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Abstract

In this work, we propose a local multiscale model reduction approach for the time-

domain scalar wave equation in a heterogenous media. A fine mesh is used to capture the

heterogeneities of the coefficient field, and the equation is solved globally on a coarse mesh

in the discontinuous Galerkin discretization setting. The main idea of the model reduction

approach is to extract dominant modes in local spectral problems for representation of

important features, construct multiscale basis functions in coarse oversampled regions by

constraint energy minimization problems, and perform a Petrov-Galerkin projection and a

symmetrization onto the coarse grid. The method is expicit and energy conserving, and

exhibits both coarse-mesh and spectral convergence, provided that the oversampling size

is appropriately chosen. We study the stability and convergence of our method. We also

present numerical results on the Marmousi model in order to test the performance of the

method and verify the theoretical results.

1 Introduction

In this paper, we consider a local multiscale model reduction approach for the scalar wave
equation. Let Ω ⊂ R

d be a bounded spatial domain. For the sake of simplicity, we focus our
discussion on two-dimensional cases in this paper, though the extension to the three-dimensional
case shall be straightforward. We consider the following scalar wave equation

∂2u

∂t2
= div (κ∇u) + f in [0, T ]× Ω, (1)

where f(x, t) is a given source term. The problem is subject to the homogeneous Dirichlet
boundary condition u = 0 on [0, T ]× ∂Ω, and initial conditions u(x, 0) = u0(x) and ut(x, 0) =
v0(x) in Ω. We assume that the coefficient field κ is a heterogeneous coefficient field with contrast
κ0 ≤ κ ≤ κ1. Due to the heterogeneities in the coefficient field, numerical discretization requires
a very fine grid mesh in order to capture all the heterogeneities in the medium properties, which
potentially makes the numerical solutions on the fine grid become prohibitively expensive.
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Extensive research effort had been devoted to developing numerical solvers for solving mul-
tiscale problems on the coarse grid, which is typically much coarser than the fine grid, such as
numerical homogenization approaches [45, 51, 43, 2], Multiscale Finite Element Methods (Ms-
FEM) [34, 29, 6, 28, 10, 39], Variational Multiscale Methods (VMS) [36, 37, 38, 5, 40, 49],
Heterogeneous Multiscale Methods (HMM) [22, 1, 23, 33, 3] and and Generalized Multsicale
Finite Element Methods (GMsFEM) [24, 21, 14, 11, 13, 19]. In numerical homogenization ap-
proaches, effective properties are computed for formulating the global problem on the coarse
grid. However, these approaches are limited to the cases when the medium properties possess
scale separation. On the other hand, multiscale methods construct of multiscale basis functions
which are responsible for capturing the local oscillatory effects of the solution. Once the multi-
scale basis functions are constructed, coarse-scale equations are formulated. Moreover, fine-scale
information can be recovered by the coarse-scale coefficients and mutliscale basis functions. In
recent years, multiscale methods in the discontinuous Galerkin (DG) framework have been in-
vestigated [29, 4, 47, 25, 32, 30, 17, 20]. In these approaches, unlike conforming finite element
formulations, multiscale basis functions are in general discontinuous on the coarse grid, and
stabilization or penalty terms are added to ensure well-posedness of the global problem.

In many state-of-the-art mutliscale methods, such as MsFEM, VMS and HMM, there is one
basis function per local coarse region to handle the effects of local heterogeneities. However, for
more complex multiscale problems, each local coarse region contains several high-conductivity
regions and multiple multiscale basis functions are required to represent the local solution space.
GMsFEM is developed to allow systematic enrichment of the coarse-scale space with fine-scale
information and identify the underlying low-dimensional local structures for solution representa-
tion. The main idea of GMsFEM is to extract local dominant modes by carefully designed local
spectral problems in coarse regions, and the convergence of the GMsFEM is related to eigen-
value decay of local spectral problems. For a more detailed discussion on GMsFEM, we refer
the readers to [27, 24, 26, 21, 16, 11, 31, 7, 9, 46, 50, 48, 8] and the references therein. Through
the design of local spectral problems, our method results in the minimal degree of freedom in
representing high-contrast features. In particular, [15] considered an application of GMsFEM on
scalar wave equations. On the other hand, several multiscale methods with mesh convergence
are developed. [44, 41, 42]. This idea can be adopted for multiscale model reduction techniques
for achieving both spectral and mesh convergence [35, 18, 12, 7, 8].

In this paper, we present the Constraint Energy Minimizing Generalized Multiscale Discon-
tinuous Galerkin Method (CEM-GMsDGM). Our method results in coarse-scale equations in an
interior penalty discontinuous Galerkin (IPDG) discretization setting. The method is expicit and
energy conserving, and exhibits both coarse-mesh convergence and spectral convergence. The
advantages of the method are verified both theoretically and numerically. The model reduction
approach possesses of two key ingredients. The first main ingredient is the local spectral prob-
lems in each coarse block for identification of multiscale test basis functions. The low-energy
dominant modes, which are eigenvectors corresponding to small eigenvalues of local spectral
problems, are used as multiscale test basis functions, as well as for further construction of the
second ingredient of our method, which is a set of multiscale trial basis functions. Each of the
test basis functions sets up an independent orthongonality constraints and uniquely defines a
corresponding multiscale trial basis function. The multiscale trial basis functions will then be
used for a coarse-scale represenation of the numerical solution. We remark that the local spectral
problems and the constraint energy minimization problems are carefully designed and supported
by our analysis.

The paper is organized as follows. In Section 2, we will introduce the notions of grids, and
essential discretization details such as DG finite element spaces and IPDG formulation on the
coarse grid. The details of the proposed method, including the construction of basis functions
and the corresponding systems of linear equations, will be presented in Section 3. The stability
and the convergence of the method will be analyzed in Section 4. Numerical results will be
provided in Section 5. Finally, a conclusion will be given in Section 6.
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2 IPDG formulation

We are now going to introduce some notions of coarse and fine meshes. We start with a usual
partition T H of Ω into finite elements, which does not necessarily resolve any multiscale features.
The partition T H is called a coarse grid and a generic element K in the partition T H is called
a coarse element. Moreover, H > 0 is called the coarse mesh size. We let Nc be the number
of coarse grid nodes and N be the number of coarse elements. We also denote the collection of
all coarse grid edges by EH . We perform a refinement of T H to obtain a fine grid T h, where
h > 0 is called the fine mesh size. It is assumed that the fine grid is sufficiently fine to resolve
the solution. An illustration of the fine grid and the coarse grid and a coarse element are shown
in Figure 1.

K

Figure 1: An illustration of the fine grid and the coarse grid and a coarse element.

