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GRAPHON MEAN FIELD GAMES AND THE GMFG EQUATIONS

PETER E. CAINES AND MINYI HUANG

ABSTRACT. The emergence of the graphon theory of large networks and their infinite
limits has enabled the formulation of a theory of the centralized control of dynamical sys-
tems distributed on asymptotically infinite networks [16} [19]]. Furthermore, the study of
the decentralized control of such systems was initiated in [0} [7], where Graphon Mean
Field Games (GMFG) and the GMFG equations were formulated for the analysis of non-
cooperative dynamic games on unbounded networks. In that work, existence and unique-
ness results were introduced for the GMFG equations, together with an e-Nash theory for
GMEFG systems which relates infinite population equilibria on infinite networks to finite
population equilibria on finite networks. Those results are rigorously established in this

paper.

1. INTRODUCTION

One response to the problems arising in the analysis of systems of great complexity is to
pass to an appropriately formulated infinite limit. This approach has a distinguished history
since it is the conceptual principle underlying the celebrated Boltzmann Equation of sta-
tistical mechanics and that of the fundamental Navier-Stokes equation of fluid mechanics
(see e.g. [38,122, 114} [15]). Similarly the Fokker-Planck-Kolmogorov (FPK) equation for
the macroscopic flow of probabilities [[12, 27] is used to describe a vast range of phenom-
ena which at a micro or mezzo level are modelled via the random interactions of discrete
entities.

The work in this paper is formulated within two recent theories which were developed
with an analogous motive to that above, namely Mean Field Game (MFG) theory for the
analysis of equilibria in very large populations of non-cooperative agents (see [25} 23} 130,
31, 9L 10, [8]), and the graphon theory of the infinite limits of graphs and networks (see
(3312, 13,14} 132])).

A mathematically rigorous study of MFG systems with state values in finite graphs is
provided in [21], and MFG systems where the agent subsystems are defined at the nodes
(vertices) of finite random Erd6s-Rényi graphs are treated in [[11]. The system behaviour
in [21] is subject to a fixed underlying network. The random graphs in [L1] have un-
bounded growth but do not create spatial distinction of the agents due to symmetry prop-
erties of the interactions. However, graphon theory gives a rigorous formulation of the
notion of limits for infinite sequences of networks of increasing size, and the first applica-
tion of graphon theory in dynamics appears to be in the work of Medvedev [34] 35]], and
Kaliuzhnyi-Verbovetskyi and Medvedev [26]]. The law of large numbers for graphon mean
field systems is proven in [[1] as a generalization of results for standard interacting particle
systems. Furthermore, the work in [39]] derives the McKean-Vlasov limit for a network of
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agents described by delay stochastic differential equations that are coupled by randomly
generated connections.

The first applications of graphon theory in systems and control theory are those in
[17, 18} [16L [19} 20] which treat the centralized and distributed control of arbitrarily large
networks of linear dynamical control systems for which a direct solution would be in-
tractable. Approximate control is achieved by solving control problems on the infinite
limit graphon and then applying control laws derived from those solutions on the finite
network of interest. The analogy with the strategies for finding feedback laws resulting
in e-Nash equilibria in the MFG framework is obvious. In this connection we note that
work on static game theoretic equilibria for infinite populations on graphons was reported
in [37].

A natural framework for the formulation of game theoretic problems involving large
populations of agents distributed over large networks is given by Mean Field Game theory
defined on graphons. The resulting basic idea and the associated fundamental equations
for what we term Graphon Mean Field Game (GMFG) systems and the GMFG equations
are the subject of the current paper and its predecessors [6, [7/]. The GMFG equations
are of significant generality since they permit the study, in the limit, of both dense and
sparse, infinite networks of non-cooperative dynamical agents. Moreover the classical
MFG equations are retrieved as a special case. We observe that an early analysis of linear
quadratic (LQ) models in mean field games on networks with non-uniform edge weightings
can be found in [24]. However, in that work there was no application of graphon theory,
and in the uniform system parameter case there is one agent per node and a single mean
field, whereas in the present work there is a subpopulation with its own mean field at each
node.

The basic e-Nash equilibrium result in MFG theory and its corresponding form in
GMFG theory are vital for the application of MFG derived control laws. This is the case
since the solution of the MFG and GMFG equations is necessarily simpler than the ef-
fectively intractable task of finding the solution to the game problems for the large finite
population systems. Indeed, this was one of the original motives for the creation of MFG
theory and it is a basic feature of graphon systems control theory [[17].

The paper is organized as follows. Section2provides preliminary materials on graphons.
Section Blintroduces the GMFG equation system and proves the existence and uniqueness
of a solution. For the decentralized strategies determined by the GMFG equations, an e-
Nash equilibrium theorem is proven in Section{4l The GMFG equations are illustrated by
an LQ example in Section [5

Table 1: Notation

the k-th graph in a sequence of graphs

g weights of G, as a step function
M. the number of nodes in G,
. the cluster of agents residing at node ¢ of G
(1) the cluster that agent ¢ belongs to
I*, I*(i) the midpoint of an interval of length 1 /M,

g the graphon function
ta(t) the local mean field generated by agents at vertex « € [0, 1]
) an ensemble of local mean fields (f10 (t))o<a<1
Mo, aclass of ug(-) satisfying a Holder continuity condition
Cr the space of continuous functions on [0, T']
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Fr o-algebrainduced by cylindrical sets in C'p
(Cr, Fr,m,) probability measure space for the path space at vertex «
My the set of probability measures on (Cr, Fr)
Dt Wasserstein metric on M
M¢  the product space [, (o 1) M7
MG, MS!  subsets of M
m¢  an ensemble of measures (Mmq )o<a<1 € Mg
Proj,(mg) the component m,, at vertex «
Marg,(m,) the time ¢t-marginal of m,,
xo the state of a generic agent at vertex « € [0, 1]
w,  a generic standard Brownian motion at vertex o
o(t, 2o |pua(+); go)  the best response at vertex « with g (-) given by the GMFG system;
abbreviated as ¢ (¢, 4, ga) OF Pq
o(t, za|pc(+); ga) the best response at vertex a with respect to an arbitrary pe(-);
abbreviated as @q (t, To | (+)) OF Po

2. THE CONCEPT OF A GRAPHON

The basic idea of the theory of graphons is that the edge structure of each finite cardinal-
ity network is represented by a step function density on the unit square in R? on which the
so-called cut norm and cut metrics are defined. The set of finite graphs endowed with the
cut metric then gives rise to a metric space, and the completion of this space is the space
of graphons. Let G® denote the linear space of bounded symmetric Lebesgue measurable
functions W : [0,1]> — R, which are called kernels. The space GSP of graphons is a
subset of GgP and consists of kernels W : [0,1]%> — [0, 1] which can be interpreted as
weighted graphs on the vertex set [0, 1]. We note that functions W € GSP taking values in
finite sets satisfy this definition and so, in particular, graphons are defined on finite graphs.

The cut norm of a kernel W € G then has the expression:

[Wilg= sup W (z,y)dzdy

M,TC[0,1] ’ MxT
with the supremum taking over all measurable subsets M and T of [0,1]. Denote the
set of measure preserving bijections [0,1] — [0,1] by Sig 1. The cut metric between
two graphons V' and W is then given by 6o(W,V) = infyes, ,, [|[W? — Vo, where
W (x,y) == W(¢(x), ¢(y)) and any pair of graphons at zero distance are identified with
each other. The space (G®P, d) is compact in the topology given by the cut metric [32].
Furthermore, sets in (GSP, d) which are compact with respect to the L? metric are com-
pact with respect to the cut metric. Since G°P is compact in the cut metric all sequences
of graphons have subsequential limits.

In this paper, we start with the modeling of the game of a finite population based on a
finite graph. Specifically, the population resides on a weighted finite graph G, with a set
of nodes (or vertices) Vi = {1,..., My} and weights gf; € [0,1] for (i, ) € Vi x Vi,
where a value g} is assigned in the case i = j. We call g} := (g¥,..., gk, ) a section
of g at i. Each node [ is occupied by a set of agents which is called a cluster of the
population and hence the number of clusters is M. We list the clusters as Cy,...,Car,.
Without loss of generality, we assume the [th cluster occupies node [. Let C(4) denote the
cluster that agent 7 belongs to. So ¢ € C(¢). Our further analysis in the paper is based
on the convergence of g* to a graphon limit g. We may naturally identify (gfj)lgiﬂ <M,
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with a graphon g* (o, 3) as a step function defined on [0, 1] x [0, 1] (see [32]]). However,
convergence in the cut norm or the cut metric is inadequate for the analysis in this paper
as it does not capture sufficiently strong sectional information of the difference g* — g.
We will adopt a different convergence notion strengthening the sectional requirement as in
assumption (H11) below. To indicate its arguments, we may write g(«, 3) or alternatively
ga,3- We define the section of g at o by go : 8+ ga s, 8 € [0,1].

Since clusters C;, and C;, reside on nodes i1 and iy of G, respectively, we define
g’ccilci2 = g¥ .. Similarly, we define the section g§ = gF.

We partition [0, 1] into M, subintervals of equal length. Here I} = [(I — 1) /M, 1/ Mj,]
for 1 <1 < My. When it is clear from the context, we omit the superscript k and write ;.
To relate the clusters of agents to the vertex set [0, 1], we let the cluster C; correspond to I;.

Throughout this paper, C, Cy, C1, . . . denote generic constants, which do not depend on
the graph index & and population size N and may vary from place to place.

3. GRAPHON MFG SYSTEMS AND THE GMFG EQUATIONS

3.1. The Standard MFG Model and Its Graphon Generalization. In the diffusion
based models of large population games the state evolution of a collection of N agents
Ai, 1 <i < N < o0, is specified by a set of N controlled stochastic differential equations
(SDEs). A simplified form of the general case is given by the following set of controlled
SDEs which for each agent A; includes state coupling with all other agents:

N
G.1) dri(t) = = S Fls(),uilt), 25 (0)dt + odws (2),
j=1

N 4
where z; € R is the state, u; € R™ the control input, and w; € R™* a standard Brow-
nian motion, and where {w;,1 < i < N} are independent processes. For simplicity, all
collections of system initial conditions are taken to be independent and have finite second
moment. The cost of agent A; is given by

T N
(3.2) TN (i us) = E/O %j_zll(:ci(t),ui(t),:vj(t))dt,

where [(+) is the pairwise running cost, and u_; denotes the controls of all other agents.
The dynamics of a generic agent .A; in the infinite population limit of this system is then
described by the controlled McKean-Vlasov (MV) equation

3.3) dx; = flag, wi, pe)dt + odw;, 0<t<T,

where 4 is the distribution of z;(t), flz,u, u] = [5. f(z,u,y)u:(dy) and where the
initial distribution 4§ of 2;(0) is specified. Setting I[x, u, jue] =[5, (x,u,y)pe(dy), the
corresponding infinite population cost for A; takes the form

T
(3.4) Ji(ui; u()) = E / s, a(8), el

For notational simplicity, we present the graphon MFG framework with scalar individ-
ual states and controls, i.e., n = n,, = n,, = 1. Its extension to the vector case is evident.

