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HYDRODYNAMIC LIMIT OF THE BOLTZMANN EQUATION TO THE
PLANAR RAREFACTION WAVE IN THREE DIMENSIONAL SPACE

GUANFA WANG, YONG WANG, AND JIAWEI ZHOU

ABSTRACT. In this paper, we establish the global in time hydrodynamic limit of Boltzmann
equation to the planar rarefaction wave of compressible Euler system in three dimensional space
x € R3 for general collision kernels. Our approch is based on a generalized Hilbert expansion, and
a recent L2 — L™ framework. In particular, we improve the L?-estimate to be a localized version
because the planar rarefaction wave is indeed a one-dimensional wave which makes the source
terms to be not integrable in the L? energy estimate of three dimensional problem. We also point
out that the wave strength of rarefaction may be large.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. In this paper, we consider the Boltzmann equation
1
Ff+v-V,F*=-Q(F°, F°), (1.1)
€

where F¢(t,x,v) > 0 is the density distribution function for the gas particles with position 2 € R3
and velocity v € R3 at time ¢t > 0, and ¢ > 0 is Knudsen number which is proportional to the
mean free path. The Boltzmann collision term Q(F1, F3) on the right is defined in terms of the
following bilinear form

Q(F, Fy) = /R3 /S2 B(v —u,0)F (v )F>(v') dwdu — /R3 /S2 B(v — u,0)Fy (u)F>(v) dwdu
= Qu(F1, B) — Q_(Fi, B), (1.2)

where the relationship between the post-collision velocity (v',u') of two particles with the pre-
collision velocity (v,u) is given by

v =u+[v—u) ww, VvV=v-[v—u)- ww,
for w € S?, which can be determined by conservation laws of momentum and energy
u Y =utv, PP =+ o
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The Boltzmann collision kernel B = B(v — u,0) in ([2]) depends only on |v — u| and 6 with
cosf = (v —u) -w/|v — u|. Throughout this paper, we consider both the hard and soft potentials
under the Grad’s angular cut-off assumption, for instance,

B(v—wu,0) = |v—u|"b(0), (1.3)

with
—3<v<1, 0<b(0) < |cosh|.

It was shown since its derivation that the Boltzmann equation is closely related to the fluid
dynamical systems for both compressible and incompressible flows, see the founding work of
Maxwell [24] and Boltzmann [4]. For this, Hilbert proposed a systematic formal expansion in
1912, and Enskog and Chapman independently proposed another formal expansion in 1916 and
1917, respectively. Either the Hilbert expansion or the Chapman-Enskog expansion yield the
compressible Euler equations in the leading order with respect to &, and the compressible Navier-
Stokes equations in the subsequent orders. It is a challenging problem to rigorously justify these
formal approximation, that is, hydrodynamic limits. In fact, the purpose of Hilbert’s sixth problem
[16] is to establish the laws of motion of continua from the Boltzmann equation in mathematical
standpoint.

We review some previous works on the hydrodynamic limits of Boltzmann equation. For the
case when the compressible Euler equations have smooth solutions, the hydrodynamic limits of the
Boltzmann equation has been studied even in the case with an initial layer; cf. Caflisch [5], Guo
[15] [14], Lachowicz [22], Nishida [25], and Ukai-Asano [26]. However, as is well known, solutions
of the compressible Euler equations in general develop singularities, such as shock waves. The
Riemann problem was first formulated and studied by Riemann in the 1860s when he studied one-
dimensional isentropic gas dynamics with initial data being two constant states. The Riemann
solution turns out to be fundamental in the theory of hyperbolic conservation laws because it
not only captures the local and global behavior of solutions but also fully represents the effect
of nonlinearity in the structure of the solutions. It is now well known that for the compressible
Euler equations, there are three basic wave patterns, that is, shock wave, rarefaction wave, and
contact discontinuity. These three types of waves have essential differences: shock is compressive,
rarefaction is expansive, and contact discontinuity has some diffusive structure. Therefore, it is
a natural problem to verify the hydrodynamic limit from the Boltzmann equation to the Euler
equations with basic wave patterns. For the one dimensional Boltzmann equation with slab
symmetry, Yu [29] proved the validity of hydrodynamic limit when the solution of the compressible
Euler equations contains only noninteracting shocks; Xin-Zeng [28] proved the case for rarefaction
wave; the hydrodynamic limit to the contact discontinuity was proved by Huang-Wang-Yang [18].
For superposition of different types of waves, we refer to the work [17, 19, 20]. In particular,
Huang-Wang-Wang-Yang [20] justify hydrodynamic limit in the setting of a Riemann solution
that contains the generic superposition of shock, rarefaction wave, and contact discontinuity by
introducing hyperbolic waves with different solution backgrounds to capture the extra masses
carried by the hyperbolic approximation of the rarefaction wave and the diffusion approximation
of contact discontinuity.

For the case of incompressible flows, the program was initiated by Bardos, Golse, and Levermore
1L 2] to justify the global weak solution of incompressible flows in the frame work of global
renormalized solution of DiPerna-Lions [6]. In particular, Golse and Saint-Raymond [10] proved
that the limits of the DiPerna-Lions renormalized solutions of the Boltzmann equation are the
Leray solutions to the incompressible Navier-Stokes equations. There are also many important
progresses on this topic such as [3, 8 9] 11, 2], 23] and the references therein, we will not go into
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details about the incompressible limits since we will concentrate on the compressible Euler limit
in this paper.

We remark that all the works of hydrodynamic limit to the wave patterns of compressible
Euler equations mentioned above are concerned in one-dimensional case, i.e. = € R. To the
best of our knowledge, the hydrodynamic limit of Boltzmann equation to the wave patterns of
compressible Euler equations in three dimensional space still remains open. The goal of this paper
is to justify the limiting process of the Boltzmann equation to the planar rarefaction wave solution
of compressible Euler equations in three dimensional case. The main difficulty is that the planar
wave is indeed a one-dimensional wave in three dimensional space, and hence it and its derivatives
are not integrable in R3. Therefore it is hard to use the one-dimensional energy method to resolve
it. To remedy the difficulty, we shall use a generalized Hilbert expansion, and a recent L?-L>
method [12] I5]. In particular, we improve the L? estimation to be a localized version since the
background planar rarefaction wave and its derivatives are not integrable in R3.

1.2. Hilbert expansion. We consider the Hilbert expansion of Boltzmann solution (L.I]) with
the form

5
F* =Y &"F, +&%Fj,.
n=0
where Fp, ..., F5 are the first six terms of the Hilbert expansion, independent of £, which solve the
equations:
et 0=Q(Fy, Fy),
EO : {at—i-v-vx}Fo :Q(FO,F1)+Q(F1,FO),

e: {0 +v Vu}F = Q(Fy, F2) + Q(F1, 1) + Q(I%, Fy), 14

e O +v- Vol Fs = Q(Fy, Fe) + Q(Fs, Fo) + Y Q(F, F)).
122)’265

The reminder equation for F}; is given by

OFF,+ v+ Vel — ~{Q(Fo, FF) + Q(FF, Fo))
5
= SQ(Fp, Fr)+ )& HQ(F, FR) + Q(Fp, )}

i=1
+€2{ N EHSQRL Fy) — {0, v vx}Fg,}. (1.5)
i+j>6
1<4,5<5
It follows from (4], and the celebrated H-theorem that Fy should be a local Maxwellian
po(t, ) \U—uo(t,x)F}
Fy(t,z,v) = ———— —_—— 7, 1.6
8= ot )72 exp{ 20o(t,2) o)

where po(t, ), uo(t,r) = (ud, ud, ud)(t,z) and 6y(t,z) are defined as

/ Fodv = py, / vFpdv = poug, / [v[*Fodv = poluol® + 3pobo,
R3 R3 R3

which represent the macroscopic density, velocity and temperature, respectively. Projecting the

v|2

equation (I.4]), onto 1, v, ‘T’ which are five collision invariants for the Boltzmann collision
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operator Q(-,-), one obtains that (pg,ug, o) satisfies the compressible Euler system

Opo + div(poug) = 0,

9 (pouo) + div(pouo ® ug) + Vp =0, (1.7)
30 ug|? . 30 ug|? .
8t[p0(70) + %] + dw[pouo(TO + %)] + div(pug) =0,

where p = pofp is the pressure function.

1.3. Planar rarefaction wave. In this article we shall consider the hydrodynamic limit of Boltz-
mann equation to the planar rarefaction wave solution of compressible Euler equations. We impose
(C7) with the following Riemann initial data

(90 10, 00)(0,2) = {("”’"“"0‘)’ 0 (1.8

(,0_|_,U+,9+), x>0,

where uy = (ui,0,0) and p+ > 0,01 > 0,u§E are given constants. To construct a Riemann
solution of (7)) and (L), we introduce the Riemann problem for the one dimensional inviscid
Burgers equation:

wy + wwy, = 0,
w—, T1 < 07 (19)

w(w:,0) = w 1 >0
+ .

If w_ < wy, the Riemann problem (L.9) admits a rarefaction wave solution w”(z1,t) = w" (%)
given by

w—, + Sw—v
r 1 1 1
w(?): I w—§7§w+7
Z1
Wy, = 2w+.

