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Abstract. We propose a multiscale approach for an elliptic multiscale setting with
general unstructured diffusion coefficients that is able to achieve high-order convergence
rates with respect to the mesh parameter and the polynomial degree. The method allows
for suitable localization and does not rely on additional regularity assumptions on the
domain, the diffusion coefficient, or the exact (weak) solution as typically required for
high-order approaches. Rigorous a priori error estimates are presented with respect to
the involved discretization parameters, and the interplay between these parameters as
well as the performance of the method are studied numerically.
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1. Introduction

Computational multiscale methods are popular tools to deal with microscopic features
of partial differential equations (PDEs) that are typically encoded in an underlying ma-
terial coefficient. It is well-known that standard finite element methods only achieve ac-
ceptable results if varying micro-features are resolved by the corresponding finite element
mesh. Multiscale methods aim to overcome this problem and achieve good approximation
properties already for coarse-level simulations at the cost of a moderate computational
overhead. Prominent first-order approaches in the context of elliptic PDEs are the hetero-
geneous multiscale method [EE03, EE05, AEEV12], (generalized) multiscale finite element
methods [BO83, BCO94, HW97, BL11, EGH13], adaptive local bases [GGS12, Wey16],
and rough polyharmonic splines [OZB14]. Under appropriate smoothness assumptions on
the material coefficient or the exact solution, higher-order multiscale methods have been
considered for instance in [LMT12, AB12] in connection with the heterogeneous multi-
scale method or in [HPV13, AHPV13], known as multiscale hybrid-mixed methods. Other
high-order approaches are the method presented in [AB05, HZZ14] related to the multi-
scale finite element method or the multiscale hybrid high-order method [CEL19] that is
designed to work in the context of general polytopal meshes. These methods, however,
only yield high-order estimates if suitable smoothness assumptions hold. In the context
of very general L∞-coefficients that do not allow one to exploit higher-order regularity of
the exact solution, all the above-mentioned multiscale methods at most provide first-order
convergence results in H1.

In this paper, we analyze a higher-order multiscale method for an elliptic model prob-
lem which is able to achieve high-order convergence rates for general unstructured L∞-
coefficients only from additional (piecewise) smoothness assumptions on the force term.
The construction is motivated by the localized orthogonal decomposition (LOD) method
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[MP14, HP13], and in particular its discontinuous version [EGMP13, EGM13], as well as
the multi-level construction in [Owh17] known as gamblets.

The classical LOD method introduced in [MP14] is a multiscale technique based on
a first-order conforming finite element space and a corresponding local quasi-interpolation
operator that fulfills certain interpolation properties. This operator and its properties
are key to deriving the first-order error estimates of the method. In general, one could
generalize the idea and consider higher-order conforming discrete spaces as used in the
context of higher-order finite element methods (see, e.g., [BG96, Sch98]). There even
exist local quasi-interpolation operators for such spaces without restrictive smoothness
assumptions [Mel05] that fulfill properties similar to the ones required for the LOD method.
For general non-smooth coefficients, however, high-order rates with respect to the mesh
size can only be obtained if the quasi-interpolation operator fulfills additional orthogonality
properties with respect to the L2-scalar product. To the best of our knowledge, such a local
quasi-interpolation operator is not known to date, and its construction might be a delicate
task. To overcome this difficulty, discontinuous discrete spaces are a suitable choice. The
idea to use discontinuous functions traces back to [EGMP13, EGM13], where the authors
proposed a first-order discontinuous Galerkin multiscale method in the spirit of the LOD.
In [Owh17], gamblets were introduced that provide an abstract setting that generalizes the
LOD formulation. Their construction is based on constraint energy minimization problems
with an arbitrarily chosen discrete space for the constraint conditions. In particular, one
may employ discontinuous high-order finite element spaces. The potential of such spaces
to enable higher-order convergence rates has not yet been exploited, but the approach has
already been addressed in connection with higher-order differential operators in [OS19].

In the present work, we rely on a two-scale gamblet-construction in the spirit of [Owh17]
combined with piecewise polynomials for the constraints. This results in a conforming dis-
crete multiscale space despite the discontinuous constraint conditions. Our main focus lies
on a thorough analysis of the corresponding Galerkin method in terms of the convergence
behavior with respect to both the mesh size H and the polynomial degree p. We are able
to prove that our (ideal) multiscale approximation ums and the exact solution u fulfill an
error estimate of the form

‖u− ums‖H1(D) ≤ C(s)

(
H

p

)s+1

|f |Hs(TH), s ≤ p+ 1,

with the sole requirement of a piecewise regular right-hand side f with respect to the
mesh TH ; cf. Theorem 3.1. In particular, the error estimate holds under minimal regular-
ity assumptions on the domain (Lipschitz), the diffusion coefficient (L∞), and the exact
solution u (H1). We also show that a similar result can be retained for a fully discrete
and localized variant of the method; cf. Theorem 4.8.

The remaining parts of the paper are organized as follows. In Section 3, we introduce
the elliptic model problem and discontinuous coarse finite element spaces. Based on these
spaces, we then construct a high-order multiscale space in Section 3 and analyze the
corresponding ideal high-order multiscale method. In Section 4, we present a practical
version of the method for which we finally provide numerical examples in Section 5.

Notation. Throughout this work, we use the following notation. We write C for any
positive constant that is independent of the mesh sizes H, h as well as the polynomial
degree p, the localization parameter `, and the microscopic scale ε. To indicate an explicit
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dependence on a parameter ξ, we may write Cξ. We further abbreviate a ≤ C b by a . b
and use a ∼ b if a . b and a & b.

2. Problem Formulation and Discrete Spaces

2.1. Elliptic Model Problem. We consider the prototypical second-order diffusion prob-
lem

(2.1)
−div(A∇u) = f in D,

u = 0 on ∂D,

where D ⊆ Rd, d ∈ {1, 2, 3}, is a bounded and polytopal Lipschitz domain and f ∈ L2(D).
We assume the coefficient A to encode microscopic features of the medium on some scale ε
and to be admissible, i.e., it belongs to the set

(2.2) A :=

{
A ∈ L∞(D; Rd×dsym) : ∃ 0 < α ≤ β <∞ :

∀ξ ∈ Rd, a.a. x ∈ D : α|ξ|2 ≤ A(x)ξ · ξ ≤ β|ξ|2

}
with minimal assumptions. For a given coefficient A ∈ A, we write α for the largest possible
choice of α in the definition (2.2) and β for the L∞-norm of A, i.e., β = ‖A‖L∞(D;Rd×d

sym ),

although this choice of β might not be the minimal constant with respect to the estimate
in (2.2). We emphasize that also positive and bounded scalar coefficients are admissible,
since these coefficients may simply be multiplied by the identity matrix.

The variational formulation of (2.1) seeks a solution u ∈ H1
0 (D) that solves

(2.3) a(u, v) = (f, v)L2(D)

for all v ∈ H1
0 (D), where

a(w, v) :=

∫
D
A∇w · ∇v dx, w, v ∈ H1

0 (D).