Now we consider a finite population distributed over the finite graph G. Let x¢, =
@l]\i’i {z;|i € C;} denote the states of all agents in the total set of clusters of the population.
This gives a total of N = Zl]\i’i |C:| individual states. The key feature of the graphon MFG
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construction beyond the standard MFG scheme is that at any agent in a network the av-
eraged dynamics and cost function decompose into averages of subpopulations
distributed at that agent’s neighboring nodes plus an average term for the local cluster. In
the limit, the summed subpopulation averages are given by an integral over the local mean
fields of the neighbouring agents.

For A; in the cluster C (%), two coupling terms in the dynamics take the form

. 1
3.5 Jo(wi, ui, C(2) = 0] > Jolws s, zy),
JEC(@)
1 1
(3.6) fou (@i, ui g6 wy) = i Zglé(i)clm Z f@i, ui, ;).
=1 jE€C;

They model intra- and inter-cluster couplings, respectively. The specification of fg, relies
on the sectional information g’g (i)e" Concerning the coupling structure in (3.6) we observe
that with respect to A;, all individuals residing in cluster C; are symmetric and their state
average generates the overall impact of that cluster on .A; mediated by the graphon weight-
ing g’g( iyer The two coupling terms are combined additively resulting in the local dynamics

ka ($i7 Us, glé(z)) = fO(Iia Us, C(Z)) + ka (Iiv Us, glé(z))
Note that A; interacts with the overall population through a function of the complete sys-
tem state x ¢, and the cluster sizes. These details shall be suppressed in this paper and we
only indicate the graph G and the section g’g (i) The state process of A; is then given by
the stochastic differential equation

dz;(t) = fgk(xi,ui,g’g(i))dt +odw;, 1<i<N,

where o > 0 and the initial states {z;(0),1 < ¢ < N} are i.i.d. with distribution pf €
P1(R), the set of probability measures on R with finite mean.

The limit of the two dynamic coupling terms of an agent at a node « (called an a-agent),
as the number of nodes of the graph GG, and the subpopulation at each node tend to infinity,
is described by the following expressions:

(37) fo[xaauanua] ::/l;fo(xa’ua’z):u’a(dz)’

1
(3.8) Flas tas 1165 Ga] = /0 /R F(Za 1o, 2)g (e, B)us(dz)dB,

which give the complete local graphon dynamics via

3.9 flra, ta, 1a3 gal = folTas tas pal + flTas tias 1as gal-
We call 15 the local mean field at node 3, which is interpreted as the limit of the empirical
distributions of agents at node 5. And pug = {ug,0 < f < 1} is the ensemble of local
mean fields. Due to the integration with respect to (3, the dependence of fon the graphon
limit g is through the section g,. Since g contains y,, we do not list f, as an argument
of f

Parallel to the standard MFG case, in the graphon case the stochastic differential equa-
tion

[MV-SDE](c) dzo(t) = flra(t), ua(t), ua(t); goldt + odwe (),

(3.10)
0<t<T, aecl1],
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generalizes the standard controlled MV equation (3.3). We note that in a parallel devel-
opment of graphon based stochastic dynamical populations [1]] the system disturbance in-
tensity o is also a function of graphon weighted state functions at other clusters. For
simplicity, we consider a constant o and our analysis may be generalized to the case of a
state and mean field dependent diffusion term. Similarly, for simplicity our dynamics and
cost do not include a separate parametrization by a.

Analogously, in the GMFG case, we define the cost coupling terms for A; to be

) 1
lo(wi,ui, C(1)) = 140]] Z lo(wi, ui, ),
JEC(3)
| My 1
la, (Ii,ui,glé(i)) =0 Zglé(i)czm Z Uzi, s, xj).
k= jea

Define Ig, (i, u;, 96wy = lo(xi,ui, C(9)) + la, (w4, uiy gf;))- The cost of A; in a finite
population on a finite graph G is given in the form

T
(3.11) Ji = E/ le(SCi,uuglcc(i))dt-
0
Denote
lofa, Uar Ha] = / lo(a, o, 2)pta(dz),
R

1
[ttt 1655 9] = / / U(@a, 1o, 2)g (v, B) a5 (d2)dB,

Z[IaauaaHG§ga] = lO[Iaaumﬂa] + l[xavuaaHG§ga]-

Then in the infinite population graphon case, the a-agent has the cost function given by

T~
(3.12) Ja(”a? NG(')) = E~/0 l[xot(t)vua(t)vﬂG(t);ga]dt'

3.2. The Graphon MFG Model and Its Equations. In this section the standard MFG
equations (see e.g. [5,18]) will be generalized so that they subsume the standard (implicitly
uniform totally connected) dense network case and cover the fully general graphon limit
network case. Specifically, agent .A; in a population of NV agents will be located at the ith
node in an M} node network (identified with its graphon) and in the infinite population
graphon limit that node will be taken to map to « € [0, 1]. It is important to note here
that although the limit network is assumed dense it is not assumed to be uniformly totally
connected; indeed, the connection structure of the infinite network is represented precisely
by its graphon g(a, 3), 0 < a, 8 < 1.

The generalized Graphon MFG scheme below on [0, T is given for each « by (i) the
Hamilton-Jacobi-Bellman (HJB) equation generating the value function V'* when all other
agents’ control laws and the ensemble p of local mean fields are given, (ii) the FPK
equation generating the local mean field u,, given ug, and (iii) the specification of the best
response (BR) feedback law.
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Suppressing the time index on the measures for simplicity of notation, we have the
Graphon Mean Field Game (GMFG) equations:

ove(t,x) . = ~ OVt x)
[HJB](CY) ot = ing{f[x’u’MG’ga]T
~ o2 9?Ve(t, )
(3.13) +l[w,u,uc;ga]}+7Tv

VeT,z) =0, (t,z)€[0,T] xR, «a€]0,1],

0 .
[FPK](c) 3%(;?@ __ e ,ugg,cga1pa<t,x>}
+ 0_282pa(t, x)

2 oz2

(3.14)

[BR](«) u? = o(t, 2|pa; ga)-

Here p,,(t, ) with initial condition p,(0) is used to denote the density of the measure
o (t) whenever a density is assumed to exist. The FPK equation may be replaced by the
following closed-loop MV-SDE:

(315) [MV] (a) dIO& (t) = f['ra (t)v <P(ta Loy (t)|,uG; ga)v naG (t); ga]dt + waﬂc (t)v

where x,,(0) has distribution 4. Our subsequent analysis will directly treat the pair
(V(t,x), pa(t)), where o (t) is specified as the law of x,,(¢) in (3.13).

When a solution exists for the GMFG equations, the resulting BR feedback controls
depend upon the ensemble pi¢ of local mean fields and the individual agent’s state. This is
a natural generalization of the standard case. The standard MFG case is simply obtained
by setting g(a, 8) = 0,0 < a, 8 < 1, which totally disconnects the network and results in

flz, u, pa; go] = folz, u, p] and Uz, u, pa; ga] = lo[x, u, ] [5418].

A collection of measures on some measurable space which are indexed by the vertex set
[0, 1] is called a measure ensemble. Thus, for each fixed ¢, j1(¢) is a measure ensemble.

On P1(R) we endow the Wasserstein metric Wy: for any p, v € P1(R), Wi (u,v) =
inf5 [ |z — y[7(dz, dy), where 7 is a probability measure on R? with marginals p, v.

Let C([0,1],P1(IR)) be the set of measure ensembles va = () ge[o,1] satisfying vg €
P1(R), and limg:_, 3 W1 (v, vg) = 0 for any § € [0, 1].

In order to analyze the solvability of the GMFG equations, we need to restrict ug(+) to
a certain class. We say {ug(t),0 <t < T} is from the admissible set Mg 7y if:

(C1) For each fixed t, pug(t) is in C([0, 1], P1(R)).

(C2) There exists 7 € (0, 1] such that for any bounded and Lipschitz continuous func-
tion ¢ on R,

sup | [ otwus(trdy) ~ [ o@nattady)| < Cults ~ ol
R R

Belo,1]

where C}, may be selected to depend only on the Lipschitz constant Lip(¢) for ¢.

Condition (C1) ensures that integration with respect to d3 in (3.8) is well defined. Con-
dition (C2) ensures that the drift term in the HJB equation (3.13) has a certain time conti-
nuity, which facilitates the subsequent existence analysis of the best response.
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3.3. Existence Analysis. We introduce the following assumptions:

(H1) U is a compact set.

H2) fo(z,u,y), f(z,u,y), lo(x,u,y) and l(z, u, y) are continuous and bounded func-
tions on R x U x R and are Lipschitz continuous in (z,y), uniformly with respect to
u.

(H3) fo(x,u,y) and f(x,u,y) are Lipschitz continuous in u, uniformly with respect to
(2, 9).

(H4) Forany ¢ € R, a € [0, 1] and probability measure ensemble v € C([0, 1], P1(R)),
the set

(3.16) Sel(r,q) = argumeig{q(f[x, U, VG; 9al) + Uz, u, VG5 gal

is a singleton, and for any given compact interval Z = [g, q|, the resulting « as a function
of (z,q) € R x T is Lipschitz continuous in (z, ¢), uniformly with respect to v and ga,
0<a<l.

The next two assumptions will be used to ensure that the best responses have continuous
dependence on «. In particular, (HS) is a continuity assumption on the graphon function
g(a, B8). Under (H5S), fvand I have continuity in .

(H5) For any bounded and measurable function i (/3), the function fol g(a, B)h(B)dS is
continuous in « € [0, 1].

(H6) For given vg € C([0,1], P1(R)), S44 (x, q) is continuous in (a, x, q).

Although the GMFG equation system only involves { ug(t),0 < ¢t < T'}, which may be
viewed as a collection of marginals at different vertices, it is necessary to develop the exis-
tence analysis in the underlying probability spaces (see related discussions in [25} p.240]).

We begin by introducing some analytic preliminaries. For the space Cr = C([0, T], R),
we specify a o-algebra F induced by all cylindrical sets of the form {z(-) € Cr : z(¢;) €
B;,1 < i < jforsome j}, where B; is a Borel set. Let My denote the space of all
probability measures on (Cr, Fr). The canonical process X is defined by X;(w) = w; for
w € Cp. On Cp, we introduce the metric p(z,y) = sup, |z(t) — y(¢t)| A 1. Then (Cr, p)
is a complete metric space. Based on p, we introduce the Wasserstein metric on M. For
my, mo € My, denote

Dr(ma, mz) = inf (SUP | X (w1) — Xs(w2)| A 1)dﬁ1(w1,w2),
m CrxCr s<T

where 7 is called a coupling as a probability measure on (Cr, Fr) x (Cp, Fr) with the
pair of marginals m, and mag, respectively. Then (M, Dr) is a complete metric space
[41].

We introduce the product of probability measure spaces [ [, €[0,1] (Cr, Fr,me), where
each individual space is interpreted as the path space of the agent at vertex o with a corre-
sponding probability measure m,. Denote the product of spaces of probability measures
Mg = Hae[o,l] M. An element in Mg is a measure ensemble. Given mg € Mg, the
projection operator Proj,, picks out its component m,, associated with o € [0,1]. Let
MZO consist of all (mq)aeo,1] € M such that for any a € [0,1], Dp(mas, ma) — 0 as
o = a.

