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Abstract

Convergence of an adaptive collocation method for the parametric stationary diffusion
equation with finite-dimensional affine coefficient is shown. The adaptive algorithm relies on
a recently introduced residual-based reliable a posteriori error estimator. For the convergence
proof, a strategy recently used for a stochastic Galerkin method with a hierarchical error
estimator is transferred to the collocation setting. Extensions to other variants of adaptive
collocation methods (including the now classical approach proposed in “T. Gerstner and M.
Griebel, Dimension-adaptive tensor-product quadratuture, Computing, 2003”) are explored.
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1 Introduction

Collocation methods are now a mainstay for solving equations containing high-dimensional pa-
rameters such as arise in uncertainty quantification (UQ) analyses of ordinary or partial dif-
ferential equations (ODE/PDE) with uncertain model coefficients [MH03, XH05, BNT07]. It
was realized early on that already moderately high-dimensional problems become tractable only
when the approximations are based on sparse subspaces of the basic tensor product construction
[NTW08b, NTW08a, BS09, MZ09, Bie11, BTNT12].

Subsequent work established that, under mild conditions, certain classes of random PDEs are
tractable even in presence of countably many parameter variables [CDS10, CDS11, SS13, CCS14,
CCS14, BCM17, ZS20, HS14, BCDVM, Che18, EST18]. These results prove that there exists a
sequence of converging approximation operators (be they of collocation or Galerkin/projection
nature) and derive the corresponding convergence rates. Such sequences of converging approxima-
tion operators can be sometimes estimated a priori as in [ZS20, Che18, EST18]. Another possible
procedure is to rely instead on a posteriori adaptive strategies: the details of these strategies vary
depending on the type of approximation operators (projection/collocation) and, moreover, these a
posteriori adaptive strategies are often based on heuristics known to behave well in practice (even
better than the a priori constructions) but for which a proof of convergence is often lacking.

For projection approaches, adaptive stochastic Galerkin finite element methods (ASGFEM),
which control the discretization of both physical and parametric variables, are well-studied. The
extensive research activity in the last years comprises in particular residual-based error estima-
tors [EGSZ14, EGSZ15, EM16, EPS17] and hierarchical error estimators [BPS14, BS16, CPB19,
BPRR19a]. The setting in these works is similar to the one considered here, i.e., linear elliptic
PDEs with affine parametric coefficients. However, the cited works allow for a countably infinite
expansion, which makes an additional dimension adaptivity necessary. With the employed Legen-
dre chaos discretization for the parameter space, only the margin of an active set of polynomials
has to be considered in the error estimator. The developed error estimators have been shown
to be reliable and efficient, which for hierarchical estimators usually requires additional assump-
tions. Convergence of an ASGFEM algorithm was first shown in [EGSZ15] for a residual estimator
and, using a different argument, in [BPRR19a] for a hierarchical estimator. A goal-oriented error
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estimator was presented in [BPRR19b] and the more involved case of nonlinear coefficients and
Gaussian parameters has only been considered recently in [EMPS20] with a low-rank hierarchical
tensor discretization.

On the stochastic collocation side, the current literature discusses quite extensively algorithms
for stochastic adaptivity, whereas much less attention has been devoted to (reliable) spatial adap-
tivity. To date, most adaptive sparse grid approximation schemes involve some variation of the
basic procedure proposed by Gerstner and Griebel in [GG03], see also [Heg03]. This algorithm
drives adaptivity in the parameter variables by exploring at each iteration a certain number of
sparse subspaces admissible to the approximation and then evaluating for each of these an error
indicator ; this requires solving a certain number of PDEs. The subspace with the largest error
indicator is selected and added to the approximation, and a new set of admissible sparse subspaces
for the next enrichment step is generated. Several error indicators and variations of the selection
strategy have been considered, see e.g. [Kli06, GK09, SS13, CCS14, NTTT16, FGB+20]. A crucial
point is that these error indicators are heuristics. Conversely, the work [GN18] by Guignard and
Nobile proposes a variation of the Gerstner–Griebel algorithm based on a reliable residual-based
error estimator which can control adaptivity in both the physical and parametric variables. An-
other significant difference compared with typical indicator-based adaptive algorithms is that the
procedure proposed in [GN18] evaluates the error estimator without solving additional PDEs. This
allows significant computational savings with relative to the basic Gerstner–Griebel algorithm.
For other works discussing spatial adaptivity in the context of stochastic collocation methods, see
[SJ14, LSS19].

Guignard and Nobile give no convergence analysis in [GN18] for their proposed algorithm,
and our contribution in this work is to close this gap. We do this by proving convergence of a
slight modification of their algorithm (cf. Algorithm 3), thus establishing a convergence result
for an adaptive sparse collocation method. This result is stated in Theorem 9. Our convergence
analysis is based on a convergence theorem for abstract adaptive approximations (i.e., which covers
both projection and collocation approximations, as well as other possible approximation strategies)
w.r.t. the parameter variables. We derive this theorem by generalizing results given in [BPRR19a]
on convergence of adaptive stochastic Galerkin methods. This approach for proving convergence
requires that the employed error estimator possesses the property of reliability. In [GN18] Guignard
and Nobile already established this property for their error estimator, but only for a specific model
problem, namely, an elliptic PDE whose diffusion coefficient depends linearly on a finite number of
parameters. Moreover, we also require the underlying univariate sequence of collocation points to
be nested in order that the sparse collocation construction be interpolatory. Hence, our particular
convergence result is also tied to these assumptions on the underlying PDE and collocation points.
However, we believe that the general approach for establishing convergence of adaptive sparse
collocation methods presented in this paper might be adapted to more general cases in the future.
For instance, upon assuming that the error indicator used in the basic Gerstner–Griebel adaptive
algorithm is indeed a reliable error estimator, we are able to prove convergence of this variant of the
algorithm as well (see Theorem 10). We note that our analysis considers adaptivity in the parameter
variables only, i.e., we focus on the semi-discrete setting. Finally, we mention the simultaneous
and independent work [FS20], which also provides a convergence result (and a convergence rate)
for adaptive stochastic collocation methods applied to an elliptic PDE with diffusion coefficient
depending affinely on finitely many random variables. While the overall framework and the focus
of that work is similar to ours, some differences are noteworthy: the algorithm for which [FS20]
proves convergence is essentially the one discussed by Guignard and Nobile in [GN18] while we
consider a different version and, in addition, we also provide a convergence proof for the original
Gerstner–Griebel variant. Furthermore, the line of proof in [FS20], while similar to the present
one, has of course some different technical aspects: in particular, our proof is valid for any choice of
collocation points over the parameter space, whereas the proof in [FS20] assumes that Clenshaw–
Curtis collocation points are used when constructing the sparse grid.

The remainder of this paper is structured as follows. Sections 2 and 3 contain preliminary
information: in particular, Section 2 states the model problem and recalls the results in [BPRR19a]
that will be instrumental for the rest of the work, while Section 3 gives details on the construction
of adaptive sparse grid collocation schemes. Sections 4 and 5 contain our main results: Section 4
contains the statement of the specific adaptive collocation algorithm that we consider (i.e., our
version of the Guignard–Nobile algorithm, see Algorithm 3), the associated convergence result
(Theorem 9), the convergence result of the Gerstner–Griebel Algorithm (Theorem 10), and some
discussion on computational aspects, while Section 5 contains the proof of the convergence result.
Finally, conclusions and future research directions are outlined in Section 6.
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2 Preliminaries

In this section we specify the model problem under consideration and recall basic properties of its
solution. Furthermore, we discuss general adaptive approximations w.r.t. the parameter variables
and state an abstract convergence result which provides the basis of our convergence analysis for
adaptive sparse grid collocation.

2.1 Model Problem

We consider a common model problem arising in uncertainty propagation via random differential
equations, i.e., the stationary diffusion equation containing a coefficient function which depends
linearly on a high-dimensional parameter. Specifically, we wish to solve the parametric elliptic
boundary value problem

−∇ · (a(y)∇u(y)) = f, on D ⊂ Rd (1a)

u(y) = 0, on ∂D. (1b)

The domain D ⊂ Rd is assumed to be bounded and Lipschitz, f ∈ L2(D) and the coefficient
a(y) ∈ L∞(D) is given by

a(x ,y) = a0(x ) +

M∑
m=1

am(x ) ym, y ∈ Γ := ΓM , Γ := [−1, 1], (2)

where M ∈ N is a finite number and a0, . . . , aM ∈ L∞(D). The parametric domain Γ is equipped

with a uniform product measure µ(dy) :=
⊗M

m=1
dym

2 , i.e., the components of y can be viewed
as i.i.d. uniform random variables over Γ = [−1, 1]. Further, we assume that the functions
a0, . . . , aM ∈ L∞(D) satisfy the uniform ellipticity condition

M∑
m=1

|am(x )| ≤ a0(x )− r, ∀x ∈ D, (3)

for some r > 0. This implies that

amin := min
y∈Γ

ess inf
x∈D

a(x ,y) ≥ r > 0. (4)

We then define the constant
α := 1− amin

infx∈D a0(x )
∈ (0, 1), (5)

which will turn out to be important in Theorem 1 below. Due to the uniform ellipticity assumption,
the weak solution u(y) ∈ H = H1

0 (D) exists for any y ∈ Γ and satisfies u ∈ C(Γ;H).