We are now going to discuss the discontinuous Galerkin (DG) discretization and the interior
penalty discontinuous Galerkin (IPDG) global formulation. For the i-th coarse block Ki, we
let Vh(Ki) be the conforming bilinear elements defined on the fine grid T h in Ki. The DG
approximation space is then given by the space of coarse-scale locally conforming piecewise
bilinear fine-grid basis functions, that is,

Vh = ⊕Ni=1Vh(Ki). (2)

We remark that functions in Vh are continuous within coarse blocks, but discontinuous across
the coarse grid edges in general. We define the symmetric IPDG bilinear form aDG by:

aDG (v, w) =
∑

K∈T H

∫

K

κ∇v · ∇w dx−
∑

E∈EH

∫

E

{κ∇v · nE}JwK dσ

−
∑

E∈EH

∫

E

{κ∇w · nE}JvK dσ +
γ

h

∑

E∈EH

∫

E

κJvKJwK dσ,

(3)

where γ > 0 is a penalty parameter and nE is a fixed unit normal vector defined on the coarse
edge E ∈ EH . Note that, in (3), the average and the jump operators are defined in the classical
way. Specifically, consider an interior coarse edge E ∈ EH and let K+ and K− be the two coarse
grid blocks sharing the edge E, where the unit normal vector nE is pointing from K+ to K−.
For a piecewise smooth function G with respect to the coarse grid T H , we define

{G} =
1

2

(
G+ +G−

)
,

JGK = G+ −G−,
(4)
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where G+ = G|K+ and G− = G|K− . Moreover, on the edge E, we define κ = (κK+ + κK−) /2,
where κK± is the maximum value of κ over K±. For a coarse edge E lying on the boundary
∂Ω, we define {G} = JGK = G, and κ = κK on E, where we always assume that nE is pointing
outside of Ω. We also use the notation (·, ·)L2(D) to denote the standard L2(D) scalar product
for a subdomain D ⊂ Ω.

Using the IPDG spatial discretization, we derive the semi-discrete scheme: find uh(t, ·) ∈ Vh
such that (

∂2uh
∂t2

, w

)

L2(Ω)

+ aDG(uh, w) = (f, w)L2(Ω) in [0, T ]× Ω, (5)

where the initial data is projected onto the finite element space Vh by: find uh(·, 0),
∂uh
∂t

(·, 0) ∈ Vh

such that for all w ∈ Vh,

(uh(·, 0), w)L2(Ω) = (u0, w)L2(Ω),(
∂uh
∂t

(·, 0), w

)

L2(Ω)

= (v0, w)L2(Ω) .
(6)

3 Local multiscale model reduction by CEM-GMsFEM

In this section, we will present our local multiscale model reduction on the IPDG formuation
for the wave equation by Constraint Energy Minimizing Generlized Multiscale Finite Element
Method. First, we will use the concept of GMsFEM spectral problems to construct our multiscale
test basis functions on a generic coarse block K in the coarse grid. Next, we will use the
concept of constrained energy minimization to construct our multiscale trial basis functions.
Then, we will derive our coarse-scale model with a Petrov-Galerkin projection and a symmetrc
formulation. Finally, we present a technique of localization of multiscale trial basis functions on
coarse oversampled regions, and which results in an explicit time-marching coarse-scale scheme.

3.1 Multiscale test functions

To construct the multiscale test functions, we follow the concept of GMsFEM and perform a
multisale model reduction through a local spectral problem on Vh(Ki), which is to find a real

number λ
(i)
j and a function φ

(i)
j ∈ Vh(Ki) such that

ai

(
φ
(i)
j , w

)
=
λ
(i)
j

H2

(
φ
(i)
j , w

)

L2(Ki)
for all w ∈ Vh(Ki), (7)

where ai is a symmetric positive semi-definite bilinear form defined as

ai (v, w) =

∫

Ki

κ∇v · ∇w dx. (8)

Without loss of generality we shall assume the eigenfunctions are normalized, i.e.

(
φ
(i)
j , φ

(i)
j′

)

L2(Ki)
= δj,j′ for all 1 ≤ j, j′ ≤ Li. (9)

We let λ
(i)
j be the eigenvalues of (7) arranged in ascending order in j, and use the first Li

eigenfunctions to construct our local multiscale test space

W
(i)
H = span{φ

(i)
j : 1 ≤ j ≤ Li}. (10)
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We also introduce a local L2(Ki) projection operator πi : Vh →W
(i)
H onto W

(i)
H by

πi(v) =

Li∑

j=1

(
v, φ

(i)
j

)

L2(Ki)
φ
(i)
j for all v ∈ Vh. (11)

The global multiscale test space WH is then defined as the sum of these local multiscale test
spaces

WH = ⊕Ni=1W
(i)
H . (12)

Since the coarse blocks are disjoint, the multiscale test functions form an L2(Ω) orthonormal
basis function for WH , i.e.

(
φ
(i)
j , φ

(i′)
j′

)

L2(Ω)

= δi,i′δj,j′ for all 1 ≤ j ≤ Li, 1 ≤ j′ ≤ Li′ and 1 ≤ i, i′ ≤ N, (13)

and the global L2(Ω) projection operator π : Vh → WH onto WH is then naturally defined by

π =
∑N

i=1 πi.

3.2 Multiscale trial functions

Next, we construct our global multiscale trial functions space VH using the concepts of constraint

energy minimization. Given a multiscale test basis function ψ
(i)
j , where 1 ≤ j ≤ Li and 1 ≤ i ≤

N , the global multiscale trial basis function ψ
(i)
j ∈ Vh is defined as the solution of the following

constrained energy minimization problem

ψ
(i)
j = argmin

ψ∈Vh

{
aDG (ψ, ψ) : π(ψ) = φ

(i)
j

}
. (14)

By introducing a Lagrange multiplier, the minimization problem (14) is equivalent to the fol-

lowing variational problem: find ψ
(i)
j ∈ Vh and µ

(i)
j ∈WH such that

aDG

(
ψ
(i)
j , ψ

)
+
(
ψ, µ

(i)
j

)

L2(Ω)
= 0 for all ψ ∈ Vh,

(
ψ
(i)
j − φ

(i)
j , µ

)

L2(Ω)
= 0 for all µ ∈WH .