For two measure ensembles m¢ = (mq)aco,1] and ma = (Ma)ae(o,1] in M, define

d(mGa mG) = SUPquel0,1] DT(mOH ma)'

Lemma 3.1. (M$, d) is a complete metric space.
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Proof. 1f {m’é, k > 1} is a Cauchy sequence in M, then for each given a, the sequence
{Proj,(mk%),k > 1} (of probability measures) is a Cauchy sequence in the complete
metric space M7 and so it contains a limit. This in turn determines a limit in M$. 0

Given the probability measure m, € My, we determine the ¢-marginal p,(t) by
tao(t,B) = ma({z(-) € Cr : z(t) € B}) for any Borel set B C R, and denote the
mapping from Mr to P(R) (the set of probability measures on R):

(3.17) o (t) = Marg, (my,).

Consider the measure ensemble ma = (Ma)ac(o,1] € MY with 110 (t) given by 3.17).
Define the time ¢ marginals by the following mapping

(3.18) Marg,(ma) = (f1a(t))ac0,1),

where the right hand side is simply written as u(t). For a given ¢, u(t) may be inter-
preted as a measure valued function defined on the vertex set [0, 1]. Further denote the

mapping Marg(mea) = (16 (t))icjo,r) = a(-)-
Take a fixed

(3.19) pG () € Mgy

with its associated Holder parameter 7 in (C2), and denote
f:z(tv €, ’U,) = f['rv U, ,UG(t); ga], l;(tv €, u) = l[:Z?, U, /LG(t); ga]'

Lemma 3.2. Assume (H1)-(H2). For h,, = fgj(t, x,u) or TZ (t,x,u), there exist constants
C and C,,,, where the latter depends on pc(+), such that

sup |ha(t7x7u) - ha(tayuu” < C|{L’ - y|7
t,u,o
sup |h’0¢(taxau) - ha(s,:c,uﬂ S C#G|t - S|n7

T, u,x

where the supremum is taken overt € [0,T), z € R, u € U and a € [0, 1].

Proof. The Lipschitz continuity of ]7; with respect to x follows from (H2) and 3.7)-[3.8).
For t1,t, € [0,T)], we estimate | f[z, u, uc(t1); ga] — flz, u, pa(t2); gal| by using the
Lipschitz condition of fy, f and condition (C2) for Mg 7}. This establishes the Holder
continuity of ]7; in t. The other cases can be similarly checked. (]

In order to analyze the best response of the a-agent, we introduce the HIB equation
(3.20) —V&(t,x) = 1nf {f (t, 2, w)VE(t x) 4+ 15 (t, 2z, u)} +Z V"‘ *(t,x),

where V(T 0) = 0. It differs from (3.13) by allowing an arbitrary ug(-) € Mo

For studying (3.20), we introduce some standard definitions. Denote Q1 = (0,7) X R,
and Qr = [0,T] x R. Let C*%(Q) (resp., C2(Qr)) denote the set of functions with
continuous derivatives vy, v, Uz on Qo (resp., Q7). Let C’1 2(QT) be the set of bounded
functions in C*2(Q), and let the open (or closed) set Qb be a bounded subset of Q7.
W;’2(Qb), 1 < X\ < o0, shall denote the Sobolev space consisting of functions v such that
each v and its generalized derivatives v, vz, Uy, are in > (Qp); further we have the norm

(3.21)

+lloellx e

lol1$2, =
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where [|v][xq, = (/o, lv(t, x)[*dtdz) />, Set |v|g, = sup ,yecq, [v(t,)|. Now for
Qp = (Th,T2) x Z, where 7 is a bounded open subset of R, and 5 € (0,1), define the
Holder norms

0lg, = loy+  swp Ju(t,@) —v(t,y)| - o~y
te(Th,T2),z,y€T
+ sup |’U(S,.’L’) - U(tu $)| : |S - t|_6/27
s,t€(T1,T2),z€L

1
[olgy” = 101, + 1vs1,

24 1+
[olgy” = lolgt” + vilg, + lvszlg,

Lemma 3.3. Under (H1)—-(H4), the following holds:

(i) Equation (3.20) has a unique solution V* in 02’2 (Qr) and moreover supg Vil <
C.

(ii) The best response

(3.22) U = (ba(tvxLUJG('))a (EAS [Oa 1]

as the optimal control law solved from (3.20) is bounded and Borel measurable on [0, T x
R, and Lipschitz continuous in x, uniformly with respect to o for the given ().

Proof. (i) Denote
Ho(t7,q) = min{gfg(t,,u) + 15 (t,2,u)}.
ue

Then (3.20) may be rewritten as

2
(3.23) VP (t,x) = Ha(t,z, Vo) + %V;;, V(T z) = 0.

As in the proof of [25, Theorem 5], we use Holder and Lipschitz continuity (with respect
to t and x, respectively) of fg; and INZ in Lemma[3.2] and follow the method in the proof of
Theorem V1.6.2 of [13, p. 210] to show that (3.20) has a unique solution V* € C,*(Qr),
where uniqueness follows from a verification theorem using the closed-loop state process.

Next we show that V. is bounded on Q. Take any 79 € R. Denote B, (zo) =

(xo — r,@o + 1) forr > 0, and Q7" = (0,T) x B,(z0). We use two steps involving
local estimates. Each step gets refined information about V' in a region based on available

bound information in a larger region. It suffices to obtain a bound of V2, on pr‘)’l as long

as this bound does not change with .

Step 1. First, there exists a constant C such that
(3.24) sup [V < Cyp, sup |VE < Ch.

t,x,a t,z,a

The first inequality is obtained using (H1)—(H2) and the fact that V' is the value function of
the associated optimal control problem. The second inequality is proven by the difference
estimate of |V (¢, z) — V(t,y)| as in [13| p. 209].

By (H1), (H2) and (3.24), we have

sup sup |Hay(t,z, V¥t z))| < Cs.
@ (t,x)eQr
We use a typical method for analyzing semilinear parabolic equations. Once V¢ is
known to be a solution of (3.23), we view V' as the solution of a linear equation with the
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free term H, (¢, x, V,%). For further estimates, we need A > n + 2 when using the norm
(3.21). Fix A = n + 3 = 4. This yields the bound

a2

IV < O,
where C3 depends on (Cs, T, o) and the bound of (f, fo, 1, ly) but not on zg, «; see [13] p.
207] and also [29} p. 342] for local estimates of the Sobolev norm of solutions defined on

unbounded domain using a cut-off function. Take 8 =1 — "T*Q = i. Subsequently, since
A > n + 2, we have the Holder estimate
(3.25) VetE, <oy < CsCy,

Qrp AyQ;O,

where C}y is determined by A = 4 without depending on ¢, «; see [13 p. 207], [29} p.
343].

Step 2. On [0,7] x R x [-C4,C4], we can show H,(t,z,q) is Holder continu-
ous in ¢ and Lipschitz continuous in (z,q). Denote 81 = min{n, 8}. Next we view
H,(t,x,V2(t,x)) as a function of (¢, z). Then by use of (3.23) we further obtain a bound
on the Holder norm:

(3.26) supsup |Hy (-, -, V)
zo

(e

|glzo,2 S C5'
T

Subsequently, by the method in [[13] p. 207-208] with its cut-off function technique and
[29, p. 351-352], we use (3.26) and local Holder estimates of (3.23)) to obtain

(3.27) Vel < Co,
where Cs depends on C’5 but not on xg, . Since xg is arbitrary, it follows that
(3.28) supsup |V.2 | < Cs.

% QT

(i) By (H4), the optimal control law as a function of (¢, x) is well defined and
is bounded on [0, 7] x R by compactness of U. It is Borel measurable on Q; see [13|
p.168]. Since S%¢ (z, ¢) is Lipschitz continuous in (z,q) € R x [-C1, C1] and V.2 (¢, x)
is Lipschitz continuous in z € R by (3.28), uniformly with respect to « in each case, ¢, is
uniformly Lipschitz continuous in z. (]

Denote
e (t,x) = (V(t, ), Vi (t, ), V2 (t,2), Vi (8 2),  (t2) € Q.

We prove the following continuity lemma for the solution of (3.20). For Q, define the
compact subsets B; = {(¢t,z)|0 <t <T,|z| <j},j€N.

Lemma 3.4. Assume (H1)—(H5) hold and let ug(+) in be fixed. Then the following
holds:

(i) For all compact set Bj, limy/_q |W°‘/ —¥%p, =0.

(ii) limo/ o V&' (£, 2) = V(t, ) for all (t,z) € [0,T] x R.

Proof. 1t suffices to show (i) as (ii) follows immediately from (i).

Step 1. By and the fact that the constant Cs can be selected without depending
on «, there exists a constant C' such that sup,, |V°“|2BJ;B ' < C, which implies that {¥?'“, o €
[0,1]} is uniformly bounded and equicontinuous on B;. For any sequence {a,k > 1}
converging to o, by Ascoli-Arzela’s lemma, for j = 1, there exists a subsequence denoted
by {@g, k > 1} such that % converges uniformly on B;. By a diagonal argument, we
may further extract a subsequence of {&,k > 1}, denoted by {c, k > 1}, such that
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W converges uniformly on each set B;, j > 1. Hence there exists a function V* with
continuous derivatives V,*, V.*, V.*, on Q such that

? xrx

(3.29) Jim WOkt x) = W (t,x),  Y(t,x) € Qr,
—00
where ¥* = (V*, V*, V.* V> ). Since

~ ~ 2 ~
—V(t,x) = Hoa, (t, 2, V%) + %V;;k, Ver(T,z) = 0,
it follows from (3.29) that

V*(T,z) = 0.

T

2
Vi (t,2) = Halt, 2, V) + %V*

We have used the fact that H,, (¢, x, ¢) is continuous in « due to (H5) and condition (C1)
of Mg 7. Itis clear that V* = V* by uniqueness of the solution of (3.23). So ¥* = ¥,
Now it follows that

(3.30) lim [F% — | g =0, Vi
k—o0

Step 2. Suppose (i) does not hold so that for some j we have |u70‘/ — e B; does not

converge to 0 as o’ — «, which implies that there exist some ¢y > 0 and a sequence {a{ }
converging to « such that for each £,

(3.31) ok — |5 > €.