Polynomial expansions In order to approximate the solution u of (1), or rather the parameter-
to-solution map y 7→ u(·,y) ∈ H, we shall analyze polynomial expansions of u in the parameter
y ∈ Γ,

u(x ,y) =
∑
k∈F

uk (x )Pk (y), F := NM0 , uk ∈ H, (6)

where Pk (y) =
∏M
m=1 Pkm(ym) is a finite product of univariate polynomials Pk : Γ → R of degree

k with P0 ≡ 1. Two common choices for the basic polynomials Pk are

1. Taylor polynomials: Pk (y) := yk =
∏M
m=1 y

km
m where then

uk (x ) = tk (x ) :=
1

k !
∂ku(x ,0),

2. Legendre polynomials: Pk (y) := Lk (y) =
∏M
m=1 Lkm(ym) with Lk denoting the kth L2

µ1
-

normalized Legendre polynomial w.r.t. the uniform distribution µ1(dx) = dy
2 on Γ = [−1, 1]

and

uk (x ) :=

∫
Γ

u(x ,y)Lk (y) µ(dy).

Since u ∈ C(Γ;H) ⊂ L2
µ(Γ;H) we have that the expansion (6) using Legendre polynomials

converges in L2
µ(Γ;H). The following result due to [BCM17] establishes under suitable assumptions

an `p-summability of both Taylor and Legendre coefficients which, for instance, implies that the
Taylor expansion (6) of u converges in L∞(Γ;H).
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Algorithm 1 Generic adaptive algorithm

Λ0 = {0}
u0 := SΛ0

u
for n ∈ N0 do

Choose a candidate set of multi-indices Cn ⊂ F \ Λn for enriching Λn
Evaluate estimates of the error contribution on the candidate set:

ηn(k) = η(k , un), k ∈ Cn

Determine marked indices Mn ⊂ Cn (according to a given marking strategy based on ηn(k));

Set Λn+1 := Λn ∪Mn

Set un+1 := SΛn+1u.
end for

Theorem 1 ([BCM17, Theorem 2.2 & 3.1, Corollary 2.3 & 3.2]). Let the condition (3) for a as
in (2) be satisfied. Then a unique solution u of the corresponding elliptic problem (1) exists and
belongs to C(Γ;H). Moreover, for any ρ := (ρm)Mm=1 with 1 < ρm < α−1 with α as in (5)

1. the Taylor coefficients tk ∈ H of u satisfy (ρk‖tk‖H)k∈F ∈ `2(F),

2. and the Legendre coefficients uk ∈ H of u satisfy (b−1
k ρk‖uk‖H)k∈F ∈ `2(F) with bk :=∏M

m=1

√
1 + 2km.

Remark 2. The authors of [BCM17] actually consider the infinite-dimensional noise case, i.e.,
with M =∞ in (2), and prove the results stated in Theorem 1 under the assumption that∥∥∥∥∑∞m=1 ρm|am|

a0

∥∥∥∥
C(D)

< 1,

for a sequence ρ := (ρm)m≥1 with ρm > 1. Hence, Theorem 1 can be derived easily from this
general case by setting am(x ) ≡ 0 and ρm > 1 arbitrarily for m > M :∥∥∥∥∑∞m=1 ρm|am|

a0

∥∥∥∥
C(D)

=

∥∥∥∥∥
∑M
m=1 ρm|am|

a0

∥∥∥∥∥
C(D)

< α−1

∥∥∥∥∑∞m=1 |am|
a0

∥∥∥∥
C(D)

≤ α−1 (1− amin) = 1.

2.2 Adaptive Polynomial Approximation

Given the decay rate stated in Theorem 1 for the norms of the coefficients uk of the expansion (6),
a polynomial approximation of u seems feasible. To this end, we consider the truncated expansions
uΛ based on a finite multi-index set Λ ⊂ F ,

uΛ := SΛu =
∑
k∈Λ

ûkPk , ûk ∈ H,

where SΛ denotes a suitable approximation operator and ûk are approximations to the true coeffi-
cients uk of u (cf. (6)). For instance, SΛ could be the operator associated with a Galerkin approach
for approximating u using the finite-dimensional polynomial space

PΛ(Γ) := span {Pk : k ∈ Λ} ,

or, as we in our case later, the operator associated to sparse grid collocation based on Λ. At this
point we do not need to further specify SΛ.

We consider in particular an adaptive approach to compute such polynomial approximations
uΛ. More specifically, starting from an initial set Λ0 ⊂ F we construct nested multiindex sets
Λn ⊂ Λn+1, n ∈ N0, and compute the associated polynomial approximations un := SΛnu by
the generic adaptive algorithm detailed in Algorithm 1. Again, we do not further specify how
to compute the estimates ηn(k) = η(k , un) at this point. Instead, we provide a fairly general
convergence theorem for Algorithm 1, stating conditions on ηn(k) that guarantee convergence of
the algorithm.

The following theorem draws upon the work [BPRR19a] on the convergence of adaptive stochas-
tic Galerkin methods. Specifically, it is a compact summary of a way of proving for convergence
for stochastic Galerkin outlined in detail in [BPRR19a, Section 6 and 7], slightly modified to fit
the application to adaptive sparse grid collocation. We state the theorem here and provide the
proof at the end of the section.
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Theorem 3 (cf. [BPRR19a]). Let un denote the approximations constructed via Algorithm 1.
Assume that

1. the total error estimator ηn :=
∑

k∈Cn ηn(k) is reliable, i.e., there exists a constant C < ∞
independent of n such that

‖u− un‖ ≤ Cηn,

where ‖ · ‖ denotes a suitable norm for functions v : Γ→ H,

2. there exists a sequence of non-negative numbers (η∞(k))k∈F ∈ `1(F) such that for (η̂n(k))k∈F
with η̂n(k) := ηn(k) for k ∈ Cn ∪ Λn and η̂n(k) = 0 otherwise, we have

lim
n→∞

‖η∞ − η̂n‖`1 = 0,

3. there exists a constant c > 0 independent of n such that for all k ∈ Cn \Mn we have

ηn(k) ≤ c
∑

i∈Mn

ηn(i).

From these assumptions it follows that

lim
n→∞

‖u− un‖ = 0.

Remark 4. Before we prove the theorem, we comment on the second and third assumption:

1. The third assumption is generally easily to satisfy. For instance, simply choosing Mn :=
arg maxk∈Cn ηn(k) satisfies the assumption with c = 1.

2. For sparse grid collocation, the second assumption turns out to be the most difficult to verify.
Moreover, it is probably the most cryptic assumption of the theorem. It can usually be verified
as follows: assuming the sequence un has a limit u∞ with corresponding error estimators
η∞(k) := η(k , u∞), conclude from un → u∞ that ‖η∞ − η̂n‖`1 → 0 by exploiting continuity
properties of the error estimator η(k , un) w.r.t. un. Note that in principle u∞ is just the
limit of un, but does not necessarily coincide with the actual solution of the PDE (1). The
fact that u∞ = u is the asesrtion of the theorem.

3. As we will see in the proof of Theorem 3, the second assumption represents some kind of
saturation of the reliable error estimators ηn: since ‖η∞ − η̂n‖`1 → 0 we have that

ηn ≤
∑
k∈Cn

η∞(k) +
∑
k∈Cn

|ηn(k)− η∞(k)| ≤
∑
k∈Cn

η∞(k) + ‖η̂n − η∞‖`1

converges to zero if
∑

k∈Cn η∞(k) does. Since ‖η̂n − η∞‖`1 < ∞ we can expect η∞(k) to
decay for large multi-indices k . Thus, if Cn tends to include increasingly larger multi-indices
k , then

∑
k∈Cn η∞(k) should decay to zero. This will be made rigorous in the subsequent

proof.

The proof of Theorem 3 employs the following abstract lemma which was shown for the case p = 2
in [BPRR19a, Lemma 15]. Since their proof can be generalized to arbitrary 1 ≤ p < ∞ without
any significant modification we simply state the result and refer to [BPRR19a, Lemma 15] for a
detailed proof.

Lemma 5 (cf. [BPRR19a, Lemma 15]). Let z = (zk)k∈N ∈ `p(N), p ∈ [1,∞), and z (n) =

(z
(n)
k )k∈N ∈ `p(N), n ∈ N0, be sequences of non-negative numbers satisfying limn→∞ ‖z −z (n)‖`p =

0. Assume further that there exists a continuous function g : [0,∞)→ [0,∞) with g(0) = 0 and a
sequence of nested subsets Jn ⊂ N, i.e., Jn ⊂ Jn+1, such that

∀n ∈ N0 ∀k /∈ Jn+1 : z
(n)
k ≤ g

 ∑
i∈Jn+1\Jn

(
z

(n)
i

)p .

Then limn→∞
∑
k/∈Jn z

p
k = 0.
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Proof of Theorem 3. Since the error estimator is reliable, we only need to show that

lim
n→∞

ηn = lim
n→∞

∑
k∈Cn

ηn(k) = 0.

Due to ∑
k∈Cn

ηn(k) ≤
∑
k∈Cn

η∞(k) +
∑
k∈Cn

|ηn(k)− η∞(k)| ≤
∑
k∈Cn

η∞(k) + ‖η̂n − η∞‖`1(N),

as well as ‖η̂n − η∞‖`1 → 0 by assumption, the statement of the theorem follows if

lim
n→∞

∑
k∈Cn

η∞(k) = 0.