In this paper we consider only the 1l-rarefaction wave without loss of generality, since the 3-
rarefaction wave can be treated similarly. Hence we assume that (p_,u!,6_) and (py,ul,6)
was connected by l-rarefaction wave for the one-dimensional compressible Euler equations, then
the Riemann problem (7)), (L8) admits a planar rarefaction wave solution (p",u™,0™)(t,z1)

defined by
S = s(p7,07) = 4,

5
wr(%) = Al(prl (t7$1)7u1n (t7$1)78+) =u" - \/;(prl)
s 1 S
a0, 0) + VIR () () =+ VBT exp(3E),

2 3 2
ut =u’"t =0,

=

S+
o5 (1.10)

2
where \1(p,u',s) is the first eigenvalue of Euler equations, and s = Inf — = Inp is the entropy.

It is noted that a planar rarefaction wave is indeed a one dimensional wave in three dimensional
space, and the wave is independent of the variables x5 and x3.

Notice that the planar rarefaction wave solution constructed in (II0) is only Lipschitz con-
tinuous at the edge of the rarefaction wave, and has singularity at ¢ = 0,z = (0, 22, z3) for any
(x2,23) € R%2. To construct the linear part of Hilbert expansion Fj,i = 1,---,5, we need more
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regularity on the planar rarefaction wave. Similar to [27] 20], we construct a smooth approximate
1-rarefaction wave. Hence we consider Burgers equation

Wy + wwy, =0, N (L.11)
T wy +wo  wy —w_ x1 .
w(0,21) = we (1) = w(=) = — 5 + 5 tanh —

where o > 0 is a parameter to be determined later. The solution wZ (¢, z1) of the Burgers equation
is given by

wi(t, z1) = we(zo(t, 21)), x1 = xo(t, 1) + we (2o (t, 1))t
where xo(t,z1) = X (0;t,21), and X (s;t,21) is the characteristic line of Burgers equation

%ﬁs) =w(s,X(s)), X(t;t,z1)=x1.

Then the approximate planar rarefaction wave (pf, uftt, 1) (¢, z1) is given by

s = 5o, ) = sy,
5) 1 S

Wt ) = Mo (1), w0 (1), 54) = Wt =[S (0P exp(SE), (1.12)

s 1 s )

a1, 1) + VIB(p (¢, 1) bexp(55) = ul + VIBplexp(SE),

2
w2 — 3R —

It is direct to know that the smooth approximate planar 1-rarefaction waves (pRl uftn 931)(t, x1)
also satisfies the compressible Euler equations (7). From Lemma B.I] below, we have that

sup |(p", u! T, 67 (1, 1) — (o7 ™, 67) ()]
z€R
C
< ?[0’ In(1+t)+o|lno|]] >0, aso—0, (1.13)

for any given time t > 0. That means the smooth approximate planar l-rarefaction wave
(pfr, ufr, 9F1)(t, z1) approximate the planar 1-rarefaction wave solution (p™,u"™, ™) (t,z1) very
well after the initial time.

1.4. Main results. From now on, we denote
(po, uo, 00)(t, ) := (pfr, uf™, 0F1) (¢, 21). (1.14)

Then it is noted that (pg, ug,fo)(t,z) is a smooth solution to the compressible Euler equations
(L7). We also define

po(t, ) |v — up(t, z)|?
F = o s s = —_—— 5 11
0= po(t, @, v) 2nl (1. 2) exp{ 300 (t. ) (1.15)
and
L prl(t7x1) _|U_url(tv$1)|2
p(t,z1,v) = 20 (12 ) [P exp{ 207 (¢, 27) ; (1.16)

where (po,ug, 6p)(t,z) and (p™,u™,0™)(t,x1) are the ones defined in (LI4]) and (LI0), respec-
tively. We point out that the solution (po,ug,00)(t,z) depends on the parameter o throughout
this paper even though we do not write it down explicitly.

For later use we define the linearized collision operator L by

Lg = —\/L_O{Q(um VHe9) + Q(x/u_og,uo)},
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and the nonlinear operator

['(g91,92) = Q(VHog1, V1o g2)-
The null space N of L is generated by
1
Xo0\V) = ——=+/Ho,
) VPo

1 [l
X4(U)=\/%{ o —3}\/,70.

It is easy to check that / Xi - Xjdv = 0;5 for 0 <4, j < 4. We also define the collision frequency
v R

v(t,x,v) = v(ly) = / / B(v — u,0) g (u)dwdu. (1.17)

R3 Js?
It is direct to know that
6(1 + v])Y < v(t,z,v) < C(1+|v])7,

where the constant C' > 0 depends only on p., 0+, u~, but is independent of o. Let Pg be the L?
projection with respect to [xo, ..., x4]- It is well-known that there exists a positive number ¢y > 0
such that for any function g

(Lg,g) > col {1~ P}g]l7,
where the weighted L2-norm || - ||, is defined as

lgl2 = / (@ v)(v)dady.
R3 xRR3

We point out that the constant ¢y > 0 is independent of ¢ even though the projection P depends
on o.

For each 7 > 1, we define the macroscopic and microscopic part of
-~ =P ( > +{I-P} < >
Vo Vo VI

= —x +Z\/7 ]+\/7 X4 +{I—P}<\/_> (1.18)

Theorem 1.1 (Estimates on the linear terms). Let o € (0,1], (po,uo,60)(t,z) be the smooth
approximate planar rarefaction wave of Euler equations constructed in (LI14l), and Fy defined in
([LI5). For eachi > 1, we assume the initial data of macroscopic part

(pi,ui,ei)(o,xl) = (pio,uio,eio)(xl) S HS(R), (1.19)

where s > 0 is some positive constant, and ||(pio, w0, 0i0)| s is independent of o > 0. Then the
linear problem (L4) is well-posed. Furthermore, there exists positive constants Cy, Cy, Cip, > 1,1 =
1,---5,n=1,--- such that

|Fy(t,21,0)| < Cilo + )P0 N1 4 )37, (1.20)
|6”F(t 1, ’U)| < C; n(U + t)Cin—n—Coi(l + |U|)3i+2n+(i+n—1)"yﬂm (1‘21)
where ¥ = max {0,v}, and Cy,C;,C; , > 1 depend only on ||(pi, ui, 0;)(0)|| gs and 04.

o
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Remark 1.2. We can not use the classical results [5] on the linear terms F;,i =1,2,3,4,5 since
the Fy depends on the parameter o. Indeed, from (L20) and (L2I)), we know that F; grows
polynomially as o — 0+, and this fact is very important for us to prove the hydrodynamic limit
below.

We shall construct a sequence of solution of Boltzmann equation near the local Maxwellian pi,,
so it is natural to rewrite the remainder as

Ffy = Vi f*. (1.22)

To use the L?-L> framework [I4], we also introduce a global Maxwellian

= 71 ex ——|U|2

where 0, satisfies the condition

0 0o (t 20, 1.2
M <te[OI,Iolo%),(er 0( ,a:) < M ( 3)

Since 071 (¢, 1) is a monotonic function of 1, and min{f_, 0, } < 61 (¢, 21) < max{f_,6.}, then
we can always choose 0y satisfying (L.23) if
max{f_,0,} < 2min{f_,0,}. (1.24)

By the assumption (I.24]), one can easily deduce that there exists positive constant C' > 0 such
that for some 3 < a < 1 and for each (¢,z,v) € [0,00) x R? x R3, the following holds:

1
EILLM < NU(taxav) < Cu?wa (125)
where both C and « are independent of 0. We further define
1
Fs = {1+ v} P hs = Ww/—MMhE, (1.26)

with w(v) := {1+ [v|?}? for any fixed 8 > § +2(3 — 7).

Theorem 1.3. Under the assumption of Theorem [T, and let (L24)) hold and o = €", a = =2,
Assume the initial data

F*(0,2,v) = py (0,21, v —i—ZsF (0,21,v) + 3 F5(0,2,v) > 0,

and
23/2
Sa, | O, S 1 (1.27)

sup [|f5(0, -, ) I{.—zo|<2ay |22, S €
roER3

Then there are small positive constants n € (0, Wlo) and €9 > 0 depending only on 61 such that

the Cauchy problem of Boltzmann equatz’on (1), (C27) has a unique solution for e € (0, o]
Fe(t,z,v) = pg(t,z1,v +Z€ Fp(t,x1,v) + 3F5(t,z,0) >0, tel0,e7], (1.28)

with

_33
sup sSup er(tfa')I{\-—mo|§2a}”Lgv SJE 200a37 (129)
0<t<e—"1 ggER3 ’
3

sup {I|I5h Ollezx, | S (1.30)
0<t<e—n v @ ’
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Remark 1.4. Under the condition (L.24)), the wave strength of the rarefaction wave may be large
in some cases. For example, for 1-rarefaction wave, one can choose 0 = %9_, then it is easy to

check that (L24) holds. The wave strength |0 — 0_| = $0_ is large when 0_ is large.