Step 3. Recall that {« } in Step 1 is arbitrary as long as it converges to «. Now we just
take {ay } in Step 1 as {a}. By Step 1, there exists a subsequence of {a{}, denoted by

{49}, such that limy, _, o [F5% —0| B; = 0, which contradicts (3.31). Hence (i) holds. [J

Lemma 3.5. Assume (H1)~(H6). For given juic(-) € Mo 1), the best response ¢q(t, x|ug(-))
in 3.22) continuously depends on a. Specifically, for any o € [0, 1],

(3.32) Jim gor (1 2luc () = ¢alt 2luc (), V.
Proof. The best response can be written as
at,zlnc () = W (z, Vi (t, ),
b (1 2l () = S5 (@, Vi (8, 2).
It follows that
S5O (@, Vi (1, 2)) = 507 (@, V2 (8,2)
<|se D (@, Ve (t,2)) = 4O (@, Vi (1,2))]
+ 15500 (@, Vi (t,2)) = S50 (@, V2 (8, 2).
Given ¢ (-) we have the prior upper bound SUD, 1 4 [V (t, 2)] < C. Tt suffices to show
that (3.32) holds for any given Cy > 0 and ¢t € [0, 71, |x| < Cy. By (H6), for the given
ue(t), Sﬁc(t)(x, ¢) is uniformly continuous in @ € [0, 1], |z| < Cy, ¢ € [-C, C]. For any
€ > 0, there exists § > 0 such that |a — o[ < & implies Sup|,|<c, |q1<c |S§G(t) (x,q) —
SZ/G(t) (z,q)| < €/2, and moreover,
sup 1S40 V(L 2) = SOV (b))l <
r|xCo

in view of Lemma[3.4] (i). Therefore (3.32) holds. O

[NCRNe)
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We proceed to show the existence of a solution to the GMFG equations (3.13) and (3.13))
in terms of {(V', pua(+))|a € [0, 1]}. For ug € Mg 17, denote the mapping

((boc)ae[O,l] = F(/LG('))a

where the left hand side is given by (3.22) as the set of best responses with respect to
pa(-). Next, we combine (¢ )ac(o,1] With g () to determine the distribution m,, of the
closed-loop state process

dze (t) = f[xa(t)v ¢oz(tu xoz(t)lﬂG('))? MG(t); ga]dt + odw, (t),

where z,,(0) has distribution pF. The choice of the Brownian motion for x,, is immaterial.
For m,, above, denote the mapping from Mo 7} to Mg :

~

(Ma)acpo) = I'(ua(:)).
Define the set
Mgl = f(M[QT]) C Mg

Now the existence analysis may be formulated as the problem of finding a fixed point of
the form

(3.33) meg = I' o Marg(mg),
in case mg € M$!. Note that Marg(me) = {(Marg,(mq))aco,1],0 < t < T}

Remark 3.6. The fixed point problem requires m¢ to be from the subset Mgl of Mg
If one simply looks for mg € M, the resulting pe(-) = Marg(mg) lacks required
properties such as Holder continuity in (C2), and this will cause difficulties in establishing
Lemma[3.3]for the HIB equation.

Lemma 3.7. Under (H1)-(H6), the following assertions hold:

(i) M$! ¢ M§°.

(i) For any mg € M$1, pg () = Marg(mg) € Mo, 7).

(iil) The best response ¢q (t, x| (+)) with pe(+) given in (ii) is Lipschitz continuous in
, uniformly with respect to o € [0, 1] and mg € MG

Proof. (i) and (ii) For m¢g € M1, there exists uj; € Mo, 1) such that mg = f(u’c())
To estimate Dy (mg, ma) and W1 (ua(t), pa(t)), let z, and x4 be state processes gener-
ated by (3.10) with p;, the same initial state and Brownian motion under the control laws
da(t, x| (+)) and ¢4 (¢, z|pg (), respectively. Then Dr(ma, ma) < Esup,<p |zq(t)—
25 (t)] and W1 (pa (t), pa(t)) < Elxg(t) — z4(t)|. Fixing &, we have N

(3.34) |a(t) — za(t)| S/O |F2a(s), dal(s, za($)luG(-)): e (5); gl

— flza(s), als, xal(s)luc (), ne(s); gallds.

Denote

01 = [folza(s), dals, va(s)lua (), ta(s)] = folra(s), dal
g = |f[x5t(8)7¢@(va@(8)|ﬂb('))v/J'/G(S);ga] - f ZC@(S),¢@(S,.’L‘@(S)|/L/C;(')),/L/G(S);g@]|.

“CD
K
Q1
—~
VA
=
t\
Q
—~
~
~—
=
Q1
VA
=
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Then by (3.34) and the Lipschitz continuity in z of ¢, in Lemma[3.3](ii), we obtain
¢
(335)  |wa(t) — za(t)] < Cy / ((s) — wa(s)|ds
0

+ G2 /0 {l¢a(s, za(s)lne() = dals, xa(s)lug ()] + d1(s) + d2(s) }ds,

where C'y depends only on the Lipschitz constants of fy, f; and C; does not change with a
for the fixed pu;. Since Wi (u,(s), u5(s)) — 0asa — &, by (H2) Ed1(s) — Oas v — av.
By (H5), we have Fd2(s) — 0 as o — a. Then using Lemma[3.5]and boundedness of the
integrand below, we obtain

T
i [ {16006, 2a(0)60) = a7+ 51(6) + da(s) s =0.
« @ O
By Gronwall’s lemma and (3.33)), it follows that
(3.36) lim E sup |zq(t) —za(t)] =0.

a—a 0<t<T
Subsequently, as & — @&, we obtain Dy (m,,ms) — 0, which implies (i); in addition,
Wi(pa(t), pa(t)) — 0, which verifies condition (C1) of Mg 7 for pug. Since each m,,
is the distribution of z,,, for uc(-) we take the Holder parameter n = 1/2 and a constant
C}, independent of i for (C2). So (ii) holds.

(iii) Due to the choice of i and C}, for p(+) in (ii), we may select a fixed constant C5
in (3.26), which does not change with (a, ug(+)). Subsequently the upper bound Cp in
(3.28) for |V,2,| does not change with « € [0, 1], ug(+) € Marg(f(./\/l[o);p])). This ensures
a uniform bound for the Lipschitz constant for x in ¢,,. (|

We introduce the sensitivity condition.
(H7) For mq, mg € M$! = I'(M [0,7])» there exists a constant c; such that

(3.37) Sup [a(t, 2lpa () - Pa(t, 2lfic ()| < crd(me, me),

where the set of control laws {¢, (¢, z|uc(-)), @ € [0,1]} (resp., {¢a(t, z|fic(-)),a €
[0,1]}) is determined by use of ug = Marg(mg) (resp., i = Marg(m)) in the optimal
control problem specified by (3.10) and (3.12) with the graphon section g,.
Assumption (H7) is a generalization from the finite type model in [25] where an illus-
tration via a linear model is presented. Related sensitivity conditions are studied in [28].
Let (¢a)ac(o,1] in B.22) be applied by all agents, where i (-) € Mg ). We consider
the following generalized McKean-Vlasov equation

(338) dzq (t) = f[xa (t)v ¢oz (ta Lo (t)|MG)7 L€ (t); ga]dt + odwg (t),

where z,,(0) is given with distribution pf. For this equation, v is part of the solution.
If vg is determined, we have a unique solution z,, on [0, T] which further determines its
law as the measure m,, on (Cr, Fr). Note that m,, does not depend on the choice of the
standard Brownian motion w,. We look for v € M[O,T] to satisfy the condition:

(3.39) Marg,(mq) = va(t), Va €[0,1], t €[0,T],
i.e., vo(t) is the law of x, (¢) for all «, t (and we say (zq)o<a<1 i8S consistent with v).

Lemma 3.8. Assume (H1)—(H6). For the best response control law ¢ (t, zo|pc(+)) in
B22), where ug(-) € Mo, 1), there exists a unique vg(-) for (B38) satisfying (3.39).
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Proof. In order to solve (24, vg) in (3.38), we specify the law of the process z,, instead
of just its marginal v, (¢). This extends the fixed point idea for treating standard McKean-
Vlasov equations [41]].

For (ma)acp,1] € M$? , we determine v, according to v} (t) = Marg,(mq ), which
is used in (3.38) by taking v = v, to solve z,, on [0, 7). Let m2®" denote the law of z,.
It in general does not satisfy Marg,(mbi®") = v, (t) for all ¢t. Denote the mapping

(Mma™)acio1) = Pugo (Ma)acio.1)-

By (H5) and Lemma[3.3] @Mgo is a mapping from M S to itself. Similarly, from (Ma)aclo,1] €
M$0 we determine 7, for (3.38) and solve Z,, with its law m2°". Denote

(me™)aclo1] = ¢Mgﬂ((ma)ae[o,1])-

If h(z,y) is a bounded Lipschitz continuous function with |h(z, y) — h(Z, §)| < C1|z—
Z| + Ca(ly — y| A 1), we have

| [ hwgtamwitdnds - [ e pgta st ds)as
<Cile = al +swp | [ w@ypwi(edy) - [ @ pvie.d)

=Cilz — |+ s%p ‘ /CT h(Z, X¢(w))dmga(w) — / h(:f,Xt(w))dmﬁ(w)‘

Cr

<Cilz —z|+ Cq sup/ (| Xt (w) — X¢(@)] A 1)dmp(w, @),
ﬁ CpxCr

where X is the canonical process, w,w € Cr, and mg is any coupling of mg and mg.
Hence

| [ #ewgtanpwhie.anas — [ 1ie.pg(a, e agas
(3.40) < Cil|z — Z| + Cysup D¢ (mg, mg).
B

By (H2), (H3), the uniform Lipschitz continuity of ¢, in x by Lemma 3.3 (ii), and
(3.40), we obtain

|f[xa; ¢a(t7x0¢|ﬂc)a Vé’(t)vgﬂt] - f[ja; ¢O¢(taja|,uG)7Vé(t)7ga]|
<Ci(|xa — Ta| A1) + Co sgp Dy(mg, mg).

Hence by (3.38),
¢
sup |z (8) — ZTa(s)] < 01/ |Za(s) — Za(s)| A lds
0

s<t
t
+Cg/ sup |Ds(mg, mg)|ds.
0o B

Therefore, by Gronwall’s lemma,

t
Sup |z (s) — Ta(s)| A1 < C4/ sup |Ds(mg, mg)|ds,
s<t 0o B
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which combined with the definition of the Wasserstein metric Dy (-, -) implies that
t
(3.41) s%p | De(mp™, mp™)| < Cy /0 sgp |Ds(mg,mga)|ds.
ko

Go
M7z

(mg),k > 1} is a Cauchy sequence,

By iterating (3.41) as in [41] p. 174], we can show that for a sufficiently large ko, ¢

and we obtain a unique fixed point mg; for @pygo. Then we obtain a solution of (B38) by
taking v, (t) = Marg,(m},). If there are two different solutions with vg # v(,, we can

derive a contradiction by using uniqueness of the fixed point of @McT;o. O

is a contraction. We can further show that {&

Now we consider two sets of best response control laws (¢ (t, Ta|iG))aco,1) and

(Pa(t; zaliic))aco,1], Where pg = Marg(mg), fic = Marg(mg) for mg, ma € Mg!
(then clearly pi, fic € Mg 7)), and use Lemma[3.8]to solve (z, v¢) and (z),, 7g) from
the generalized MV-SDEs

(3.42) dzo = f[Ta, Palt, Taluc), va(t); galdt + odwa(t),

(3.43) dal, = flal, ba(t, h|ac), 7 (1); galdt + odwq (t),

where 2 (0) = z,(0) is given. Let m™2V (resp., m™2v) denote the law of x,, (resp., ).
The following lemma is a generalization of [25, Lemma 9] to the graphon network case.