In order to show this we apply Lemma 5 as follows: we identify the countable set F with N, η∞
with z and η̂n with z (n). Recall that by assumption ‖η̂n − η∞‖`1 → 0. Thus, the first assumption
of Lemma 5 is satisfied. Moreover, we identify the Λn ⊂ F with Jn ⊂ N. These sets are nested
and Jn+1 \Jn corresponds toMn. By our third assumption and the construction of η̂n there holds
for each n ∈ N

η̂n(k) ≤ c
∑

i∈Mn

η̂n(i) ∀k /∈ Λn+1,

since η̂n(k) = 0 for k /∈ Cn ∪Λn and (Cn ∪Λn) \Λn+1 = Cn \Mn. Thus, the second assumption of
Lemma 5 is also satisfied with g(s) = cs. Hence, we can apply Lemma 5 to z ' η∞ and zn ' η̂n
and obtain that

lim
n→∞

∑
k /∈Λn

η∞(k) = 0,

which by
∑

k∈Cn η∞(k) ≤
∑

k /∈Λn
η∞(k) concludes the proof.

3 Adaptive Sparse Collocation

We now introduce the sparse collocation approach and discuss how adaptive sparse grid algorithms
can be derived from the abstract Algorithm 1. In particular, we show how to obtain the classical a-
posterior adaptive algorithm by Gerstner and Griebel [GG03] based on heuristic error indicators (as
opposed to reliable error estimators, as proposed by Guignard and Nobile in [GN18]). As already
discussed in the introduction, changing from indicators to estimators is key to proving convergence.
Our version of the estimator-based algorithm by Guignard and Nobile and its convergence are then
discussed in the subsequent sections.

Univariate interpolation nodes The first ingredient for any sparse grid construction is the
choice of the underlying univariate sequences of collocation points. In this work, we consider nested
point sequences: Let (y(i))i∈N0

⊂ [−1, 1] denote a sequence of univariate interpolation nodes and
define the associated node sets

Yk := {y(i) : i = 0, . . . ,m(k)} ⊂ Γ, k ∈ N0, (7)

where m : N0 → N0 denotes the growth function of the sets Yk, i.e., |Yk| = 1 + m(k). We assume
throughout that m(0) = 0 and that m is strictly increasing. Thus, we exclude delayed sequences
of node sets with Yk = Yk+1 for certain k as sometimes employed for sparse grid methods, see
[Pet03]. As an immediate consequence of our assumption, we have m(k) ≥ k and |Yk| ≥ k+ 1. We
later also use the generalized inverse of the growth function given for i ∈ N0 by

m−1(i) := min{k ∈ N0 : i ≤ m(k)} ≤ i, (8)

which gives the index of the first node set Yk which contains y(i). A particularly convenient
construction of such nested nodes is provided by Leja points. Leja sequences on Γ = [−1, 1] are
defined recursively by first choosing y(0) ∈ Γ and then setting

y(k) = arg max
y∈Γ

k−1∏
i=0

|y − y(i)|, k ∈ N0, (9)

see e.g. [Chk13, CCS14, Chk15, SS13, NTT15] and the references therein. The standard choice is
to set y(0) = −1; the rule (9) then leads to

y(0) = −1, y(1) = 1, y(2) = 0, y(3) ≈ −0.57735, y(4) ≈ 0.65871, . . . .
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Another common sequence, referred to as R-Leja (real Leja) points, is obtained by carrying out
the Leja construction on the upper unit circle in the complex plane in place of Γ = [−1, 1] and
then projecting the sequence thus obtained onto the real line. This results in (see e.g. [Chk13] for
a proof):

y(i) = cosφ(i), i ∈ N0,

φ(0) = 0, φ(1) = π, φ(2) = π/2, φ(2n+1) =
φ(n+2)

2
, φ(2n+2) = φ(2n+2) + π.

For both Leja and R-Leja nodes, we may utilize any strictly increasing growth function m with
m(0) = 0 to construct nested node sets Yk ⊂ Yk+1 as in (7). The most common choice uses sets
growing in unit increments, i.e., m(i) = i.

Besides the Leja construction, Clenshaw–Curtis nodes are also popular collocation points. Here,
the node sets Yk consist of the extrema of Chebyshev polynominals

Y0 = {0}, Yk = {− cos (πi /m(k)) : i = 0, . . . ,m(k)} , k ∈ N.

Nestedness of the Yk is then achieved by the doubling rule m(k) = 2k for k ≥ 1. The corresponding
sequence of nodes (y(i))i∈N0

is given, suitably arranged, by

y(0) = 0,

y(1) = − cos (0) , y(2) = − cos (π) ,

y(3) = − cos (1/4π) , y(4) = − cos (3/4π) , . . .

Sparse collocation We consider hierarchical sparse collocation based on nested sequences of
node sets Yk as introduced above. Let Pk(Γ) denote the set of univariate polynomials on Γ of
degree at most k ∈ N0. We can then define for any Hilbert space-valued continuous function
f : Γ→ H two objects:

• a Lagrange interpolant Ik : C(Γ;H)→ Pm(k)(Γ;H),

• a univariate detail operator ∆k : C(Γ;H)→ Pm(k)(Γ;H),

∆0 = I0, ∆k := Ik − Ik−1, k ∈ N.

With these definitions, we have that

∆if = 0 ∀f ∈ Pk(Γ,H), ∀i > m−1(k). (10)

Since ∆kf = Ikf −Ik−1f = Ik(f −Ik−1f), and due to the nestedness of the node sets Yk−1 ⊂ Yk,
the detail operators may be expressed as

∆kf =

m(k)∑
i=m(k−1)+1

[
f(y(i))− In−1f(y(i))

]
`
(m(k))
i ,

`
(m(k))
i (y) :=

m(k)∏
j=0,j 6=i

y − y(j)

y(i) − y(j)
∈ Pm(k) for i ∈ {m(k − 1) + 1, . . . ,m(k)}.

It is therefore convenient to introduce the notation

hi(y) := `
(m(k))
i (y), y ∈ Γ, (11)

where i ∈ {m(k − 1) + 1, . . . ,m(k)}. The polynomials hi, each associated to a node y(i), i ∈ N0,
are called hierarchical Lagrange polynomial1, hi ∈ Pm(k). The quantity f(y(i)) − In−1f(y(i)) =
(f − In−1f)(y(i)) is also called hierarchical surplus. Next, consider tensorized detail operators

∆i :=

M⊗
m=1

∆im , ∆i : C(Γ;H)→ Pm(i)(Γ;H),

where m(i) = (m(i1), . . . ,m(iM )) ∈ NM and

Pm(i) = span{y j : jm ≤ m(im) for m = 1, . . . ,M}.
1The difference from the standard Lagrange polynomials is that hi is only defined for the nodes y(i) most

recently added, with i ∈ {m(k − 1) + 1, . . . ,m(k)}, whereas the standard Lagrange polyomials are redefined for all
i ∈ {1, . . . ,m(k)} when new nodes are added.
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Given a (finite) subset Λ ⊂ F we define the sparse grid collocation operator associated with the
sparse grid YΛ by

SΛ :=
∑
i∈Λ

∆i , YΛ :=
⋃
i∈Λ

Yi , Yi := Yi1 × Yi2 × . . .× YiM .

We require the multi-index sets Λ ⊂ F to be downward-closed (or monotone), which means that
i ∈ Λ implies i − em ∈ Λ, where em denotes the mth canonical unit multi-index. Downward-
closedness of Λ implies three facts (see e.g. [EST18]): First,

YΛ =
{
y(j ) : j ≤ m(i), i ∈ Λ

}
, y(j ) := (y(j1) y(j2) · · · y(jM )) ∈ Γ,

where j ≤ m(i) is understood componentwise; second, that the sparse grid collocation operator
yields an approximation in Pm(Λ)(Γ;H),

SΛ : C(Γ;H)→ Pm(Λ)(Γ;H), m(Λ) := {j ∈ F : j ≤ m(i) for some i ∈ Λ};

and third, together with the nestedness of the node sets, that SΛ is interpolatory, i.e.,

SΛf(y(i)) = f(y(i)) ∀y(i) ∈ YΛ.

Remark 6. For finite and monotone multi-index sets Λ there exists N ∈ N multi-indices i1, . . . , iN ∈
Λ such that

Λ =

J⋃
n=1

Rin , Ri := {j ∈ F : j ≤ i},

i.e., the multiindices in can be viewed as the corners of Λ. As an immediate consequence, we have

Pm(Λ)(Γ;H) =

N⊕
n=1

Pm(in)(Γ;H).

Adaptive sparse collocation algorithms Two ways to construct monotone multi-index sets
Λ for (hierarchical) sparse grid collocation are the classical algorithm introduced by Gerstner and
Griebel in [GG03] (as well as numerous variations mentioned in the literature surveyed in the
introduction) and the alternative algorithm introduced by Guignard and Nobile in [GN18]. Both
can be seen as specific instances of the generic Algorithm 1. We describe the former here and
the latter (or rather, a slight variation thereof) in the next section, together with a convergence
analysis. To introduce these algorithms, we need to specify three “ingredients”: the candidate set
Cn, a marking strategy for determining marked sets Mn ⊂ Cn, and corresponding estimates ηn(k)
for the error contribution of indices in the candidate set. To this end, we require the following
definitions (see also Figure 1):

• The margin Marg(Λ) ⊂ F of a multi-index set Λ ⊂ F is given by

Marg(Λ) := {k ∈ F \ Λ: k − em ∈ Λ for some m ∈ N}.