(15)

We use the global multiscale trial basis functions to construct the multiscale trial space, which
is defined as

V
(∞)
H = span{ψ

(i)
j : 1 ≤ j ≤ Li, 1 ≤ i ≤ N}. (16)

3.3 Global coarse-scale model

We derive our fully discrete coarse-scale system by a second-order central difference for temporal
discretization. means of Petrov-Galerkin projection of the fine-scale system onto the coarse-scale
spaces. Let NT be the number of time steps in the temporal mesh grid and τ = T/NT be the
time step size. At the time instant tn = nτ , we denote the evaluation of the source function f at
the time instant tn by fn, and an approximation of the solution u(·, tn) by u

n
H . The coarse-scale

model which reads: for n ≥ 1, find un+1
H ∈ V

(∞)
H such that

(
un+1
H − 2unH + un−1

H

τ2
, w

)

L2(Ω)

+ aDG (unH , w) = (fn, w)L2(Ω) for all w ∈WH , (17)
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where the initial data is projected onto the finite element space V
(∞)
H by: find u0h, u

1
h ∈ V

(∞)
H

such that for all w ∈ V
(∞)
H ,

(u0H , w)L2(Ω) = (u0, w)L2(Ω),

(u1H , w)L2(Ω) =

(
u0 + τv0 +

τ2

2
f0, w

)

L2(Ω)

−
τ2

2
aDG(u

0
H , w).

(18)

Next, we are going to present a symmetric formulation of (17) on V
(∞)
H . By a simple dimension-

ality argument, it is easy to see that π|
V

(∞)
H

: V
(∞)
H →WH is an isomorphism. Moreover, for any

v ∈ V
(∞)
H , using the fact that

(v − π(v), w)L2(Ω) = 0 for all w ∈WH , (19)

it is straightforward to verify that

aDG(ψ, v − π(v)) = 0 for all ψ ∈ V
(∞)
H . (20)

Combining all these facts, (17) can be rewritten as

b

(
un+1
H − 2unH + un−1

H

τ2
, w

)
+ aDG (unH , w) = b (fn, w) for all w ∈ V

(∞)
H , (21)

where the bilinear form b is defined as

b(v, w) = (π(v), π(w))L2(Ω) . (22)

3.4 Localization of multiscale trial functions

One major drawback of the above constructive procedure is that the multiscale trial functions
have to be defined by solving a global problem. Based on our analysis in [8], the global multiscale

trial basis function ψ
(i)
j exhibits an exponential decay property, where the value is very small

in locations which are far away from the block Ki. The allows us to construct localized mul-
tiscale basis functions on suitably enlarged oversampled domain without a significant increase
of approximation error. More precisely, we denote by Ki,m an oversampled domain formed by
enlarging the coarse grid block Ki by m coarse grid layers, of which an illustration shown in
Figure 2.

We introduce the subspaces Vh (Ki,m), which contains restriction of fine-scale basis functions
in Vh on the oversampled domain Ki,m, and WH (Ki,m), which is the sum of the local multiscale
test space over the coarse blocks in the oversampled domain Ki,m, i.e.

WH (Ki,m) = ⊕Ki′⊂Ki,m
W

(i′)
H . (23)

The localized multiscale trial basis function ψ
(i)
j,m ∈ Vh is then defined as the solution of the

following constrained energy minimization problem

ψ
(i)
j,m = argmin

ψ∈Vh(Ki,m)

{
aDG (ψ, ψ) : π(ψ) = φ

(i)
j

}
. (24)

Using the method of Lagrange multiplier, the minimization problem (24) is equivalent to the

following variational problem: find ψ
(i)
j,m ∈ Vh (Ki,m) and µ

(i)
j,m ∈ WH(Ki,m) such that

aDG

(
ψ
(i)
j,m, ψ

)
+
(
ψ, µ

(i)
j,m

)

L2(Ki,m)
= 0 for all ψ ∈ Vh (Ki,m) ,

(
ψ
(i)
j,m − φ

(i)
j , µ

)

L2(Ki,m)
= 0 for all µ ∈ WH(Ki,m).

(25)
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K i

K i ,m

Figure 2: An illustration of an oversampled domain formed by enlarging Ki with 1 coarse grid
layer.

The localized multiscale trial basis functions then used to define the localized multiscale trial
space, i.e.

V
(m)
H = span{ψ

(i)
j,m : 1 ≤ j ≤ Li, 1 ≤ i ≤ N}. (26)

Finally, our localized coarse-grid model reads: for n ≥ 1, find un+1
H ∈ V

(m)
H such that

b

(
un+1
H − 2unH + un−1

H

τ2
, w

)
+ aDG (unH , w) = b (fn, w) for all w ∈ V

(m)
H , (27)

where the initial data is projected onto the finite element space V
(m)
H by: find u0H , u

1
H ∈ V

(m)
H

such that for all w ∈ V
(m)
H ,

(u0H , w)L2(Ω) = (u0, w)L2(Ω),

(u1H , w)L2(Ω) =

(
u0 + τv0 +

τ2

2
f0, w

)

L2(Ω)

−
τ2

2
aDG(u

0
h, w).

(28)

3.5 Linear system associated with localized coarse-scale model

We end this section by the derivation of the resultant coarse-scale system of linear equations
with a fixed global enumeration of nodal indices and multiscale basis function indices. Denote
by M and A the matrix representation of the L2(Ω) scalar product and the IPDG bilinear form
aDG with respect to the fine-scale nodal basis functions in Vh. Letting Uh(·, t) be the column
vector consisting of coordinate representation of uh(·, t) ∈ Vh with respect to fine-scale nodal
basis functions in Vh, the fine-scale system (5) can be written as

M
∂2Uh

∂t2
+AUh = F. (29)

It is trivial to see that, for any v ∈ V
(m)
H , the coefficient representation of v by the multiscale

trial basis functions is given by

v =

N∑

i=1

Li∑

j=1

(
v, φ

(i)
j

)

L2(Ω)
ψ
(i)
j,m, (30)
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which implies the coordinate representations of v with respect to the multiscale trial basis func-

tions {ψ
(i)
j,m} and π(v) with respect to the multiscale trial basis functions {φ

(i)
j } coincide exactly.

With a fixed global enumeration of nodal indices and multiscale basis function indices, let Φ
and Ψ be the matrix assembled from the column vector consisting the coordinate representation

of φ
(i)
j and ψ

(i)
j,m with respect to the fine-scale nodal basis functions in Vh. Letting U

n
H be the

column vector consisting of coordinate representation of unH ∈ V
(m)
H with respect to the basis

functions {ψ
(i)
j,m}, the coarse-scale system (27) can be written as

Φ
⊤
MΦU

n+1
H = Φ

⊤
MΦ(2Un

h −U
n−1
h ) + τ2(Φ⊤

F
n −Ψ

⊤
AΨU

n
h). (31)

However, noting that the multiscale test basis functions {φ
(i)
j } are L2(Ω) orthonormal, we have

Φ
⊤
MΦ = I, and result in an explicit local multiscale model reduction scheme

U
n+1
H = (2Un

H −U
n−1
H ) + τ2(Φ⊤

F
n −Ψ

⊤
AΨU

n
h). (32)

Once the explicit scheme is used to obtain the coarse-scale coefficients at a final time step, a
multiscale approximation is obtained by downscaling with U

n
h ≈ ΨU

n
H .