Lemma 3.9. For 3.42) and (343) there exists a constant co independent of (mg,mg)
such that

sup DT(mngmgW) < ¢z sup |¢a(t7x|ﬂG(')) - Q_Sa(tvx|ﬂG('))|'

t,x,a
Proof. For (3.42)-(3.43)), denote

Ay = Flza(s), a8, Ta(s)|1na), va () gal — Fl2h(s), a(s, 24 (s)|Ec), 7 (s); gal-
We have

¢
(3.44) To(t) — 2l () = / Agds.
0

Noting v, (t) = Marg, (m™) and 7, (t) = Marg, (m2"), we have

|A] <[ F[2al(s), $als, 2a(s)l16), va(); ga] = [l (), Sals, ¥ (s) 1) 76 (5); gall

+ |f[.%':1(8),¢a(8,$;(8)|uc),ﬂg(8);ga] - f[x:x(s)véa(svx:x(s)lﬂc)vDG(S)QQaH
<Ci|za(s) — 2, (s)| + Co stép Dy(mpg",mg")

(3.45) +Cs StuP |¢a(t7 $|/Lg()) - éa(tv $|ﬂG())|7

where C7, Cy and C3 do not depend on (o, m¢, m¢). The difference term on the first line
is estimated by the method in (3.40). We have used the fact that ¢, is uniformly Lipschitz
in z by Lemmal[3.7] (iii). Therefore, by (3.44)-(3.43),
t
|xo () — 2L, (1) S/ {Cﬂxa(s) — 2! (s)| + Ca sup Dy(mB™,mpEY)|ds
0 B

+ Cstsup [t 2lpua () a(t, 2lfic())].
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By Gronwall’s lemma, we obtain

t
sup |za(s) — 2L, (s)| A1 < ecltCQ/ sup Dg(mjg", mg")ds
0<s<t 0o 8

+ et suplda(t zluc () = falt 2liic (),
which again by the definition of the metric D;(-, -) leads to

t
(3.46)  sup Dy(mg", my) <e“'Cy / sup Dy (mg", mg")ds
a 0 o

(03

+ e 05t sup [ga(t, zlpc () — dalt, zlic())].

t,x,o

The lemma follows from applying Gronwall’s lemma to (3.46). O

3.4. Existence Theorem. We state the main result on the existence and uniqueness of
solutions to the GMFG equation system. We introduce a contraction condition:

(H8) cica < 1, where ¢, is the constant in the sensitivity condition (H7) and c3 is
specified in Lemma[3.9]

Remark 3.10. By SDE estimates, one can obtain refined bound information on ca. When
the coupling effect is weak or 7" is small, a small value for c5 can be obtained.

Remark 3.11. For linear models, a verification of the contraction condition can be done
under reasonable model parameters, as in [25]].

Theorem 3.12. Under (H1)-(H8), there exists a unique solution (V< pio(-))aco,1] to the
GMFG equations (3.13) and (3.13), which (i) gives the feedback control best response
(BR) strategy o(t, zo|1c(+); 9o ) depending only upon the agent’s state and the ensemble
ue of local mean fields (i.e. (x4, pc)), and (ii) generates a Nash equilibrium.

Proof. Step 1 — We return to the fixed point equation (3.33)), which is redisplayed below:
(3.47) meg = I' o Marg(mg),

where ma = (ma)acioa) € M$'. For mg € M, the Holder continuity in ¢ of
the regenerated pg(-) = Marg(mg) can be checked by elementary SDE estimates by
adapting the proof of [25/ Lemma 7].

Step 2 — Take a general mg € M$! to determine i = Marg(me) and ¢o (t, T |puc(+)).
When m¢g € M$! is used, we determine fig and ¢, (¢, 2o |fic(+)). Once the set of strate-
gies (¢a)aco,1) is applied to the generalized MV equation (3.38), by Lemma 3.8, we may
solve for (x4, vc(+)) such that z,, has the law m2°Y and Marg, (m2%) = v, (t). This is
done in parallel for m¢ to generate m,°". We accordingly determine mg™ and mgr™.

Step 3 — By (3.37) and Lemma[3.9] we obtain

W = new

sup Dr(mg™, mg™) < erczd(me, ma),
«

which implies
dime™,me") < cicad(mea, ma).

Based on the above contraction property, we construct a Cauchy sequence in the complete
metric space M by iterating with m¢ and establish existence of a solution to the GMFG
equation system. To show uniqueness, suppose mq and g are two fixed points to (3.47).
We obtain d(m¢, ma) < c1cad(ma, mea), which implies mg = mg.

The Nash equilibrium property follows from the best response property of ¢, for a
given vertex . O
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3.5. An Example on Lipschitz feedback. The main analysis in Section B3 relies on (H4)
to ensure Lipschitz feedback. We provide a concrete model to check this assumption.

Example 3.13. The dynamics and cost have
fO(I,qu):fO(I,y)u, f(xauvy):f(xvy)ua
ZO(‘Tu u, y) = ll ((E, y) + 12(‘T7 y)u27 l((E, u, y) = 13(.’1,', y) + l4(.’II, y)u27

where z,y € Rand u € U = [a, b]. The functions fo, f, l1, l2, I3, l4 satisfy (H1)-(H3),
and there exists ¢y > 0 such that [, l4 > cg for all x, y.

Given vg € C([0,1],P1(R)), we check the minimizer of
Se (x,q) = argmin{q(folz, vl + flz, va; gal)u + (o[, va] + lalw, va; ga]Ju?},
where x, q € R.

Proposition 3.14. Given any compact interval T, S¥¢ (x, q) in Example[3.13lis a singleton
and Lipschitz continuous in (z,q), where x € R and q € Z, uniformly with respect to

(ve, ).

Proof. Consider the function ®(u) = u? — 2su, where u € U and s is a parameter. Its
minimum is attained at the unique point

a if s<a,
4=0(s)=<s if a<s<b,
b if s>0b.
Denote the function

_ fO[Ia,uoc] + f[xa VG;ga]

ha,ve (z) = 2([2[;57 Moz] + l4[$, 1 ZeX ga]) '

By elementary estimates we can show
lhave () = have (Y)] < Colz —yl,
where Cy does not depend on (v¢, ). We have
S¥e(z,q) = arg rnuin(u2 —2qhav (T)u)
= O(qha,v (2))-
It is clear that SX¢(z, g) is a continuous function of (z, q). For (x;,¢;) € R x Z,i = 1,2,

|SZG (€C1,Q1) - SZG($27Q2)|
< Lip(8)|qlhoz,l/c (xl) — @2ha,ve (x2)|

< Lip(©) (|a1 — g2l up [ ()| + Colar = w2l ).

In fact, the Lipschitz constant Lip(©) = 1. Note that there exists a fixed constant C' such
that |hq, . (2)| < C for all o, v. This proves the proposition. O

If (H1)-(H3) and (H5) hold for Example[3.13| they further imply (H4) and (H6) so that
the best response is Lipschitz continuous in x by Lemma[3.3]and Proposition 3,14
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4. PERFORMANCE ANALYSIS

In the MFG case it is shown [25] [8]] that the joint strategy {u?(t) = @, (¢, x;(t)|p.),1 <
i < N} yields an e-Nash equilibrium, i.e. for all € > 0, there exists N (e) such that for all
N > N{e)
(4.1) T (ufulg) —e < anf IV (i) <IN (ufuly).
This form of approximate Nash equilibrium is a principal result of the MFG analyses in
the sequence [25} 8} 40] and in many other studies. The importance of is that it states
that the cost function of any agent in a finite population can be reduced by at most € if it
changes unilaterally from the infinite population MFG feedback law while all other agents
remain with the infinite population based control strategies. The main result of this section
is that the same property holds for GMFG systems.

Throughout this section, let pg(-) be solved from the GMFG equations (3.13) and
G.I5.

4.1. The e-Nash Equilibrium. The analysis of GMFG systems as limits of finite objects
necessarily involves the consideration of graph limits and double limits in population and
graph order. A corresponding set of assumptions is given below.

(H9) M}, — oo and miny<;< s, |Ci] = o0 as k — oo.

(H10) All agents have i.i.d. initial states with distribution 4 and F|z;(0)| < Co.

Remark 4.1. (H10) is a simplifying assumption to keep further notation light. It may be
generalized to o dependent initial distributions.

(H11) The sequence {G; 1 < k < oo} and the graphon limit satisfy

Lgbe [ st =0
M, 9eic; sel, g1r.B

where I7* is the midpoint of the subinterval I; € {I1, ..., I, } of length 1/ M.

M,

lim max E
k—oo 1 c
j=1

Remark 4.2. Assumption (H11) specifies the nature of the approximation error between
g for the finite graph and the graphon function g.

The next proposition shows that under (HS5) and (H11), the limit g is well determined.

Proposition 4.3. For the given sequence {g*, k > 1} under (H9), if there exists a graphon
g satisfying (HS) and (H11), then it is unique.

Proof. Assume there is another graphon ¢ satisfying (HS) and (H11). Fix any € > 0 and
any S x T C [0,1] x [0, 1]. By Lemma[A.2] there exists a sufficiently large ko (depending
on ¢, S and 7T), such that for both g and g we have

[ @ —owa|<e | [ @ - ey <
SxT SxT
Hence

[ (- sy < 2e.

SxT

Since S x T is arbitrary, we have ||g—§||g < 2e. Since € is arbitrary, we have || g—g||g = 0.
But the cut norm is a norm, so we have g = §.
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For the e-Nash equilibrium analysis, we consider a sequence of games each defined on
a finite graph G,. Recall that there is a total of N = Zl]\i’; |Ci| agents.

Suppose the cluster C(i) of agent .A; corresponds to the subinterval I(:) € {I1,...,In, }.
The agent .A; takes the midpoint I*(7) of the subinterval I(7) and uses the GMFG equations
to determine its control law

(4.2) i; = p(t, zilpc () 9r+)), 1 <1 <N,

which we simply write as ¢(t, 74, g7-(;)). Denote the resulting state process by &, 1 <
7 < N. Recall that

fo(@ulY,C(i Z fla z),

1 k 1 N N N
ka( iUy agc(z ZMZQC(Z)CLWZJC(% ) Uy an )7
=1 je€C;
where the superscript IV is added to indicate the population size. The closed-loop system
of N agents on the finite graph G5, under the set of strategies (4.2)) is given by

SystemA: djfv :fO(‘%fvv(p(tujfvugl*(z))vc(z))dt
4.3) + fo (&)@t 87, 91-(i))s 96y dt + odw;,

where 1 < i < N and ¥ (0) = 2 (0). Note that g’g(i) appears in f¢, as determined by
the finite population system dynamics. We state the following main result.

Theorem 4.4. (e-Nash equilibrium) Assume (H1)—-(H11) hold. Then when the strategies
determined by the GMFG equations (3.13) and 3.13) are applied to a sequence of
finite graph systems {Gy;1 < k < oo}, the e-Nash equilibrium property holds where
€ — 0 as k — oo, and where the unilateral agent A; uses a centralized Lipschitz feedback
strategy ¥ (t, x;, x_;), where x_; denotes the set of states of all other agents.

We first explain the basic idea for the demonstration of the e-Nash equilibrium property.
Suppose all other players, except agent A,, employ the control strategies based on the
GMFG equation system. When .4, employs a different strategy, the resulting change in
its performance can be measured using a limiting stochastic control problem where both
the system dynamics and the cost are subject to small perturbation due to the mean field
approximation of the effects of all other agents. The proof is technical and preceded by
some lemmas.