Remark 1.5. Since the approximate planar rarefaction wave depends on o (or ¢), unlike [15],
the uper bound of L? and L™®-norms can not be kept. Indeed, from (L30) and ([L29), these norm
of Boltzmann solution will increase with higher rate than the initial data.

Remark 1.6. We notice that the functions uy, F1,--- , F5 are independent of the space variables
x9,x3. However, F=(t,z,v) is indeed a nontrivial Boltzmann solution in three dimensional space
since the remainder term Fy(t,x,v) depends on x1,z2 and x3.

Remark 1.7. Both p, and linear terms Fy,--- |, F5 depend on the ¢ > 0 in Theorem[L.3, hence we
call (L28) as a generalized Hilbert expansion (The linear part are independent of € in the classical
Hilbert expansion [5l [15]).

Remark 1.8. Under the conditions (L27) and (II9)), one can indeed construct initial data F; > 0
(we shall not present the details of construction for simplicity), hence the positivity of Boltzmann
solution F&(t,x,v) can be guaranteed.

From (LI3]) and Theorems [T and [I.3] one can obtain the hydrodynamic limit of the nontriv-
ial three dimensional Boltzmann solution to the planar rarefaction wave of compressible Euler
equations.

Corollary 1.9 (Hydrodynamic limit to the planar rarefaction wave). Recall the definition of
w(t,z1,v) in (LIG). Under the conditions of Theorem [I.3, we have the following hydrodynamic
limit of Boltzmann equation to the planar rarefaction wave of compressible Euler equations

’Fa(t,ﬂj‘,v) — M(t7$lav)
Vv M

for any given positive constant ¢ € (0,7n).

< e Ine| — 04, as e — 0+,

o0
Lx,v

sup
te[e,e

Remark 1.10. As pointed out in the introduction, all the results [29, 28, 17, I8, 19, 20] on
hydrodynamic limit of Boltzmann equation to the wave pattern solution of FEuler system are one
dimensional case, i.e. x € R. In the present paper, we provide the first result on the hydrodynamic
limit of Boltzmann equation to the planar wave pattern solution of compressible Fuler system in
three dimensional space © € R3. On the other hand, the validity time in the hydrodynamic limit
is € for some small positive constant n > 0, which implies the global in-time convergence from
Boltzmann solution to planar rarefaction wave of the compressible Fuler system.

We now comment on the analysis of this paper. For the linear part Fy,--- , F5, we can not use
the classical results [5] since the local Maxwellian p, (see (LI5]) for definition) depends on the
parameter ¢ > 0, and the linear part F; may grow to infinity when ¢ vanishes. Hence one needs
to obtain a growth estimation as ¢ — 0. Noting the properties (21I) of approximate rarefaction
wave, one can prove that the linear parts Fi,--- , F5 satisfy

|Fy(t,21,0)] < Ci(o + )7~ N (1 4 |v])PHEDT,,

which grow to infinity with polynomial rate as o — 0+, see section [3] for details.

For the estimation of reminder term Fj, our method of proof relies on a recent L? — L™
framework initiated in [12] [I4]. Since the planar rarefaction wave and linear parts are independent
of 29, 3, the source term A(t,z1,v) defined in (&2]) is not integrable in L?(R3 x R?). To overcome
such difficulty, we introduce a localized L%v estimation for f€. In fact, we consider the equation



HYDRODYNAMIC LIMIT OF BOLTZMANN EQUATION 9
of f&(t,,v)p.(z — x0) for any given zg € R3 to obtain

0% pa) v ValFa) + ZL(f00)

_ e+ U\),ngx}\/mfasoa + (v Va)eaf* + T(f5, f0a)

+ ;Ei_l{F(\/%, f*¢a) + T(f*Pa, \/%)} + e A(t, 21, v)¢a,

where ¢, is a cut-off function on z defined in (@3] and a = e=2". Compared to [L3] 14} [15], the
term (v-Vy)pa f€ is new. To close the estimate, we have to be careful since we need some e power
to macth the term ||h%||z. Noting the definition of ¢ in ([4.3]), one has

(v - Va)pa] < Cxa 7ol - |pa)' ™ for A € (0, 1),
1

which provides an additional € decay, i.e., a~! = €27, And this is the main reason why we choose
the cut-off parameter a to depend on €. Hence the energy estimate of this term can be bounded

as
‘/ / U-Vmgoa|f€|2<pad:ndv
R3 JR3

C

S
JERE 3

A 2—X
1PZ][Zee - 1= allT2

3

A
3 1,€2 _
< Cye2" <e4 IIghE(t)llLoo) N eall3s?,

by taking A = 2—1177, see ([A9]) for more details. We emphasize that the gain of ¢ power from the
Vg is one of the key point. For the other terms in the energy estimates, one can bound them by
similar arguments as in [I4} 15]. Hence, by choosing o = " with 1 > 0 being suitably small, we
can obtain that

%Ilfi(t)%(- — ao)l[22 + ST~ PHUE(Dpal- — 20) 2
< 4C4
T o+t

(15 (Opal- = wo)ll72 +1), fort € [0,e7", (1.31)

. . 103
where we have used the a priori assumption supg<i<.-n {E4| Z—zhs(t)HLoo} < 1, see Lemma (4.1

and (Z40)-@ZZ) for details. The key point is that the positive constant C, is independent of
xo € R3. The second step is to estimate the weighted L>-norm so that we can close the a priori
assumption, and the key obsevation is that such local L?-estimate is enough to close the weighted
L°-estimate, i.e.,
3/2 3/2 9/2
€ € €
sup ||[—h°(s oo<C’{ ——h%(0)||gee + C— 1+t1000-0_1000}
s | S b @l < {1 Ol + 05 (14 )

3/2

€

+C%%a® sup ||—5-h"(s)[|Fe + C sup sup | f°(s)pal- —z0)[r2.  (1.32)
0<s<t @ wER3 0<s<t

where have used the fact t € [0,77]. With the help of (L31]), (L32]) and the continuity argument,

we can finally prove Theorem [I.3l

The paper is organized as follows. In Section 2, we introduce some useful lemmas which will be
used later. In Section 3, we construct the coefficients F; for the Hilbert expansion for any given
lis, and obtain some estimates depending on o. In Section 4, we derive the localized L? energy
estimate for the remainder f¢ in terms of weighted L°°-norm, and also the weighted L°°-norm in
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terms of the localized L?-norm. The main Theorem [[3lis proved based on the interplay of L?-L>®
estimates.

Notations. Throughout this paper, C' denotes a generic positive constant which may depend on

P+, U+, 0+ and vary from line to line but independent of €, 0,t. And C,, Ch,--- denote the generic
positive constants depending on a, b,-- -, respectively, but independent of ¢, o, ¢, which also may
vary from line to line. || -||;2 denotes the standard L?(R2 x R3)-norm, and || - ||z denotes the

L>®(R3 x R3)-norm.

2. PRELIMINARIES
We introduce the following notation
o = 005

We denote |a| = o + a1 where ap, a1 € N, ag, ; > 0. For simplicity, we represent 0¢ by 97 for
the case |a| = n. The properties on the approximate rarefaction wave (pftt,uft 0f1)(t, 1) can
be summarized as follows.

Lemma 2.1 (Xin [27]). The approzimate rarefaction waves (p™,u 0%1)(t,z1) constructed in
(L12) have the following properties:

(1) For any 1 < p < +oo and k > 2, the following estimates holds,

141
107 (p™ 1™, 07) (&, ) | o (o) < Clo + 1) 7,

B 1 (2.1)
102 (o™, uf™, 0F) (8, M| o (dwy) < Clo+1) 7" -0 B ol =k 22
where the positive constant C' depends only on p,k and the wave strength |0+ — 6_|.
(2)There exist positive constants C' > 0 and o9 > 0 such that for o € (0,00) and t > 0,
C
sup | (o, w051 (¢, 1) — (p”,u?,@”)(%) < ~lol(1 +1) + o] lno]. (2.2)
zr1€ER
A direct calculation shows that 0; s = psJr where
87—p0 3 87—90 (U — uo)&uo |U — ’LL0|267—90
Jr(t,x1,v) = — = . 2.3
For k > 0, it follows from (2] that
k
08T <) Cro™ (05 po, 07 g, 0 60)| - (1 + [0])?
i=0
ok
< Cp—y (1 o) < Coo™ BT (L + |u])?, (2.4)
o

where Cj; is a constant depending on k and wave strength |64 — 6_|.
For later use, we introduce some linear spaces, functions and operators. Based on J-, we define
the operators Ay

1
Ao(f)=f, A(f)=0cf + 5FTr Apn(f) = Aro Ax(f), (2.5)
and the linear spaces By,
k
By = Span{JT}a By = Span{aTJT7 J3}7 oy Br = Span{ Ha?lz—le}‘ (k)|—k7 (26)

i=1
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where m(k) = (mi, ..., my) is a multiple index with m; € N, m; > 0 and |m(k)| = k. For later use,
we also denote 9-1.J, = 1,0%J, = J, and by = 1.

Now we give some useful lemmas which will be used in section Bl The proofs of Lemmas 2.2,
2.3 24 and are presented in the Appendix.