• The reduced margin R(Λ) ⊂ Marg(Λ) of a subset Λ ⊂ F is given by

R(Λ) := {k ∈ Marg(Λ): k − em ∈ Λ for all m ∈ N}.

• The monotone envelope EΛ(k) ⊂ Marg(Λ) of a multi-index k ∈ Marg(Λ):

EΛ(k) :=
⋂
{E ⊂ Marg(Λ): k ∈ E and Λ ∪ E is monotone}. (12)

Note that EΛ(k)∪Λ is the smallest (in cardinality) monotone multi-index set containing
Λ ∪ {k} and that for k ∈ R(Λ) we have EΛ(k) = {k} by construction.

The adaptive procedure in [GG03] now chooses

• as candidate set Cn the reduced margin of Λn, i.e. Cn = R(Λn);

• as estimators ηn, approximating the error contribution of k ∈ Cn by the Lp-norm of the
hierarchical surplus, i.e.,

ηn(k) = ‖∆ku‖Lpµ(Γ;H), k ∈ R(Λn). (13)

Note that this is merely an error indicator and not a proper estimator, i.e., no proof of the
properties required by Theorem 3 is available. A large body of literature, however, provides
numerical evidence that this error indicator is quite robust and gives good results in practice;
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Figure 1: A multi-index set Λ ⊂ N2
0 (gray squares) and its margin Marg(Λ) (colored diamonds):

more specifically, the multi-indices of Marg(Λ) that also belong to the reduced margin R(Λ) are
colored in red, whereas the remaining ones are colored in blue. Finally, we mark with yellow circles
the indices of Marg(Λ) that constitute EΛ([2, 2]), i.e. the monotone envelope of k = [2, 2].

Algorithm 2 Adaptive sparse grid algorithm of Gerstner and Griebel [GG03]

1: Λ0 := {0}
2: u0 := SΛ0u
3: for n ∈ N0 do
4: Compute reduced margin R(Λn)
5: Compute error indicators (reduced margin):

ηn(k) = ‖∆ku‖Lpµ(Γ;H), k ∈ R(Λn)

6: Choose k∗n := arg maxk∈R(Λn) ηn(k)
7: Set Λn+1 := Λn ∪ {k∗n} and un+1 := SΛn+1

u.
8: end for

• as marking strategy, to select the index in the reduced margin which maximizes the value
of ηn, i.e., Mn = {arg maxk∈R(Λn) ηn(k)}. An alternative strategy would be to use Dörfler
marking and mark e.g. the 50% of the indices in the reduced margin with the largest ηn, cf.
[Dör96].

Algorithm 2 summarizes the Gerstner–Griebel scheme as pseudocode. Note that, since SΛ is
interpolatory for Yn nested and Λ monotone, we can efficiently compute ηn in (13), and therefore
SΛn+1 based on SΛn . For this, let i ∈ R(Λn) and Λn+1 = Λn ∪ {i}. Then,

∆iu =
∑

y(j )∈Yi\YΛ

[u(y(j ))− (SΛnu)(y(j ))]hj , hj (y) :=

M∏
m=1

hjm(ym),

where the hi are the univariate hierarchical Lagrange polynomials defined in (11) and the set of
additional nodes Y+

i := Yi \ YΛ is

Y+
i = Y+

i1
× Y+

i2
× . . .× Y+

iM
, Y+

i := Yi \ Yi−1 =
{
y(j) : m(i− 1) + 1 ≤ j ≤ m(i)

}
.

The main shortcoming of this approach is that the computation of ∆iu requires solving the PDE to
evaluate u(y(i)), and for this reason one may refer to this algorithm as fully a posteriori. Clearly, it
would be a waste of computational resources to discard these additional PDE solutions: therefore,
practical implementations of Algorithm 2 ultimately augment Λ to Λend = Λn ∪R(Λn) at the last
iteration and return uend = SΛend

instead of SΛn . Nonetheless, this procedure is “suboptimal” in
terms of computational effort. If the reduced margin is large, this operation can be expensive.
Moreover, as previously mentioned, the choice of ηn in (13) is a heuristic and no convergence proof
for the adaptive algorithm is available. To overcome this issue, we introduce and analyze in the
next section another variation of Algorithm 1, for which we can prove convergence.

We close this section by pointing out that using a hierarchical basis is convenient but not
necessary, and the standard (non-hierarchical) Lagrange basis can also be used to implement

9



Algorithm 2. To this end, one would need to draw on the so-called combination technique [GSZ92]
for evaluating the detail operators ∆iu as a linear combination of tensorized Lagrange interpolants,

∆iu =
∑

j∈{0,1}M
(−1)|j |(Ii1−j1 ⊗ Ii2−j2 ⊗ · · · ⊗ IiM−jM )u,

and to adjust the computation of SΛu accordingly, see e.g. [NTTT16, GN18]; this has the advantage
that non-nested sequences of node sets (such as zeros of orthogonal polynomials) can be used if
desired, see e.g. [NTTT16, EST18].

4 Adaptive Sparse Collocation for the Diffusion Problem

We now turn attention to our above-mentioned slight variation of the adaptive algorithm by Guig-
nard and Nobile from [GN18]; see Remark 8 for a discussion on the difference between the two
versions. This algorithm is based on the following error estimator, for which reliability has been
established in [GN18].

Proposition 7 ([GN18, Proposition 4.3] ). Let u denote the solution of the random elliptic PDE
given in equation (1) with linear diffusion coefficient as in (2), and let Λ ⊂ F be a monotone subset
such that the sparse grid collocation operator SΛ as introduced in Section 3 is interpolatory. Then,
for any p ∈ [1,∞] we have

‖u− SΛu‖Lpµ(Γ;H1
0 (D)) ≤

1

amin

∑
k∈Marg(Λ)

‖∆k (a∇SΛu)‖Lpµ(Γ;L2(D)).

This proposition suggests ηn(k) := ‖∆k (a∇SΛnu)‖Lpµ(Γ;L2(D)) as an error estimator for adap-
tively constructing the sparse grid approximations un = SΛnun and also to consider the entire
margins Marg(Λn) as candidate sets. This yields Algorithm 3. Note here that the value p ∈ [1,∞]
has to be chosen in advance and that Cn := Marg(Λn) ⊂ F is, in fact, finite for finite M . Moreover,
we highlight that Proposition 7 implies that Algorithm 3 satisfies the first assumption (reliable er-
ror estimator) of the abstract convergence result, stated in Theorem 3. Besides that, also the third
assumption of Theorem 3 is satisfied by construction, i.e, by the marking strategyMn := EΛn(k∗n)
(where EΛn(k∗n) is the monotone envelope of Λn, see Equation (12)) and the choice of k∗n, cf.
Remark 4.

Algorithm 3 Adaptive sparse grid algorithm for the diffusion problem (1), variation of Guignard–
Nobile in [GN18]

1: Λ0 := {0}
2: u0 := SΛ0u
3: for n ∈ N0 do
4: Compute margin as candidate set Cn := Marg(Λn)
5: Compute error estimators:

ηn(k) := ‖∆k (a∇un)‖Lpµ(Γ;L2(D)), k ∈ Marg(Λn) (14)

6: choose k∗n := arg maxk∈Cn ηn(k)
7: set Mn := EΛn(k∗n)
8: set Λn+1 := Λn ∪Mn

9: compute un+1 := SΛn+1
u.

10: end for

Remark 8 (Adaptive algorithm in [GN18]). The difference between Algorithm 3 and its original
version by Guignard and Nobile in [GN18] is that in [GN18] the following profit indicators are
introduced instead of the error estimator ηn(k) given in (14):

πn(k) :=

∑
i∈EΛn (k) ηn(i)∑
i∈EΛn (k)W (i)

, k ∈ Marg(Λn), (15)

with W (i) denoting the work contribution of the multi-index i , i.e., the number of new grid points
in Y+

i required to evaluate ∆i which is given by

W (i) := |Y+
i | =

M∏
m=1

(m(im)−m(im − 1)).
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Then, k∗n is chosen as
k∗n := arg max

k∈Cn
πn(k), Mn := EΛn(k∗n). (16)

In the case of linearly growing univariate node sets m(i) = i we have W (i) ≡ 1, i.e., πn(k) =
1

|EΛn (k)|
∑

i∈EΛn (k) ηn(i) corresponds to the average error estimator on the monotone envelope

EΛn(k). We provide a more detailed discussion on both versions of the adaptive algorithm for the
elliptic problem in Section 4.2 with a focus on computational aspects.

We now turn to our main result stating the convergence of Algorithm 3, under rather mild
assumptions on the employed univariate interpolation nodes. Specifically, we assume an algebraic
growth of the operator norm of the associated detail operators

‖∆k‖∞ := sup
06≡f∈C(Γ;R)

‖∆kf‖C(Γ;R)

‖f‖C(Γ;R)
, k ∈ N0. (17)

Theorem 9 (Convergence of Algorithm 3). Given the assumptions of Theorem 1 and assuming
there exist finite constants 0 ≤ c, θ <∞ such that

‖∆k‖∞ ≤ (1 + ck)θ ∀k ∈ N0, (18)

the approximations un constructed by Algorithm 3 satisfy

lim
n→∞

‖u− un‖Lpµ(Γ;H1
0 (D)) = 0.