4.2. Proof of Theorem 4.4 Suppose x is determined from a general feedback control
law v instead of the GMFG best response. With the exception of agent 4, with its
umlateral strategy, all other agents A;, j # 1, still have strategies determined by (£.2). We
introduce the system:

d:CfV = fO( i\/’ y,C(L))dt—l-ka(ZCfv, ivagc( ))dt—i-O'de,
= fo(z}’, o(t, 2, gr-(;5), C(j))
)

+ka( ;V#P(taiﬂ;-vvgl*(;)
Jj#FL, 1<j<N.

dt
(4.4) System B:
gc(j))dt + odw;,

We note that :CN is affected by the unilateral choice of strategy by .4, due to the coupling
in fo and fg, . For this reason, a: differs from IN in (4.3) although the control law of
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Aj, j # ¢, remains the same. The central task is to estimate by how much A, can reduce
its cost.

To facilitate the performance estimate in System B, we introduce two auxiliary systems
below. Consider

SyStem C: dyzN: /fo(yzNa(p(tvyszgI*(z))aZ)myiv(dz)dt
R

M,
1 1
+Mzglc€@)cl@ Z/f(yiNv<P(tayiNagI*(i))vz)my;\’(dz)dt
=1 jec; /R
+ odw;

= /l%fO(yZNa(p(tvyszgI*(z))aZ)myiv(dz)dt

M,
1
+Mzglc€(i)cl/f(yiNv<P(t,yfvagl*(i))vz)mfv(tvdz)dt
=1
4.5) + odw;,

where 1 < i < N and ¥ (0) = 2¥(0), and myn ) denotes the law of yJN(t) Each
Brownian motion w; is the same as in (@3)). The second equality holds since all processes
in cluster C; have the same distribution denoted by m;" (¢, dz) at time ¢. It is clear that the
processes y1" , ...,y are independent, and {y,\, j € C;} are i.i.d. for any given .

Next we introduce

where 1 < i < N and y2°(0) = 2V (0). Here w; is the same as in (4.3). The process
y$° is generated by the closed-loop dynamics for an agent at the node I*(4) associated
with the cluster C(7) using the GMFG based control law (&.2) while situated in an infinite
population represented by the ensemble p(+) of local mean fields. We view (@.6) as an
instance of the generic equation (3.10) under the control law (.2). By Theorem
y°(t) has the law fir«(;) (t). Note that if j € C(i), y¢° and y3° are two processes of the
same distribution.

We shall denote the A to C' system deviation by €;_y, the C to D deviation by €3 » and
the (non-unilateral agent) B to D deviation by €3 . Specifically, we set

ein = sup ElZ)(t) -y ()],  ean = sup Ely(t) — y° (1),
i<N,t i<N,t

€3,N = sup E|$§V(t) - y;)o(t”a
uN tu£G<N

where 21 is given by @.4).
Lemma 4.5. The SDE system @.3) has a unique solution (yi, ..., y%N).

Proof. The proof is similar to [25, Theorem 6]. O

Lemma 4.6. ¢; y — 0as N — oo (dueto k — 00).
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Proof. We write

4.7) EN () =y (1) =
jGC (i)
+/ izgz g 2 uls)ds
o M =1 v llCll JEC ’
where

57?](8) = fo(j;iv7 ( S,Z; 79[ (’L)) ;V /fO yz ) (S Y; 79]*(1)) )m N(S)(dZ)
gl](s) = f(i'iva(p( S, T; 79]*(1)) ;V / f yz , P (S yz y g1+ (1)) )m N(s)(d'z)
We check the second line of (@.7)) first. Write

&j(s) :f(jiva@( 8, T agI*(l)) ;V) f(yivvw(svyivvgl*(z))vij)

+f(yzNaSD(SayzNagI*(z))vygN)_/Rf(yszw(svyszgl*(z))aZ)myjN(s)(dZ)

Denote
G =W o(s,u g1y, y ) _/Rf(yiNu30(87yiNugI*(i))az)my;V(s)(dz)-

By the Lipschitz conditions (H2), (H3) and the best response’s uniform Lipschitz continu-
ity in z by Lemma[3.7] we obtain

1 &, 1
‘E > 9w @ Z &‘J‘(S)‘
=1 ]
§C|jfv - yz ZQC (@)Ci o |C | Z |

JEC
1 & 1
+ ‘ﬁzgw)&m > G-
k= jec

Then by independence of yfv ,1 <3 <N,

|gc z)cl
<C Z > SaE
=1 j€C

C
< — .
~ M min; |C]

1 &, 1
E‘ﬁk D g 2 G|
=1 JjeC;
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'[I‘lhe estimate for le)\ > jec &7 (s) can be obtained similarly. Now it follows from @.7)
that

t

BN () -y ()] < C / Bl (s) -y (s)lds
0

+£§Eg§(i>cz Z/tEmN(s)_ N(S)|d5

My &= e & Jo T T

J€C;

c /t N N Cy C
+ = Bz (s) —y;' (s)|ds + +

|C(z)|j§(i) 0 145 (8) ~ 55 )] VM ming |G| /|C(D)]

Cs

/ming [C;]’

where AN (t) = max;<;<n E|2Y (t) — y (t)|. The above further implies

t
< Cg/ AN(s)ds +
0

t
C3
AN(@) < C / AN (s)ds + ———.
2 0 y/min; |C;]
The lemma follows from (H9) and Gronwall’s lemma. O

Lemma 4.7. We have e y — 0as N — oo.

Proof. For System D and 1 <i < N, y7°(t) has the law i1« (;)(t) and we write
R

1
4 / / 2 olt 4 g1+ ) 2)9 (I (1), B ¢, d=)d dt.
0 R

Set
1
/0/Rf(yfoaSp(tayfoagl*(i))aZ)Q(I*(i),ﬁ)uﬂ(t7dz)d6
M,
— 0 0 i), I* . , ,d d
;/ﬁell/Rf(yz ot Y, greay)s 2)g(I*(4), B)us (t, dz)dB
=&+ G
where

My,
P = I*(i), B)d o0 0 G (t.d
d=3 /ﬂ o), 0)ds / P2 (5% 91 o), 2z (1, d2),

My,
Cllc = Z C/,Lcla
=1
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We rewrite

M k
51’ _Zkgc(i)Cz Flyee (t 00 ) Z) L (t dZ)
k — M, & Yy »P\Y; 5 g3 ), 2) L,
=1

My,
+>
=1
=&+ &k

By (H11) and boundedness of f, we have limy_, o sup; , maxi<i<n |§}€2| = 0 so that

/ g(f*(i),ﬂ)dﬂ—gc(—zl /f Y p(t yse, g1 ))» 2y (t, dz)
BeL

(4.10) hm max/ B¢ 5(t)]|dt = 0.

Now (4.8) may be rewritten in the form
dy;® = /R Joi oty g1-(i)), 2 pir- iy (¢, dz)dt + odw;

+ (Efr + Ehp + Gt
In view of (@.3), we have

Yo () — " (t)

t
:/ /R[fo(yfoa@(Say'?ovgl*(z))aZ)ﬂ]*(z)(svd‘z)_fo(yz]va@(Sayz]vag]*(l))aZ)myiv(s)(dz)]ds
0
1 My, . t
+ o ] '?07 S, ;_)O, *(3) )y % *SadZdS
Mkl;gc(”cl/o /Rf(y 0(s, 95, 91-(i)): 2z (s, dz)

My, .
1 k // N N N

- E 9ei Fi',0(s,yi, 9r+5)), 2)my (s,dz)ds
M, i C(i)C o Jr ( ( I ()) ymy ( )

t
+ [ €+ s
0
Denote

Aus) =| [ 1ol 1), (5.)

- [ 0 ot ) 2yl s )]
It follows that

Aats) <| [ £ elosaf 1), 2D 5.2)
R
= [ ol 1), D (5,
+‘/Rf(yzN,SD(S,yZN,g]*(z)),Z)/JJZ*(S,dZ)

_/Rf(yzNa@(SayiNagI*(i))vz)m{V(Sadz)
= Am(s) =+ A»L'IQ(S).
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By the Lipschitz condition (H2), for any fixed y € R, we have
‘ / f(ya @(Sa Y, gl*(i))a Z)/LIL* (Sv dZ) - / f(ya @(Sa Y, gl*(z))v Z)m{v(sv dZ)
R R

=Ef(y,0(5,9,910)), ¥5°) — Ef (y, (5,5, 91-(1)): 47"
<CE|y®(s) =y} (s)],

where j € C; and we have used the fact that y°(¢) in (.8) has the law ji7+(;)(t) and that
ij (t) has the law m}" (t). Consequently, we have for j € C;, with probability one,

4.11) Aiia(s) < CEly5°(s) — y (s)]-
We estimate A using the Lipschitz property of f and @7« (;). Now it follows that
BAu(s) < CEly*(s) — yi" ()] + CEly(s) —y; ()|, j€Cu

We similarly estimate the difference term involving fy. Therefore,

t t
Bl (®) -0 < [ B~ las+ [ B(gal + I6ids
0 0
1 My, t
+— gt / EA;ds
Mk ;gc( )C 0 !

t t
<01 [ max By~ y¥lds + [ B(gh| + Icids
o 0
C My, . t N
+ — . max Ely° — y:' |ds
M, ;gc(z)cl/o ¢ |y] Y; |

t t
<20y [ max Bl - ds+ [ (gl +1G)ds.
o 0
Consequently,
t t
max Bl (0) — o (0] < 2Cs | max By = yi¥|ds + max [ E(€ | + 16
1 O 1 1 0

By Gronwall’s lemma,

T
412)  sup max By () — y¥ (1) < Cmax / E(€L 5] + ¢ )ds.
o<t<T i Jo

To estimate (4.9), by (H2) we derive

Ging = [ 107 olt. 527 91-0), 2ot d2) = i 1.2

:’/I;Z[f(y?ovw(tay?ovgl*(i))azl)_f(y;’)oa@(tvy;’)ovgl*(i))vZ?)]ﬁ(dzlvdZQ)

SO/ |Zl — 22|:y\(d21, dZQ),
R2

where the probability measure 7 is any coupling of 115 (t) and 17+ (t) and C'is the Lipschitz
constant of f. Since the coupling 7 is arbitrary, we have C,ilﬁ < CWi(pg(t), por-gy (t))-
Denote 0}, = sup;< s, SUPgey, t<1 Wi(pp(t), ur+(t)). Then with probability one,

G (t)| < O /My,
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in view of (@9), and therefore max; [(}.(t)| < Cé%. Note that §) — 0 as k — oo by
Lemma[ATl Recalling (d10), the right hand side of (#.12)) tends to 0 as k — co. This

completes the proof. ]
Lemma 4.8. limy_,o sup, ;< y E|2) — 35| = 0.
Proof. The lemma follows from Lemmas 4.6l and [4.7] O
Lemma 4.9. limy_,. €35 = 0.
Proof. For (&,...,2Y) in System A and (z¥',...,2Y) in System B, we compare the
SDEs of :ﬁjv and 2 ; and apply Gronwall’s lemma to obtain
C

SIS Sy

Next by Lemmal4.8] we obtain the desired estimate. O

Consider the limiting optimal control problem with dynamics and cost

(4.13) de® = [l u,, 6 gr- (o)) dt + oduw,,

T
(4.14) Jr= E/ [z, e, pa; gre()dt,
0

where 22°(0) = 2V (0) and pc(+) is given by the GMFG equation system.