4 Stability and convergence analysis

In this section, we will analyze the stabiility of proposed localized coarse-grid model (27) and
obtain an error estimate when the coarse-grid solution is compared with the fine-grid solution
obtained from (5). Unless otherwise specified, the constants are generic and independent of mesh
size and number of oversampling layers. First we define a norm on Vh by

‖w‖2a =
∑

K∈T H

∫

K

κ|∇w|2 dx+
γ

h

∑

E∈EH

∫

E

κJwK2 dσ. (33)

In our analysis, we will make use of following coercivity and continuity results on the IPDG
bilinear form, provided that the penalty parameter is sufficiently large.

Lemma 1. [15] With a sufficiently large γ > 0, there holds

|aDG(v, w)| ≤ 2‖v‖a‖w‖a for all v, w ∈ Vh,

aDG(v, v) ≥
1

2
‖v‖2a for all v ∈ Vh.

(34)

Moreover, there exists β > 0 such that

‖v‖2L2(Ω) ≥ βκ−1
1 h2aDG(v, v) for all v ∈ Vh. (35)

With these estimates from the IPDG bilinear form, we now establish an inverse Poincaré
inequality on the multiscale test function space. We will need two fundamental results about
from [8]. The first result is a stability estimate about the projection operator π.

Lemma 2. [8] With a smallness assumption on the fine grid mesh h > 0, there exists C > 0
such that for any wH ∈ WH , there exists a function v ∈ C0(Ω) ∩ Vh such that

π(v) = wH , ‖v‖2a ≤ Dκ1H
−2‖wH‖2L2(Ω), supp(v) ⊆ supp(wH). (36)
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The second result states that the global multiscale test functions have a decay property and
their values are small outside a suitably large oversampled domain, which in turn justifies the
localization of the multiscale test functions.

Lemma 3. [8] With the above assumptions, there exists C,C′ > 0 such that

‖ψ
(i)
j − ψ

(i)
j,m‖2a ≤ C(1 + C′)−m(1 + Λ−1)κ1H

−2‖φ
(i)
j ‖2L2(Ki)

, (37)

where Λ the smallest eigenvalue which is excluded in the local spectral problem (7), i.e.

Λ = min
1≤i≤N

λ
(i)
Li+1. (38)

The eigenvalues are related to the contrast in the medium properties. In applying to high
contrast media, the eigenvalues exhibit sharp decay and we can simply pick the first few eigen-
functions and ensure the smallest eigenvalue excluded is sufficiently large. The norm relations
in the multiscale space is related to the eigenvalue decay in the local spectral problems, which
accounts for the approximation error by the multiscale finite element space. First of all, for any
v ∈ Vh, we have

‖(I − π)(v)‖2L2(Ω) ≤ 2Λ−1H2aDG(v, v). (39)

Moreover, we have the following inverse inequality.

Lemma 4. With the above assumptions, there exists β > 0 such that

‖π(v)‖2L2(Ω) ≥ βκ−1
1 H2aDG(v, v) for all v ∈ V

(m)
H . (40)

Proof. For any v ∈ V
(m)
H , we define

ṽ =

N∑

i=1

Li∑

j=1

(
v, φ

(i)
j

)

L2(Ω)
ψ
(i)
j ,

η =
N∑

i=1

Li∑

j=1

(
v, φ

(i)
j

)

L2(Ω)
µ
(i)
j .

(41)

Then we have π(v) = π(ṽ). By the definition of global multiscale test functions (15), for any
ψ ∈ Vh, we have

aDG (ṽ, ψ) + (π(ψ), η)L2(Ω) = 0. (42)

By Lemma 2, we take w ∈ C0(Ω) ∩ Vh such that

π(w) = η, ‖w‖2a ≤ Dκ1H
−2‖η‖2L2(Ω), supp(w) ⊆ supp(η). (43)

Taking ψ = w in (42), we have

‖η‖
2
L2(Ω) ≤ 2 ‖ṽ‖a ‖w‖a ≤ 2D

1
2 κ

1
2
1H

−1 ‖ṽ‖a ‖η‖L2(Ω)
(44)

Taking ψ = ṽ in (42), we have

1

2
‖ṽ‖

2
a ≤ ‖π(ṽ)‖L2(Ω) ‖η‖L2(Ω) . (45)

Combining these estimates, we have

‖ṽ‖a ≤ 4D
1
2 κ

1
2
1H

−1 ‖π(v)‖L2(Ω) . (46)
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On the other hand, by Lemma 3, we have

‖ṽ − v‖
2
a ≤ Cmd

N∑

i=1

∥∥∥∥∥∥

Li∑

j=1

(
v, φ

(i)
j

)

L2(Ω)

(
ψ
(i)
j − ψ

(i)
j,m

)
∥∥∥∥∥∥

2

a

≤ Cmd(1 + Λ−1)κ1H
−2(1 + C′)−m

N∑

i=1

∥∥∥∥∥∥

Li∑

j=1

(
v, φ

(i)
j

)

L2(Ω)
φ
(i)
j

∥∥∥∥∥∥

2

L2(Ki)

= C(1 + Λ−1)md(1 + C′)−mκ1H
−2 ‖π(v)‖

2
L2(Ω) .

(47)

Combining these estimates, we have

‖v‖
2
a ≤ (16D2 + C(1 + Λ−1)md(1 + C′)−m)κ1H

−2 ‖π(v)‖
2
L2(Ω) . (48)

Finally, we note that md(1 + C′)−m is bounded. The proof is complete by taking

β2 = 16D2 + C(1 + Λ−1) sup
m≥1

md(1 + C′)−m. (49)

We are now going to define a discrete total energy which is related to the stability and
convergence of our method. Given a sequence of states v = {vn}NT

n=0, we define the discrete total
energy at t = tn+ 1

2
by

En+
1
2 (v) =

1

2

∥∥∥∥π
(
vn+1 − vn

τ

)∥∥∥∥
2

L2(Ω)

−
τ2

8
aDG

(
vn+1 − vn

τ
,
vn+1 − vn

τ

)

+
1

2
aDG

(
vn+1 + vn

2
,
vn+1 + vn

2

)
,

(50)

which is non-negative under a stability condition. More precisely, if there holds

ρ =
κ

1
2
1 τ

2β
1
2H

< 1, (51)

then we have the following inequality

En+
1
2 (v) ≥

1− ρ2

2

∥∥∥∥π
(
vn+1 − vn

τ

)∥∥∥∥
2

L2(Ω)

+
1

2
aDG

(
vn+1 + vn

2
,
vn+1 + vn

2

)
≥ 0, (52)

due to the result (40) in Lemma 4. The following lemma is the key of proving the stability and
convergence of our method.

