2
x1

L2
v
.

Hence, by similar arguments, one can prove that

‖F̄k‖L2
x1

≤ C

σ + t
‖{I −P}fk+1‖L2

x1
L2
v
+ C‖∂x1

{I−P}fk+1‖L2
x1

L2
v
. (3.15)
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For k = 0, substituting (3.6) and (3.11) into (3.15) to have

‖F̄0‖L2
x1

≤ Cσ− 3

2

which, together with (3.14), yields that

d

dt
‖U1‖2L2

x1
≤ 2C̄

σ + t
‖U1‖2L2

x1
+ C(σ + t)σ−3, (3.16)

where C̄ ≥ 1 is some positive constant which depends only on the wave strength. Applying the
Gronwall’s inequality to (3.16), then one obtains that

‖U1‖2L2
x1
(t) ≤ C

(

σ + t

σ

)2C̄

(U2
1 (0) + σ−1) ≤ C

(

σ + t

σ

)2C̄

σ−1, (3.17)

where we have used the fact

∫ t

0
(σ + τ) ·

(

σ

σ + τ

)2C̄

dτ ≤ σ2

2C̄ − 2
, for C̄ > 1. (3.18)

Next we shall estimate the derivatives of U1. We introduce the following notation

‖∇n · ‖L2
x1

=
∑

α0+α1=n
α0,α1≥0

‖∂α0

t ∂α1

x1
· ‖L2

x1
,

for simplicity of presentation. Applying ∂α
τ to (3.12) for k = 0, using the standard energy method

to the resultant equation and adding them together for |α| = n, then we obtain

d

dt
‖∇nU1‖2L2

x1
≤ C̄

σ + t
‖∇nU1‖2L2

x1
+C

n
∑

i=2

‖∇i(Ā0, Ā1)‖L∞
x1
‖∇n−i+1U1‖L2

x1
‖∇nU1‖L2

x1

+ C

n
∑

i=1

‖∇iB̄‖L∞
x1
‖∇n−iU1‖L2

x1
‖∇nU1‖L2

x1

+ C‖∇nF̄0‖L2
x1
‖∇nU1‖L2

x1
. (3.19)

By using (2.1), a direct calculation shows that

‖∇i(Ā0, Ā1)‖L∞
x1

≤ C

σ + t
σ−i+1, for i ≥ 1,

‖∇iB̄‖L∞
x1

≤ C

σ + t
σ−i, for i ≥ 0.

(3.20)

For the estimate of ∇nF̄0, we only consider the effect of ∇n(ρ0θ0f̄k,i) since the other terms can
be done by similar way. In fact, it follows from (2.1), (3.6) and (3.11) that

‖∇nF̄0‖L2
x1

≤
∑

0≤i+j≤n

‖∇i(ρ0θ0)‖L∞
x1

{

‖∇1+j(θ0B1,1
√
µσ)‖L∞

x1
L2
v
‖∇n−i−j{I−P}f1‖L2

x1
L2
v

+ ‖∇j(θ0B1,1
√
µσ)‖L∞

x1
L2
v
‖∇1+n−i−j{I−P}f1‖L2

x1
L2
v

}

≤ Cσ−n− 3

2 ,
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which, together with (3.19), (3.20) and Cauchy inequality, yields that

d

dt
‖∇nU1‖2L2

x1
≤ 2C̄

σ + t
‖∇nU1‖2L2

x1
+

n
∑

i=1

C
σ−2i

σ + t
‖∇n−iU1‖2L2

x1

+ C(σ + t)σ−2n−3. (3.21)

For n = 1, it follows from (3.21) and (3.17) that

d

dt
‖∇U1‖2L2

x1
≤ 2C̄

σ + t
‖∇U1‖2L2

x1
+

Cσ−3

σ + t

(

σ + t

σ

)2C̄

+ C(σ + t)σ−5,

which, together with Gronwall’s inequality and (3.18), yields that

‖∇U1(t)‖2L2
x1

≤ Cσ−3

(

σ + t

σ

)2C̄+ 1

2

. (3.22)

We shall use induction argument to prove that

‖∇nU1(t)‖2L2
x1

≤ Cσ−2n−1

(

σ + t

σ

)2C̄+ 1

2

, for n ≥ 0. (3.23)

In fact, for n = 0, 1, (3.23) has already been proved in (3.17) and (3.22). Now we assume that
(3.23) holds for n ≤ k − 1. We consider the case for n = k, and it follows from (3.21) and (3.23)
for n = 1, · · · , k − 1 that

d

dt
‖∇kU1‖2L2

x1
≤ 2C̄

σ + t
‖∇kU1‖2L2

x1
+

k
∑

i=1

C
σ−2i

σ + t
σ−2(k−i)−1

(

σ + t

σ

)2C̄+ 1

2

+ Cσ−2k−3(σ + t)

≤ 2C̄

σ + t
‖∇kU1‖2L2

x1
+ C

σ−2k−1

σ + t

(

σ + t

σ

)2C̄+ 1

2

+ Cσ−2k−3(σ + t),

which, together with Gronwall’s inequality, yields

‖∇kU1(t)‖2L2
x1

≤ C

{

‖∇kU1(0)‖2L2
x1

+ σ−2k−1(
σ + t

σ
)
1

2 + σ−2k−1

}(

σ + t

σ

)2C̄

≤ Cσ−2k−1

(

σ + t

σ

)2C̄+ 1

2

. (3.24)

Thus we proved (3.23) holds for n = k. Hence (3.23) holds for n ≥ 0.
It follows from (3.23) and Sobolev inequality that

|∂nU1(t, x1)| . {‖∂nU1(t)‖2L2
x1

· ‖∂n∂x1
U1(t)‖2L2

x1
} 1

4

. σ−n−1

(

σ + t

σ

)C̄+ 1

4

,

which, together with (1.18), (3.10), yields (1.20) and (1.21) for i = 1 by suitably chosen C0 ≥ 1.
One can prove (1.20) and (1.21) for F2, · · · , F5 step by step by using similar arguments as for F1

previously, and we omit the details for simplicity of presentation. Therefore the proof of Theorem
1.1 is completed. �
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4. Proof of the main theorem

4.1. Localized L2-estimate. Recalling the definition of f ε in (1.22), we can rewrite the equation
(1.5) in terms of f ε as

∂tf
ε + v · ∇xf

ε +
1

ε
Lf ε

= −{∂t + v · ∇x}
√
µσ√

µσ
f ε + ε2Γ(f ε, f ε)