Note that the solution u of (2.3) is unique by the Lax-Milgram Theorem and it holds that

(2.4) ‖∇u‖L2(D) ≤ α−1 ‖f‖L2(D).

The aim of the multiscale construction in Section 3 below is to provide a suitable approx-
imation of the solution u in (2.3). For the construction, we particularly require discontin-
uous high-order finite element spaces.

2.2. Discontinuous discrete spaces. Let {TH}H>0 be a family of regular decompo-
sitions of the domain D into quasi-uniform d-rectangles on the scale H as described in
[Cia78, Ch. 2 & 3]. Further, denote with V p

H the space of piecewise polynomial functions
with prescribed maximal coordinate degree p, i.e.,

V p
H :=

{
v ∈ L2(D) : ∀K ∈ TH : v|K is a polynomial

of coordinate degree ≤ p

}
.

For any S ⊆ D, we write V p
H(S) for the restriction of V p

H to the subdomain S. In particular,
for any K ∈ TH , the restricted space V p

H(K) is exactly the space of polynomials up to
degree p in each coordinate direction on the element K. For later use, we also define for
k ∈ N the broken Sobolev space Hk(TH) by

Hk(TH) := {v ∈ L2(D) : ∀K ∈ TH : v|K ∈ Hk(K)}
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with the seminorm
| · |Hk(TH) :=

∑
K∈TH

| · |2Hk(K),

where | · |Hk(S) := ‖∇k · ‖L2(S) denotes the Hk-seminorm on S ⊆ D.
The next step towards our multiscale construction consists in defining a projection

operator onto the space V p
H that fulfills appropriate local stability and approximation

properties. Here, we use the L2-projection Πp
H : L2(D) → V p

H defined for any v ∈ L2(D)
by

(2.5)
(
Πp
Hv, wH

)
L2(D)

=
(
v, wH

)
L2(D)

for all wH ∈ V p
H . The operator Πp

H is local due to the element-wise definition of the
space V p

H and the possible discontinuities across element boundaries. That is, the definition
of Πp

H in (2.5) is equivalent to the element-wise characterization

(2.6)
(
(Πp

Hv)|K , q
)
L2(K)

=
(
v, q
)
L2(K)

for all q ∈ V p
H(K) and K ∈ TH . For the sake of readability, we abbreviate Π := Πp

H if p
and H are explicitly given and there is no possibility of confusion.

For any K ∈ TH , the L2-stability of Π follows directly from equation (2.6) with the
choice q = (Πv)|K and reads

(2.7) ‖Πv‖L2(K) ≤ ‖v‖L2(K)

for all v ∈ L2(K). Further, it holds that

(2.8) ‖(id−Π)v‖L2(K) ≤ CΠ
H

p
‖∇v‖L2(K)

for all v ∈ H1(K); see, e.g., [Sch98, HSS02, Geo03]. If v ∈ Hk(K) for k ∈ N and k ≤ p+1,
we even have

(2.9) ‖(id−Π)v‖L2(K) ≤ CΠ Φ(p, k)Hk |v|Hk(K)

with a constant CΠ that does not depend on H or p and

Φ(p, k) :=

(
(p+ 1− k)!

(p+ 1 + k)!

)1/2

.

We emphasize that due to the true locality of the inequalities (2.7) and (2.8), the results
immediately generalize to unions of elements and, in particular, to a global result on the
domain D in the sense of an element-wise gradient on the right-hand side. At this point,
we also introduce the inverse inequality for polynomials which states that

(2.10) ‖∇q‖L2(K) ≤ CinvH
−1p2 ‖q‖L2(K)

for K ∈ TH and for all q ∈ V p
H(K); see, e.g., [Sch98, GHS05, Geo08]. As above, this result

also holds globally, i.e.,

|vH |H1(TH) ≤ CinvH
−1p2 ‖vH‖L2(D)

for all vH ∈ V p
H . We emphasize that Π: L2(D)→ V p

H is obviously surjective as an operator
from L2(D) to the non-conforming space V p

H . For the following construction, however, we
explicitly require that Π is also surjective as an operator from H1

0 (D) to V p
H . This very

important condition is only mentioned here and rigorously proved in Section 3.3 in order
to improve the clarity of presentation.
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3. High-Order Multiscale Approximation

In this section, we state and analyze an ideal multiscale approach to discretize prob-
lem (2.3). Therefore, we introduce a high-order multiscale space which is then used as
discretization space for a Galerkin method.

3.1. Ideal trial and test space. In the spirit of the LOD method and gamblets, we
construct an operator R : V p

H → H1
0 (D) that assigns to each vH ∈ V p

H a function in H1
0 (D)

whose L2-projection is exactly vH . Such functions exist by the surjectivity of Π|H1
0 (D) (see

Theorem 3.5 and Corollary 3.6 below) but we particularly want the space RV p
H to have

improved approximation properties compared to a classical finite element space for which
error estimates typically depend on the scale of microscopic oscillations.

We define R : V p
H → H1

0 (D) for any vH ∈ V p
H as the solution of the saddle point problem

(3.1)
a(RvH , v) + (λvH , v)L2(D) = 0,

(RvH , µH)L2(D) = (vH , µH)L2(D)

for all v ∈ H1
0 (D) and all µH ∈ V p

H , where λvH ∈ V
p
H is the associated Lagrange multiplier.

The solution (RvH , λvH ) ∈ H1
0 (D)×V p

H of (3.1) exists and is unique due to the equivalent
definition

RvH := arg min
v∈H1

0 (D)

a(v, v) subject to Πv = vH ,

which is well-posed by the surjectivity of Π|H1
0 (D). We now set Ṽ p

H := RV p
H ⊆ H1

0 (D) and

observe that dim Ṽ p
H = dimV p

H because R : V p
H → Ṽ p

H is a bijection with inverse Π|Ṽ p
H
.

3.2. The ideal method. Using Ṽ p
H as test and trial space for a continuous Galerkin ap-

proach, we obtain a multiscale method which computes a finite-dimensional approximation
of (2.3). This so-called ideal method reads: find ũH ∈ Ṽ p

H such that

(3.2) a(ũH , ṽH) = (f, ṽH)L2(D)

for all ṽH ∈ Ṽ p
H . As for the variational problem (2.3), we directly get the well-posedness

of (3.2) from the Lax-Milgram Theorem due to the conformity of Ṽ p
H .

In the following theorem, we quantify the error between the solutions of (2.3) and (3.2)
under additional (piecewise) regularity assumptions on the right-hand side f and indepen-
dently of possible oscillations of the coefficient A.