Lemma 5. For n ≥ 1, given rn ∈ L2(Ω) and vn−1, vn ∈ V
(m)
H , suppose vn+1 ∈ V

(m)
H solves

b

(
vn+1 − 2vn + vn−1

τ2
, w

)
+ aDG (vn, w) = (rn, w)L2(Ω) for all w ∈ V

(m)
H . (53)

Then we have

En+
1
2 (v) = E

1
2 (v) + τ

n∑

k=1

(
rk,

vk+1 − vk−1

2τ

)

L2(Ω)

(54)
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Moreover, with the above assumptions, then there exist a C > 0 such that

En+
1
2 (v) ≤ C

(
E

1
2 (v) +

(
τRn1 + Λ− 1

2HRn2

)2)
. (55)

where

Rn1 =

n∑

k=1

‖π(rk)‖L2(Ω),

Rn2 = ‖(I − π)r1‖L2(Ω) + τ

n−1∑

k=1

∥∥∥∥∥(I − π)

(
rk+1 − rk

τ

)∥∥∥∥∥
L2(Ω)

+ ‖(I − π)rn‖L2(Ω).

(56)

Proof. Taking w =
vn+1 − vn−1

2τ
∈ V

(m)
H in (53), we have

1

2τ

(∥∥∥∥π
(
vn+1 − vn

τ

)∥∥∥∥
2

L2(Ω)

−

∥∥∥∥π
(
vn − vn−1

τ

)∥∥∥∥
2

L2(Ω)

+ aDG(v
n+1, vn)− aDG(v

n, vn−1)

)

=

(
rn,

vn+1 − vn−1

2τ

)

L2(Ω)

.

(57)

We observe that

aDG(v
n+1, vn) = aDG

(
vn+1 + vn

2
,
vn+1 + vn

2

)
−
τ2

4
aDG

(
vn+1 − vn

τ
,
vn+1 − vn

τ

)
. (58)

Hence, we have

En+
1
2 (v)− En−

1
2 (v) = τ

(
rn,

vn+1 − vn−1

2τ

)

L2(Ω)

. (59)

Using a telescoping sum, we obtain (54). To obtain the second result, we rewrite the right hand
side of (59) by

(
rn,

vn+1 − vn−1

2τ

)

L2(Ω)

= b

(
rn,

vn+1 − vn−1

2τ

)
+

(
(I − π)rn,

vn+1 − vn−1

2τ

)

L2(Ω)

=
1

2

(
b

(
rn,

vn+1 − vn

τ

)
+ b

(
rn,

vn − vn−1

τ

))
+

1

τ

(
(I − π)rn, (I − π)

(
vn+1 + vn

2

))

L2(Ω)

−

1

τ

(
(I − π)rn, (I − π)

(
vn + vn−1

2

))

L2(Ω)

.

(60)

11



Substituting (60) into (54) and rearranging the indices, we obtain

En+
1
2 (v) = E

1
2 (v) +

τ

2

n∑

k=1

(
b

(
rk,

vk+1 − vk

τ

)
+ b

(
rk,

vk − vk−1

τ

))
+

(
(I − π)rn, (I − π)

(
vn+1 + vn

2

))

L2(Ω)

−

(
(I − π)r1, (I − π)

(
v1 + v0

2

))

L2(Ω)

−

τ

n−1∑

k=1

(
(I − π)

(
rk+1 − rk

τ

)
, (I − π)

(
vk+1 + vk

2

))

L2(Ω)

.

(61)

Using Cauchy-Schwarz inequality and Young’s inequality, we have

En+
1
2 (v) ≤ E

1
2 (v) + max

0≤k≤n

∥∥∥∥∥π
(
vk+1 − vk

τ

)∥∥∥∥∥
L2(Ω)

τRn1

+ max
0≤k≤n

∥∥∥∥∥(I − π)

(
vk+1 + vk

2

)∥∥∥∥∥
L2(Ω)

Rn2

≤ E
1
2 (v) +

1− ρ2

4
max

0≤k≤n

∥∥∥∥∥π
(
vk+1 − vk

τ

)∥∥∥∥∥

2

L2(Ω)

+
τ2

1− ρ2
(Rn1 )

2

+
Λ

8H2
max

0≤k≤n

∥∥∥∥∥(I − π)

(
vk+1 + vk

2

)∥∥∥∥∥

2

L2(Ω)

+
2H2

Λ
(Rn2 )

2.

(62)

Using the inequalities (39) and (52), we obtain the desired result.

A direct consequence of Lemma 5 is the following stability result of the coarse-grid solution.

Theorem 6. With the above assumptions, we have the following stability estimate

∥∥∥∥∥π
(
un+1
H − unH

τ

)∥∥∥∥∥

2

L2(Ω)

+aDG

(
un+1
H + unH

2
,
un+1
H + unH

2

)
≤ C



E 1
2 (uH) + τ2

(
n∑

k=1

‖π(fk)‖L2(Ω)

)2




(63)

To proceed with our convergence analysis, we need to define two operators. The first one is
a solution map Gh : L2(Ω) → Vh defined by: for any g ∈ L2(Ω), the image Ghg ∈ Vh is defined
as

aDG(Ghg, w) = (g, w)L2(Ω) for all w ∈ Vh. (64)

Second, we define an elliptic projection PH : Vh → V
(m)
H by: for any v ∈ Vh, the image PHv ∈

V
(m)
H is defined as

aDG(PHv, w) = aDG(v, w) for all w ∈ V
(m)
H . (65)

The approximation error of the DG elliptic projection depends on the eigenvalue decay in the
local spectral problems and has a first-order convergence in the coarse mesh size H , provided
that the discretization follows certain conditions. The proof is very much similar to [8] and is
omitted.
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Lemma 7. [8] With the smallest assumptions and the following relation about the size of over-
sampling region as coarse mesh refines

m = O
(
log
(κ1
H

))
, (66)

there holds
‖(I − PH)Ghg‖a ≤ CΛ− 1

2H‖g‖L2(Ω) for all g ∈ L2(Ω). (67)

It is possible to prove the L2 error converges in second order with a duality argument.