+

5
∑

i=1

εi−1
{

Γ(
Fi√
µσ

, f ε) + Γ(f ε,
Fi√
µσ

)
}

+ ε2Ā(t, x1, v), (4.1)

where

Ā(t, x1, v) =
∑

i+j≥6
1≤i,j≤5

εi+j−6 1√
µσ

Q(Fi, Fj)−
{∂t + v1∂x1

}F5√
µσ

. (4.2)

The last term Ā(t, x1, v) in (4.1) is only functions of x1, and it is not integrable in R
3. The key

observation is that only a local L2-estimate is involved when we consider the L∞ estimation. So
to overcome the difficulty, we consider a localized L2 estimate for f ε. For later use, we introduce
a cut-off function

ϕ(x) =







e
1

|x|2−1 , |x| < 1,

0, |x| ≥ 1,
(4.3)

and denote ϕa(x) = a−3ϕ(xa ).

Lemma 4.1. Let C0 be the positive constant defined in Theorem 1.1. Let β ≥ 9
4 +2(3−γ), σ = εη

with η ≤ 1
11C0

and T ≤ ε
− 1

10C0 . Then there exists a suitably small constant ε0 > 0 such that for

all ε ∈ (0, ε0), and any fixed x0 ∈ R
3, it holds that

d

dt
‖f ε(t)ϕa(· − x0)‖2L2 +

c0
2ε

‖{I −P}(f ε(t)ϕa(· − x0))‖2ν

≤
{

C̃1a
2ε2σ− 1

2 ‖hε(t)‖L∞ +
Cλ

a1+
3

2
λ
‖hε(t)‖λL∞

+ C̃1(1 + t)10C0εσ−10C0 +
C̃1

σ + t

}

· (‖f ε(t)ϕa(· − x0)‖2L2 + 1), (4.4)

for t ∈ [0, T ], where C̃1 ≥ 1 is positive constant, and λ > 0 is some small parameter chosen later.

Proof. For simplicity of presentation, we only consider the case x0 = 0 ∈ R
3 since the proof is

the same for x0 6= 0. Multiplying (4.1) by the cut-off function ϕa, one obtains that

∂t(f
εϕa) + v · ∇x(f

εϕa) +
1

ε
L(f εϕa)

= −{∂t + v · ∇x}
√
µσ√

µσ
f εϕa + (v · ∇x)ϕaf

ε + ε2Γ(f ε, f εϕa)

+
5
∑

i=1

εi−1
{

Γ(
Fi√
µσ

, f εϕa) + Γ(f εϕa,
Fi√
µσ

)
}

+ ε2Ā(t, x1, v)ϕa. (4.5)
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Then we multiply (4.5) by f εϕa to obtain that

1

2

d

dt
‖f εϕa‖2L2 +

c0
ε
‖{I −P}(f εϕa)‖2ν

≤ −
∫

R3

∫

R3

{∂t + (v · ∇x)}
√
µσ√

µσ
|f εϕa|2dvdx+

∫

R3

∫

R3

(v · ∇x)ϕa|f ε|2ϕadvdx

+

5
∑

i=1

∫

R3

∫

R3

εi−1
{

Γ(
Fi√
µσ

, f εϕa) + Γ(f εϕa,
Fi√
µσ

)
}

f εϕadvdx

+ ε2
∫

R3

∫

R3

Ā(t, x1, v)f
εϕ2

advdx+ ε2
∫

R3

∫

R3

Γ(f ε, f εϕa)f
εϕadvdx. (4.6)

We shall estimate the right hand side of (4.6) term by term. Firstly we notice that {∂t + v ·
∇x}√µσ/

√
µσ is a cubic polynomial in v, then for any κ > 0 and δ = 1

2(3−γ) , one has that

∣

∣

∣

∣

∫

R3

∫

R3

{∂t + v · ∇x}
√
µσ√

µσ
|f εϕa|2dvdx

∣

∣

∣

∣

≤ C

∫

R3

∫

R3

|∂x1
(ρ0, u0, θ0)(t, x1)| · (1 + |v|2) 3

2 · |f εϕa|2dvdx

=

∫ ∫

|v|≥ κ

εδ

+

∫ ∫

|v|≤ κ

εδ

≤ C

{
∫∫

|∂x1
(ρ0, u0, θ0)(t, x1)|2 · (1 + |v|2)3|f εϕa|2I{|v|≥κ/εδ}dvdx

} 1

2

· ‖f εϕa‖L2

+ C‖∂x1
(ρ0, u0, θ0)‖L∞

x1
· ‖(1 + |v|2)3/4f εϕaI{|v|≤κ/εδ}‖2L2

≤ Ca−2‖∂x1
(ρ0, u0, θ0)‖L2

x1
· ‖hε‖L∞ ·

{

∫

|v|≥ κ

εδ

(1 + |v|2)−2β+3dv

} 1

2

‖f εϕa‖L2

+ C‖∂x1
(ρ0, u0, θ0)‖L∞

x1
· ‖(1 + |v|2)3/4f εϕaI{|v|≤κ/εδ}‖2L2

≤ Cκ
a−2ε2√
σ + t

‖hε‖L∞ · ‖f εϕa‖L2 +
C

σ + t
‖(1 + |v|2)3/4P(f εϕa)I{|v|≤κ/εδ}‖2L2

+
C

σ + t
‖(1 + |v|2)3/4{I −P}(f εϕa)I{|v|≤κ/εδ}‖2L2

≤ Cκ
a−2ε2√
σ + t

‖hε‖L∞ · ‖f εϕa‖L2 +
C

σ + t
‖f εϕa‖2L2 +

Cκ3−γ

ε
1

2σ
‖{I −P}(f εϕa)‖2ν , (4.7)

where we have used the fact that µM ≤ Cµσ (see (1.25)) and

|(1 + |v|2)3/2f ε| = |(1 + |v|2)−β+3/2

√
µM√
µσ

hε|

≤ Ce−c1|v|2 |(1 + |v|2)− 3

4
−2(3−γ)hε|, (4.8)

for β ≥ 9
4 + 2(3− γ), where c1 > 0 is some positive constant depending only on θM , θ− and θ+.