Theorem 3.1 (Error of the ideal method). Assume that f ∈ Hk(TH), k ∈ N0, and define

s := min{k, p + 1}. Further, let u ∈ H1
0 (D) and ũH ∈ Ṽ p

H be the solutions of (2.3) and
(3.2), respectively. Then

(3.3) ‖∇(u− ũH)‖L2(D) .
Φ(p, s)

p
Hs+1 |f |Hs(TH)

and

(3.4) ‖u− ũH‖L2(D) .
Φ(p, s)

p2
Hs+2 |f |Hs(TH),

with the notation H0(TH) := L2(D) and | · |H0(TH) := ‖ · ‖L2(D).

In order to prove Theorem 3.1, we need the following useful result.
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Lemma 3.2 (Equal projections). Let u ∈ H1
0 (D) be the solution of (2.3) and ũH ∈ Ṽ p

H
the solution of (3.2). Then, we have that

ΠũH = Πu.

Proof. We show that ũH = RΠu or, equivalently, that ũH solves

(3.5)
a(ũH , v) + (λΠu, v)L2(D) = 0,

(ΠũH , µH)L2(D) = (Πu, µH)L2(D)

for all v ∈ H1
0 (D) and µH ∈ V p

H , where λΠu ∈ V p
H is the associated Lagrange multiplier.

The assertion then follows by the second line of (3.5).

For ṽH = RvH ∈ Ṽ p
H , we compute

a(RΠu, ṽH) = a(u, ṽH)− a((id−RΠ)u, ṽH)

= (f, ṽH)L2(D) − a((id−RΠ)u, ṽH).

Since Π(id−RΠ)u = 0, we get with (3.1) that

a((id−RΠ)u, ṽH) = 0.

Therefore, RΠu is the unique solution of problem (3.2). �

Proof of Theorem 3.1. Using the Galerkin orthogonality, (2.8), and (2.9), we obtain for
k ≥ 1

α ‖∇(u− ũH)‖2L2(D) ≤ a(u− ũH , u− ũH) = a(u, u− ũH)

= (f, u− ũH)L2(D) = (f −Πf, u− ũH)L2(D)

≤ ‖f −Πf‖L2(D)CΠ
H

p
‖∇(u− ũH)‖L2(D)

≤ CΠ Φ(p, s)Hs |f |Hs(TH)CΠ
H

p
‖∇(u− ũH)‖L2(D),

where we employ that Π(u− ũH) = 0 by Lemma 3.2. Thus,

‖∇(u− ũH)‖L2(D) ≤ α−1C2
Π

Φ(p, s)

p
Hs+1 |f |Hs(TH).

With the same arguments but without inserting Πf , we get in the case k = 0 that

‖∇(u− ũH)‖L2(D) ≤ α−1CΠ
H

p
‖f‖L2(D).

This proves (3.3). To show the L2-error estimate, we use once again that Π(u− ũH) = 0.
Therefore, we get with (2.8) that

‖u− ũH‖L2(D) ≤ CΠ
H

p
‖∇(u− ũH)‖L2(D).

Combining the last estimate with (3.3), we deduce (3.4). �

Remark 3.3. If k = 0 and p = 1, the error estimate in Theorem 3.1 is comparable to the
error estimates of the conforming (ideal) LOD method; see, e.g., [MP14].
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3.3. Surjectivity of Π. This subsection is devoted to showing that the projection oper-
ator Π is surjective when restricted to functions in H1

0 (D). This property is an important
requirement in the above construction and is proved for completeness. First, we show the
following auxiliary lemma.

Lemma 3.4 (Local inf-sup condition). Let K ∈ TH . Then the inf-sup condition

(3.6) inf
q∈V p

H(K)

sup
v∈H1

0 (K)

(q, v)L2(K)

‖q‖L2(K) ‖∇v‖L2(K)
≥ γ(H, p) > 0

holds with γ(H, p) ∼ Hp−2.

Proof. Let κ ⊆ K be such that the edges and faces of κ are parallel to the ones of K. Ac-
cording to [Geo08, Lem. 3.7], there exists a choice of κ such that dist(κ, ∂K) = CdistHp

−2

and

(3.7) ‖q‖2L2(κ) ≥
1

4
‖q‖2L2(K)

for all q ∈ V p
H(K), where dist(·, ·) denotes the Hausdorff distance. As a next step, let

ρ ∈W 1,∞(K) ∩H1
0 (K) be a bubble function with

0 ≤ ρ ≤ 1,

ρ ≡ 1 in κ,

‖∇ρ‖L∞(K) ≤ CρH
−1p2,

where Cρ depends on Cdist. Using (3.7) and

(3.8)
‖∇(ρq)‖L2(K) ≤ ‖∇ρ‖L∞(K) ‖q‖L2(K) + ‖ρ‖L∞(K) ‖∇q‖L2(K)

≤ H−1p2(Cρ + Cinv) ‖q‖L2(K),

we get for any q ∈ V p
H(K) that

sup
v∈H1

0 (K)

(q, v)L2(K)

‖q‖L2(K) ‖∇v‖L2(K)
≥

(q, ρq)L2(K)

‖q‖L2(K) ‖∇(ρq)‖L2(K)

≥ 1

4

‖q‖2L2(K)

‖q‖L2(K) ‖∇(ρq)‖L2(K)

=
H

4p2 (Cρ + Cinv)
=: γ(H, p) > 0. �

Theorem 3.5 (Surjectivity). The restricted operator Π|H1
0 (D) is surjective, i.e., for any

wH ∈ V p
H , there exists a function w ∈ H1

0 (D) such that Πw = wH . Further, among all
possible candidates exists a choice of w such that

‖∇w‖L2(D) .
p2

H
‖wH‖L2(D).

Proof. Let wH ∈ V p
H . We define w ∈ H1

0 (D) as the solution of

(3.9)
a(w, v) + (λwH , v)L2(D) = 0,

(w, µH)L2(D) = (wH , µH)L2(D)
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for all v ∈ H1
0 (D) and all µH ∈ V p

H . From classical saddle point theory (see, e.g., [BBF13,
Cor. 4.2.1]), we know that (3.9) has a unique solution if the inf-sup condition

(3.10) inf
vH∈V p

H

sup
v∈H1

0 (D)

(vH , v)L2(D)

‖vH‖L2(D) ‖∇v‖L2(D)
≥ γ̃(H, p) > 0

holds and a is coercive. To show the inf-sup condition (3.10), let vH ∈ V p
H . From the

construction in the proof of Lemma 3.4, we get for any K ∈ TH the existence of a function
vK ∈ H1

0 (K) which fulfills

(3.11) (vH , vK)L2(K) & ‖vH‖2L2(K)

and similarly to (3.8) also

(3.12) ‖∇vK‖L2(K) . H
−1p2 ‖vH‖L2(K).