Lemma 2.2. For the linear space B;,i > 1, we have the following properties
1) Let b, € By, and by € By, then it holds that byby € Bptq;
2) Let b, € By, and f be any smooth function, then there exists a bpy1 € Bpi1 such that

67—bp = Op+1 € Bp+1 and OT(bnf) = bn+1f + bn87f7 (27)
3) Let by, € By be the basis of By, i.e. by = Hle omi=LJ_ for some m(k), then it holds that
|b| < Cro™ (1 + |v])*", (2.8)

where Cy, is a positive constant depending on k and wave strength |64 — 6_|.

Let f € Nt and b; € By, b; € B, we define a new operators

1 i i ) .
F%J(f) = \//T Q(blug'L 1f’ bJIuU) + Q(bJ/JOWbZ:ugL 1f)]7 ? 2 07] 2 17 (29)

and we also define I'g g = id. For simplicity of presentation, we may still use the same notation
I'; ;(f) even though b; € B;,b; € B; are replaced by other b; € B;,b; € B;. And such simplification
will not cause problem in the following estimations.

Lemma 2.3. 1). There exist b; € B;,i =0,--- ,k such that
k .
Af =D bt f, k=1 (2.10)
i=0
2). There exist by € By,biy1 € Biy1 and bjy1 € Bjyq such that

Aoy i(f) = 01l i (f) + Do i (f) + i jrr (f) + Tij o Lo (f)
Ty 0 Al(f) i>0,5>1. (2.11)

Lemma 2.4. There exist index sets

Ns(’i,j, l) = {(Zmy]malm) € N3—| Z(Zmy]malm) = (i,j,l), and iy, = Jm =0 as Iy, = 0}7
m=1

such that
L= Y Y LYY GaTwe-o (il o A fl (212)
r4k=n s+p=k i+JH1=5 (im,Jm,lm) ENs (i,5,0)
k>0 s,p>0 1,5,0>0

for any f € N*t, n>0.

Lemma 2.5. Let f € N+ and |f(t,z,v)| < S(t,z)(1 + |[v])™\/ko where S(t,x) > 0, then it holds
that
T3 ()] < Cigo™ DS (1) (1 + [o]) 2247 /g, (2.13)

where C; ; is positive constant independent of o.
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3. ESTIMATES ON THE LINEAR TERMS

In this section, we will derive the estimates of Fy(t,x1,v),--- F5(t,x1,v) for given p, which
is defined (LI5). We also point out that all the functions are independent of zo and x3 in this

. Firstly, we present a useful lemma in [13] which will be used to

estimate the bound of linear terms.

section. We define fj, :=

Lemma 3.1 (Guo-Jang [13]). For each given nonnegative integer k, assume fi’s are found. Then
the microscopic part of fr+1 is determined through the equation for Fy, in (L4):

{0y + 010, } (/B fr) — Zi+j_=>kl+1 Q(VHo fis/Tha f5)
1,]

I-Plfrp =L [~ = = : (3.1)

For the macroscopic part, pit1,uk+1,0k+1 satisfy the following:

Oipr+1 + Oy (Pouiﬂ + pk+1u(1)) =0,

Pr+1 p00x+1 + 300 pr11 =
A N e R !
pO{atui+1 + u(l]al’lui-i-l} = fk,% (3.2)

po{ﬁtuiﬂ + U(l]a:clui+1} = fk,3a
9 _
p0{3t9k+1 + §(9k+15xlué + 30002, Uj 4 1) + U0, Oi1 + 3“11~c+18x190} = 9k;

where

fri=—0n <90/ Bi,le—i—ldU) ,
R3
3
gk = —Oxl <95 / .AlF]H_ld’U + 211,690/ 8171Fk+1d’u> — 2uéfk71,
R3 R3

and

vt —ud (v — uol? vt — ) (v — v — ug|?

pm Ut (el ) O ) oo
v 0o

where we use the subscript k for forcing terms f/“ and gi; in order to emphasize that the right

hand side depends only on F;’s for 0 <i < k.

Remark 3.2. The original version of Lemma[31] in [13] is for the Hilbert expansion of Vlasov-
Poisson-Boltzmann equations, and one can obtain Lemma [31 by dropping the electric field and
noting that all the functions are independent of variables xo and x3.

Proof of Theorem [I.Jl Firstly we consider the microscopic part {I —P}f;. It follows from

BI) that

'Ul
I-P}f =L (—W) LN (il — 0 D). (3.4

Since L' preserves decay of v [5], and pg, fy are bounded from below and above, then using (2.4)
to obtain

H{I - P} f1] < C|(0rpo, Oruo, 0-00)| - (1 + ’UDS\/N_U
< Co 1+ [v])* o (3.5)
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It follows from (B.5]) and (2.I]) that

{T - P}leLgngo + [{T - P}fluLgng
< C||(0rpo, aTUOyaTGO)HL%l <C(o+t)”

(SIS
N

<Coz. (3.6)

Next we consider the space-time derivatives of {I — P} f;. It follows from ([B.4]) and Lemma 2]
that

oI —P}f1 = 0"L™ (—~Jp/He — v Joy /1)

= Z Z brL_l[ Z Z (bi1rj17ll)o

k= =k i+J =5 (im,jm,lm)ENs (4,5,0
Tikzgls:;)zo Z—Z;jzos (i3 SN (D
o (bisrjs,ls) o Ap(=Jtv/lo _Ule\//‘o) . (3.7)

It is noted that there exists some by, € By, (see (Z.8)) for the definition of By) such that 0%, /i, =
bi+/lto for k > 0. By using Lemmas 2.2] and 23] it holds that

Ap(Jev/bo + UlJm Vi)
SN b0 g T+ 0> S b0 g - 0T,

i=0 j=0 i=0 j=0

p
= [bo 0T+ 'y 00T, | Vi,
0

J
= (bp41 + 0" bpr1)V/Fior (3.8)
Substituting (3.8) into (3.7]), then using (2.I)) and (2.8)), Lemmas 2.4] and 2.5, one obtains that

O2{T = P}fi] < Co > ™" (1 + [o]) 3 107+ (pg, wg, 00)|y/Fie (3.9)
7=0
< Cro "N+ )T Vg, for n > 1, (3.10)

where 4 = max {,0}. Using (8.9) and (2.1)), it holds that for n > 1
1
107 AT =P} fill L2 ree + 10741 = PYHfillpz 12 < Com™72. (3.11)

To estimate P f1, we rewrite the linear system B2) as a symmetric hyperbolic equations with
the corresponding symmetrizer Ag

AoﬁtUkH + Zhaml Uks+1 + BU]H_l = Fk, (3.12)

where U1 = (pk+1,uk+1,9k+1)t, and Ay, Ay, B and F, are given by

(60)? 0
0 (,00 290 0
0 0
0 0
0

o O O— O

0

0
(p0)*0o

0

0

(po)?

6
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(60)*ug  po(60)? 0 0 0
2
B po(00)* (po)*boug 0 0 loph
A= 0 0 (po)?bouy 0 0 ;
0 0 0 (po)20oup O
(p0)?0 (po)?ug
0 P03 0 0 0 POG 0
and
(60)20z, g (00)*0z, 000 0 0 0
B 9085(;1(,0090) pOHOleu}) 0 0 w 3 pOHO.]ik,l
B= 0 0 0 O 0 . E,= | pobofiz
0 0 0 0 0 pofofr.3
0 (p0)22811€0 0 0 (p0)2§zlu(1) %gk
Using (2.1]), it is easy to know that
1001 (Ao, A1) 135 + 1Blly <~ (313)

where C' > 1 is a positive constant depending only on 64. Applying the standard energy method
of the linear symmetric hyperbolic system to ([B.12)) and using (3.13)), then one can obtain the
following energy inequality

d - _ _
U112, < { (102 (Ao, Ao +1Blless ) 1Uksallfy, + 1Fellez, 1Uisallzz, |

C
<
— o+t

To estimate || Fy|| 12, we only calculate the term llpofo frillz2 since all the other terms can be
x ) z1

10k+11Z5, + CllFillzz, 1Uksallzz, - (3.14)

bounded in a similar way. Noting that / Bi jv/lio - P fidv = 0 (see [I] for more details), one has
R3
that

pobo fri = —pobo /RS Oz, (008 1v/1te) - {I — P} fradv

— po(o)? /RS Bi1v/lto - Opy ({1 — P} fri1)do,
which, together with (2.1), yields that
Hpoeofk,iHLgl < Cl10e, (BoBiav/tio) g 2 - {1 = Pl farallzz, 12
+ CllBiivttollnge 12 - 102, {1 = Pt frqallrz r2-
It follows from (Z.I]) that

C

IBiavhollg iz < € 110k (GoBinvho)llrg 12 < ——

which yields immediately that

- C
||,00¢90flc\|Lg1 < o———i—tH{I - P}fk+1||Lgng + O] 0z, {I - P}fk+1\|Lgng-

Hence, by similar arguments, one can prove that

_ C
[Fkllrz, < a—thH{I —P}frsillrz 12 + Cllon {1 = Phfrpllrz r2- (3.15)
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For k = 0, substituting ([3.0) and (BI1]) into (B.I5) to have
|1Follz2 < Co™2
which, together with (B.I4]), yields that

d 2C —
N0 = —= Uil +Clo+ 1), (3.16)

where C' > 1 is some positive constant which depends only on the wave strength. Applying the
Gronwall’s inequality to (B.16]), then one obtains that

o+t

, (3.17)