Lemma 8. With the above assumptions, there holds

‖(I − PH)Ghg‖L2(Ω) ≤ CΛ−1H2‖g‖L2(Ω) for all g ∈ L2(Ω). (68)

Proof. For any v ∈ Vh, by Galerkin orthogonality, we have

aDG((I − PH)v, PHGh(I − PH)v) = 0. (69)

which implies

‖(I − PH)v‖2L2(Ω) = aDG(Gh(I − PH)v, (I − PH)v)

= aDG((I − PH)Gh(I − PH)v, (I − PH)v)

≤ 2‖(I − PH)Gh(I − PH)v‖a‖(I − PH)v‖a

≤ CΛ− 1
2H‖(I − PH)v‖L2(Ω)‖(I − PH)v‖a,

(70)

where we have applied the result from Lemma 7 with replacing g by (I −PH)v. In other words,

‖(I − PH)v‖L2(Ω) ≤ CΛ− 1
2H‖(I − PH)v‖a. (71)

Applying the result from Lemma 7 again with v = Ghg, we finish our proof.

Now, with all the tools defined, we are going to estimate the error between the fine-scale
solution unh = uh(tn) obtained from solving (5) and the coarse-scale solutions unH obtained from
solving (27). We define the quantities

εn = unh − unH ,

δn = unH − PHu
n
h,

θn = (I − PH)unh.

(72)

We have the following estimates on the error of the elliptic projection.

Lemma 9. With the above assumptions and assuming f ∈ C4([0, T ];L2(Ω)), there exists C > 0
such that

‖θn‖L2(Ω) ≤ CΛ−1H2

(
‖g‖C([0,T ];L2(Ω)) + τ2

∥∥∥∥
∂2g

∂t2

∥∥∥∥
C([0,T ];L2(Ω))

)
,

∥∥∥∥
θn+1 − 2θn + θn−1

τ2

∥∥∥∥
L2(Ω)

≤ CΛ−1H2

(∥∥∥∥
∂2g

∂t2

∥∥∥∥
C([0,T ];L2(Ω))

+ τ2
∥∥∥∥
∂4g

∂t4

∥∥∥∥
C([0,T ];L2(Ω))

)
,

‖δ1 − δ0‖L2(Ω) ≤ Cτ

(
Λ−1H2

∥∥∥∥
∂g

∂t

∥∥∥∥
C0([0,T ];L2(Ω))

+ τ2
∥∥∥∥
∂3uh
∂t3

∥∥∥∥
C0([0,T ];L2(Ω))

)
,

(73)

where g = f −
∂2uh
∂t2

.
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Proof. First, we observe from the definitions that unh = Gh (g(·, tn)). By Taylor’s theorem, we
have

g(·, tn + t) = g(·, tn) + t
∂g

∂t
(·, tn) +

∫ tn+t

tn

s
∂2g

∂t2
(·, s)ds. (74)

Integrating from t = −τ to t = τ , we have

‖g(·, tn)‖L2(Ω) ≤
1

2τ
‖g‖L1(tn−1,tn+1;L2(Ω)) +

τ

2

∥∥∥∥
∂2g

∂t2

∥∥∥∥
L1(tn−1,tn+1;L2(Ω))

. (75)

The first result follows directly from Lemma 8. For the second result, using Taylor’s theorem
again, we have

g(·, tn + t) = g(·, tn) + t
∂g

∂t
(·, tn) +

t2

2

∂2g

∂t2
(·, tn) +

t3

6

∂3g

∂t3
(·, tn) +

∫ tn+t

tn

s3

6

∂4g

∂t4
(·, s)ds. (76)

Taking t = ±τ , we have

‖g(·, tn+1)− 2g(·, tn) + g(·, tn−1)‖L2(Ω) ≤ τ2
∥∥∥∥
∂2g

∂t
(·, tn)

∥∥∥∥
L2(Ω)

+
τ3

3

∥∥∥∥
∂4g

∂t4

∥∥∥∥
L1(tn−1,tn+1;L2(Ω))

.

(77)

The second result now follows from Lemma 8 and replacing g by
∂2g

∂t2
in (75). For the third

result, with the same trick, we obtain

‖g(·, τ)− g(·, 0)‖L2(Ω) ≤ τ

∥∥∥∥
∂g

∂t

∥∥∥∥
C([0,T ];L2(Ω))

, (78)

which implies
∥∥θ1 − θ0

∥∥
L2(Ω)

≤ CΛ−1H2τ

∥∥∥∥
∂f

∂t
−
∂3uh
∂t3

∥∥∥∥
C0([0,T ];L2(Ω))

. (79)

On the other hand, using Taylor’s theorem on uh, we have

uh(·, τ) = uh(·, 0) + τ
∂uh
∂t

(·, 0) +
τ2

2

∂2uh
∂t2

(·, tn) +

∫ τ

0

s2

2

∂3uh
∂t3

(·, s)ds. (80)

Recalling the definition of u0H , u
1
H ∈ V

(m)
H and taking an L2(Ω) inner product with w ∈ V

(m)
H ,

we observe that
(
u0h, w

)
L2(Ω)

=
(
u0H , w

)
L2(Ω)

,

(
u1h, w

)
L2(Ω)

=
(
u1H , w

)
L2(Ω)

+

∫ τ

0

s2

2

(
∂3uh
∂t3

(·, s), w

)

L2(Ω)

ds.
(81)

This yields
∥∥ε1 − ε0

∥∥
L2(Ω)

≤
τ3

6

∥∥∥∥
∂3uh
∂t3

∥∥∥∥
C0([0,T ];L2(Ω))

. (82)

The third result then follows from a triangle inequality.

Now, with all the tools defined, we are going to estimate the distance between the coarse-
solution solution and elliptic projection.
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Theorem 10. With the above assumptions and assuming f ∈ C([0, T ];H1(Ω)), we have the
following estimate

∥∥∥∥∥π
(
δn+1 − δn

τ

)∥∥∥∥∥

2

L2(Ω)

+ aDG

(
δn+1 + δn

2
,
δn+1 + δn

2

)
≤ C(Λ−1H2 + τ2). (83)

Proof. Recalling the definitions (5) of uh and (27) of uH and noting that aDG (θn, w) = 0, for

any w ∈ V
(m)
H , we have

b

(
δn+1 − 2δn + δn−1

τ2
, w

)
+ aDG (δn, w) = (rn, w)L2(Ω), (84)

where rn is given by

rn = π

(
θn+1 − 2θn + θn−1

τ2

)
+ π

(
∂2uh
∂t2

(tn, ·)−
un+1
h − 2unh + un−1

h

τ2

)
+ (I − π)(fn). (85)

By Lemma 5, we have

∥∥∥∥∥π
(
δn+1 − δn

τ

)∥∥∥∥∥

2

L2(Ω)

+ aDG

(
δn+1 + δn

2
,
δn+1 + δn

2

)
≤ C

(
E

1
2 (δ) +

(
τRn1 + Λ− 1

2HRn2

)2)
,

(86)

where

Rn1 =

n∑

k=1

∥∥∥∥∥π
(
θk+1 − 2θk + θk−1

τ2

)∥∥∥∥∥
L2(Ω)

+

n∑

k=1

∥∥∥∥∥π
(
∂2uh
∂t2

(tk, ·)−
uk+1
h − 2ukh + uk−1

h

τ2

)∥∥∥∥∥
L2(Ω)

,

Rn2 = ‖(I − π)(f1)‖L2(Ω) + τ

n−1∑

k=1

∥∥∥∥∥(I − π)

(
fk+1 − fk

τ

)∥∥∥∥∥
L2(Ω)

+ ‖(I − π)(fn)‖L2(Ω).