Using these local contributions, the inclusion⋃
K∈TH

H1
0 (K) ⊆ H1

0 (D),

and the estimates (3.11) and (3.12), we compute

sup
v∈H1

0 (D)

(vH , v)L2(D)

‖vH‖L2(D) ‖∇v‖L2(D)
≥

∑
K∈TH (vH , vK)L2(K)

‖vH‖L2(D)

(∑
K∈TH ‖∇vK‖

2
L2(K)

)1/2
≥ C Hp−2

∑
K∈TH ‖vH‖

2
L2(K)

‖vH‖L2(D)

(∑
K∈TH ‖vH‖

2
L2(K)

)1/2 = C Hp−2.

That is, the inf-sup condition (3.10) holds with γ̃(H, p) ∼ Hp−2 > 0. Thus, (3.9) is well-
posed and the stability estimates

‖λwH‖L2(D) ≤
β

γ̃(H, p)2
‖wH‖L2(D)

and

‖∇w‖L2(D) ≤
2β1/2

α1/2γ̃(H, p)
‖wH‖L2(D)

hold (cf. [BBF13, Cor. 4.2.1]). Finally, we remark that the equality Πw = wH follows by
construction. �

The construction in the proof of Theorem 3.5 is based on local subspaces of H1
0 (D)

and, thus, allows us to even find a conforming preimage w ∈ H1
0 (D) under Π of a function

wH ∈ V p
H which is supported only in the elements where wH is non-zero. This straightfor-

ward consequence is given in the following corollary.

Corollary 3.6 (Local bubble function). Let {Kj}nR
j=1 ⊆ TH be a set of elements and

wH ∈ V p
H such that

wH |D\R = 0, where R =

nR⋃
j=1

Kj .

Then there exists a function w ∈ H1
0 (R) with w|D\R = 0 such that Πw = wH and

‖∇w‖L2(R) .
p2

H
‖wH‖L2(R).
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4. Derivation of a Practical Method

In this section, we derive a fully practical version of the ideal method given in (3.2)
following the ideas of the classical LOD. The requirement of a practical version of the
above method is related to the fact that the construction of the finite-dimensional approx-
imation space Ṽ p

H involves the solution of infinite-dimensional problems. Therefore, we

first investigate the decay properties of functions in Ṽ p
H which then allows us to suitable

localize and discretize the construction of the space Ṽ p
H .

4.1. Decay of the basis functions. As a first step, we identify a suitable choice of a
basis of Ṽ p

H which is constructed from a basis of V p
H . For any K ∈ TH , let

BK := {ΛK,j}mK
j=1 with mK = (p+ 1)d

be a basis of V p
H(K) and

B :=
⋃

K∈TH

BK

the corresponding (local) basis of V p
H . In our numerical computations, we choose shifted

Legendre polynomials on each element K, which are orthogonal with respect to the L2-
scalar product (·, ·)L2(K).

Using the isomorphism R between V p
H and Ṽ p

H , we directly get that B̃ := RB is a basis

of Ṽ p
H . In the following, we show that for any basis function Λ ∈ B, the corresponding

basis function RΛ ∈ B̃ decays exponentially fast away from the support of the function Λ,
which is exactly one element of TH . To this end, we define for ` ∈ N the element patch of
order ` around S ⊆ D by

N`(S) := N1(N`−1(S)), ` ≥ 1, N1(S) :=
⋃{

K ∈ TH : S ∩ K 6= ∅
}
.

Theorem 4.1 (Decay of the basis functions). Let ` ∈ N, K ∈ TH , and Λ ∈ BK . Further,

define Λ̃ = RΛ ∈ B̃. Then it holds that

(4.1) ‖∇Λ̃‖L2(D\N`(K)) . exp(−Cdec `/p) ‖∇Λ̃‖L2(D)

with a constant Cdec that depends on CΠ, α, and β.

Proof. We choose a cutoff function η ∈W 1,∞(D) with the following properties,

(4.2)

0 ≤ η ≤ 1,

η = 0 in N`(K),

η = 1 in D \ N`+1(K),

‖∇η‖L∞(D) ≤ CηH
−1.

Define R := N`+1(K) \ N`(K). Since R is a union of elements of TH and Π(Λ̃η)|D\R = 0,

we know from Corollary 3.6 that there exists a bubble function b ∈ H1
0 (R) which fulfills

Πb = Π(Λ̃η) and

(4.3) ‖∇b‖L2(R) .
p2

H
‖Λ̃η‖L2(R).
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We compute

α ‖∇Λ̃‖2L2(D\N`+1(K)) ≤
∣∣∣ ∫

D
A∇Λ̃ · ∇(Λ̃η) dx

∣∣∣+
∣∣∣ ∫

D
A∇Λ̃ · ∇η Λ̃ dx

∣∣∣
≤
∣∣∣ ∫

D
A∇Λ̃ · ∇(Λ̃η − b) dx

∣∣∣
+
∣∣∣ ∫

D
A∇Λ̃ · ∇bdx

∣∣∣+
∣∣∣ ∫

D
A∇Λ̃ · ∇η Λ̃ dx

∣∣∣
=
∣∣∣ ∫

R
A∇Λ̃ · ∇bdx

∣∣∣+
∣∣∣ ∫

R
A∇Λ̃ · ∇η Λ̃ dx

∣∣∣,
where we use the fact that by (3.1), we have a(Λ̃, v) = 0 for any v ∈ H1

0 (D) with Πv = 0.

Therefore, we get with (2.8), ΠΛ̃|R = 0, (4.2), and (4.3) that

‖∇Λ̃‖2L2(D\N`+1(K)) ≤ Cp ‖∇Λ̃‖2L2(R).

Employing the identity

R = N`+1(K) \ N`(K) =
(
D \ N`(K)

)
\
(
D \ N`+1(K)

)
,

we obtain

‖∇Λ̃‖2L2(D\N`+1(K)) ≤ Cp ‖∇Λ̃‖2L2(D\N`(K)) − Cp ‖∇Λ̃‖2L2(D\N`+1(K))

and thus

‖∇Λ̃‖2L2(D\N`+1(K)) ≤
Cp

Cp+ 1
‖∇Λ̃‖2L2(D\N`(K)) ≤

(
Cp

Cp+ 1

)`+1

‖∇Λ̃‖2L2(D)

with an iteration of the above arguments. We further get( Cp

Cp+ 1

)`
= exp

(
− | log

( Cp
Cp+1

)
| `
)
≤ exp

(
− 1

2C `/p
)
.

Taking the square root, we deduce (4.1) with Cdec := 1
4C . �

Remark 4.2. Although Theorem 4.1 only quantifies the decay of basis functions Λ̃ ∈ B̃,
with the same arguments the result also holds for any function Rq, where q ∈ V p

H(K) and
K ∈ TH . That is, we have

(4.4) ‖∇Rq‖L2(D\N`(K)) . exp(−Cdec `/p) ‖∇Rq‖L2(D).