U+t>2é -1
o
g

2C
il 0 < 0 (22 @wror o <o

where we have used the fact

t s \2€ o2 ~
. < — . .
/0(0—1—7') <0_+T> dT_2C_2,f0r C>1 (3.18)

Next we shall estimate the derivatives of U;. We introduce the following notation

197z = 57 198008 -z,

aptar=n
ap,a1>0

for simplicity of presentation. Applying 02 to (B12]) for £ = 0, using the standard energy method
to the resultant equation and adding them together for |a| = n, then we obtain

d n é n - A A n—i n
IV, < IV UllZ, +C§;|!V (Ao, A1) |15 IV U1z, 9" Vs 22,

n
+ NIV Bl IV Ui 2, V",
i=1
+ OV Follzz, VU2, (3.19)

By using (2.1]), a direct calculation shows that
Ay A ¢ in .
v (A07A1)|’Lg<1> < —ta , fori>1,
i (3.20)
||VZBHLg<i < +t0_l’ for ¢ > 0.
o

For the estimate of V" Fy, we only consider the effect of V" (pofy ﬁ”) since the other terms can
be done by similar way. In fact, it follows from (21I), (3.6) and B.I1]) that

IV Foll 2,
< > IV p0b0) s {1V BB i) s 22197 T = P fullzz, 1z
0<i+j<n

+ ||Vj(0015’1,1\/ﬂo)||Lg<iL5 [NARt | P}flnL?:lL%}

3
< Co "2,
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which, together with (3:19]), (3.:20) and Cauchy inequality, yields that

—21

_ n < - n n—i
7V UilLe, = IVl JFZ§:1:(/Y()_H||V Urllzg,

+C(o +t)o 23, (3.21)
For n = 1, it follows from ([B.2I)) and (B.I7) that

o+t

d 2C Co=3 20 _

- o+t
which, together with Gronwall’s inequality and (B.I8]), yields that

2C+1
t 2
VUL (#)2, < Co™3 <J+ ) : (3.22)
We shall use induction argument to prove that
20+1
t 2
IV"TL ()], < Co2n! <i> , for n > 0. (3.23)

In fact, for n = 0,1, (3:23) has already been proved in (BI7) and (3:22). Now we assume that
3:23)) holds for n < k — 1. We consider the case for n = k, and it follows from ([B.21]) and (B3.23)
forn=1,--- ,k—1 that

d TEL |12 2C VAT |12 : Co’_zi 2k—i)—1 (O 1 20+3
R < - -4
IV, < I, + 30T (T

+Co %3 (0 + 1)

— ~ 1
2C & 9 o1 fo 4t 20+ 2%h—3
< ——||IV*U +C +Co "o+t
- U—I—tH 1||L%1 o+t o ? (0 +1),

which, together with Gronwall’s inequality, yields

k 2 k 2 —ok—1,0 T 1.1 k-1 | (O +T 20
VO, < ¢ { IV, +0 %1 (T 4o ot
2C+3
< Qo1 (U—H> . (3.24)
o

Thus we proved ([B:23) holds for n = k. Hence ([8:23)) holds for n > 0.
It follows from (3.23)) and Sobolev inequality that

1
07U (8, 21)] S {10 VL2, - 10700, U (D)1 73}

< O'_n_l g +t C+
~ o )

which, together with (II8]), (3.10)), yields (I.20) and (L21]) for ¢« = 1 by suitably chosen Cy > 1.
One can prove (L.20) and (L2])) for F5,--- , F5 step by step by using similar arguments as for Fj

previously, and we omit the details for simplicity of presentation. Therefore the proof of Theorem

[[1lis completed. O

=
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4. PROOF OF THE MAIN THEOREM
4.1. Localized L?-estimate. Recalling the definition of f¢ in (L22]), we can rewrite the equation
(L3) in terms of f€ as
1
O 0 Vef + Lf?

:_{8t+u.vx}\//7(,f€+€2r(f€ )

N
F; F; _
+ g1 ) HT(f, —) +52A(t,x1,v), (4.1)
> e {r i vl
where
{at + Ulawl }F5

t , L1,V Z gti—6_—_ (FZ,F]) - (4.2)
i+j>6 VHo VHo
1<i,5<5

The last term A(t,z1,v) in (@) is only functions of 1, and it is not integrable in R3. The key
observation is that only a local L?-estimate is involved when we consider the L™ estimation. So
to overcome the difficulty, we consider a localized L? estimate for f¢. For later use, we introduce
a cut-off function
1
el=l?-1, lz] <1,
0, | > 1,

p(z) = (4.3)

and denote @q(z) = a3p(Z).

Lemma 4.1. Let Cy be the positive constant defined in Theorem[I1l. Let 3 > %+2(3—’y), o=¢"

1
with n < ﬁ and T < e 1% . Then there exists a suitably small constant ey > 0 such that for
all € € (0,&9), and any fived xo € R3, it holds that

L5 Opal — o) 32 + g—OH{I ~ P (pal- — 20) 2

~ _1
< {Cla252a 2||hE(t)| oo + e /\”he( £ 2o

+ a1+ 0%0e0=9 1 UL (120, — an) B + 1), (14)

fort €10,T], where Cy > 1 is positive constant, and X > 0 is some small parameter chosen later.

Proof. For simplicity of presentation, we only consider the case 2o = 0 € R? since the proof is
the same for zg # 0. Multiplying (4.I]) by the cut-off function ¢,, one obtains that

07 pa) + v+ Val foia) + TL(f0)

_ {o+ U\/'Mz:}mfe% + (v Va)paf +T(f5, f7¢a)

>, . F F, .
+ e N (—=, f*pa) + T(f*¢a, —=) { + 2 A(t, 21, V) (4.5)
; { N N } !
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Then we multiply (£5]) by fp, to obtain that

S Ll als + LI - Y

{0+ (v- Vo) Wio | e
< — / N |f

]RS
zl Z € e % e
a F as add
+ /3/11@ chp)+ (fe \/N_U)}fso vdx

+€2 /[R3 /R3 A(t7$lvv)f€(pgdvdﬂf +€2 /R3 /R3 F<f€7f€90a)f€90advdx. (46)

We shall estimate the right hand side of (4.6]) term by term. Firstly we notice that {9; + v -
Vo /\/Iho is a cubic polynomial in v, then for any x > 0 and § = W one has that

Oy +v- Vol lio ..

SC/L/N%@w%%WwDPO+M%%U%ﬁ®M
R3 JR3

[ol> 2 Jol< 25
1

2
SO{/|%@W%%me?a+quwﬁqu@ww}-wwmy

+ C19y (po, w0, 00) 232 - I1(1+ [0[*)*/* £ @l {1y <nyesy 7

gpa\2dfuda:+/ / (v - Va)gal P 0aduvda
Rr3 JR3

1

2
< Ca—2\|5m(po,uo,90)||Lgl |[hE][ e {/||> 1+ |U|2)_26+3dv} £ @all L2
V=28

+ C|0x, (pos w0, 00)l| e - (1 + [0*)** F*@al{jpj<pseoy 172

a~%e? C 2\3/4 2
< Ol e 1l + 1+ YR o) s
C
+;—WO+M5WH—PKf%ﬂm&¢m@
<O e W pulie + ol + S PR, (@)
K oo allL2 ——— a - a)llyy .
= \/ﬁ L PallL P L2 520' P

where we have used the fact that py < Cu, (see (L25)) and

(1 + [o[2)3/2 £2] = (1 + [v]2)~B+3/2 V2N e
N

< Cem 1l P|(1 4 [of?) 7720 pe, (4.8)

for 5 > % + 2(3 — ), where ¢; > 0 is some positive constant depending only on 6,7,60_ and 6.

The appearance of second term on the right hand side of (4.0) is mainly due to the cut-off
function ¢,, and it has not appeared in previous works [I5] [13]. Noting

_ -1 20 - 7
el = e
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which, together with (4J]), yields that

‘ / / 0+ Vaipal £ padady
salm L Lol 1Pt ado

I e / / o] exp (—c1 Ao l?)| fE pal>>dedo

A
saHgAHhauLm{ /| } [, 1l exp (<2 >dmdv} el

O)\ € € 2—X
< I -l

where X\ € (0,1) is a small constant chosen later.

For the third term on RHS of (46]), we notice that the upper bound of F; involving %,

for the case i = 1 we do not have any decay for €. Fortunately, we find that T’ ( \/JZ_U,

r < fEa, \/IE_U> is indeed microscopic part, then one has that

e 1/RB/RS{ ( N a>+r<f€90a,\/%>}'f€<padvdx
B (o) e ) o

(1+ )P0 (| foally + 5 eallz2 ) - L= PHall,

Me I

@
Il
—

e

@
Il
,_.