We already established above that Algorithm 3 satisfies the first and third assumption of the
abstract convergence theorem, i.e. Theorem 3. It thus remains to verify the second assumption.
This turns out to be rather technical and is presented in detail in Section 5.

We now comment on the additional assumption (18) of Theorem 9 regarding the operator
norms ‖∆k‖∞ of the univariate detail operators. Condition (18) is rather mild and satisfied, e.g.,
if the corresponding interpolation operators Ik possess an at most algebraically increasing Lebesgue
constant:

‖Ik‖∞ := sup
f : ‖f‖C(Γ;R)=1

‖Ikf‖C(Γ;R) ≤ c1 + c2n
θ ∀k ≥ 1, (19)

for finite constants 0 ≤ c1, c2, θ <∞, since then with a finite c = c(c1, c2, θ) <∞

‖∆k‖∞ ≤ ‖Ik‖∞ + ‖Ik−1‖∞ ≤ 2c1 + 2c2k
θ ≤ ckθ ∀k ≥ 1,

and ∆0 = I0, i.e., ‖∆0‖∞ = ‖I0‖∞ = 1. Note that the algebraic growth bound (19) holds, for
instance, for interpolation based on Leja and R-Leja nodes y(j) ∈ [−1, 1] introduced above, see
[Chk13, Chk15] and references therein, where such bounds were proved for Leja and R-Leja nodes,
respectively:

‖Ik‖∞ ≤ 5k2 log k, for k ≥ 2, ‖Ik‖∞ ≤ 2k, for k ≥ 1.

Moreover, for Clenshaw–Curtis nodes combined with the doubling rule m(k) = 2k, k ≥ 1, we obtain
by classical results [MP73, Bru78] that

‖Ik‖∞ ≤ 1 +
2

π
log (m(k)) = 1 +

2 log 2

π
k, k ≥ 1.

4.1 Extensions of Theorem 9

In this subsection we comment on two possible extensions of our convergence analysis.

Convergence of the adaptive algorithm by Guignard and Nobile in [GN18] As outlined
in Remark 8, the adaptive algorithm proposed by Guignard and Nobile in [GN18] differs from
Algorithm 3 only in the marking strategy or, to be more precise, by the choice of k∗n, see (16).
Thus, in order to extend Theorem 9 to this algorithm it suffices to verify that the third assumption
of Theorem 3 also holds for the marking strategy (16) w.r.t. to the error estimators ηn given in
(14). We focus on the case of Leja nodes with a linear growth function m(i) ≡ i here, since the
the version with Clenshaw–Curtis nodes was analyzed in the recent work on convergence [FS20]
mentioned in the introduction. If Leja points are considered, we can easily ensure convergence
by a mild additional assumption: there exists a constant 0 < c < ∞ such that for any monotone
multi-index set Λ we have

max
k∈Marg(Λ)

ηΛ(k) ≤ c max
k∈R(Λ)

ηΛ(k), ηΛ(k) := ‖∆k (a∇SΛu)‖Lpµ(Γ;L2(D)), (20)
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i.e., the largest error estimator in the full margin can be bounded by the constant times the largest
error estimator in the reduced margin. Indeed, by construction of the profits πn in (15) and of the
marking strategy in (16) we have for m(i) ≡ i that πn(k) = ηn(k) if k ∈ R(Λn) and

max
k∈R(Λn)

ηn(k) = max
k∈R(Λn)

πn(k) ≤
∑

i∈Mn
ηn(i)∑

i∈Mn
W (i)

≤
∑

i∈Mn

ηn(i).

Hence, condition (20) then guarantees that the third assumption of Theorem 3 is also satisfied
for the marking strategy (16). We consider (20) as a plausible assumption in practice, although
pathological counterexamples may possibly be constructed.

Convergence of the Gerstner–Griebel algorithm The abstract convergence result, Theorem
3, as well as our techniques for proving Theorem 9 can also be exploited to show convergence of
the adaptive algorithm by Gerstner and Griebel in [GG03], i.e. of Algorithm 2. To this end, we
need of course to assume the reliability of the error indicators ηn(k) = ‖∆ku‖Lpµ(Γ;H). Since these
hierarchical surpluses are not connected to the model problem (1), as is the case for the residual-
based error estimators (14), we state the Theorem in a more general setting, i.e., we consider
general Hilbert space-valued mappings u : Γ→ H and moreover, we do not restrict to solutions u
that admit a Taylor expansion, but rather consider the more general case of a solution that admits
an expansion over polynomials Pk with a certain growth of their maximum norm. Reliability is
also not proved here but merely assumed, and must be checked on a case-by-case basis.

Theorem 10 (Convergence of Algorithm 2 by Gerstner and Griebel, [GG03]). Let H be a separable
Hilbert space and let u ∈ C(Γ;H) allow for a polynomial expansion (6) converging in Lpµ(Γ;H) for
a p ∈ [1,∞] where the corresponding univariate polynomials Pk ∈ Pk(Γ;R) satisfy

‖Pk‖C(Γ;R) ≤ (1 + c̃k)θ̃ (21)

for finite constants c̃, θ̃ ≥ 0. Further assume that

1. the coefficients uk ∈ H, k ∈ F , of the polynomial expansion (6) satisfy(
ρk‖uk‖H

)
k∈F ∈ `

2(F)

for a weight vector ρ ∈ RM with 1 < ρm for all m = 1, . . . ,M ;

2. there exists a constant C <∞ such that for any finite and monotone Λ ⊂ F

‖u− SΛu‖Lpµ(Γ;H) ≤ C
∑

k∈R(Λ)

‖∆ku‖Lpµ(Γ;H); (22)

3. the univariate detail operators ∆k satisfy (18) for finite constants 0 ≤ c, θ <∞.

Then we have for the approximations un constructed by Algorithm 2 that

lim
n→∞

‖u− un‖Lpµ(Γ;H) = 0.

Note that the first item on the uk is satisfied for the model problem by Theorem 1 and that for
Taylor polynomials condition (21) holds with c̃ = θ̃ = 0. This theorem provides an overview of the
three most important ”ingredients” for convergence of adaptive collocation: exponentially decaying
coefficients uk , only algebraically growing norms of the ∆k and reliability of the employed error
indicators. The proof of Theorem 10 is significantly easier than the proof of Theorem 9, because
the error indicators do not depend on the current approximation. Nonetheless, proving Theorem
10 requires some auxiliary results stated in Section 5 and is therefore postponed to Section 5.2.

4.2 Computational Considerations

Having established the convergence of our variant of the algorithm by Guignard and Nobile, as
stated in Algorithm 3, as well as of the Gerstner–Griebel adaptive sparse grid algorithm Algorithm
2 (GG algorithm for short in the following), we comment on the computational advantages and
disadvantages of both:

1. The GG algorithm considers candidate indices in the reduced margin instead of the full
margin. This makes treating problems with high-dimensional parameters somewhat easier
with the GG algorithm, since the size of the full margin grows substantially faster than the
reduced margin.
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2. However, as already noted, the GG algorithm is fully a posteriori : evaluating the error
indicators involves actually evaluating u (i.e., solving additional PDEs) on the new collocation
points Y+

n (k) = Yk \ YΛn∪{k} for each k ∈ R(Λn), see (13) Algorithm 2. By contrast,
Algorithm 3 computes its error estimator by evaluating the current sparse grid interpolant
un at the new collocation points Y+

n (k) for k ∈ Marg(Λn). This is a significant advantage
of the error estimator-based algorithms (both the original version by Guignard and Nobile
and our variant Algorithm 3) over the GG algorithm, in particular if solving the PDE for
individual parameter values is computationally expensive (even though these additional PDE
solves are not discarded but ultimately enter the final approximation returned by Algorithm
2, as already discussed in Section 3).

3. On the other hand, because the error estimators are based on the current approximation,
they have to be recomputed in each step of Algorithm 3, i.e., in general ηn(k) 6= ηn+1(k)
for any k ∈ Marg(Λn) ∩ Marg(Λn+1). This is not required by the GG algorithm. Thus,
the evaluation of the sparse grid interpolant un should be implemented in a very efficient
way, since this operation is repeated at each iteration for an increasingly large number of
multi-indices in the margin. In this sense, the hierarchical representation of the sparse
grid interpolant via hierarchical Lagrange polynomials and hierarchical surpluses is to be
preferred to the classical combination technique representation [GSZ92], since the former
usually yields a faster evaluation—at the price of a higher offline-cost due to the computation
of the surpluses.

4. The hierarchical sparse grid representation as well as the error estimators in [GN18] for the
diffusion problem require nested univariate node sets—for an efficient implementation and
reliability, respectively. Instead, the GG algorithm also works with non-nested nodes, see
e.g. [NTTT16, EST18, EST19]. This might be a rather minor point, since suitable nested
node families in form of Leja or Clenshaw-Curtis nodes are available.