(87)

First, by Lemma 1 and Lemma 4, we note that

E
1
2 (δ) ≤

1 + ρ2

2

∥∥∥∥π
(
δ1 − δ0

τ

)∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
δ1 + δ0

2

∥∥∥∥
2

a

. (88)

By Lemma 7 and the thired inequality in Lemma 9, we have

E
1
2 (δ) ≤ C(Λ−1H2 + τ2). (89)

Next, with the second inequality in Lemma 9, the first term in Rn1 can be estimated by

n∑

k=1

∥∥∥∥∥π
(
θk+1 − 2θk + θk−1

τ2

)∥∥∥∥∥
L2(Ω)

≤ Cτ−1Λ−1H2. (90)

Similarly, we estimate the second term in Rn1 using Taylor’s expansion

n∑

k=1

∥∥∥∥∥π
(
∂2uh
∂t2

(tk, ·)−
uk+1
h − 2ukh + uk−1

h

τ2

)∥∥∥∥∥
L2(Ω)

≤ Cτ

∥∥∥∥
∂4uh
∂t4

∥∥∥∥
C([0,T ];L2(Ω)

. (91)
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On the other hand, we estimate the terms in Rn2 by

‖(I − π)(fk)‖L2(Ω) ≤ Λ− 1
2H‖f‖C([0,T ];H1(Ω)),

τ

n∑

k=1

∥∥∥∥∥(I − π)

(
fk+1 − fk

τ

)∥∥∥∥∥
L2(Ω)

≤ C

∥∥∥∥
∂f

∂t

∥∥∥∥
C([0,T ];L2(Ω)

,
(92)

Combining all these estimates, we have

τRn1 + Λ− 1
2HRn2 ≤ C(Λ−1H2 + τ2), (93)

which completes the proof.

We complete this section by providing a L2 error estimate.

Theorem 11. With the above assumptions, we have the following error estimate

max
0≤k≤NT−1

∥∥∥∥
εk+1 + εk

2

∥∥∥∥
L2(Ω)

≤ C
(
Λ−1H2 + τ2

)
. (94)

Proof. We denote ∆n = τ
∑n

k=1 δ
k. Using a telescoping sum over (84), we have

b

(
δn+1 − δn

τ
, w

)
− b

(
δ1 − δ0

τ
, w

)
+ aDG (∆n, w) = τ

n∑

k=1

(rk, w)L2(Ω). (95)

Taking w = ∆n+1 −∆n−1 = τ(δn+1 + δn) ∈ V
(m)
H , we imply

‖π(δn+1)‖2L2(Ω) − ‖π(δn)‖2L2(Ω) + aDG
(
∆n,∆n+1

)
− aDG

(
∆n−1,∆n

)

= b
(
δ1 − δ0, δn+1 + δn

)
+ τ2

n∑

k=1

(
rk, δn+1 + δn

)
L2(Ω)

.
(96)

Using another telescoping sum, we have

‖π(δn+1)‖2L2(Ω) + aDG
(
∆n,∆n+1

)
− ‖π(δ1)‖2L2(Ω)

=

n∑

k=1

(
b
(
δ1 − δ0, δk+1 + δk

)
+ τ2

k∑

s=1

(
rs, δk+1 + δk

)
L2(Ω)

)
.

(97)

We estimate each of the terms of the error identity (97). For the second term on left hand side
of (97), we have

aDG
(
∆n,∆n+1

)

=
1

4

(
aDG

(
∆n+1 +∆n,∆n+1 +∆n

)
− aDG

(
∆n+1 −∆n∆n+1 −∆n

))

= aDG

(
∆n+1 +∆n

2
,
∆n+1 +∆n

2

)
−
τ2

4
aDG

(
δn+1, δn+1

)

≥
1

2

∥∥∥∥
∆n+1 +∆n

2

∥∥∥∥
2

a

−
κ1τ

2

4βH2
‖π(δn+1)‖2L2(Ω)

=
1

2

∥∥∥∥
∆n+1 +∆n

2

∥∥∥∥
2

a

− ρ2‖π(δn+1)‖2L2(Ω)

(98)
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For the last term on left hand side of (97), we proceed with the standard procedure with Cauchy-
Schwarz inequality to see that

‖π(δ1)‖2L2(Ω) = ‖π(δ0)‖2L2(Ω) + b(δ1 − δ0, δ1) + b(δ1 − δ0, δ0)

≤ ‖π(δ0)‖2L2(Ω) + ‖π(δ1 − δ0)‖L2(Ω)(‖π(δ
1)‖L2(Ω) + ‖π(δ0)‖L2(Ω))

≤ ‖δ0‖2L2(Ω) + 2‖δ1 − δ0‖L2(Ω) max
0≤k≤NT

‖π(δk)‖L2(Ω).

(99)

Similarly, for the first term on the right hand side of (97), we have

b
(
δ1 − δ0, δk+1 + δk

)
≤ 2‖δ1 − δ0‖L2(Ω) max

0≤k≤NT

‖π(δk)‖L2(Ω). (100)

Finally, we estimate the second term on the right hand side of (97) by

n∑

k=1

k∑

s=1

(
rs, δk+1 + δk

)
L2(Ω)

≤

n∑

k=1

Rk1
∥∥π(δk+1 + δk)

∥∥
L2(Ω)

+

n∑

k=1

Rk2
∥∥(I − π)(δk+1 + δk)

∥∥
L2(Ω)

≤ 2

(
n∑

k=1

Rk1

)
max

0≤k≤NT

∥∥π(δk)
∥∥
L2(Ω)

+ 2

(
n∑

k=1

Rk2

)
max

0≤k≤NT−1

∥∥∥∥(I − π)

(
δk+1 + δk

2

)∥∥∥∥
L2(Ω)

.