(1+ )= (I{T = PHS*0a) s + 1 allz2 ) - IHT = PHf*ally

5
o N 1
PR S

IN
/—/h\
('3
O

5

+ 02(1 + t)2coi€2i_10_2coi||f690a||%2,
i=1

where we have used (L20) for F;,i =1,---,5 in Theorem [[I]

19

then

fscpa) +

(4.10)
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For the forth and fifth terms on RHS of (4.0), by using (L.20) and (L21)), it is direct to have
that

62/ / A(t, 1, 0) fepidvdz
R3 JR3

1
_ 2
co{ [ [ 1P}l
R3 JR3
< Ca—%g”fa(pauy{ Z (1+ t)Co(iJrj) . gt =65=Coli+i) | (1+ t)ﬁCo . 0——600}

i+5>6
1<i,5<5
<C(1+ t)lOCOEQU_mCO 1/ pallr2- (4.11)
and
E(L(f%, F7pa)s fo@a)| < CE(|A7|| oo - || f*all7 - (4.12)

Now substituting (4.7), (£.9)-(@12) into (4.6]), one has that

d 3 _ _ 1
SilFallie + {Geo = O8* 7 = Cet 4 %0 LT - PY(F )

2
_1 C)\
< {Cua® o3l + I e
a
c
+ C(l + t)lOCOEO'_IOCO + O'——i—t} . (erﬁpauiz + 1)

1
Taking 0 < Ck377 < %, and noting 7' < e % and 0 = ¢ with 0 < n < ﬁ, one proves (4.4)
by taking € € (0,g¢) with g suitably small. Therefore the proof of Lemma (] is completed. O

4.2. Weighted L*>-estimate. As in [14] [I5], we denote
1
L pm— o 9+Q MY, U}:V Ug+ng
w9 = =—={ Qo VIT9) + QVTRig: ) | = ko)

where the frequency v(u,) has been defined in (LI7) and Kg = K19 — Kog with

Kig= [ | [ B~ uM(U)LU))g(U)dudw,

=

==
S| =
)

Ksg :/]R3 /S2 B(9)|u — U\”ug(u/)mg(v’)dudw
—v v Vi) v')dudw
+ [ ] B@= o) o) duds

Let 0 < x,n <1 be a smooth cut off function, such that for any m > 0,

Xm(s) =1 for s <m, xmn(s)=0, for s> 2m.
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Then one can define
mg= [ [ B P onu— o) Vi@ g u)dud
[ [ B P oo ) L s
+ [ [ BO = ol o) LD (o,

and
K¢=K—-K™.

Lemma 4.2 ([15, [7]). There exists some positive constant ¢ > 0, such that

[K™g(v)| < Cm*He™ 1617 ||g]| o, (4.13)
and K(v) = I(v,v")g(v")dv’ where the kernel 1(v,v") satisfies
R3
1(0,0))] < Cyp—PAZCV = il S Clo — o/ [Ye=elvl® =clv'? (4.14)
"o = v'[(1+ Jol + [0
and
/ = —c|v—v’|2 - va H‘UE‘ ik oY o—clv]P—c|v!|?
[l(v,0")| < Clv—='|" 2 e | + Clv —'|Ye . (4.15)

It is worth to point out that the constant C,, is independent of o.

Lemma 4.3. Let n < m, T=c" a=ec2 and 0 =", then there exists g > 0 such that
for all e < eg, t € [0,T1], it holds that

3/2 /2 g9/ 10C, 10C
sup |5 h @l < O{ IS h O)lm + 5140/ 0100}
£3/2
402 sup | (s)e +C sup sup [ (gal— o (210
0<s<t @ r€R3 0<s<t

Proof. Letting K,,g = wK(Z), it follows from (LE) and (L26]) that

e +v- Vo he + (’““’)h6+ 1K he
W Q(hf,/— ha/—>

VM w w
° i—1 W h® 2 ha\/:uM 2 7
+ e — E, + 7E +e€ A t) s U
> i (o () ro (U R) e
with
{8t+vlam }F5
A(t,z1,0) : eIy, Fy) — WA T 00T
2;6 \/ Tin ! N,

1<i,5<5
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For any (¢,x,v), integrating along the backward trajectory, one has that

w w

+a2/0texp{—§/8tu(7)d7 < w Q<h€\/m,h€\/w>>(s,x—v(t—s),v)ds

+/Otexp{—§/gty(7)d7
+/0texp{—é/:u(7)d7-

t 1 t _
+ &2 / exp {—— / v(r)dr p A(s,x1 — v1(t — s),v)ds.
0 ]

It is easy to know that

exp {—é /Ot V(T)dT}hf(o, z — vt,v)

A direct calculation shows that

v(pg) ~ var(v) == /RS /82 B(v — u, 0) s (u)dwdu,

/Otexp {—é /:V(T)dT}V(Ma)ds < c/ot exp {_M}W\NS

= 0(e),

< ClA*(0)]| oo

and

Zai—liQ <Fi’ he\{UW>) (s,x —v(t —s),v)ds

|

( M

(ZE): 5i_1\/1li)_MQ (haﬁ,ﬂ>> (s, —v(t —s),v)ds
|

(4.17)

(4.18)

(4.19)

(4.20)

where all the constants above are independent of . For the second term on RHS of (4.I7), by

using (£13), (£19) and (£20)), it is bounded by
Cf 3+ t 1 t
E / eXp{_g/ ”(T)dT}VdS' sup [|h*(s)l| L
0 s

€ 0<s<t

< CmP*Y sup |1 (s)]| 1o
0<s<t

Since s < Cug, it is easy to know that

w he\/par he\/par 2 2
< Cup]|h® 700 < Crpio) || R 700
(M T < ol < Ot
the fourth term on RHS of (4.I7) is bounded by

€

t 1 t
052/0 exp{——/ V(T)dT}I/(,U,O—)Hhe(S)H%oodSSCE3OS<llgt”h€(8)”%oo.

(4.21)

(4.22)
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For the fifth and sixth term on RHS of (AI7), it follows from ([20) and (L.25]) that
5
, he ./ he ./
St — {Q <F w“M> +Q < w“M,E>}(t,x,v)

i—1 VHM
5
w -
I ey
M=
< Cvpr(0) [P || oo (1 + £)°00 =50,
which yields that the fifth and sixth term on RHS of (£I7)) are bounded by

0/ eXp{——/ (T)dT}VM(v)||hE<s)IILwds

< C(1 +t)5C%¢ . g—5C0 sup |1he(8)|| oo (4.23)

<s<

< Coy(v)||PF]| oo

LOO

For the last term on RHS of (@17, it follows from (.20)), (L21I]) and (L.25]), that
At 21,0)] < Cpar(0)*= 3 { (14 8)100071C 4 C(1 4 1) g =501}
< CuM(v)"_% (1+ 75)10000,—10007
which, together with (£.20]), yields that the last term on RHS of (4I7) is bounded by

Ce3(1 + t)10C0;=10C0, (4.24)
From the definition of K¢ in Lemma [£.2, we can bound the third term on RHS of (4I7) by
1t 1 [
- / exp {—— / V(T)dT} [L(v,0")hE (s, — v(t — s),0")|dv ds. (4.25)
€ Jo g Js R3

Using (I7) again to (£25]), then (Z25]) is bounded by

%/OteXp{_é/: ()dT——/ dT}/ [1(v,v")|d0'

x [h5(0,Z —v's,v")|ds

+Ei2 Otexp{—i/gtv(T)dT} /R3 |l(v,v')|/08exp{—%qu(v')(T)dT}

x {K™h}(s1,7 — v/ (s — 81),v")|dv' ds1ds

I I
—|——2/ exp{——/ I/(T)dT}/ [1(v, "), v")]
£ 0 g Js R3 JR3

/ I/(U/)(T)dT} |hE(s1,@ — /(s — s1),0")|dv' dv" ds1ds

S1

X
O\m
©]
4

o

t
/ u<7>df}ds- / 1, - {5 sup [|h°(s)[12.}
s R3 0<s<t

/:V(T)df}ds - /R (v, )| dv/

{(1+1)>%e- 075 sup [|h(s)||z}
0<s<t

t
/ V(T)dT}dS . / 1(v,v")|dv" - €3(1 + t)10C0 5 =10C0, (4.26)
s R3

+
ol o|lQ
O\H\
D
>
ko
—N— A
|
X Olk o= O]

m | =

67 t
+—/exp{—
€ Jo



24 G.F. WANG, Y. WANG, AND J.W. ZHOU

where we have used (£.22)), (£.23)), ([£24]), and denoted & = z—v(t—s) for simplicity of presentation.
It follows from (4.I4]) and (4.I5)) that

Crn(1+ [0[*)2,
/ (v, o) |do! < (4.27)
RS C(1+ )~
which yields that the last three terms and the first term in (£.26]) are bounded by
Con{ IR (0) 10 + 2% sup [|A%(s) 3
0<s<t