Remark 4.3. The p-dependence in Theorem 4.1 seems pessimistic and is possibly not
sharp, which is related to the mismatch between the interpolation estimate (2.8) and
the inverse inequality (2.10) in terms of powers of p. In fact, the numerical experiments
in Section 5 indicate a scaling in p which leads to a faster decay in (4.1) and (4.4) for
increasing values of p. More precisely, one may expect that the exponential factor in these
estimates is actually given by exp(−Cdec ` p

δ) for some δ > 0. That is, one could fix the
parameter ` and reduce the localization error only by an adjustment of the polynomial
degree.

The decay property of the basis functions in B that is proved in Theorem 4.1 is the key
ingredient to define a localized version of the operator R. This localization procedure is
explained and investigated in the following subsection.
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4.2. Localized computation of the approximation space. We base the definition of
a localized operator R` on truncated versions of the basis functions in B̃. Thus, for a
given localization parameter ` ∈ N and any Λ ∈ B with supp(Λ) = K ∈ TH , we define

Λ̃` ∈ H1
0 (N`(K)) as the unique solution of the saddle point problem

(4.5)
a(Λ̃`, v) + (λ`Λ, v)L2(D) = 0,

(Λ̃`, µH)L2(D) = (Λ, µH)L2(D)

for all v ∈ H1
0 (N`(K)) and µH ∈ V p

H(N`(K)) with the associated Lagrange multiplier

λ`Λ ∈ V
p
H(N`(K)). Then for any function vH ∈ V p

H which can be expanded as

vH =
∑
K∈TH

mK∑
j=1

cK,j ΛK,j ,

we define the corresponding function R`vH ∈ H1
0 (D) by

(4.6) R`vH :=
∑
K∈TH

mK∑
j=1

cK,j Λ̃`K,j .

We set Ṽ p,`
H := R`V p

H and remark that B̃` := R`B is a basis of Ṽ p,`
H by construction.

We use this space to compute an approximation of the ideal finite-dimensional solution

ũH ∈ Ṽ p
H of (3.2), i.e., we want to find ũ`H ∈ Ṽ

p,`
H that solves

(4.7) a(ũ`H , ṽH) = (f, ṽH)L2(D)

for all ṽH ∈ Ṽ p,`
H . We refer to (4.7) as the localized multiscale method. As a next step, we

show an estimate for the error u− ũ`H .

Theorem 4.4 (Error of the localized multiscale method). Let ` ∈ N, f ∈ Hk(TH),
k ∈ N0, and define s := min{k, p+ 1}. Further, let u ∈ H1

0 (D) be the solution of (2.3)

and ũ`H ∈ Ṽ
p,`
H the solution of (4.7). Then it holds that

(4.8) ‖∇(u− ũ`H)‖L2(D) .
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

p3

H
`(d−1)/2 exp(−Cdec `/p) ‖f‖L2(D)

with the constant Cdec from Theorem 4.1.

Proof. First, we observe that ũ`H is quasi-optimal by the Galerkin orthogonality. Therefore,
we obtain

‖∇(u− ũ`H)‖L2(D) ≤
β

α
inf

ṽH∈Ṽ p,`
H

‖∇(u− ṽH)‖L2(D) ≤
β

α
‖∇(u− ū`H)‖L2(D),

where ū`H := R`Πu ∈ Ṽ p,`
H . With the triangle inequality and the solution ũH ∈ Ṽ p

H of (3.2),
we get that

(4.9) ‖∇(u− ū`H)‖L2(D) ≤ ‖∇(u− ũH)‖L2(D) + ‖∇(ũH − ū`H)‖L2(D).

The first term can be estimated with Theorem 3.1, i.e.,

‖∇(u− ũH)‖L2(D) .
Φ(p, s)

p
Hs+1 |f |Hs(TH).
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For the second term, we set w := ũH−ū`H . Further, for K ∈ TH we define a cutoff function
ηK ∈W 1,∞(D) with

0 ≤ ηK ≤ 1,

ηK = 0 in N`−1(K),

ηK = 1 in D \ N`(K),

‖∇ηK‖L∞(D) ≤ CηH
−1.

We set RK := N`(K) \ N`−1(K). By (4.5) and (4.6), for each K ∈ TH there exists a
Lagrange multiplier λ`K ∈ V

p
H(N`(K)) such that

(4.10)
a(R`(Πu|K), v) + (λ`K , v)L2(D) = 0,

(R`(Πu|K), µH)L2(D) = (Πu|K , µH)L2(D)

for all v ∈ H1
0 (N`(K)) and µH ∈ V p

H(N`(K)). Noting that

(1− ηK)w ∈ H1
0 (N`(K)) and Πw = 0,

we obtain with (3.1) and (4.10)

(4.11)

α ‖∇w‖2L2(D) ≤
∑
K∈TH

a(R(Πu|K)−R`(Πu|K), w)

=
∑
K∈TH

−a(R`(Πu|K), (1− ηK)w + ηKw)

=
∑
K∈TH

(
(λ`K , (1− ηK)w)L2(RK) − a(R`(Πu|K), ηKw)

)
.
∑
K∈TH

(
‖λ`K‖L2(RK) ‖w‖L2(RK)

+ ‖∇R`(Πu|K)‖L2(RK) ‖∇(ηKw)‖L2(RK)

)
.

Next, we bound the terms on the right-hand side of (4.11). We observe that by the
approximation result (2.8), we have that

(4.12) ‖w‖L2(RK) ≤ CΠ
H

p
‖∇w‖L2(RK)

and

(4.13) ‖∇(ηKw)‖L2(RK) ≤ CηCΠ p
−1 ‖∇w‖L2(RK) + ‖∇w‖L2(RK).

Further, for any T ∈ TH , there exists a bubble function ρT ∈W 1,∞(T ) ∩H1
0 (T ) as in the

proof of Lemma 3.4 such that

(4.14)

‖λ`K‖2L2(T ) ≤ 4 (λ`K , ρTλ
`
K)L2(T )

= −4 a(R`(Πu|K), ρTλ
`
K)

. H−1p2 ‖∇R`(Πu|K)‖L2(T ) ‖λ`K‖L2(T ),

where we employ the estimates (3.7) and (3.8). Using (4.12)-(4.14), we deduce from (4.11)
that

(4.15) α ‖∇w‖2L2(D) .
∑
K∈TH

(p+ 1) ‖∇R`(Πu|K)‖L2(RK) ‖∇w‖L2(RK).
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We now use Theorem 4.1 and Remark 4.2, which both equivalently hold with R replaced
by R`. Therefore, we get with (4.15) and (4.4) that

‖∇w‖2L2(D) .
∑
K∈TH

(p+ 1) ‖∇R`(Πu|K)‖L2(D\N`−1(K)) ‖∇w‖L2(RK)

.
p3

H
exp(−Cdec `/p)

( ∑
K∈TH

‖Πu|K‖
2
L2(K)

)1/2( ∑
K∈TH

‖∇w‖2L2(RK)

)1/2

.
p3

H
`(d−1)/2 exp(−Cdec `/p) ‖Πu‖L2(D) ‖∇w‖L2(D),

where we also employ the discrete Cauchy-Schwarz inequality and the stability of (4.10),
i.e.,

‖∇R`(Πu|K)‖L2(D) .
p2

H
‖Πu|K‖L2(K)

for any K ∈ TH . We now go back to (4.9) and finally obtain

‖∇(u− ũ`H)‖L2(D) .
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

p3

H
`(d−1)/2 exp(−Cdec `/p) ‖Πu‖L2(D)

.
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

p3

H
`(d−1)/2 exp(−Cdec `/p) ‖f‖L2(D),

where we use the stability of Π and (2.4). �

Remark 4.5. The additional H in the denominator of the estimate in Theorem 4.4 may be
explained by the fact that the localization error ũH − ū`H is measured in the H1-norm and
is bounded by Πu, which is measured in the L2-norm. Although this seems suboptimal,
the pollution in terms of H in the second term of (4.8) is also observed in our numerical
experiments; see Section 5.