As an extensive numerical study of the error estimator-based adaptive scheme has been already
carried out by Guignard and Nobile in [GN18], we present no further numerical experiments here.
In their study, they observed for several numerical test examples of the diffusion problem (1) that
the error estimator stated in Proposition 7 is sharp. These test examples included different di-
mensions of the physical domain (d = 1, 2) as well as different numbers M of parameter variables
and different expansion functions am in the definition of the diffusion coefficient. Besides this, a
second set of experiments in [GN18] compared the performance of the error estimator-based algo-
rithm and the GG algorithm: both showed a similar performance w.r.t. the number of grid points
in the corresponding adaptively constructed sparse grids YΛn (recall that each sparse grid point
corresponds to a PDE solve); however, if all PDE solves (i.e., also those necessary for evaluating
the profits on the margin) are taken into account, than the GG algorithm performed significantly
less effectively.

Although the algorithm by Guignard and Nobile in [GN18] slightly differs from Algorithm 3
as considered here, these differences are negligible for the numerical performance for the following
reasons:

• The version of Algorithm 3 considered in [GN18] considers normalized profit indicators πn
for the indices k , see (15). However, previous numerical evidence for the GG algorithm
suggests that whether error indicators or profit indicators are used does not play a major
role for the convergence, see e.g. [NTTT16]. Therefore, for the same reasons, one can expect
Algorithm 3 to exhibit similar numerical behavior as the original adaptive algorithm by
Guignard and Nobile in [GN18].

• Although the second set of results in [GN18] is for Clenshaw–Curtis collocation points only,
it is well-known that in practice the performance of Leja and Clenshaw–Curtis points is quite
similar for adaptive sparse collocation using the GG algorithm, see e.g. [NTT15]. Thus, it
is again reasonable to assume that similar results to those reported in [GN18] also hold for
Algorithm 3 using Leja nodes.

• The tests in [GN18] are performed with p =∞ only, both for the evaluation of the error and
for the computation of the error indicator. Our theory covers any p ∈ [1,∞], and we expect
that GG and Algorithm 3 would behave similarly also for p 6=∞.

5 Proofs of Theorems 9 and 10

We begin this section by stating four auxiliary results required for the subsequent proof of our main
results, Theorems 9 and 10. First, we recall a statement on the operator norm of the tensorized
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detail operators ∆i given in (17).

Proposition 11 ([CCS14, Section 3]). For the operator norm (17) of the tensorized detail operators

‖∆i‖∞ = sup
06≡f∈C(Γ;R)

‖∆if‖C(Γ;R)

‖f‖C(Γ;R)
, i ∈ F ,

there holds

‖∆i‖∞ =

M∏
m=1

‖∆im‖∞.

Next, we provide an estimate for the sparse grid collocation operator SΛ applied to Taylor poly-
nomials/multivariate monomials given an algebraically growing operator norm of the univariate
detail operators. This result is similar to [EST18, Proposition 3.1].

Proposition 12. Let there exist constants 1 < c <∞ and θ <∞ such that

‖∆i‖∞ ≤ (1 + ci)θ, ∀i ∈ N.

Then for the Taylor polynomials Tk (y) := yk , k ∈ F , and Γ = [−1, 1]M we have

sup
Λ⊆F
‖SΛTk‖C(Γ;R) ≤

M∏
m=1

(1 + ckm)1+θ, k ∈ F .

Proof. First, notice that with m−1 as in (8) and using (10) we have

∆iTk =

M∏
m=1

∆imTkm ≡ 0

if im is such that m(im − 1) ≥ km, i.e., if im > m−1(km) for any m. Thus, with Rk := {j ∈
F : jm ≤ km ∀m = 1, . . . ,M}, we obtain

sup
Λ⊆F
‖SΛTk‖C(Γ;R) = max

Λ⊆Rm−1(k)

‖SΛTk‖C(Γ;R),

where m−1(k) = (m−1(k1), . . . ,m−1(kM )) ∈ NM0 . Moreover, the triangle inequality yields

‖SΛTk‖C(Γ;R) ≤
∑
i∈Λ

‖∆iTk‖C(Γ;R) ≤
∑
i∈Λ

‖∆i‖∞ ‖Tk‖C(Γ;R) ≤
∑
i∈Λ

M∏
m=1

(1 + cim)θ.

Since we are considering Λ to be a subset of Rm−1(k), we can further bound the last term as follows

∑
i∈Λ

M∏
m=1

(1 + cim)θ ≤
∑

i∈Rm−1(k)

M∏
m=1

(1 + ckm)θ ≤ |Rk |
M∏
m=1

(1 + ckm)θ =

M∏
m=1

(1 + ckm)1+θ,

since |Rm−1(k)| ≤ |Rk | =
∏M
m=1(1 + km).

Furthermore, we require a rather general result on the summability of sequences on F .

Lemma 13 ([CM18, Lemmas 2 and 3]). For any 0 < q < 1, one has

ρ ∈ RM and min
m=1,...,M

|ρm| > 1 ⇐⇒
(
ρ−k

)
k∈F ∈ `

q(F).

Moreover, for any 0 < q < 1 and any algebraic factor

β(k) :=

M∏
m=1

(1 + ckm)θ, k ∈ F ,

with finite c, θ ≥ 0, one has

ρ ∈ RM and min
m=1,...,M

|ρm| > 1 ⇐⇒
(
β(k) ρ−k

)
k∈F ∈ `

q(F).
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Note that the original statement in [CM18, Lemmas 2 and 3] is for the case of countable
sequences ρ = (ρm)m∈N ∈ `q(N).

The last auxiliary result provides a simple estimate for the tails of converging series of the same
form

(
β(k) ρ−k

)
k∈F as considered in the previous lemma.

Proposition 14. Let ρ ∈ RM be a vector of numbers ρm > 1, m = 1, . . . ,M , and

β(k) :=

M∏
m=1

(1 + ckm)θ, k ∈ F ,

an algebraic factor with finite c, θ ≥ 0. Then, we have for any k ∈ F∑
j≥k

β(j )ρ−j ≤ C β(k)ρ−k , C :=
∑
k∈F

β(k)ρ−k <∞ (23)

Proof. First, note that by Lemma 13 the constant C defined in (23) is indeed finite. By refactoring,
we have ∑

j≥k

β(j )ρ−j =
∑
j≥k

M∏
m=1

(1 + cjm)θρ−jmm =

M∏
m=1

 ∑
jm≥km

(1 + cjm)θρ−jmm

 .

We then obtain for each m = 1, . . . ,M ,

∑
jm≥km

(1 + cjm)θρ−jmm = (1 + ckm)θ ρ−kmm

∞∑
j=0

(
1 + cj + ckm

1 + ckm

)θ
ρ−jm

≤ (1 + ckm)θ ρ−kmm

∞∑
j=0

(1 + cj)
θ
ρ−jm .

Thus, the refactoring argument can be continued as

∑
j≥k

β(j )ρ−j =
∑
j≥k

M∏
m=1

(1 + cjm)θρ−jmm

≤
M∏
m=1

(1 + ckm)θ ρ−kmm

∑
jm≥0

(1 + cjm)θρ−jmm


= β(k)ρ−k

∑
j≥0

M∏
m=1

(1 + cjm)θρ−jmm = C β(k)ρ−k ,

with C as in Equation (23).

5.1 Proof of Theorem 9

Proof. We prove Theorem 9 by applying Theorem 3. To this end, we need to verify the three
assumptions of Theorem 3. The first holds due to Proposition 7 and the third by construction, cf.
Remark 4. Hence, it remains to verify the second assumption. To this end, we set

η̂n(k) :=

{
‖∆k (a∇SΛnu)‖Lpµ(Γ;L2(D)), k ∈ Λn ∪ Cn
0, otherwise,

(24)

and proceed in two steps (see also Remark 4):

1. We define the (formal) limit

u∞ :=
∑

k∈Λ∞

∆ku, Λ∞ :=
⋃
n∈N

Λn, (25)

and verify in Lemma 15 below that u∞ ∈ C(Γ;H1
0 (D)) as well as

lim
n→∞

‖u∞ − un‖C(Γ;H1
0 (D)) = 0.
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2. We then set

η∞(k) :=

{
‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)), k ∈ Λ∞ ∪Marg(Λ∞),

0, otherwise,
(26)

and show in Lemma 17 that
lim
n→∞

‖η∞ − η̂n‖`1 = 0,

which concludes the proof.

Lemma 15. Given the assumptions of Theorem 9, the un, n ∈ N form a Cauchy sequence in
C(Γ;H1

0 (D)). In particular, u∞ given in (25) is its well-defined limit in C(Γ;H1
0 (D)).