The appearance of second term on the right hand side of (4.6) is mainly due to the cut-off
function ϕa, and it has not appeared in previous works [15, 13]. Noting

|v · ∇xϕa| = a−1ϕa
|2v · x

a |
(1− |xa |2)2

,
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which, together with (4.8), yields that

∣

∣

∣

∣

∫

R3

∫

R3

v · ∇xϕa|f ε|2ϕadxdv

∣

∣

∣

∣

≤ Cλ

a1+3λ

∫

R3

∫

R3

|v| · |f ε|2ϕ2−λ
a dxdv

≤ Cλ

a1+3λ
‖hε‖λL∞

∫

R3

∫

R3

|v| exp (−c1λ|v|2)|f εϕa|2−λdxdv

≤ Cλ

a1+3λ
‖hε‖λL∞

{

∫

|x|≤a

∫

R3

|v| 2λ exp (−2c1|v|2)dxdv
}λ

2

· ‖f εϕa‖2−λ
L2

≤ Cλ

a1+
3

2
λ
‖hε‖λL∞ · ‖f εϕa‖2−λ

L2 . (4.9)

where λ ∈ (0, 1) is a small constant chosen later.
For the third term on RHS of (4.6), we notice that the upper bound of Fi involving

1
σ , then

for the case i = 1 we do not have any decay for ε. Fortunately, we find that Γ
(

Fi√
µσ

, f εϕa

)

+

Γ
(

f εϕa,
Fi√
µσ

)

is indeed microscopic part, then one has that

5
∑

i=1

εi−1

∫

R3

∫

R3

{

Γ

(

Fi√
µσ

, f εϕa

)

+ Γ

(

f εϕa,
Fi√
µσ

)}

· f εϕadvdx

=
5
∑

i=1

εi−1

∫

R3

∫

R3

{

Γ

(

Fi√
µσ

, f εϕa

)

+ Γ

(

f εϕa,
Fi√
µσ

)}

· {I−P}f εϕadvdx

≤
5
∑

i=1

(1 + t)C0iεi−1σ−C0i
(

‖f εϕa‖ν + ‖f εϕa‖L2

)

· ‖{I −P}f εϕa‖ν

≤
5
∑

i=1

(1 + t)C0iεi−1σ−C0i
(

‖{I −P}(f εϕa)‖ν + ‖f εϕa‖L2

)

· ‖{I −P}f εϕa‖ν

≤
{c0
4

+

5
∑

i=1

(1 + t)C0iεiσ−C0i
}

· 1
ε
‖{I−P}f εϕa‖2ν

+ C

5
∑

i=1

(1 + t)2C0iε2i−1σ−2C0i‖f εϕa‖2L2 , (4.10)

where we have used (1.20) for Fi, i = 1, · · · , 5 in Theorem 1.1.
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For the forth and fifth terms on RHS of (4.6), by using (1.20) and (1.21), it is direct to have
that

∣

∣

∣

∣

ε2
∫

R3

∫

R3

Ā(t, x1, v)f
εϕ2

advdx

∣

∣

∣

∣

≤ Cε2
{
∫

R3

∫

R3

|Ā(t, x1, v)ϕa|2dvdx
} 1

2

· ‖f εϕa‖L2

≤ Ca−
3

2 ε2‖f εϕa‖L2

{

∑

i+j≥6
1≤i,j≤5

(1 + t)C0(i+j) · εi+j−6σ−C0(i+j) + (1 + t)6C0 · σ−6C0

}

≤ C(1 + t)10C0ε2σ−10C0‖f εϕa‖L2 . (4.11)

and

ε2|〈Γ(f ε, f εϕa), f
εϕa〉| ≤ Cε2‖hε‖L∞ · ‖f εϕa‖2L2 . (4.12)

Now substituting (4.7), (4.9)-(4.12) into (4.6), one has that

d

dt
‖f εϕa‖2L2 +

{3

2
c0 −Cκ3−γ − Cε(1 + t)5C0σ−5C0

}1

ε
‖{I−P}(f εϕa)‖2ν

≤
{

Cκa
2ε2σ− 1

2‖hε‖L∞ +
Cλ

a1+
3

2
λ
‖hε‖λL∞

+ C(1 + t)10C0εσ−10C0 +
C

σ + t

}

· (‖f εϕa‖2L2 + 1).

Taking 0 < Cκ3−γ ≤ c0
4 , and noting T ≤ ε

− 1

10C0 and σ = εη with 0 < η ≤ 1
11C0

, one proves (4.4)

by taking ε ∈ (0, ε0) with ε0 suitably small. Therefore the proof of Lemma 4.1 is completed. �

4.2. Weighted L∞-estimate. As in [14, 15], we denote

LMg = − 1√
µM

{

Q(µσ,
√
µMg) +Q(

√
µMg, µσ)

}

= ν(µσ)g +Kg,

where the frequency ν(µσ) has been defined in (1.17) and Kg = K1g −K2g with

K1g =

∫

R3

∫

S2

B(θ)|u− v|γ
√

µM (u)
µσ(v)
√

µM (v)
g(u)dudω,

K2g =

∫

R3

∫

S2

B(θ)|u− v|γµσ(u
′)

√

µM(v′)
√

µM (v)
g(v′)dudω

+

∫

R3

∫

S2

B(θ)|u− v|γµσ(v
′)

√

µM (u′)
√

µM (v)
g(v′)dudω.

Let 0 ≤ χm ≤ 1 be a smooth cut off function, such that for any m > 0,

χm(s) ≡ 1 for s ≤ m, χm(s) ≡ 0, for s ≥ 2m.
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Then one can define

Kmg =

∫

R3

∫

S2

B(θ)|u− v|γχm(|u− v|)
√

µM (u)
µσ(v)
√

µM(v)
g(u)dudω

+

∫

R3

∫

S2

B(θ)|u− v|γχm(|u− v|)µσ(u
′)

√

µM (v′)
√

µM(v)
g(v′)dudω

+

∫

R3

∫

S2

B(θ)|u− v|γχm(|u− v|)µσ(v
′)

√

µM (u′)
√

µM (v)
g(v′)dudω,

and

Kc = K −Km.

Lemma 4.2 ([15, 7]). There exists some positive constant c > 0, such that

|Kmg(v)| ≤ Cm3+γe−
c
10

|v|2‖g‖L∞ , (4.13)

and Kcg(v) =

∫

R3

l(v, v′)g(v′)dv′ where the kernel l(v, v′) satisfies

|l(v, v′)| ≤ Cm
exp {−c|v − v′|2}

|v − v′|(1 + |v|+ |v′|)1−γ
+ C|v − v′|γe−c|v|2−c|v′|2 , (4.14)

and

|l(v, v′)| ≤ C|v − v′|− 3−γ
2 e−c|v−v′|2e

− c||v|2−|v′|2|2

|v−v′|2 + C|v − v′|γe−c|v|2−c|v′|2 . (4.15)

It is worth to point out that the constant Cm is independent of σ.