We can now use Theorem 4.4 to quantify the choice of the localization parameter ` with
respect to the polynomial degree p and the mesh size H dependent on the regularity of
the right-hand side f .

Corollary 4.6. Let f ∈ Hk(TH), k ∈ N0, and define s := min{k, p + 1}. Further, let

u ∈ H1
0 (D) be the solution of (2.3), and ũ`H ∈ Ṽ

p,`
H the solution of (4.7). Then, for

(4.16) ` & | logH| p (s+ 1) + (log p) p (s+ 1),

it holds that

‖∇(u− ũ`H)‖L2(D) .
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

(H
p

)s+1
‖f‖L2(D).

Note that if k = 0 and p = 1, Corollary 4.6 provides a similar error estimate as for
the conforming first-order LOD method with the same scaling of `; see, e.g., [HP13]. Of
course, if we increase p, the localization parameter ` in Theorem 4.4 needs to grow as
well in order to maintain the high convergence rate of Theorem 3.1 with respect to H
and p. Nevertheless, the experiments in Section 5 indicate that the p-dependence of `
in (4.16) might be too pessimistic and the decay property of Theorem 4.1 in fact even
slightly improves for larger values of p. Before we turn our attention to these numerical
investigations of the high-order method, we first need to discuss the last step towards a
fully practical method, i.e., the discretization at the microscopic scale.
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4.3. Microscopic discretization. The localized operatorR` does still not provide a fully
discrete method since the localized basis functions (4.5) are obtained by solving infinite-
dimensional auxiliary problems. The easiest approach to resolve this issue is to introduce
a (conforming) fine finite element space Vh,p′ ⊆ H1

0 (D) based on a decomposition Th with
mesh parameter h and polynomial degree p′ that replaces the space H1

0 (D) in the above
construction. Ideally, the classical Galerkin solution in Vh,p′ should fulfill an estimate
similar to the one in Theorem 3.1. Motivated by error estimates of high-order finite
element methods (see, e.g., [BG96, Sch98]), for f ∈ Hk(D), k ∈ N0, we assume that

(4.17) ‖∇(u− uh)‖L2(D) .
Φ(p′, s′)

p′
(Cε h)s

′+1 |f |Hs′ (D),

where u ∈ H1
0 (D) is the solution of (2.3), s′ := min{k, p′+1}, and uh ∈ Vh,p′ is the solution

of

(4.18) a(uh, vh) = (f, vh)L2(D)

for all vh ∈ Vh,p′ . Note that the right-hand side of (4.17) depends on the fine-scale
parameter ε through the constant Cε. This is typical for classical finite element spaces
which do not take into account microscopic information.

We emphasize that on the one hand, the ideal approximation ũH ∈ Ṽ p
H characterized by

(3.2) fulfills the high-order estimate quantified in Theorem 3.1 by the (piecewise) regularity
of the right-hand side f only. On the other hand, in order to obtain a high-order estimate
of the form (4.17) for the classical finite element space Vh,p′ , the regularity of f needs to
hold globally. Further, one requires additional smoothness assumptions on the domain D
as well as on the coefficient A (see, e.g., [Eva10, Thm. 5 in Sec. 6.3]) and, in particular, the
microscopic scale ε needs to be resolved. Another problem that occurs when discretizing
the fine scales is the fact that the proof of the inf-sup condition in Lemma 3.4 is explicitly
based on the space H1

0 (D). The result does not directly follow for subspaces of H1
0 (D)

and a similar inf-sup condition needs to be proved for the respective discrete space Vh,p′
at hand.

With these problems in mind, the following lemma provides a condition on the fine
mesh parameter h for which the inf-sup condition (3.6) and thus the surjectivity results in
Theorem 3.5 and Corollary 3.6 remain valid if H1

0 (D) is replaced by the first-order space
Vh ⊆ H1

0 (D), for which we omit the subscript 1. The explicit choice of the polynomial
degree p′ = 1 is motivated by the fact that high-order estimates for the classical conforming
finite element space Vh,p′ would require additional smoothness assumptions as mentioned
above.

Lemma 4.7 (Discrete local inf-sup condition). Let K ∈ TH . Then there exists a constant
C > 0 independent of h, H, and p such that for

h ≤ C Hp−2

the inf-sup condition

(4.19) inf
q∈V p

H(K)

sup
vh∈Vh∩H1

0 (K)

(q, vh)L2(K)

‖q‖L2(K) ‖∇vh‖L2(K)
≥ γh > 0

holds with γh ∼ Hp−2.
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Proof. As in the proof of Lemma 3.4, let κ ⊆ K be such that its edges and faces are
parallel to the ones of K, dist(κ, ∂K) = CdistHp

−2, and

(4.20) ‖q‖2L2(κ) ≥
1

4
‖q‖2L2(K)

for all q ∈ V p
H(K). Now, let ρ ∈W 1,∞(K) ∩H1

0 (K) with

0 ≤ ρ ≤ 1,

ρ = 1 in κ,

‖∇ρ‖L∞(K) ≤ CρH
−1p2,

where Cρ depends on Cdist. Next, we define, for any q ∈ V p
H(K), the auxiliary function

wq ∈ Vh ∩H1
0 (K) as the solution of

(4.21) (wq, vh)L2(K) = (q, vh)L2(K)

for all vh ∈ Vh ∩H1
0 (K). Note that wq is unique by the inverse inequality

(4.22) ‖∇vh‖L2(K) ≤ C̃inv h
−1 ‖vh‖L2(K)

and the Lax-Milgram Theorem. The last auxiliary ingredient is an estimate of the form

‖q‖L2(K) . ‖wq‖L2(K)

which can be obtained using a projection operator IKh : L2(K)→ Vh ∩H1
0 (K) which fulfills

the following stability and approximation properties. For all v ∈ L2(K), it holds that

(4.23) ‖IKh v‖L2(K) ≤ CIKh ‖v‖L2(K)

and, for any v ∈ H1
0 (K), we have

(4.24) ‖h−1(v − IKh v)‖L2(K) + ‖∇IKh v‖L2(K) ≤ CIKh ‖∇v‖L2(K).