Proof. We abbreviate the norms in C(Γ;H1
0 (D)) and C(Γ;R) by ‖ · ‖C . Furthermore, let ρ ∈ RM

be such that 1 < ρm < α−1 as in equation (5) and let Tk and tk , k ∈ F , denote the multivariate
Taylor polynomials and the corresponding Taylor coefficients of u, respectively. For n,m ∈ N with
n ≤ m we obtain by the triangle and Cauchy–Schwarz inequalities

‖um − un‖C =
∥∥SΛm\Λnu

∥∥
C

=

∥∥∥∥∥∑
k∈F

tkSΛm\ΛnTk

∥∥∥∥∥
C

≤
∑
k∈F

‖tk‖H
∥∥SΛm\ΛnTk

∥∥
C

≤

(∑
k∈F

ρ2k ‖tk‖2H

)1/2 (∑
k∈F

ρ−2k
∥∥SΛm\ΛnTk

∥∥2

C

)1/2

,

where by Theorem 1

Cu,ρ :=

(∑
k∈F

ρ2k ‖tk‖2H

)1/2

<∞. (27)

Since ∆iTk = 0 if im > m−1(km) for any m we have by Proposition 11 and the assumptions that∥∥SΛm\ΛnTk
∥∥
C
≤

∑
i∈Λm\Λn

‖∆iTk‖C ≤
∑

i∈Λ∞\Λn

‖∆iTk‖C

=
∑

i∈(Λ∞\Λn)∩Rm−1(k)

‖∆iTk‖C

≤ gn(k) :=
∑

i∈(Λ∞\Λn)∩Rm−1(k)

M∏
m=1

(1 + ckm)θ,

where Rm−1(k) = {i ∈ F : i ≤ m−1(k)}. Since for any of the finitely many i ∈ (Λ∞ \Λn)∩Rm−1(k)

there exists an n0 ∈ N such that i ∈ Λn for all n ≥ n0, we obtain

lim
n→∞

gn(k) = lim
n→∞

g2
n(k) = 0 ∀k ∈ F .

Moreover, we conclude as in the proof of Proposition 12

gn(k) ≤
∑

i∈Rm−1(k)

M∏
m=1

(1 + ckm)θ ≤ g(k) :=

M∏
m=1

(1 + ckm)1+θ.

By Lemma 13 we have ∑
k∈F

ρ−2k g(k)2 <∞,

so that g2 : F → [0,∞) serves as a summable dominating mapping of the g2
n : F → [0,∞) and we

obtain by Lebesgue’s dominated convergence theorem

lim
n→∞

∑
k∈F

ρ−2k gn(k)2 = 0.

Thus, since

‖um − un‖2C ≤ C2
u,ρ

∑
k∈F

ρ−2k gn(k)2 ∀m ≥ n,

we conclude that the approximations un =
∑

i∈Λn
∆iu form a Cauchy sequence in the (complete)

Banach space C(Γ;H1
0 (D)) with u∞ =

∑
i∈Λ∞

∆iu as its limit, since Λn ↑ Λ∞.
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For the second step of the proof of Theorem 9, we first state an important lemma concerning
the decay of the error estimators.

Lemma 16. Let the assumptions of Theorem 9 be satisfied and let Λ ⊂ F be an arbitrary monotone
subset. Then there exists a constant C = C(M,ρ, c, θ, a) <∞ such that for

η(k , SΛu) := ‖∆k (a∇SΛu)‖Lpµ(Γ;L2(D)), k ∈ F ,

we have for any k ∈ F

η(k , SΛu) ≤ C g(k), g(k) :=

(
M∏
m=1

(1 + ckm)2θ+1

)
ρ−k .

Proof. Set uΛ := SΛu. By linearity ∆k (a∇uΛ) for k ∈ F can be written as

∆k [a∇uΛ] = ∆k

[
a
∑
i∈Λ

∆i∇u

]
=
∑
i∈Λ

∆k [a∆i∇u] .

Moreover, using the Taylor expansion of the solution u we deduce that

∆k [a∆i∇u] = ∆k

a∆i

∑
j∈F

(∇tj ) Tj

 =
∑
j∈F

(∇tj ) ∆k [a∆iTj ] . (28)

We observe that for certain combinations of i , j , and k it holds ∆k [a∆iTj ] ≡ 0. First of all,

∆iTj =

M∏
m=1

(∆imTjm) ≡ 0 if ∃m : jm ≤ m(im − 1),

since then ∆imTjm ≡ 0. Second, the function a∆iTj is a polynomial in y belonging to the space

Pm(i)+1 := span {yp : pm ≤ m(im) + 1 for m = 1, . . . ,M} ,

since a is affine in y . Hence,

∆k [a∆iTj ] ≡ 0 if ∃m : m(im) + 1 ≤ m(km − 1),

We combine now both necessary conditions j ≥ m(i − 1) + 1 and m(i) + 1 ≥ m(k − 1) + 1 for
∆k [a∆iTj ] 6≡ 0 to

j ≥ m(k − 2) + 1 ≥ k − 1,

where the last inequality follows due to m(k) ≥ k. Thus, introducing the notation [k − 1]+ :=
(max{km − 1, 0})Mm=1, the sum (28) reduces to

∆k [a∆iu] =
∑

j≥[k−1]+

(∇tj ) ∆k [a∆iTj ] .

By interchanging the order of summation we obtain

‖∆k (a∇uΛ)‖Lpµ(Γ;L2(D)) =

∥∥∥∥∥∑
i∈Λ

∆k (a∆i∇uΛ)

∥∥∥∥∥
Lpµ(Γ;L2(D))

=

∥∥∥∥∥∥
∑
i∈Λ

∑
j≥[k−1]+

(∇tj ) ∆k [a∆iTj ]

∥∥∥∥∥∥
Lpµ(Γ;L2(D))

=

∥∥∥∥∥∥
∑

j≥[k−1]+

(∇tj ) ∆k [aSΛTj ]

∥∥∥∥∥∥
Lpµ(Γ;L2(D))

.

We now set β(k) :=
∏M
m=1(1 + ckm)θ as well as

amax := sup
y∈Γ

sup
x∈D
|a(x ,y)| <∞. (29)
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By using the triangle inequality, Proposition 11 and Proposition 12 we deduce

‖∆k (a∇uΛ)‖Lpµ(Γ;L2(D)) =

∥∥∥∥∥∥
∑

j≥[k−1]+

(∇tj ) ∆k [aSΛTj ]

∥∥∥∥∥∥
Lpµ(Γ;L2(D))

≤
∑

j≥[k−1]+

‖(∇tj )‖L2(D) ‖∆k [aSΛTj ]‖C(Γ;R)

≤
∑

j≥[k−1]+

‖tj ‖H β(k) ‖aSΛTj ‖C(Γ;R)

≤
∑

j≥[k−1]+

‖tj ‖H β(k) amax ‖SΛTj ‖C(Γ;R)

≤ amax β(k)
∑

j≥[k−1]+

‖tj ‖H γ(j ),

where we set γ(j ) :=
∏M
m=1(1 + cjm)1+θ. By the Cauchy–Schwarz inequality we obtain

∑
j≥[k−1]+

‖tj ‖H γ(j ) ≤ Cu,ρ

 ∑
j≥[k−1]+

ρ−2j γ(j )2

1/2

,

with ρ as in Theorem 1 and Cu,ρ as in (27). We can then apply Proposition 14 to bound∑
j≥[k−1]+

ρ−2j γ(j )2. More specifically, Proposition 14 yields the existence of a constant Cρ,c,θ < ∞
such that it holds∑

j≥[k−1]+

ρ−2j γ(j )2 ≤ Cρ,c,θ ρ−2[k−1]+ γ([k − 1]+)2 ≤ Cρ,c,θ

(
M∏
m=1

ρ2
m

)
ρ−2k γ(k)2,

since γ is increasing and ρm > 1 for each m. Thus, for any k ∈ F we get

‖∆k (a∇uΛ)‖Lpµ(Γ;L2(D)) ≤ amax Cu,ρ β(k) C
1/2
ρ,c,θ

(
M∏
m=1

ρm

)
γ(k) ρ−k .

The statement follows with

C := amax Cu,ρ C
1/2
ρ,c,θ

(
M∏
m=1

ρm

)
, (30)

since g(k) = β(k)γ(k) ρ−k .

This bound of the error indicators is now used to proceed with the second step of the proof to
verify the second assumption of Theorem 3.

Lemma 17. Given the assumptions of Theorem 9 we have for η∞ as in (26) and η̂n as in (24)
that

lim
n→∞

‖η∞ − η̂n‖`1(F) = 0.

Proof. We introduce the short-hand notation

Λ+ := Λ ∪Marg(Λ), Λ ⊆ F ,

and notice that consequently Λ+
∞ ⊆

⋃
n∈N Λ+

n . Moreover, we have

|η∞(k)− η̂n(k)| ≤


‖∆k (a∇(u∞ − un))‖Lpµ(Γ;L2(D)), k ∈ Λ+

n ⊂ Λ+
∞,

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)), k ∈ Λ+
∞ \ Λ+

n ,

0, k ∈ F \ Λ+
∞.

Hence,

‖η∞ − η̂n‖`1(F) ≤
∑

k∈Λ+
∞

‖∆k (a∇(u∞ − un))‖Lpµ(Γ;L2(D))︸ ︷︷ ︸
term I

+
∑

k∈Λ+
∞\Λ+

n

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D))︸ ︷︷ ︸
term II

.

We would like to take the limit on both sides, and verify that the two terms on the right-hand side
tend to zero, which we analyze separately in the following.
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Term I Assuming for a moment that we can apply the dominated convergence theorem to
exchange the sum and the limit, we would get

lim
n→∞

∑
k∈Λ+

∞

‖∆k (a∇(u∞ − un))‖Lpµ(Γ;L2(D))

=
∑

k∈Λ+
∞

lim
n→∞

‖∆k (a∇(u∞ − un))‖Lpµ(Γ;L2(D)) by dominated convergence

≤
∑

k∈Λ+
∞

lim
n→∞

β(k)‖a∇(u∞ − un)‖C(Γ;L2(D)) by Pr. 11, β(k) :=
∏M
m=1(1 + ckm)θ

≤
∑

k∈Λ+
∞

lim
n→∞

β(k)amax‖u∞ − un‖C(Γ;H1
0 (D)) recalling the def. of amax in (29)

= 0 by Lemma 15.