Lemma 4.3. Let η ≤ 1
40C0

, T = ε−η, a = ε−2η and σ = ε−η, then there exists ε0 > 0 such that

for all ε < ε0, t ∈ [0, T ], it holds that

sup
0≤s≤t

‖ε
3/2

a3
hε(s)‖L∞ ≤ C

{

‖ε
3/2

a3
hε(0)‖L∞ + C

ε9/2

a3
(1 + t)10C0 · σ−10C0

}

+ Cε3/2a3 sup
0≤s≤t

‖ε
3/2

a3
hε(s)‖2L∞ + C sup

x∈R3

sup
0≤s≤t

‖f ε(s)ϕa(· − x)‖L2 . (4.16)

Proof. Letting Kwg ≡ wK( g
w ), it follows from (1.5) and (1.26) that

∂th
ε + v · ∇xh

ε +
ν(µσ)

ε
hε +

1

ε
Kwh

ε

= ε2
w√
µM

Q

(

hε
√
µM

w
,
hε
√
µM

w

)

+

5
∑

i=1

εi−1 w√
µM

{

Q

(

Fi,
hε
√
µM

w

)

+Q

(

hε
√
µM

w
,Fi

)}

+ ε2Ã(t, x1, v),

with

Ã(t, x1, v) :=
∑

i+j≥6
1≤i,j≤5

εi+j−6 1√
µM

Q(Fi, Fj)−
{∂t + v1∂x1

}F5√
µM

.
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For any (t, x, v), integrating along the backward trajectory, one has that

hε(t, x, v)

= exp

{

−1

ε

∫ t

0
ν(τ)dτ

}

hε(0, x− vt, v)

− 1

ε

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

(Km
w hε)(s, x− v(t− s), v)ds

− 1

ε

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

(Kc
wh

ε)(s, x− v(t− s), v)ds

+ ε2
∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}(

w√
µM

Q

(

hε
√
µM

w
,
hε
√
µM

w

))

(s, x− v(t− s), v)ds

+

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

(

5
∑

i=1

εi−1 w√
µM

Q

(

Fi,
hε
√
µM

w

)

)

(s, x− v(t− s), v)ds

+

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

(

5
∑

i=1

εi−1 w√
µM

Q

(

hε
√
µM

w
,Fi

)

)

(s, x− v(t− s), v)ds

+ ε2
∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

Ã(s, x1 − v1(t− s), v)ds. (4.17)

It is easy to know that
∣

∣

∣

∣

exp

{

−1

ε

∫ t

0
ν(τ)dτ

}

hε(0, x − vt, v)

∣

∣

∣

∣

≤ C‖hε(0)‖L∞ . (4.18)

A direct calculation shows that

ν(µσ) ∼ νM (v) :=

∫

R3

∫

S2

B(v − u, θ)µM (u)dωdu, (4.19)

and
∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

ν(µσ)ds ≤ c

∫ t

0
exp

{

−cνM (t− s)

ε

}

νMds

= O(ε), (4.20)

where all the constants above are independent of σ. For the second term on RHS of (4.17), by
using (4.13), (4.19) and (4.20), it is bounded by

Cm3+γ

ε

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

νds · sup
0≤s≤t

‖hε(s)‖L∞

≤ Cm3+γ sup
0≤s≤t

‖hε(s)‖L∞ . (4.21)

Since µM ≤ Cµσ, it is easy to know that
∣

∣

∣

∣

w√
µM

Q

(

hε
√
µM

w
,
hε
√
µM

w

)∣

∣

∣

∣

≤ CνM‖hε‖2L∞ ≤ Cν(µσ)‖hε‖2L∞ ,

the fourth term on RHS of (4.17) is bounded by

Cε2
∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

ν(µσ)‖hε(s)‖2L∞ds ≤ Cε3 sup
0≤s≤t

‖hε(s)‖2L∞ . (4.22)
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For the fifth and sixth term on RHS of (4.17), it follows from (1.20) and (1.25) that
∣

∣

∣

∣

∣

5
∑

i=1

εi−1 w√
µM

{

Q

(

Fi,
hε
√
µM

w

)

+Q

(

hε
√
µM

w
,Fi

)}

(t, x, v)

∣

∣

∣

∣

∣

≤ CνM(v)‖hε‖L∞

∥

∥

∥

∥

∥

w√
µM

5
∑

i=1

εi−1Fi

∥

∥

∥

∥

∥

L∞

≤ CνM(v)‖hε‖L∞(1 + t)5C0σ−5C0 ,

which yields that the fifth and sixth term on RHS of (4.17) are bounded by

C

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

νM (v)‖hε(s)‖L∞ds

≤ C(1 + t)5C0ε · σ−5C0 sup
0≤s≤t

‖hε(s)‖L∞ . (4.23)

For the last term on RHS of (4.17), it follows from (1.20), (1.21) and (1.25), that

|Ã(t, x1, v)| ≤ CµM(v)α−
1

2

{

(1 + t)10C0σ−10C0 + C(1 + t)5C0σ−5C0−1
}

≤ CµM(v)α−
1

2 (1 + t)10C0σ−10C0 ,

which, together with (4.20), yields that the last term on RHS of (4.17) is bounded by

Cε3(1 + t)10C0σ−10C0 . (4.24)

From the definition of Kc
w in Lemma 4.2, we can bound the third term on RHS of (4.17) by

1

ε

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}∫

R3

|l(v, v′)hε(s, x− v(t− s), v′)|dv′ds. (4.25)