+ (14 4)5Cc. 75 sup [|hE(s)|| e +53(1+t)10000_1000}. (4.28)
0<s<t

For the second term in (4.26]), by using (4.13]), one can bound it by
Cm3ty t v t—s
== sup |h°(r )”Lm/ exp{ M}

52 0<s<t Ce

/ 1(v,v) ]/ exp{ var (v gz_sl)}e—fow/zdv’dslds

t
e _vm(v)(t —s) / e 2 7
< sup ||h° (T )HLoo/O exp{ o . [l(v,0v")|e" 201" "dv'ds

0<d<t

< Cm3 sup ||hE(7T)| pee. (4.29)
0<r<t

We now concentrate on the third term in (£26]). As in [15], we divide it into the following
several cases.
Case 1. For |v| > N, by using (£27),, one deduces the following bound:

C c t VM(U)(t_S) /
C sup [ (s)||Loo/0 exp{—T} [ .0

€7 0<s<t
s Y
x/ exp{—w}/ (v, ") |dv" dsydv’ ds
0 Ce R3
Cn
< - Sup [[A*(s)llzee. (4.30)
0<s<t

Case 2. For either [v| < N, |v'| > 2N or |v'| < 2N, |v"| > 3N, notice that we get either |[v — v'| >
N or [v/ — "] > N, then either one of the following is valid for some small positive constant
0 < ¢ < 55 (where ¢ > 0 is the one in Lemma F.2):

(v, 0')] < e= N 1w, 0 e VP,

1 )] < e N, et

B

which, together with (4.I4]), yields that
/\l(v,v/)e“”_”/zldv’ < Cv(v),

(4.31)
/]l(v',v")eq'”_”lz]dv" < Cv(v).
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Hence, for the case of [v —v'| > N or [/ —v"| > N, it follows from (€31 that

t s
// {// +// }(---)dv”dv/dslds
0 Jo |[v|<N,|v'|>2N [v'|<2N,|v"|>3N
< %e—clN2 sup ||he(s)]| L /t/s/’l(v U/)‘exp{_w}
T oe? 0<s<t o Jo ’ Ce

, [e—
X exp { - W }I/M(v/)dv/dslds

< Cppe— 1V s 112 (8)]| oo - (4.32)
_s_

Case 3a. |v| < N,[v'| < 2N,[v"] < 3N. In this case, we note vy;(v) > cy. Further more, we
assume that s — s; < ex for some small k > 0 determined later. Then the corresponding part of
the third term in (£.26]) is bounded by

/ [ e { - ey [N o) s
< Oy s (=) [ t e
< nC sup (I1°(3)] 1} (133)

Case 3b. |v| < N, |v'| < 2N, [v"| <3N and s — s1 > ex. This is the last remaining case. We can
bound the third term in ([£286]) by

T

X (v, )V, v")hE (81,7 — (8 — 51)v',0")|ds1dv' dv" ds, (4.34)

where D = {[v'| < 2N, |[v"| < 3N} and z =1z —v(t—s). From [I4), it is noted that l,(v,v")
has possible integrable singularity of As in [15], we choose a smooth function Iy (v,v’) with

=] v’\
compact support such that
1
sup [ ()~ ol )l < (4.35)
pl<an Jju|<an NP

Splitting
I(v, V)V, 0")
= {l(v,v") — In(v,v")}H (', v")
+ {1, 0") = In( V") v (v, 0") + v (0,0 (V' 0"), (4.36)

then using (£.27)),, (A35]) and (36), we can bound (E34]) by
c [t smem vpr(v)(t — ) vy (V') (s — s1)
S L e {-im o { =)
X Iy (v, )y (v, 0" )R (51, — (s — s1)v",0")|ds1dv’dv" ds

Cm R
+ =7 sup {[|h*(s)llzee}- (4.37)
0<s<t
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Since Iy (v,v")In(v',v") is bounded, we first integrate over v’ and make a change of variable
y=12— (s—s1)v to get

C’N/ |he(s1,Z — (5 — s1)v',0")|dv
[v/|<2N

< CN/ |fe(s1, % — (5 — s1)v/,0")|d0/
/| <2N

1/2
§CN{/ ’fs(slyi—(s—sl)v’,v”)de’}
[v'|<2N
(j 1/2
7N "\ 12
< / [ (sn,y,0")Fdy o (4.38)
K3/2e3/2 { ly—Z|<(s—s1)2N
where we have used |%| > k3e3 as s — 51 > ke, Using ([@38)), we can further bound the first term
in ([@.37) by
Cn (t —5) en(s — s1)
£7/2 / / €xp { eXpy T
1/2
X / / W (s1,y,0") Pdy dv"dsids
|| <3N | J|y—F|<2N(s—s1)
_C’Nﬁa / / exp{ CN(t—s)}eXp{ (3—31)}
2772

1/2
x {/ |<3N/| v \fE(Sl,y,v”)soa\zdydv”} dsyds
v < y—z|<2Nt
3
N,k

C
< 5570831) 175 (s)pal- = )l 2, (4.39)

where we have chosen a to be a positive constant such that a > 4N (t +1).

Collecting all the above terms and multiplying them Wlth , for any k > 0 and large N > 0,
then one obtains that
23/2
S {||—h€( Lo}

£3/2 £9/2 _ g3/
{”_;f( e + = (14 1)1060 . o710 4 53/2(13”—3}15(3)\\%00}

1 3/2
e {mm Oy 4 Ol + (1 07207560 | sup |58 (6)
0<s<t
+ Onpesup sup |F5()gul — 2)lze.
z€R3 0<s<t

Noting t € [0,7], T = €",0 = ", and a = 27 with n < ﬁ, first choosing m small, then N
large enough, and then letting x small, and finally ¢ < ¢y with g9 small enough so that

NI)—t

C {mi”ﬂ +r-Cn+ Cm[% + (1 41)° e . g75¢%0] } <
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thus we deduce

£3/2 £3/2 £9/2
up e @)l < C{IhE O)loe +C (14910 - 071060}
0<
/2
+Ce%%a® sup H—he( MZee +C sup sup [|f°(s)ga(- — )| L2
0<s<t 2E€R3 0<s<t
Therefore the proof of Lemma [£.3]is completed. O

4.3. Proof of Theorem [I.3. Throughout this subsection, we assume that T = e, a = ¢~ 2"
and o = €' where we choose 7 := min{ﬁ, ﬁ}, and Cy > 1 and C’l > 1 are the constants
determined in Theorem [T and Lemma A1), respectively.

Now we make the a prior: assumption

3

sup_ 64H—h€( e <1, (4.40)
0<t<

then, by taking A = o7, it follows from (@40) that

~ 292 L. C) € 10Cy . _—10Co Cl
Cra“e"o 2 ||h(t)| Lo + v — 55 1P )2 + Cr(1+ 1) "%e0 +t

~ C
< 20152"—1—0,]-6%’7—1- !

o+t

4C
<1 (4.41)

o+t

1 -
provided ¢ € (0,g9) with 9 > 0 further small such that C,]&?OQU < C;. Now it follows from (£.4])

and (4.41) that

4C1 (O pal- — 20)]Pa + 1), (4.42)

d
S Opal- — w0) 32 <

which yields immediately that, for ¢ € [0, 7],

4¢4
(15 ) pal- = o)z +1) < (1£7(0)pal- — z0)|72 + 1) - <0:t>
= Slelga 1/5(0)pa (- — xO)H%Q +1) =80
< it (4.43)

where we have used the initial condition sup,, egs [|/5(0)¢a(- — z0)[|22 S < 78, Substituting (4.43))
into (4.I6) and noting (£40), one has that

£3/2 £3/2 £9/2 .
S [ hE @)l < O b ) + (14 2)10% 0710 4 it}

3/2 Lo
{H—hE( Mo + & +€_§_4C“7}. (4.44)
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Hence noting n = min{m, ﬁ} and using (4.44]), one obtains that

3 3/2 .
2
| Ol < O3 {1 h (0) |10 + €'} + O34
3/2
< cai{uz—ghf(())”m + 54} + Cemo
1
2

: (4.45)

where we have used the initial condition || i#ha(O)H 1o~ S 1, and € been chosen further small. In
light of ([£.45]), the a priori assumption (4.40) will be closed by a continuity argument.