For an explicit choice of IKh , we refer to [Osw93, Bre94, EG17]. With (4.20), (4.21), (4.23),
(4.24), and (3.8), we can show that

1
4‖q‖

2
L2(K) ≤ ‖q‖

2
L2(κ) ≤ (q, ρq)L2(K) = (q, IKh (ρq))L2(K) + (q, (id− IKh )(ρq))L2(K)

= (wq, IKh (ρq))L2(K) + (q, (id− IKh )(ρq))L2(K)

≤ ‖wq‖L2(K)CIKh
‖ρq‖L2(K) + ‖q‖L2(K)CIKh

h ‖∇(ρq)‖L2(K)

≤ CIKh ‖wq‖L2(K) ‖q‖L2(K) + CIKh
(Cρ + Cinv)hH−1p2 ‖q‖2L2(K).

Assuming that

CIKh
(Cρ + Cinv)hH−1p2 ≤ 1

8
,

we thus obtain

(4.25) ‖q‖L2(K) ≤ 8CIKh
‖wq‖L2(K).
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Finally, with the estimates (4.25) and (4.22), it holds that

inf
q∈V p

H(K)

sup
vh∈Vh∩H1

0 (K)

(q, vh)L2(K)

‖q‖L2(K) ‖∇vh‖L2(K)
≥ inf

q∈V p
H(K)

(wq, wq)L2(K)

‖q‖L2(K) ‖∇wq‖L2(K)

≥ inf
q∈V p

H(K)

1

8CIKh

‖wq‖2L2(K)

‖wq‖L2(K) ‖∇wq‖L2(K)

≥ h

8CIKh
C̃inv

=: γh > 0.

For h ∼ Hp−2, this is the assertion. For h . Hp−2, there exists an auxiliary h′ ∼ Hp−2

such that Vh′ ⊆ Vh and thus

inf
q∈V p

H(K)

sup
vh∈Vh∩H1

0 (K)

(q, vh)L2(K)

‖q‖L2(K) ‖∇vh‖L2(K)
≥ inf

q∈V p
H(K)

sup
v∈Vh′∩H1

0 (K)

(q, v)L2(K)

‖q‖L2(K) ‖∇v‖L2(K)

≥ γh′ ∼ Hp−2. �

With Lemma 4.7, we can replace H1
0 (D) (and the solution u ∈ H1

0 (D) of (2.3)) in
the construction of Sections 3 and 4 by a conforming Q1 finite element space Vh (and
the classical Galerkin approximation uh ∈ Vh) provided that h is sufficiently small with
respect to H and p and, additionally, resolves the microscopic information on the scale ε.
This is quantified with the resolution conditions

(4.26) Cε h .
Φ(p, s)

p
Hs+1 and h . Hp−2,

where the constant Cε indicates the dependence on the microscopic scale ε as in (4.17).
While a resolution condition on h with respect to H and p of the form h ≤ Hp−s for some
s ≥ 1 seems natural to resolve high-order functions, the left condition in (4.26) is mainly
motivated by the aim to retain the convergence properties with respect to H and p as
derived in the previous subsections. In a more practical manner, one could alternatively
prescribe some certain tolerance and balance h, p′, H, and p such that the given tolerance
is reached with the respective approximation.

Note that a discrete inf-sup condition as in Lemma 4.7 may also be obtained for a
high-order conforming finite element space and relaxes the resolution condition h . Hp−2

dependent on the choice of p′. If additional smoothness conditions hold, the use of a
high-order space can further provide a relaxation of the left resolution condition in (4.26)
on h if p′ is suitably coupled to h and ε in the spirit of [PS12, Cor. 5.3].

Although high-order constructions may generally be considered for the fine discretiza-
tion, we remain with the first-order setting where p′ = 1, which only requires minimal
regularity assumptions. We introduce the additional parameter h in the above construc-
tion if H1

0 (D) is replaced by Vh, i.e., we write

Rh, R`h, Ṽ
p
H,h, Ṽ

p,`
H,h instead of R, R`, Ṽ p

H , Ṽ
p,`
H .

Further, the solution ũH,h ∈ Ṽ p,`
H,h of the fully discrete multiscale method is determined by

(4.27) a(ũ`H,h, ṽH,h) = (f, ṽH,h)L2(D)

for all ṽH,h ∈ Ṽ p,`
H,h. The error of the fully discrete approach is quantified in the next

theorem.
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Figure 5.1. Multiscale coefficients A1 (left) and A2 (right) on the scale ε = 2−7.

Theorem 4.8 (Error of the fully discrete multiscale method). Assume f ∈ Hk(TH),
k ∈ N0, and let s := min{k, p+ 1}. Further, suppose that the resolution conditions (4.26)

hold and let u ∈ H1
0 (D) be the solution of (2.3) and ũ`H,h ∈ Ṽ

p,`
H,h the solution of (4.27).

Then, with the choice

` & | logH| p (s+ 1) + (log p) p (s+ 1),

it holds that

‖∇(u− ũ`H,h)‖L2(D) .
Φ(p, s)

p
Hs+1

(
‖f‖L2(D) + |f |Hs(TH)

)
+
(H
p

)s+1
‖f‖L2(D).

Proof. The assertion follows from a simple triangle inequality, the estimate (4.17) with
s′ = 0, the resolution conditions (4.26), and Corollary 4.6 in the case where H1

0 (D) is
replaced by Vh. To be more precise, with the solution uh ∈ Vh of (4.18), we obtain

‖∇(u− ũ`H,h)‖L2(D) ≤ ‖∇(u− uh)‖L2(D) + ‖∇(uh − ũ`H,h)‖L2(D)

. Cε h ‖f‖L2(D) +
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

(H
p

)s+1
‖f‖L2(D)

.
Φ(p, s)

p
Hs+1

(
‖f‖L2(D) + |f |Hs(TH)

)
+
(H
p

)s+1
‖f‖L2(D). �

5. Numerical Experiments

In this section, we present some examples to investigate the results of the previous
sections. We remark that if the exact solution u ∈ H1

0 (D) of (2.3) is not explicitly given,

only the errors between the discrete solutions uh ∈ Vh of (4.18) and ũ`H,h ∈ Ṽ
p,`
H,h of (4.27)

can be measured. Thus, we need to pose the assumption that the chosen mesh parameter h
is indeed small enough as quantified in Section 4.3, and use uh as the reference solution.
In general, any other fine discretization could be used to obtain a reference solution such
as, e.g., a discontinuous Galerkin approach as in [EGMP13, EGM13]. We measure all

occurring errors in the energy norm ‖ · ‖a := ‖A1/2∇ · ‖L2(D).
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Figure 5.2. Errors of the high-order multiscale method for different values of `
and p, the LOD method, and the classical conforming Q1 finite element method
in the relative energy norm for the first (left) and the second model (right) with
respect to H.