Using (4.17) again to (4.25), then (4.25) is bounded by

1

ε

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ − 1

ε

∫ s

0
ν(v′)(τ)dτ

}∫

R3

|l(v, v′)|dv′

× |hε(0, x̃− v′s, v′)|ds

+
1

ε2

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}
∫

R3

|l(v, v′)|
∫ s

0
exp

{

−1

ε

∫ s

s1

ν(v′)(τ)dτ

}

× |{Kmhε}(s1, x̃− v′(s− s1), v
′)|dv′ds1ds

+
1

ε2

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}∫

R3

∫

R3

|l(v, v′)l(v′, v′′)|

×
∫ s

0
exp

{

−1

ε

∫ s

s1

ν(v′)(τ)dτ

}

|hε(s1, x̃− v′(s− s1), v
′′)|dv′dv′′ds1ds

+
C

ε

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

ds ·
∫

R3

|l(v, v′)|dv′ · {ε3 sup
0≤s≤t

‖hε(s)‖2∞}

+
C

ε

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

ds ·
∫

R3

|l(v, v′)|dv′

× {(1 + t)5C0ε · σ−5C0 sup
0≤s≤t

‖hε(s)‖L∞}

+
C

ε

∫ t

0
exp

{

−1

ε

∫ t

s
ν(τ)dτ

}

ds ·
∫

R3

|l(v, v′)|dv′ · ε3(1 + t)10C0σ−10C0 . (4.26)
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where we have used (4.22), (4.23), (4.24), and denoted x̃ = x−v(t−s) for simplicity of presentation.
It follows from (4.14) and (4.15) that

∫

R3

|l(v, v′)|dv′ ≤







Cm(1 + |v|2)γ
2 ,

C(1 + |v|)−1,
(4.27)

which yields that the last three terms and the first term in (4.26) are bounded by

Cm

{

‖hε(0)‖L∞ + ε3 sup
0≤s≤t

‖hε(s)‖2L∞

+ (1 + t)5C0ε · σ−5C0 sup
0≤s≤t

‖hε(s)‖L∞ + ε3(1 + t)10C0σ−10C0

}

. (4.28)

For the second term in (4.26), by using (4.13), one can bound it by

Cm3+γ

ε2
sup
0≤s≤t

‖hε(τ)‖L∞

∫ t

0
exp

{

−νM(v)(t − s)

Cε

}

×
∫

R3

|l(v, v′)|
∫ s

0
exp

{

−νM (v′)(s− s1)

Cε

}

e−
c
10

|v′|2dv′ds1ds

≤ Cm3+γ

ε
sup

0≤d≤t
‖hε(τ)‖L∞

∫ t

0
exp

{

−νM (v)(t− s)

Cε

}∫

R3

|l(v, v′)|e− c
20

|v′|2dv′ds

≤ Cm3+γ sup
0≤τ≤t

‖hε(τ)‖L∞ . (4.29)

We now concentrate on the third term in (4.26). As in [15], we divide it into the following
several cases.
Case 1. For |v| ≥ N , by using (4.27)1, one deduces the following bound:

C

ε2
sup
0≤s≤t

‖hε(s)‖L∞

∫ t

0
exp

{

−νM(v)(t − s)

Cε

}
∫

R3

|l(v, v′)|

×
∫ s

0
exp

{

−νM (v′)(s− s1)

Cε

}∫

R3

|l(v′, v′′)|dv′′ds1dv′ds

≤ Cm

N
sup
0≤s≤t

‖hε(s)‖L∞ . (4.30)

Case 2. For either |v| ≤ N, |v′| ≥ 2N or |v′| ≤ 2N, |v′′| ≥ 3N , notice that we get either |v − v′| ≥
N or |v′ − v′′| ≥ N , then either one of the following is valid for some small positive constant
0 < c1 ≤ c

32 (where c > 0 is the one in Lemma 4.2):

|l(v, v′)| ≤ e−c1N2 |l(v, v′)ec1|v−v′|2 |,

|l(v′, v′′)| ≤ e−c1N2 |l(v′, v′′)ec1|v′−v′′|2 |,

which, together with (4.14), yields that
∫

|l(v, v′)ec1|v−v′|2 |dv′ ≤ Cν(v),

∫

|l(v′, v′′)ec1|v−v′|2 |dv′′ ≤ Cν(v′).
(4.31)
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Hence, for the case of |v − v′| ≥ N or |v′ − v′′| ≥ N , it follows from (4.31) that

∫ t

0

∫ s

0

{

∫ ∫

|v|≤N,|v′|≥2N
+

∫ ∫

|v′|≤2N,|v′′|≥3N

}

(· · · )dv′′dv′ds1ds

≤ Cm

ε2
e−c1N2

sup
0≤s≤t

‖hε(s)‖L∞

∫ t

0

∫ s

0

∫

|l(v, v′)| exp
{

−νM(v)(t − s)

Cε

}

× exp

{

−νM(v′)(s − s1)

Cε

}

νM (v′)dv′ds1ds

≤ Cme−c1N2

sup
0≤s≤t

‖hε(s)‖L∞ . (4.32)

Case 3a. |v| ≤ N, |v′| ≤ 2N, |v′′| ≤ 3N . In this case, we note νM(v) ≥ cN . Further more, we
assume that s − s1 ≤ εκ for some small κ > 0 determined later. Then the corresponding part of
the third term in (4.26) is bounded by

C

ε2

∫ t

0

∫ s

s−εκ
exp

{

−cN (t− s)

ε

}

exp

{

−cN (s− s1)

ε

}

‖hε(s1)‖L∞ds1ds

≤ CN sup
0≤s≤t

{‖hε(s)‖L∞} · 1
ε

∫ t

0
exp

{

−cN (v)(t − s)

ε

}

ds ·
∫ s

s−εκ

1

ε
ds1

≤ κCN sup
0≤s≤t

{‖hε(s)‖L∞}. (4.33)

Case 3b. |v| ≤ N, |v′| ≤ 2N, |v′′| ≤ 3N and s− s1 ≥ εκ. This is the last remaining case. We can
bound the third term in (4.26) by

C

ε2

∫ t

0

∫

D

∫ s−εκ

0
exp

{

−νM (v)(t− s)

Cε

}

exp

{

−νM (v′)(s− s1)

Cε

}

× |l(v, v′)l(v′, v′′)hε(s1, x̃− (s− s1)v
′, v′′)|ds1dv′dv′′ds, (4.34)

where D = {|v′| ≤ 2N, |v′′| ≤ 3N} and x̃ = x − v(t − s). From (4.14), it is noted that lw(v, v
′)

has possible integrable singularity of 1
|v−v′| . As in [15], we choose a smooth function lN (v, v′) with

compact support such that

sup
|p|≤3N

∫

|v′|≤3N
|lN (p, v′)− lw(p, v

′)|dv′ ≤ 1

N1+|γ| . (4.35)

Splitting

l(v, v′)l(v′, v′′)