Finally, combining (£43]) and (4.45]), we proved (L30) and (L29]). Therefore the proof of
Theorem [I.3] is completed. U

5. APPENDIX

Proof of Lemma 1) We need only to show that for any g1 € By, 92 € By, 9192 € Bp+q-
Since B; is linear space, without loss of generality, we assume that g; and gy are the base of B,
and By, respectively. It follows from (2.6)) that

P q ptq
9192 = Hagli_ljr ’ Hafi_ljr = H a‘rrm—lj‘r
i=1 i=1 i=1
where m; =m;,1 <i<p, m; =mij—p,p+1 <7< p+ q. Hence we have proved g1g2 € Bp1q-
2) Let g be any base of B,,. Applying the Leibnitz rule, one has that

drg =0 (H 0?”‘1JT> — Z H oy o g,

i=1 j=1i=1

for each j, let m; = m;+9d;5,1 < i < nand myq1 = 0, then |m(n+1)] = > | (mi+06;;)+0 = n+1,
S0 0r-g € By41. Then it is direct to show that 0, (b, f) = bpt1f + bn0r f;
3) It follows from (2.4]) that

|br] < C' max

k
m;—1
()| =k 1;[1 O

[m(k)|=k

k
< C max H |omi—l |
0

. g mitl 2 k 2%
<(C m I | cC,, —(1 < Co™%(1 .
- |m(kz)i\X:k Py MG+t ( + M) =va ( + M)

Therefore the proof of Lemma is completed. O

Proof of Lemma 2.3} Firstly we prove (2.I0). Noting A1 f = 8,f + % fJ-, we know that (ZI0)
holds for £ = 1. For simplicity, we may denote A; f with 0, f + by f instead of O, f + %JT f. Assume
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(2I0) holds for k =1, ...,n, by the (2.5]), we have
A1 f =0; (Z bz’a?_if> + by (Z bz’a?_if>
i=0 i=0

n k k
=D BT D 0bi0r T Y bia 0

=0 =0 =0
n+1
_Zban-l-l Zf+zbz+1ak+1 (i+1) f Zbak—l—l Zf
=0 =0 =0

which means (2.I0) holds for k = n + 1.
To prove (Z.I1)), a direct calculation shows that

Ay oTii(f) =0, (u; FQUaZ L, bje) + Q(bjhio, bisid L—1f>]) T (f)

= bifis [Q( zuoL L bttg) + Qb bipnd 1f)]
+ Heo ? [Q(a biZL L bite) + Qb1 Dby L))
T [Q(b b L, byao) + Qb bibi L f)]
1o 2 [QUoap2 0L . bjpg) + Q ]ug,bmga L)
+ fho [Q(bzuaL Lf, 0rbitte) + Qb ,uUL LAY
(b

b s P [QUEL T, bbipie) + Q(bjbupte, b L )]
=b11;(f) + Tig1;(f) + i j+a(f)

1

+ 2 [Qbipt2 DL f,bjjn) + Q(bjps, by 0, L1 ). (5.1)
For f € N, it is noted that

n
) +Q(
)+ Q(
+

1
Arf=0:f + 5 f €N,
which, together with a direct calculations, yields that

O, L f =L AL f]+ oL 7' f + L7 Do f]. (5.2)
Substituting (5.2)) into (5.1), one obtains that
Ay o Ty 5(f)

= biTii(f) + Dig1 () + Tija(f)
Tt 2 [QUuZL T AL f], e + Q Bito: bl (A1)
+N;%[Q(bzugb1L lf b]/LU) +Q( o zﬂablL lf)]

_1 1
0 2 [QUbipi2 L Do ], bito) + Q(bjto, b3 L [Co,1 )]
=015 (f) + Dig1,;(f) + Tijja(f) + iy o Ar(f) + Tij o Toa(f),
which proves (ZI1]). Therefore the proof of Lemma [2.3]is completed. O

Proof of Lemma[2.4. Recall the notation N (i, j, 1) in Lemma[24], and we write 3, = oy 2
tobe > Ns(irjid) for simplicity of presentation. We shall use induction argument to prove this lemma.
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Noting (5.2]), we know that (2.I12)) holds for n = 0,1. And we assume that (2.12]) holds for n-th
derivatives of L=!f. Next, we shall consider the n + 1-th derivatives of L~ f. By using (5.2)), a

direct calculation shows that

oL = 8T(<‘??L‘1f)

> oL

r+k=n s+p==k
k>0 s,p>0

+ Z Z b0, L "

r+k=n s+p=~k
rk>0 s,p>0

Z Z br—l—lL_l[

r+k=n s+p=~k
k>0 s,p>0

£ Y3

Z Z bllrjl 11 o (bis]‘—‘js‘yls) © Apf]
i+j+l=s Ns(%] l)
1,3,>0

Z Z (bi, F]l,h

i+j+1=s Ng(i,5,0)
1,5,0>0

Z Z (03, Ly 0,) o

ij+1=5 Ny(i,j,l)

13,00
> Toro(buTju)o

>

o (bi,I'j,1.) 0 Apf]

© (bi,Tj, 1.) 0 Apf]

© (bi,Lj, 1.) 0 Apf]

r+k=n s+p=k i+j+I=s Ns(1,5,0)
rk>0 sp>0 1,5,0>0
+ 0 I BLT Y Y Avo (i) 0o (biTy,u) 0 Apf]. (5.3)
r+k=n s+p=k i+j+I=s Ns(1,5,0)
rk>0 s,p>0 i,7,120
To deal with the last term of (5.3)), by using (2.I1]), one has that
Al o ( ]m7 m) (f)
- 8 b F]WL7 m(f) + blma F]'nulm(f) + blmb1F]7rL7lm(f)
= blm+1F]7rL7lm f) + meAl © F]Mv m(f)
(b FJM7 m) o Al(f) + blm+1F]7rL7lm(f) + bim]‘—‘jm'f‘lvlm(f)
+ bimrjM7l7rl+1(f) ( Z'm jm,lm) © FO,I(f)‘ (54)
which yields immediately that
Yoo BLT Y Y Are(biTyu) oo (bi,Ty ) 0 Apf]
r+k=n s+p=~k i+j+l:S N (i,5,0)
k>0 s,p>0 1,5,1>
S T Y Y Gaae (oA
r+k=n s+p=k i+j+I=s Ns(1,5,0)
k>0 s,p>0 1,5,1>0
+ Z Z brL Z Z bll F]1+1 l1 © (bisrj37ls) © Apf]
r+k=n s+p=~k i+j+1=s Ng(i,5,0)
k>0 s,p>0 1,5,0>0
+ Z Z bTL_l[ Z Z (bi1Fj1,l1+1) 0 © (bis]‘—‘js‘vls) ° Apf]
r+k=n s+p==k i+j+1=s Ng(i,5,0)
k>0 s,p>0 1,5,0>0
+ 0 Y bLT Y Y bl eTone (bisTy) 0 -0 (bi,T),u,) 0 Ayf]
r+k=n s+p==k i+j+1=s Ng(i,5,0)
k>0 s,p>0 1,5,1>0
+ Z Z brL Z Z bl1 F]1 l1 oAjo (b22rjz 12) © (bisrjs,ls) © ;Df] (5'5)
r+k=n s+p==k i+j+1=s Ng(i,5,0)
k>0 s,p>0 1,5,0>0
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Again substituting (5.4) to the last term of (5.5]) until A; applying to the operator A,(f), and
changing (i, jm,lm) t0 (im + 1, Gmy lm), (ims Jm + 1, 4n) and (4, Jm, I + 1), or add the operator
Io,1 behind b;, T, ;.. for each m = 2,...,s as in (5.4)), then noting Ay o A,f = A,11f, one can
finally prove that

o L)

= D, D2 0L Y Y BaTju)es o (L) 0 Apfl.

r+k=n+1s+p=k i+j+l=s N (i,5,0)
k>0 s,p>0 1,5,0>0
Thus we complete the proof of Lemma 2.4 O

Proof of Lemma From the definition of (Z9)), one has that

. _# VU —u 'U/ o' -1 U/ "LL/ ’LL/
D) = s [ L B0 = w0 [V il s o)
= bi(0)V 1 (L F ()b ()t ()| deod

1 —u (! u -1 uVbs (v o
! ua(v)/ /RaxszB“ 2 0) B3 () b (WL (0 Yy (0 1o ()
— bi(u) /o (W)L f(u)bj(fu)ua(@)] dudu

=T+ 11

Since L~ preserves decay in v (see [5]), one has that

L7 < St 2) (1 + o)™ v/ o (v), (5.6)
which implies that
1

\/M—(U)//Rg,xsg 1B(v —u,0)| - |b:(v') /1o (0 )L (0)b; (W) o () | dwdia

1] <

; v —u b (v L= ()b (u ldwdu
i \/;T(v)//RSXSJB( L0)] - [bi (V) 1o (V)L £ (0)b; (1) s (1) | deodl
= Il+[2.
Using (2.8)), one has that

CZ_J)S (t.2) / /[H B —uw,0)|(1+ o) 2+ (14 [ul) o (0) i (w) e

< CigS(t,z)o™ DL+ [o]) "2/ (v).

I

IN

For Iy, noting |v| < |v| + |u|, || < |v|+ |u] and pe(v") e (v') = pe(v)pe (1), one can obtain

Co x v—u f|)2Em U )% e (V) o (v dwdu
B esSon) [ [ 1B w0 D ) o o

< Ciyjo~ St 2)\/ 1o (v) / |B(v—u,0)|(1+ [v] + [ul)™*F% g (u)dwdu
R3 xS2

< C@jd_(”j)s(t,iﬂ)(l + |U|)m+2i+2j+’y /,ucrg(v)-
Thus combining the above estimates, one gets that

1] < Cijo DS (t,2) (1 + o]y ™22+ g (0) (5.7)
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By similar arguments, one can obtain

1] < Cijwo™ PS8, 2) (1 + o)™ 2524 g (v),

which, together with (5.7)), yields (2I3]). Therefore the proof of Lemma [2.5] is completed. O
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