In order to apply Lebesgue’s dominated convergence, we need to check that there exists a function
g : F → [0,∞) such that, for all n ∈ N and k ∈ Λ+

∞,

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)) + ‖∆k (a∇un)‖Lpµ(Γ;L2(D)) ≤ g(k) and
∑

k∈Λ+
∞

g(k) <∞. (31)

The bounding function g is obtained by Lemma 16: there exists a constant C <∞ such that

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)) + ‖∆k (a∇un)‖Lpµ(Γ;L2(D)) ≤ 2C g(k),

with

g(k) :=

(
M∏
m=1

(1 + ckm)2θ+1

)
ρ−k .

The required summability of g is derived by Lemma 13, i.e.,

∑
k∈Λ+

∞

2C g(k) ≤ 2C
∑
k∈F

(
M∏
m=1

(1 + ckm)2θ+1

)
ρ−k <∞.

Term II To verify that the limit of the second term is also zero, observe that the dominated
convergence theorem in (31) implies∑

k∈Λ+
∞

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)). <∞

Together with the fact that Λ+
∞ ⊆

⋃
n∈N Λ+

n , this implies the final result

lim
n→∞

∑
k∈Λ+

∞\Λ+
n

‖∆k (a∇u∞)‖Lpµ(Γ;L2(D)) = 0.

By Lemma 17, the three assumptions of Theorem 3 have been verified, proving convergence of
the described adaptive algorithm.

5.2 Proof of Theorem 10

Proof. Again we prove the assertion by applying Theorem 3, i.e., verifying the three assumptions
of Theorem 3. The first holds by assumption and the third by construction of Algorithm 2, cf.
Remark 4. Thus, it remains again to verify the second assumption of Theorem 3. We set

Λ+
n := Λn ∪ Cn = Λn ∪ R(Λn)

as well as

η̂n(k) :=

{
‖∆ku‖Lpµ(Γ;H), k ∈ Λ+

n

0, otherwise,
(32)

and define

η∞(k) :=

{
‖∆ku‖Lpµ(Γ;H), k ∈ Λ+

∞,

0, otherwise,
, Λ+

∞ :=
⋃
n∈N

Λ+
n . (33)
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We verify in Lemma 18 below (which is similar to Lemmas 16 and 17) that

lim
n→∞

‖η∞ − η̂n‖`1 = 0,

which concludes the proof.

Lemma 18. Let the assumptions of Theorem 10 be satisfied. Then, there exists a constant C <∞
such that for any k ∈ F

‖∆ku‖Lpµ(Γ;H) ≤ C g(k), g(k) :=

(
M∏
m=1

(1 + c̃km)θ̃ (1 + ckm)θ

)
ρ−k . (34)

Moreover, we have (η∞(k))k∈F ∈ `1(F) for η∞(k) as given in (33) and, therefore, for η̂n as in
(32)

lim
n→∞

‖η∞ − η̂n‖`1 = 0.

Proof. In the following we denote the norm in Lpµ(Γ;H) and C(Γ;H) simply by ‖ · ‖Lp and ‖ · ‖C ,
respectively. By employing the polynomial expansion of u and the Cauchy–Schwarz inequality, we
obtain

‖∆ku‖Lp =

∥∥∥∥∥∑
i∈F

ui∆kPi

∥∥∥∥∥
Lp

≤
∑
i∈F

‖ui‖H ‖∆kPi‖Lp

≤

(∑
i∈F

ρ2i ‖ui‖2H

)1/2 (∑
i∈F

ρ−2i ‖∆kPi‖2Lp

)1/2

,

where ρ ∈ RM is as assumed in Theorem 10. By assumption the first term is bounded by a
constant

Cu,ρ :=

(∑
i∈F

ρ2i ‖ui‖2H

)1/2

<∞.

Concerning the second term, we first note that

∆kPi =

M∏
m=1

∆kmPim ≡ 0 if ∃m : im ≤ m(km − 1).

Hence, we require i ≥ m(k − 1) + 1 ≥ k for ∆kPi 6≡ 0 and therefore obtain by Proposition 11 and
the assumption (21)∑

k∈F

ρ−2k ‖∆kPi‖2Lp =
∑
i≥k

ρ−2i ‖∆kPi‖2Lp ≤
∑
i≥k

ρ−2i ‖∆kPi‖2C

≤
∑
i≥k

ρ−2i

(
M∏
m=1

(1 + ckm)θ

)
‖Pi‖C(Γ;R)

≤ γ(k)
∑
i≥k

ρ−2i β(i)2,

with

β(i) :=

M∏
m=1

(1 + c̃im)θ̃, γ(k) :=

M∏
m=1

(1 + ckm)θ.

Hence, by Proposition 14 we have for a finite constant C∑
i≥k

ρ−2i β(i)2 ≤ Cρ−2k β(k)2

and, thus,
‖∆ku‖Lp ≤ Cu,ρ C1/2 γ(k)β(k)ρ−k k ∈ F ,

which proves (34). Moreover, by Lemma 13 we know that (g(k))k∈F ∈ `1(F), and hence, also
(η̂n(k))k∈F , (η∞(k))k∈F ∈ `1(F), n ∈ N. Finally, we have by definition of η∞ and η̂n that

‖η∞ − η̂n‖`1 =
∑

k∈Λ+
∞\Λ+

n

‖∆ku‖Lp ≤ Cu,ρC1/2
∑

k∈Λ+
∞\Λ+

n

g(k).
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The summability (g(k))k∈F ∈ `1(F) and Λ+
∞ =

⋃
n∈N Λ+

n then yield the desired result

lim
n→∞

‖η∞ − η̂n‖`1 ≤ lim
n→∞

∑
k∈Λ+

∞\Λ+
n

g(k) = 0.

6 Conclusions

We have proved convergence of an adaptive sparse collocation algorithm for approximating the
solution of an elliptic PDE with a high-dimensional parameter y ∈ [−1, 1]M , applying the analysis
technique from [BPRR19a], developed for the stochastic Galerkin FEM, to a slight variation of
the algorithm proposed by Guignard and Nobile in [GN18]. In this sense, our work can be seen as
an extension of [GN18], where a very close variant of the algorithm considered here was presented
and analyzed numerically, but without convergence proof.

The algorithms we propose here and that in [GN18] are both modifications of the well-known
dimension-adaptive sparse grid algorithm of Gerstner and Griebel in that they replace the hierar-
chical surplus error indicators with a rigorous residual-based error estimator. As a by-product of
our analysis we also obtain a convergence proof for the Gerstner–Griebel algorithm applied to the
same problem, under the assumption that the hierarchical surplus error indicator is also a reliable
error estimator. The convergence proof is tailored to the specific problem, i.e., an elliptic PDE
with parametric diffusion coefficient depending affinely on a finite number of parameters. Because
the algorithm is based on a residual-based error estimator, the analysis is problem-specific and
must be adapted for each new PDE as well as for different forms (e.g. nonlinear) of the random
diffusion coefficient. However, we expect that a large part of the machinery proves valid or at least
extensible in a straightforward way. Particularly, if reliable error estimators (for the approximation
error w.r.t. the parameter variables) are available, only a stability condition of these estimators
w.r.t. un needs to be established in order to verify the crucial second condition of the general
convergence Theorem 3. Our analysis in Section 5.1 can serve as a blueprint for doing so.

Regarding possible extensions of this work, we point out that the convergence analysis we have
presented proves convergence but does not provide a rate. This might be achieved by a saturation
assumption following again the line of proof in [BPRR19a] for adaptive stochastic Galerkin FEM.
Conversely, the extension of the specific model problem to the important case of the diffusion
coefficient resulting from the parametrization of a log-normal random field is deemed to be more
challenging. Another important yet challenging addition to our work would be to extend the
convergence result to the infinite-dimensional case, i.e., to consider countably many parameters
M = ∞ in the affine expansion of the diffusion coefficient (2). This would pose both theoretical
and algorithmic challenges: on the theoretical side, our proof would need to be revisited since some
constants are not bounded when M →∞ (in particular, the constant C in Lemma 16, cf. equation
(30)). From the algorithmic point of view, having M = ∞ would lead to margin sets of infinite
cardinality which is, of course, unfeasible. Under the assumption that ‖am‖L∞ in (2) are monotone
decreasing (this assumption could be weakened), then a possible approach would be to implement a
so-called “buffering” procedure, as discussed in [GN18] (see also [SS13, CCS14, NTTT16, EST18]):
such an algorithm would start considering only the first M0 < ∞ parameters, and any time a
parameter is “activated” (i.e. a collocation point is added along that parameter dimension for the
first time), the total number of considered parameters would increase by one, in such a way that
there are always M0 “non-activated” parameters.

A further interesting follow-up would be to carry out an extensive numerical study on a number
of different PDEs for which finite element error estimators are available, and investigate numerically
whether Algorithm 3 consistently displays good performance (i.e., similar to the GG algorithm)
for all the PDEs considered. Both these numerical investigations exceed the scope of this work
and are left for future research.
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