= {l(v, v′)− lN (v, v′)}l(v′, v′′)
+ {l(v′, v′′)− lN (v′, v′′)}lN (v, v′) + lN (v, v′)lN (v′, v′′), (4.36)

then using (4.27)1, (4.35) and (4.36), we can bound (4.34) by

C

ε2

∫ t

0

∫

D

∫ s−εκ

0
exp

{

−νM (v)(t− s)

Cε

}

exp

{

−νM(v′)(s − s1)

Cε

}

× |lN (v, v′)lN (v′, v′′)hε(s1, x̃− (s − s1)v
′, v′′)|ds1dv′dv′′ds

+
Cm

N
sup
0≤s≤t

{‖hε(s)‖L∞}. (4.37)
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Since lN (v, v′)lN (v′, v′′) is bounded, we first integrate over v′ and make a change of variable
y = x̃− (s− s1)v

′ to get

CN

∫

|v′|≤2N
|hε(s1, x̃− (s− s1)v

′, v′′)|dv′

≤ CN

∫

|v′|≤2N
|f ε(s1, x̃− (s− s1)v

′, v′′)|dv′

≤ CN

{

∫

|v′|≤2N
|f ε(s1, x̃− (s− s1)v

′, v′′)|2dv′
}1/2

≤ CN

κ3/2ε3/2

{

∫

|y−x̃|≤(s−s1)2N
|f ε(s1, y, v

′′)|2dy
}1/2

, (4.38)

where we have used | dydv′ | ≥ κ3ε3 as s− s1 ≥ κε. Using (4.38), we can further bound the first term
in (4.37) by

CN,κ

ε7/2

∫ t

0

∫ s−κε

0
exp

{

−cN (t− s)

ε

}

exp

{

−cN (s − s1)

ε

}

×
∫

|v′′|≤3N

{

∫

|y−x̃|≤2N(s−s1)
|hε(s1, y, v′′)|2dy

}1/2

dv′′ds1ds

≤ CN,κa
3

ε7/2

∫ t

0

∫ s−κε

0
exp

{

−cN (t− s)

ε

}

exp

{

−cN (s− s1)

ε

}

×
{

∫

|v′′|≤3N

∫

|y−x|≤2Nt
|f ε(s1, y, v

′′)ϕa|2dydv′′
}1/2

ds1ds

≤ CN,κa
3

ε3/2
sup
0≤s≤t

‖f ε(s)ϕa(· − x)‖L2 , (4.39)

where we have chosen a to be a positive constant such that a ≥ 4N(t+ 1).

Collecting all the above terms and multiplying them with
ε

3

2

a3
, for any κ > 0 and large N > 0,

then one obtains that

sup
0≤s≤t

{‖ε
3/2

a3
hε(s)‖L∞}

≤ Cm

{

‖ε
3/2

a3
hε(0)‖L∞ +

ε9/2

a3
(1 + t)10C0 · σ−10C0 + ε3/2a3‖ε

3/2

a3
hε(s)‖2L∞

}

+ C

{

m3+γ + κ · CN + Cm

[ 1

N
+ (1 + t)5C0ε · σ−5C0

]

}

sup
0≤s≤t

‖ε
3/2

a3
hε(s)‖L∞

+ CN,κ sup
x∈R3

sup
0≤s≤t

‖f ε(s)ϕa(· − x)‖L2 .

Noting t ∈ [0, T ], T = εη ,σ = εη, and a = ε−2η with η ≤ 1
40C0

, first choosing m small, then N
large enough, and then letting κ small, and finally ε ≤ ε0 with ε0 small enough so that

C

{

m3+γ + κ · CN + Cm

[ 1

N
+ (1 + t)5C0ε · σ−5C0

]

}

≤ 1

2
,
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thus we deduce

sup
0≤s≤t

‖ε
3/2

a3
hε(s)‖L∞ ≤ C

{

‖ε
3/2

a3
hε(0)‖∞ + C

ε9/2

a3
(1 + t)10C0 · σ−10C0

}

+ Cε3/2a3 sup
0≤s≤t

‖ε
3/2

a3
hε(s)‖2L∞ +C sup

x∈R3

sup
0≤s≤t

‖f ε(s)ϕa(· − x)‖L2 .

Therefore the proof of Lemma 4.3 is completed. �

4.3. Proof of Theorem 1.3. Throughout this subsection, we assume that T = ε−η, a = ε−2η

and σ = εη where we choose η := min{ 1
40C0

, 1
100C̃1

}, and C0 ≥ 1 and C̃1 ≥ 1 are the constants

determined in Theorem 1.1 and Lemma 4.1, respectively.
Now we make the a priori assumption

sup
0≤t≤T

ε
1

4 ‖ε
3

2

a3
hε(t)‖L∞ ≤ 1, (4.40)

then, by taking λ = 1
21η, it follows from (4.40) that

C̃1a
2ε2σ− 1

2‖hε(t)‖L∞ +
Cλ

a1+
3

2
λ
‖hε(t)‖λL∞ + C̃1(1 + t)10C0εσ−10C0 +

C̃1

σ + t

≤ 2C̃1ε
2η + Cη · ε

3

2
η +

C̃1

σ + t

≤ 4C̃1

σ + t
, (4.41)

provided ε ∈ (0, ε0) with ε0 > 0 further small such that Cηε
1

2
η

0 ≤ C̃1. Now it follows from (4.4)
and (4.41) that

d

dt
‖f ε(t)ϕa(· − x0)‖2L2 ≤ 4C̃1

σ + t
· (‖f ε(t)ϕa(· − x0)‖2L2 + 1), (4.42)

which yields immediately that, for t ∈ [0, T ],

(‖f ε(t)ϕa(· − x0)‖2L2 + 1) ≤ (‖f ε(0)ϕa(· − x0)‖2L2 + 1) ·
(

σ + t

σ

)4C̃1

≤ ( sup
x0∈R3

‖f ε(0)ϕa(· − x0)‖2L2 + 1) · ε−8C̃1η

≤ Cε−
1

4
−8C̃1η, (4.43)

where we have used the initial condition supx0∈R3 ‖f ε(0)ϕa(· − x0)‖2L2 . ε−
1

8 . Substituting (4.43)
into (4.16) and noting (4.40), one has that

sup
0≤s≤t

‖ε
3/2

a3
hε(s)‖L∞ ≤ C

{

‖ε
3/2

a3
hε(0)‖L∞ +

ε9/2

a3
(1 + t)10C0 · σ−10C0 + ε−

1

8
−4C̃1η

}

≤ C
{

‖ε
3/2

a3
hε(0)‖L∞ + ε4 + ε−

1

8
−4C̃1η

}

. (4.44)
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Hence noting η = min{ 1
40C0