(101)

Combining these estimates, we infer from (97) that

(1− ρ2)‖π(δn+1)‖2L2(Ω) +
1

2

∥∥∥∥
∆n+1 +∆n

2

∥∥∥∥
2

a

≤ ‖δ0‖2L2(Ω) + 2

(
(n+ 1)‖δ1 − δ0‖L2(Ω) + τ2

n∑

k=1

Rk1

)
max

0≤k≤NT

‖π(δk)‖L2(Ω)

+ 2

(
τ2

n∑

k=1

Rk2

)
max

0≤k≤NT−1

∥∥∥∥(I − π)

(
δk+1 + δk

2

)∥∥∥∥
L2(Ω)

.

(102)

Using Young’s inequality, we have

max
0≤k≤NT

‖π(δk)‖2L2(Ω)

≤
2

1− ρ2
‖δ0‖2L2(Ω) +

8

(1− ρ2)2

(
NT ‖δ

1 − δ0‖L2(Ω) + τ2
NT−1∑

k=1

Rk1

)2

+
4

(1− ρ2)2

(
τ2

NT−1∑

k=1

Rk2

)2

+ max
0≤k≤NT−1

∥∥∥∥(I − π)

(
δk+1 + δk

2

)∥∥∥∥
2

L2(Ω)

,

(103)

which further implies

max
0≤k≤NT−1

∥∥∥∥
δk+1 + δk

2

∥∥∥∥
2

L2(Ω)

≤
2

1− ρ2
‖δ0‖2L2(Ω) +

8

(1 − ρ2)2

(
NT ‖δ

1 − δ0‖L2(Ω) + τ2
NT−1∑

k=1

Rk1

)2

+
4

(1− ρ2)2

(
τ2

NT−1∑

k=1

Rk2

)2

+ 2 max
0≤k≤NT−1

∥∥∥∥(I − π)

(
δk+1 + δk

2

)∥∥∥∥
2

L2(Ω)

,

(104)
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From the third inequality of Lemma 9, we have

NT ‖δ
1 − δ0‖L2(Ω) ≤ C(Λ−1H2 + τ2). (105)

Applying the estimates on Rk1 and Rk2 in Theorem 10, we have

τ2
NT−1∑

k=1

(Rk1 +Rk2) ≤ C
(
Λ−1H2 + τ2

)
. (106)

Using (39) and the result of Theorem 10, we have

max
0≤k≤NT−1

∥∥∥∥(I − π)

(
δk+1 + δk

2

)∥∥∥∥
L2(Ω)

≤ C(Λ−1H2 + τ2). (107)

Combining these estimates, we have

max
0≤k≤NT−1

∥∥∥∥
δk+1 + δk

2

∥∥∥∥
L2(Ω)

≤ C(‖δ0‖L2(Ω) + Λ−1H2 + τ2). (108)

Using a triangle inequality with δ0 = θ0 − ε0, we have

max
0≤k≤NT−1

∥∥∥∥
δk+1 + δk

2

∥∥∥∥
L2(Ω)

≤ C

(
‖ε0‖L2(Ω) + max

0≤k≤NT

∥∥θk
∥∥
L2(Ω)

+ Λ−1H2 + τ2
)
. (109)

Using another triangle inequality with εk = θk − δk, we have

max
0≤k≤NT−1

∥∥∥∥
εk+1 + εk

2

∥∥∥∥
L2(Ω)

≤ max
0≤k≤NT−1

∥∥∥∥
δk+1 + δk

2

∥∥∥∥
L2(Ω)

+ max
0≤k≤NT

∥∥θk
∥∥
L2(Ω)

≤ C

(
‖ε0‖L2(Ω) + max

0≤k≤NT

∥∥θk
∥∥
L2(Ω)

+ Λ−1H2 + τ2
)
.

(110)

Since u0H is the L2 projection of u0h onto V
(m)
H , we have

‖ε0‖L2(Ω) ≤ ‖θ0‖L2(Ω) ≤ CΛ−1H2, (111)

thanks to Lemma 8. The proof is completed by applying the first inequality of Lemma 9.

5 Numerical results

In this section, we will present numerical examples on the scalar wave equation to demonstrate
the convergence of our proposed method with respect to the coarse mesh size H and the number
of oversampling layers m. We take the bulk modulus on the spatial domain Ω = [0, 1]2 as part of
the Marmousi model as shown in Figure 3. In all the experiments, the IPDG penalty parameter
in (3) is set to be γ = 4, which is experimentally sufficient for ensuring the coercivity of the
bilinear form aDG. The source function f is taken as the Ricker wavelet

f(t, x, y) =
t− 2/f0
4h2

exp
(
−π2f2

0 (t− 2/f0)
2
)
exp

(
(x− 0.5)2 + (y − 0.5)2

4h2

)
for all (t, x, y) ∈ ΩT ,

(112)
where the fine grid parameter and the central frequency are chosen as h = 1/256 and f0 = 20.
Using the fully discrete scheme, we solve for the numerical solution at the final time T = 0.2 with
time step size ∆t = 10−4. We compare the coarse-scale approximation with the fine-grid solution.
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The coarse mesh size varies from H = 1/64 to H = 1/8, and the number of oversampling layers
varies according with m ≈ 4 log(1/H)/ log(1/8). In all these combinations, we use 4 test basis
functions per coarse block to construct the corresponding localized multiscale basis functions.

Table 1 records the error of the final solution It can been observed that the method results in
good accuracy and desired convergence in error. Figure 4 depicts the numerical solutions by the
fine-scale formulation and the coarse-scale formulation at the final time T = 0.2. The comparison
suggests that our new method provides very good accuracy at a reduced computational expense.
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Figure 3: Marmousi model for Experiment 2.

m H Energy error L2 error
4 1/8 90.0914% 64.3121%
6 1/16 49.1932% 26.4195%
7 1/32 9.9617% 4.4368%
8 1/64 1.1806% 0.5049%

Table 1: History of convergence for wave propagation in Marmousi model.
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Figure 4: Plots of numerical solution for Experiment 2. Fine solution (left) and multiscale
solution (right).
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6 Conclusion

In this paper, we present CEM-GMsDGM, a local multiscale model reduction approach in the
discontinuous Galerkin framework for the scalar wave equation. The multiscale trial basis func-
tions are defined in coarse oversampled regions by a constraint energy minimization problem,
which are in general discontinuous on the coarse grid, and coupled by the IPDG formulation
for solving for a coarse-scale approximation. The method is expicit and energy conserving, and
exhibits both coarse-mesh convergence and spectral convergence, provided that the oversampling
size is appropriately chosen. The stability and the convergence of the method is theoretically
analyzed and numerically verified. Numerical results for applying the method on a scalar wave
equation are also presented.
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