To establish the e-Nash equilibrium property, the cost of agent A, within the N agents
can be written using the mean field limit dynamics and cost, both involving ue (), up to
a small error term that can be bounded uniformly with respect to u”, while A, chooses
its control u. Tt can further have little improvement due to the best response property of
@(t, z.|pna(-); gr+(,)) within the mean field limit. We rewrite the first equation in (@.4) of
System B as

(4.15) dz) = flal ul, s gr-oldt + (65, (8) + 65(t))dt + odw,,

where 5]; fO( L ) (L)> - fO[Iivaufvv,ul*(L)] and 6f - ka( Ty, agc( ))
FlaN uN | ug; 91*(L)]~ Similarly the cost of A4, in System B is written as

L

T~
J5V<uiV>—E/O (AN i gre o] + 58 (8) + 85 (1))de

where we have 67 = lo(z, ulY, C(v))—lo[z) , ul, pr-()) and 6F = I, (Y, fv,gc())

zN,ul, pe; gr- (vy]- Note that all other agents have applied the control laws gp(t, xj 91 (5))»
j # t. So we only indicate u}¥ within JN. Itis clear that 6% , 67, 67, and 0} are all affected
by the control law ul. Let y§° = (y°(t), ...,y (t)) for System D. Our next step is to
derive a uniform upper bounded for F|§ ’f“| and E|6F| with respect to ul¥

Define the two random variables

A]]%(Z u yt - ch (e |C| Z f Z u y_] f[Z,U7MG(t);g]*(L)],
Jjet

Aéc(z u yt - ch (Ve |C | Z l(Z,u,y;)o(t)) - l[zvua,uG(t);gl*(L)]v
JEC

where z € R and u € U are deterministic and fixed.
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Lemma 4.10. We have
(4.16) lim sup E(|A%(z,u,y7°)[* + | Af (2, u, y5°)?) = 0.

k—00 z u,t

Proof. As in the proof of Lemma [d.7] we approximate ug, 3 € [0,1], by using a finite
number of points of 3, and next expand the two quadratic terms in (.16). The estimate is
carried out using (H11) and Lemmal[A_1l O

Lemma 4.11. For any given constant C, > 0 and any € € (0,1),
Jim inf P(O(zwel-c..cxv{lAF(z w47 < €}) =1,
Jim inf P(O (e wel-c..c.xv {7 (2w, 47 < €) =1.

Proof. We establish the first limit, and may deal with the second one in the same way.
Note that the event

(4.17) Efc. = Newyel—c..cxull A%z, u, )] < €}

is well defined since A’} is continuous in (z,u) and the intersection may be equivalently
expressed using only a countable number of values of (z,u) in [-C,, C.] x U.

Take any € € (0,1). By (H2) and (H3), we can find §. > 0 such that |A’;(z, u, Yys°) —
A’}(z’, u',y®)| < €/2 whenever |z — 2| + |u — /| < J.. For the selected ., we can
find a fixed pg and (27,u/) € [~C,,C.] x U, j = 1,...,po such that for any (z,u) €
[~C.,C.] x U, there exists some jg ensuring |z — 27| + |u — u/°| < §..

By Lemma[d. 10 and Markov’s inequality, for any > 0, there exists K ;,, such that for
all k > K ,, we have

(4.18) P{|A%(=7 07, y°) < €/2}) > 1—6/po, Vi, t.

Let £ denote the event {|A% (27, u/,y°)| < ¢/2}. By @I8), P(N2,EF) > 1 — ¢ for
k> Ksp,. Nowifw € EF = ﬁ?ozlé'f, k > K; p,, then for any (z,u) € [-C;,C;] x
U, we have |A%(z,u,y°)| < e Hence EF C &} . It follows that for all k > Kj,,,

P(é’}“cz) > 1— 4. Since § € (0,1) is arbitrary and K5 ,, does not depend on ¢, the first
limit follows. 0

Lemma 4.12. We have
lim sup E(|AR (2 (1), u (1), y°)| + 147 (=) (£), ul (1), y7°)]) = 0.

k—o0 t,uN

Proof. Fix any € € (0,1). By (H1) and (H2) we can find a sufficiently large C., indepen-
dent of (k, V), such that for all uV (-),

P( sup |zN(t)] < CZ) >1-—=e
0<t<T
Denote £, = {supy<,<7 |z} (t)| < C.}. By Lemma[L.T1l for the above € and £}, given
by @.17), there exists K independent of ¢ such that for all k¥ > K,
P(Efo) >1—e

Now ifw € Ezﬁc‘fjlfcz, then |A’;(a:fv(t), ulN (t), y®°)| < e. We have P(Emﬂé'}ccz) > 1—2e,
and so
P(|AF (2 (), w (1), 9°)] < €) > P(E: N Efe.) 21— 2e.

L
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It follows that for all £ > K|,
E|A} (@Y (1), 0 (£), y7°)| < € + 2¢C,
where C' does not depend on (u” (), t). The bound for A} is similarly obtained. O

Lemma 4.13. We have

lim sup E(|5lf€| +[6F]) = 0.

k— oo t,ul (4

Proof. By Lipschitz continuity of (f, ), we estimate E|5’]f —A;ﬁ (N, uN | y°)| and B|6F —

Ak (zN 4N, y2°)|, and next apply Lemma[E9]to show that they converge to zero as k —
oo. Recalling Lemmal4.12] we complete the proof. O

Lemma 4.14. We have

lim sup E(|6F |+ [57]) = 0.

k—o0 tul ()
Proof. The proof is similar to that of Lemma[4.13]and the details are omitted. (]

Denote
h= sup B(16F |+ 105 | + 105 + 107])-

tul (1)
Lemma 4.15. For any admissible control u™ in System B and J* in @14),
TN () > inf I ) — O,

N

where the constant C' does not depend on v, .

Proof. Take any full state based Lipschitz feedback control u’¥. Tt together with the other
agents’s control laws generates the closed-loop state processes z2' (t),...,zN(¢). Let
ul¥ (t,w) denote the realization as a non-anticipative process. Now we take %, = u’¥ (t, w)

in @.13) and let #° be the resulting state process. It is clear from (£.14) that
(4.19) J*(,) > inf J* (u,).

Recalling (£.13) and applying Gronwall’s lemma to estimate the difference #>° — 2V, we

can show there exists C independent of u™¥ such that |JN (uN) — J*(u,)| < C’e’;l, which
combined with (4.19) completes the proof.

Lemma 4.16. Let ;- (,) = p(t,x, gr+(,)) be the GMFG based control law (4.2). We have
JLN(QD]*(L)) < inf JL*(UL) =+ Cel;l.

Proof. Let @r«(,) be applied to the two systems (£.13) and @I3). We further use Gron-

wall’s lemma to estimate E|z° — xY|. We obtain [JN (¢r«(,)) — J(or-(1)] < Ce?l.

Note that .J;* (¢7(,)) = infy, J;"(u,). This completes the proof. O

Proof of Theoremd.4, 1t follows from Lemmas[4.13] 4.14] (4. T3] and (4. 16 O
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5. THE LQ CASE

This section considers a special class of linear-quadratic-Gaussian (LQG) GMFG mod-
els. Consider the graph G}, with vertices Vi, = {1, ..., M} } and graph adjacency matrix
g" = [gj?l]. For agent .4; in subpopulation cluster C, situated at node g, let the intra- and
inter-cluster coupling terms be denoted by z ; and z;, respectively, where

Z0,i = |C|Z zi = |M|qul|c|zx77 T, Zo,i, zi € R™.

J€C
The dynamics of A; are given by the linear system

where u; € R™* is the control input, w; € R™ is a standard Brownian motion, and A, B,
Dy, D, X are conformally dimensioned matrices. Assume Ex;(0) = x¢ for all .
The individual agent’s cost function takes the form

T
Ji(ug; vi) :E/O [(xZ — I/Z')TQ({EZ' —v)+ u;‘FRuJ dt
+ E[(2:(T) = vi(T))" Qr(x:i(T) — vi(T))], 1<i<N,

where @, Q7 > 0, R > 0, and v; = ~p20,; + yz; + 1 is the process tracked by .4;. Here
n € R™ and 9,7 € R.
In the infinite population and graphon limit case, denote the local mean fRn Tl (dx) at

t for an a-agent situated at vertex « by Z,,, and the graphon weighted mean fol g(a, B)zgdf
by z.. The a-agent’s state equation is given by

dxe = (Azq + DoZo + Dz + Bugy)dt + Xdw,, « € 10,1].

The a-agent’s cost function is

Jo(ta; Va) E/ 1) T Q(z0 — Vo) —i—ugRua}dt
2o (T) = V(1)) Qr(24(T) — va(T))],

where v, = Y0ZTq + V2o + 1.
Consider the Riccati equation

0=1II, + AT, + I, A — II,BR"'B"II, + Q,
where IIT = Qr, and
0=34(t) + (A= BR™'BTI1,)" s (t) + II;(DoZa(t) + Dza(t)) — Qualt),
where s, (T) = —Q1vo(T). The best response for the c-agent is given by
ua(t) = —RIBT [Ty (t) + s4(t)].
Now the mean state process of x, is

fo = (A—BR 'BTII, + Dy)Zo + Dzo — BR™'BTs,, a€[0,1].
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The existence analysis reduces to verifying the existence and uniqueness of solutions
for the equation system

1
(5.1)  Zo=(A—BR'BTIl, + Dy)z, — BR'BTs, + D/ gla, B)z5dB,
0

(52)  $a=—(A—BR'BTIL)"sq + (70Q — I1; Do)z
1
+(Q - 1) /0 gla, B)7adB + Qn,

where Z,(0) = xg and 54(T) = —Qr[y0Za(T) + Wfol g(a, B)zg(T)dp + n].
To analyze (EID—(3.2), let (¢, s) and (¢, s) be the fundamental solution matrix of
&= (A—BR'BTIl, + Dy)x, §=—(A—BR'BTII,)"y

for z(t),y(t) € R". For the special case with Dy = 0, ¥(t,s) = &7 (s,t) holds. We
convert the existence analysis into a fixed point problem. We view Zg(t) = Z(f,t) as a
function of (j3,t). Below we derive an equation for Z,, () by eliminating s, (¢). Denote
the function space D 4 consisting of continuous R™-valued functions on [0, 1] x [0, 7] with
norm ||| = sup, ,|Z(a,t)|. We use | - | to denote the Frobenius norm of a vector or
matrix. Define the operator A as follows: for & € D 4,

(AZ)(a,t) = /Ot &(t, T)BR_lBT{ /;T U(r,T) [("YOQ —II.Dy)Z (e, 7)
+0@-11,0) [ glo 3505, 18] dn
’ 1
0 T)Qr [05(0.T) + [ gl $a(5.7)d5]

t 1
+/0 @(t,T)D/O g(a, B)E (B, r)dBdr.

If (H5) holds, A is from D 4 to itself.
The solution of the LQG GMFG reduces to finding a fixed point & to the equation

Z(a,t) =(A2)(a, t) + D(¢,0)x0

+ /O t &(t,r)BR~ BT [ / ! U (r, 7)Qdr + W (r, T)QT} ndr-

Denote ¢, = max, fol g(a, B)dB. We have the bound for the operator norm:

t T
Al < ¢ap = sup {/ / |¢(t,T)BRilBTW(T, )| - (7@ — I Do|
te[0,T) o Jr

+ ¢4|yQ — I, D|)drdr

+ [ [I.0)BR B, T)Qx - (Pl + €olal) + ey, D .