, 1
100C̃1

} and using (4.44), one obtains that

ε
1

4 ‖ε
3

2

a3
hε(t)‖L∞ ≤ Cε

1

4

{

‖ε
3/2

a3
hε(0)‖L∞ + ε4

}

+ Cε
1

8
−4C̃1η

≤ Cε
1

4

{

‖ε
3/2

a3
hε(0)‖L∞ + ε4

}

+ Cε
17

200

≤ 1

2
, (4.45)

where we have used the initial condition ‖ε3/2

a3
hε(0)‖L∞ . 1, and ε0 been chosen further small. In

light of (4.45), the a priori assumption (4.40) will be closed by a continuity argument.
Finally, combining (4.43) and (4.45), we proved (1.30) and (1.29). Therefore the proof of

Theorem 1.3 is completed. �

5. Appendix

Proof of Lemma 2.2. 1) We need only to show that for any g1 ∈ Bp, g2 ∈ Bq, g1g2 ∈ Bp+q.
Since Bi is linear space, without loss of generality, we assume that g1 and g2 are the base of Bp

and Bq, respectively. It follows from (2.6) that

g1g2 =

p
∏

i=1

∂mi−1
τ Jτ ·

q
∏

i=1

∂m̃i−1
τ Jτ =

p+q
∏

i=1

∂m̄i−1
τ Jτ

where m̄i = mi, 1 ≤ i ≤ p, m̄i = m̃i−p, p+ 1 ≤ i ≤ p+ q. Hence we have proved g1g2 ∈ Bp+q.

2) Let g be any base of Bn. Applying the Leibnitz rule, one has that

∂τg = ∂τ

(

n
∏

i=1

∂mi−1
τ Jτ

)

=

n
∑

j=1

n
∏

i=1

∂
mi−1+δij
τ Jτ

for each j, let m̄i = mi+δij , 1 ≤ i ≤ n and m̄n+1 = 0, then |m̄(n+1)| =∑n
i=1(mi+δij)+0 = n+1,

so ∂τg ∈ Bn+1. Then it is direct to show that ∂τ (bnf) = bn+1f + bn∂τf ;
3) It follows from (2.4) that

|bk| ≤ C max
|m(k)|=k

∣

∣

∣

∣

∣

k
∏

i=1

∂mi−1
τ Jτ

∣

∣

∣

∣

∣

≤ C max
|m(k)|=k







k
∏

i=1
mi 6=0

|∂mi−1
τ Jτ |







≤ C max
|m(k)|=k







k
∏

i=1
mi 6=0

Cmi

σ−mi+1

σ + t
(1 + |v|)2






≤ Cσ−k(1 + |v|)2k.

Therefore the proof of Lemma 2.2 is completed. �

Proof of Lemma 2.3. Firstly we prove (2.10). Noting A1f = ∂τf + 1
2fJτ , we know that (2.10)

holds for k = 1. For simplicity, we may denote A1f with ∂τf+b1f instead of ∂τf+
1
2Jτf . Assume
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(2.10) holds for k = 1, ..., n, by the (2.5), we have

An+1f = ∂τ

(

n
∑

i=0

bi∂
n−i
τ f

)

+ b1

(

n
∑

i=0

bi∂
n−i
τ f

)

=

n
∑

i=0

bi∂
n+1−i
τ f +

k
∑

i=0

∂τ bi∂
k−i
τ f +

k
∑

i=0

bi+1∂
k−i
τ f

=

n
∑

i=0

bi∂
n+1−i
τ f +

k
∑

i=0

bi+1∂
(k+1)−(i+1)
τ f =

n+1
∑

i=0

bi∂
k+1−i
τ f,

which means (2.10) holds for k = n+ 1.

To prove (2.11), a direct calculation shows that

A1 ◦ Γi,j(f) = ∂τ

(

µ
− 1

2
σ [Q(biµ

1

2
σL

−1f, bjµσ) +Q(bjµσ, biµ
1

2
σL

−1f)]

)

+ b1Γi,j(f)

= b1µ
− 1

2
σ [Q(biµ

1

2
σL

−1f, bjµσ) +Q(bjµσ, biµ
1

2
σL

−1f)]

+ µ
− 1

2
σ [Q(∂τ biµ

1

2
σL

−1f, bjµσ) +Q(bjµσ, ∂τ biµ
1

2
σL

−1f)]

+ µ
− 1

2
σ [Q(bib1µ

1

2
σL

−1f, bjµσ) +Q(bjµσ, bib1µ
1

2
σL

−1f)]

+ µ
− 1

2
σ [Q(biµ

1

2
σ∂τL

−1f, bjµσ) +Q(bjµσ, biµ
1

2
σ∂τL

−1f)]

+ µ
− 1

2
σ [Q(biµ

1

2
σL

−1f, ∂τ bjµσ) +Q(∂τ bjµσ, biµ
1

2
σL

−1f)]

+ µ
− 1

2

σ [Q(biµ
1

2

σL
−1f, bjb1µσ) +Q(bjb1µσ, biµ

1

2

σL
−1f)]

= b1Γi,j(f) + Γi+1,j(f) + Γi,j+1(f)

+ µ− 1

2 [Q(biµ
1

2 ∂τL
−1f, bjµ) +Q(bjµ, biµ

1

2∂τL
−1f)]. (5.1)

For f ∈ N⊥, it is noted that

A1f = ∂τf +
1

2
Jτf ∈ N⊥,

which, together with a direct calculations, yields that

∂τL
−1f = L−1[A1f ] + b1L

−1f + L−1[Γ0,1f ]. (5.2)

Substituting (5.2) into (5.1), one obtains that

A1 ◦ Γi,j(f)

= b1Γi,j(f) + Γi+1,j(f) + Γi,j+1(f)

+ µ
− 1

2
σ [Q(biµ

1

2
σL

−1[A1f ], bjµσ) +Q(Bjµσ, biµ
1

2
σL

−1[A1f ])]

+ µ
− 1

2
σ [Q(biµ

1

2
σ b1L

−1f, bjµσ) +Q(bjµσ, biµ
1

2
σ b1L

−1f)]