We consider the domain D = (0, 1)2 as well as the two scalar diffusion coefficients A1

and A2 as depicted in Figure 5.1. These coefficients are piecewise constant on a mesh
Tε with mesh parameter ε = 2−7. The coefficients A1 and A2 take values in [0.25, 2.5]
and [1, 4], respectively. Further, we take the right-hand sides

f1(x) = sin(5π x1) cos(3π x2)

and

f2(x) = (x1 + cos(3π x1))x3
2.

For the first model, we choose the coefficient A = A1 and the right-hand side f = f1 in

(2.3) and compute the solution ũ`H,h ∈ Ṽ p,`
H,h of (4.27) for multiple choices of the poly-

nomial degree p and the localization parameter `. The relative energy errors of these
approximations with respect to the reference solution on the scale h = 2−9 are depicted
in Figure 5.2 (left). Similarly, we present the energy errors for the second model with the
coefficient A2 and the right-hand side f2 in Figure 5.2 (right), where again h = 2−9. The
error curves in both examples show a convergence rate between p+1 and p+2 with respect
to H for different polynomial degrees p if ` is chosen large enough. These results are in line
with the findings in Theorem 4.4 which predicts a convergence rate of up to order p + 2
in H dependent on the regularity of f and provided that the second term in the estimate
(4.8) is small enough. Apart from the observed high-order rates for appropriate parameter
regimes, the two examples also indicate that there might be a pollution in terms of some
negative power of H as obtained from the theory. That is, instead of a stagnation of the
error curve for smaller H, the overall error grows again if ` is not chosen appropriately.

For comparison, Figure 5.2 also included the error curves for the classical continuous Q1

finite element method as well as the first-order conforming LOD approach as in [HP13].
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Figure 5.3. Errors of the high-order multiscale method in the relative energy
norm for the first (left) and second model (right) with respect to ` for different
values of H and p.

The finite element method does not provide reasonable approximations in the regime where
the fine oscillations of the coefficients are not resolved and leads to a stagnation relatively
quickly, whereas the LOD approach shows a convergence rate that is even slightly better
than predicted by the theory. Still, our multiscale approach with p = 1 shows a higher
convergence rate provided that ` is chosen appropriately. We emphasize that for a direct
comparison of the two methods, one has to keep in mind that for the same mesh size H,
our multiscale approach with p = 1 has roughly 2d times more degrees of freedom than
the corresponding LOD method.

For completeness, we present the errors of our multiscale method also with respect to
the localization parameter ` in Figure 5.3. The plots show the exponential convergence
rate in ` as in the theory. The curves stagnate for larger values of ` where the localization
error is small enough and the first term in the estimate (4.8) dominates the overall error.

Since the previous experiments indicate that the exponential convergence in ` even
slightly improves when p is increased, we further investigate the sharpness of the decay
estimate quantified in Theorem 4.1. To this end, for H = 2−4 we choose the element
K = [0.4375, 0.5]2 ∈ TH and compute the relative energy error between the ideal multiscale

basis functions Λ̃K,j := RhΛK,j and its localized versions Λ̃`K,j := R`hΛK,j for different

values of ` and j ∈ {1, . . . ,mK}. For the first model, Figure 5.4 (left) shows the decay of
the localization error for different basis functions with respect to `. To be more precise, for
each p we show the localization error corresponding to the highest-order basis function ΛK,j
(with maximal polynomial degree p in both components). The results seem to contradict
the scaling in p as predicted by Theorem 4.1. Instead, the rate even slightly improves
when the polynomial degree p is increased. In Figure 5.4 (right), we show the localization
error for different ` and p corresponding to the respective lowest-order basis function, i.e.,
the one whose L2-projection onto V p

H(K) is constant. Again, the curves show an error
reduction when p is increased which is slightly amplified by `. That is, these results also
indicate a better scaling in p than quantified in Theorem 4.1. The commencing stagnation
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Figure 5.4. Localization errors of the high-order multiscale basis functions on
the scale H = 2−4 for the first model with respect to ` (left) and p (right) in the
relative energy norm.

of the errors in Figure 5.4 (right) for larger p is probably related to the fact that h = 2−9 is
not fine enough to handle higher polynomial degrees. For further numerical experiments,
see also [Mai20, Sec. 3.4]

Discussion. The numerical experiments of this section overall confirm the theoretical
results for our high-order multiscale method. The only deviation is in the scaling with
respect to the polynomial degree p which seems to be better than predicted by the theory.
That is, the result presented in Theorem 4.1 is most likely not sharp with respect to p due
to the mismatch between interpolation estimates and inverse inequalities as mentioned
in Remark 4.3. An enhanced estimate would directly relax the condition on ` which is
quantified in (4.16).

Note that although the approach numerically and theoretically shows a pollution of the
total error for small mesh sizes H, this issue can be compensated for by a correct scaling
of `. Nevertheless, the method shows its best potential for relatively coarse mesh sizes
which, combined with higher-order polynomials, already provide very good approximation
results. Moreover, the locality of the high-order construction in principle allows us to even
choose different polynomial degrees on each of the coarse elements dependent, e.g., on the
local regularity of f .

6. Conclusion

Within this paper, we have considered an elliptic model problem with possibly varying
(fine-scale) diffusion coefficient. We have proposed a multiscale technique motivated by
the LOD method and gamblets that is able to achieve high-order convergence rates with
respect to the mesh size and the polynomial degree independently of oscillations of the
coefficient. The method can be applied for problems involving general unstructured co-
efficients and only requires minimal regularity assumptions on the domain, the diffusion
coefficient, and the exact solution. We have proved decay estimates for the multiscale basis
functions and suggested an appropriate localization strategy to reduce the computational
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complexity. Numerical experiments confirm the theoretical findings and even indicate a
better behavior with respect to the polynomial degree than theoretically predicted.
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[HSS02] P. Houston, C. Schwab, and E. Süli. Discontinuous hp-finite element methods for advection-
diffusion-reaction problems. SIAM J. Numer. Anal., 39(6):2133–2163, 2002.

[HW97] T. Y. Hou and X.-H. Wu. A multiscale finite element method for elliptic problems in composite
materials and porous media. J. Comput. Phys., 134(1):169–189, 1997.

[HZZ14] J. S. Hesthaven, S. Zhang, and X. Zhu. High-order multiscale finite element method for elliptic
problems. Multiscale Model. Simul., 12(2):650–666, 2014.

[LMT12] R. Li, P. Ming, and F. Tang. An efficient high order heterogeneous multiscale method for
elliptic problems. Multiscale Model. Simul., 10(1):259–283, 2012.

[Mai20] R. Maier. Computational Multiscale Methods in Unstructured Heterogeneous Media. PhD thesis,
University of Augsburg, 2020.

[Mel05] J. M. Melenk. hp-interpolation of nonsmooth functions and an application to hp-a posteriori
error estimation. SIAM J. Numer. Anal., 43(1):127–155, 2005.
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