If cy < 1, A is a contraction and (3.1)—(3.2) has a unique solution.
As an example for illustration, we assume the graphon weighted mean at vertex « arises
from an underlying uniform attachment graphon, and consequently

1
Zo = / (1- max(a,ﬁ))/ zpp(dr)ds, o,p€10,1],
O n



GRAPHON MEAN FIELD GAMES AND THE GMFG EQUATIONS 31

where it is readily verified that the uniform attachment graphon satisfies (HS).

APPENDIX

Lemma A.1. Assume (H1)—(H8). Let o, be the GMFG based best response (&.2) and
o (t) the distribution of the closed-loop process x4(t), o € [0,1], in B.I3) with initial
distribution . Then we have

lir% sup Wy (,Uﬁ (1), Hp= (t*) =0,
=0 |t —tx || B—B*|<r

where t, t* € [0,T] and B3, 5* € [0, 1].

Proof. Step 1. Take any 3, 3* € [0,1]. For ug(-) determined from the GMFG equations
(B.13) and (B.13), define two processes

dys« = flys~, o(t,yp+, 9p*), e gp+ldt + odwg-,
dys = flys: #(t,ys,9p); na; gpldt + odwg-,
where ys-(0) = y5(0) = 2V (0) and the same Brownian motion is used. Then the distri-

butions of ys- (¢) and ys(t) are g~ (t) and pa(t), respectively. We obtain
ys(t) — yp-(t)

(t)
t t 1

:/ A%ﬁ*(s)ds—kf / /Ag_ﬂ*(s,z,)\),uA(s,dz)d)\ds,
0 0o Jo Jr

where

A%,/a*(s):/RfO(yﬂa@(Sayﬁagﬂ)az)ﬂﬁ(sadz)—/Rfo(yﬁ*a@(8796*,96*),Z)Mﬂ*(&dZ),
Ag (5,2, \) = f(ys. ¢(s,98,98) 2)9(B, \)
— flyp=, (s, yp+,98+),2)g(B*, \).

We will simply write uy(s,dz) as px(dz) if the time argument is clear, where X is the
vertex index. Denote 13 g+(s) = |¢(s, yg=, g8) — (S, ys=, g+ )|, where the time argument
s in yg and yg- has been suppressed. It follows that

|AG 5+ (s)] <
‘/Rfo(yﬁaso(sayﬂagﬂ)aZ)uﬂ(sadZ)—/Rfo(yﬁaso(sayﬂagﬂ),Z)uﬂ*(sadZ)‘

+"/Rfo(yﬁu@(Svyﬂugﬁ)uz)ﬂ,@*(sudz)_‘/RfO(yB’WSO(S?yB*?gB*)uZ)M,@*(Sadz)‘

< CElys —yp| + Clys — yp~| + Clo(s,yp,95) — (s, yp=, g5+)
< CElysg — ys+| + Cilys — ys-| + Crp p-(s),

where the second inequality is obtained using (H2), (H3), and the method in (£11)). The
last inequality has used the uniform Lipschitz continuity of ¢g in the space variable (see
Lemma[3.7). It follows that

(A.1) E|AY 5.(s)| < C2Elys(s) — ys=(s)| + CEkg ().
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Next, we have

1
‘/ /Am*(s,z,A)m(dz)dA
0 R

4D <| [ [ 10 5.95.0).2) = Flu 0(0.50950). g 8. N ir(d2)a

+| / / Pl 905 93 98-), g (8, N) — 9(8° Nyua (d2)d|
—If S
‘We have
1
(s) < / / Cllys — ys-| + 15,5-)9(8: Npia (d=)dA

< Cllys — yp-| + £p.5-)(s),
where we have used the Lipschitz property of f and ¢g. Therefore,

(A3) Elt(s) < C(Elys(s) — yp«(s)| + Erg,p=(s)).
For any fixed value yg- (s, w), denote
G 0a) = [ Floe 9(5,05,95°), in(d2).
We have

R S

Hence, by (H5), I4(s) — 0 (w,s)-a.e. as § — [*. Itis clear I,(s) is bounded by
a fixed constant since f is a bounded function. For the fixed 5*, by Lemma the
random variable kg g« (s) is bounded and converges to zero with probability one. Denote

dg = fOT EI;(s)dsand 6, = fOT FEkg g-(s)ds. By dominated convergence, we have
hm (0g +6,) =

By (AI)-(A3), it follows that
t
Elus(t) = s~ (0] < C | Elya(s) = s+ (9)ds + C(3u + ).
0

By Gronwall’s lemma, we have
sup Elys(t) — yg- (t)| < Ce“T (3, + ).

0<t<T
Since W1 (ug(t), up+(t)) < E|ya(t) — ys=(t)|, then
(A4 sup Wy (p(t), pa=(t)) < C1(0k + dy),

where d,, and J, depend on 3*.
Step 2. Now we consider given (5*,t*) € [0,1] x [0, T]. By use of the SDE of yz and
elementary estimates, we obtain

(A5) lim sup Wi (s (), s (t)) = 0.

[t—t*|—0 g

We have
Wips(t), pe-(t7)) < Wilup(t), ps(t)) + Wiua(t™), ps=(t7)).
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Given any € > 0, by and (A.J) there exists d. g« > 0 such that whenever |t — t*| 4+
|8 — B*| < d¢,p=, we have
€

Wiua(t) pa(t) < 5. Walus(t"), e (1)) < %

Therefore, Wi (us(t), pg«(t*)) < e. We conclude that 115(t) as a mapping from the com-
pact space [0, 1] x [0, 7] to P1(R) with the metric W7 (-, -) is continuous and hence must
be uniformly continuous. The lemma follows. ]

Lemma A.2. Suppose the graphon g satisfies (HS) and (H11). Then for any given mea-
surable sets S, T C [0, 1], under (H9) we have

(A.6) lim ‘/ (g* — g)dzdy| = 0.
k—o0 SxT

Proof. Step 1. We approximate S, 7 by open sets. Let p1, denote the Lebesgue measure
on R%, where the dimension d will be clear from the context. Consider the givensets S, T,
and choose an arbitrary € > 0. Note that for any measurable set A; C R? and any Jy > 0,
there exists an open set As O A; such that uy,(A2\A41) < g (see e.g. [36]). So there
exist open sets S C Rand 7° C Rsuchthat S C 8%, 7T C T° and ur,(S°\S) < ¢,
pL(T\T) < e

Define the new open sets SY = §° N (0,1) and 7;? = T7° N (0,1). Each open set in
R may be written as the union of at most countable disjoint open intervals [36]; among
such a union for S, we may find a finite integer s* (depending on (S, €)) and constituent
disjoint open intervals IS C [0,1], 1 < i < s*, such that Ug« = Uf;llf C &Y and
pr(S¢\Us+) < e. Similarly, we find a finite integer ¢* and disjoint open intervals I C
[0, 1] such that U= = U;-*:lIJT C T and pr,(T°\Us) < €. Here the choice of (s*,t*)
dependson (S, T, ¢).

By the construction of U« and U+, we have the bound for the measure of the following
symmetric differences:

L (SAUs) < 2¢,  pp(TAUp) < 2,
which implies jur,((S x T)A(Us+ x Up)) < 6e. Since |gF — g| < 1 for any x, y, we have

(A7) ’ / (¢" — g)dwdy — Wk‘ < 6,
SXT

where

N = ’ / (g" - g)dwdy‘.
Uar XUy

Step 2. Blow we estimate 7. Under (H9) we take a sufficiently large Ky, depending
on s* (and so on (S, €)), such that for all & > K,

*

<e.

My,
Consider k > K. We select from the subintervals I¥, ... T ]’Qk of equal length 1/Mj}, in
the partition of [0, 1] such that a subinterval is selected whenever its interior is contained in
Us«. The method here is to fill Ug~ as much as possible from inside by these subintervals.
This procedure determines a subcollection denoted by Ii’i ,r=1,...,rs. Denote Uy =
U:’;llfr . Then the interior of U« is contained in U,-. We need to estimate the measure
for the part of Us+« not covered by US*. We check If, 1 < ¢ < s*, to obtain two cases:
1) If C ﬁs* , (i) If has a portion (allowed to be equal to its whole) of positive measure
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staying outside U,-. For case (ii), the portion of I that is not covered by Us- consists of
either one interval, as part or the whole of I, or two intervals each having an endpoint of
I f as its boundary; hence the measure of that portion is less than 2/Mj,. It follows that

- 2s*

A.8 Usg\Ugx) < < 2e.
(A.8) pr(Us<\Us~) S %
By (A.8), for all k > K, we have
(A.9) ‘ / (¢" — g)dady — / (¢* - g)dxdy’ < 2e.
Ugn X Uyx Ugn X Uygx

Step 3. Now for k > K we check
e = ‘ / (g" - g)dwdy‘.
Ugsx XUy

By (H5), for the selected Uy, fUt* g(z,y)dy as a function of x is uniformly continuous on
[0, 1]. So for € chosen in Step 1, there exists § > 0 (depending on g, € and Uy« ) such that

(A.10) ‘/ g(:v,y)dy—/ g(w’,y)dy‘ <e
U, Uy

whenever |z — 2’| < 4. For the above 4, we fix Ky > Kj such that for all £ > K5, we
have 1/ M, < 24. Note that we use (¥ )* to denote the midpoint of the interval I¥ . Now
for k > K, we have

U i/lk /U*[g’“(%y)—g(:v,y)]dydw‘

Tk k k o\ * _ Ky . .
: rz—;/ﬂv /Ut* 9" ((13)", y) = 9((137)", y)ldyd ‘+
|35 L ) - ]+
r=1 Mk Uy e/ e/
< Miki@ + €,

where
Goo= | [ a8 ) = ot )" ]

The first inequality follows from (AT0) and pur, (Uj£ 15 ) < 1.

Step 4. Now we estimate (i. As in Step 2, we take a sufficiently large Ky > K1, de-
pending on (t*, €), such that for all &k > Ko, t* /M), < e. For k > K5 and the subintervals
IF, ..., IJ%’ as in Step 2, we select a subcollection denoted by I]’?T, T=1,...,T, each of
which is selected whenever its interior is contained in U;~. Then it follows that

2t
M,

(A.11) pr (U \UTE TR < < 2e.

T=1"jr
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By (AII), we have for all k > Ko,

G| [, | U0 gl ] +2e

r=14j,

Tk k
Yirjs /
<3| Z 9ty 58| + 2.
; M Jperr )

We write g(a, 8) as ga,g-
Step 5. Note that ri, 7, < Mj. Subsequently, by Step 3 and Step 4, we have for
k> Ko,

1 & Tk glkj
AkS_ |: #_/ k oy dﬂ’+2€:|_|_€
Ui M;, 7; TZ:1 M, selt 9k )+

IN
|

1 ‘gi j /
o _ ] + 3
My, ZZ M, perk gat .

(A.12)

IN

B

%
1]

26 Gopine dﬂ‘+3e.
YA /561],_6 (15)*,8

By (A7), (A29) and (A12), we obtain for all k > K5 depending on (S, T, ¢),

& glcC c
(g" —g)dwdy‘ < max ’—] —/ Gy gdB| + 11e.
’/SxT i ]2 M, serk 58

The lemma follows. O
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