+ µ
− 1

2

σ [Q(biµ
1

2

σL
−1[Γ0,1f ], bjµσ) +Q(bjµσ, biµ

1

2

σL
−1[Γ0,1f ])]

= b1Γi,j(f) + Γi+1,j(f) + Γi,j+1(f) + Γi,j ◦A1(f) + Γi,j ◦ Γ0,1(f),

which proves (2.11). Therefore the proof of Lemma 2.3 is completed. �

Proof of Lemma 2.4. Recall the notationNs(i, j, l) in Lemma 2.4, and we write
∑

(im,jm,lm)∈Ns(i,j,l)

to be
∑

Ns(i,j,l)
for simplicity of presentation. We shall use induction argument to prove this lemma.
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Noting (5.2), we know that (2.12) holds for n = 0, 1. And we assume that (2.12) holds for n-th
derivatives of L−1f . Next, we shall consider the n + 1-th derivatives of L−1f . By using (5.2), a
direct calculation shows that

∂n+1
τ L−1f = ∂τ (∂

n
τ L

−1f)

=
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

∂τ brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

(bi1Γj1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦ Apf ]

+
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

br∂τL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

(bi1Γj1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦Apf ]

=
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

br+1L
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

(bi1Γj1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦Apf ]

+
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

Γ0,1 ◦ (bi1Γj1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦ Apf ]

+
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

A1 ◦ (bi1Γj1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦ Apf ]. (5.3)

To deal with the last term of (5.3), by using (2.11), one has that

A1 ◦ (bimΓjm,lm) (f)

= ∂τ bimΓjm,lm(f) + bim∂τΓjm,lm(f) + bimb1Γjm,lm(f)

= bim+1Γjm,lm(f) + bimA1 ◦ Γjm,lm(f)

= (bimΓjm,lm) ◦ A1(f) + bim+1Γjm,lm(f) + bimΓjm+1,lm(f)

+ bimΓjm,lm+1(f) + (bimΓjm,lm) ◦ Γ0,1(f). (5.4)

which yields immediately that
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

A1 ◦ (bi1Γj1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦Apf ]

=
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

(bi1+1Γj1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦Apf ]

+
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

(bi1Γj1+1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦ Apf ]

+
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

(bi1Γj1,l1+1) ◦ · · · ◦ (bisΓjs,ls) ◦ Apf ]

+
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

(bi1Γj1,l1) ◦ Γ0,1 ◦ (bi2Γj2,l2) ◦ · · · ◦ (bisΓjs,ls) ◦ Apf ]

+
∑

r+k=n
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

(bi1Γj1,l1) ◦ A1 ◦ (bi2Γj2,l2) ◦ · · · ◦ (bisΓjs,ls) ◦ Apf ]. (5.5)
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Again substituting (5.4) to the last term of (5.5) until A1 applying to the operator Ap(f), and
changing (im, jm, lm) to (im + 1, jm, lm), (im, jm + 1, lm) and (im, jm, lm +1), or add the operator
Γ0,1 behind bimΓjm,lm for each m = 2, ..., s as in (5.4), then noting A1 ◦ Apf = Ap+1f , one can
finally prove that

∂n+1
τ (L−1f)

=
∑

r+k=n+1
r,k≥0

∑

s+p=k
s,p≥0

brL
−1[

∑

i+j+l=s
i,j,l≥0

∑

Ns(i,j,l)

(bi1Γj1,l1) ◦ · · · ◦ (bisΓjs,ls) ◦ Apf ].

Thus we complete the proof of Lemma 2.4. �

Proof of Lemma 2.5. From the definition of (2.9), one has that

Γi,j(f) =
1

√

µσ(v)

∫ ∫

R3×S2

B(v − u, θ)
[

bi(v
′)
√

µσ(v′)L
−1f(v′)bj(u

′)µσ(u
′)

− bi(v)
√

µσ(v)L
−1f(v)bj(u)µσ(u)

]

dωdu

+
1

√

µσ(v)

∫ ∫

R3×S2

B(v − u, θ)
[

bi(u
′)
√

µσ(u′)L
−1f(u′)bj(v

′)µσ(v
′)

− bi(u)
√

µσ(u)L
−1f(u)bj(v)µσ(v)

]

dωdu

:= I + II.

Since L−1 preserves decay in v (see [5]), one has that

|L−1f | ≤ CS(t, x)(1 + |v|)m
√

µσ(v), (5.6)

which implies that

|I| ≤ 1
√

µσ(v)

∫ ∫

R3×S2

|B(v − u, θ)| · |bi(v′)
√

µσ(v′)L
−1f(v′)bj(u

′)µσ(u
′)|dωdu

+
1

√

µσ(v)

∫ ∫

R3×S2

|B(v − u, θ)| · |bi(v)
√

µσ(v)L
−1f(v)bj(u)µσ(u)|dωdu

:= I1 + I2.

Using (2.8), one has that

I2 ≤
Cσ−i−j

√

µσ(v)
S(t, x)

∫ ∫

R3×S2

|B(v − u, θ)|(1 + |v|)2i+m(1 + |u|)2jµσ(v)µσ(u)dωdu

≤ Ci,jS(t, x)σ
−(i+j)(1 + |v|)m+2i+γ

√

µσ(v).

For I1, noting |v′| . |v|+ |u|, |u′| . |v| + |u| and µσ(v
′)µσ(u

′) = µσ(v)µσ(u), one can obtain

I1 ≤
Cσ−i−j

√

µσ(v)
S(t, x)

∫ ∫

R3×S2

|B(v − u, θ)|(1 + |v′|)2i+m(1 + |u′|)2jµσ(v
′)µσ(u

′)dωdu

≤ Ci,jσ
−(i+j)S(t, x)

√

µσ(v)

∫ ∫

R3×S2

|B(v − u, θ)|(1 + |v|+ |u|)m+2i+2jµσ(u)dωdu

≤ Ci,jσ
−(i+j)S(t, x)(1 + |v|)m+2i+2j+γ√µσσ(v).

Thus combining the above estimates, one gets that

|I| ≤ Ci,jσ
−(i+j)S(t, x)(1 + |v|)m+2i+2j+γ

√

µσ(v) (5.7)
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By similar arguments, one can obtain

|II| ≤ Ci,j,w̄σ
−(i+j)S(t, x)(1 + |v|)m+2i+2j+γ

√

µσ(v),

which, together with (5.7), yields (2.13). Therefore the proof of Lemma 2.5 is completed. �
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