
Stability Domains for Quadratic-Bilinear Reduced-Order Models∗

Boris Kramer†

Abstract. We propose a computational approach to estimate the stability domain of quadratic-bilinear reduced-
order models (ROMs), which are low-dimensional approximations of large-scale dynamical systems.
For nonlinear ROMs, it is not only important to show that the origin is locally asymptotically stable,
but also to quantify if the operative range of the ROM is included in the region of convergence.
While accuracy and structure preservation remain the main focus of development for nonlinear
ROMs, computational methods that go beyond the existing highly conservative analytical results
have been lacking thus far. In this work, for a given quadratic Lyapunov function, we first derive
an analytical estimate of the stability domain, which is rather conservative but can be evaluated
efficiently. With the goal to enlarge this estimate, we provide an optimal ellipsoidal estimate of
the stability domain by solving a convex optimization problem. This provides us with valuable
information about stability properties of the ROM, an important aspect of predictive simulation.
We do not assume a specific ROM method, so a particular appeal is that the approach is applicable
to quadratic-bilinear models obtained via data-driven approaches, where ROM stability properties
cannot—per definition—be derived from the full-order model. Numerical results for a LQG-balanced
ROM of Burgers’ equation, a proper orthogonal decomposition ROM of FitzHugh-Nagumo, and a
non-intrusive ROM of Burgers’ equation demonstrate the scalability and quantitative advantages of
the proposed approach. The optimization-based estimates of the stability domain are found to be
up to four orders of magnitude less conservative than analytical estimates.

Key words. Stability domain; domain of attraction; reduced-order models; quadratic-bilinear dynamical sys-
tems

AMS subject classifications. 34D20, 34D35, 37E99, 37M22.

1. Introduction. Reduced-order modeling provides a mathematical framework for effi-
cient simulation of complex systems, where large-scale nonlinear dynamical systems are ap-
proximated on low-dimensional manifolds. High-dimensional systems, arise, e.g., from semi-
discretization of partial differential equation (PDE), and their dimension (degrees of freedom)
can be in the order of thousands and hundreds of thousands. Reduced-order models (ROMs)
of those systems are important in the context of prediction, control, design, and optimization,
see, e.g., [3, 5, 30]. While the development and analysis of ROMs for linear systems has ma-
tured in recent years, ROMs for nonlinear systems—as expected—face significantly different
challenges. For general nonlinear systems, proper orthogonal decomposition (POD) [18] and
the reduced basis method [17] are the most commonly used model reduction methods. If we
restrict ourselves to the class of quadratic-bilinear (QB) systems, ROM methods have been
developed in the intrusive setting (where governing equations are available) [4, 6, 10] and in
the non-intrusive setting [14, 32, 29, 7], where the model has to be learned from data. Notably,
QB models are a less restrictive class than the name suggests: many nonlinear dynamical sys-
tems can be transformed into QB form via variable transformations and the introduction of
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2 B. KRAMER

auxiliary variables, see [24, 20, 31, 15, 4, 21, 32, 16, 29]. Consequently, reduced-order modeling
and analysis developed for QB systems apply to a large class of nonlinear systems.

The characterization of stability domains is important for open and closed loop simula-
tion. In the nonlinear control and dynamical systems community, several approaches exist for
estimating the stability domain of (very low-dimensional) polynomial systems, and in partic-
ular, quadratic systems. The authors in [26] use polynomial recasting of nonlinear dynamical
systems together with sum-of-squares decomposition to prove stability of nonlinear dynam-
ical systems. The result is illustrated on numerical examples with at most two DoFs. In
[25], a fast sampling approach to estimate the domain of attraction is used. While this di-
rect approach works well in lower dimensions (examples up to third order), scalability issues
for higher dimensions remain. In [34] it is shown that the arc length function is a maximal
Lyapunov function (particularly, it is a Lyapunov function inside the domain of attraction,
and approaches infinity on the boundary). A rather expensive computational procedure for
approximating the arc length function is proposed, and illustrated on numerical examples
with at most three DoFs. The authors in [11] parametrize the Lyapunov function used in the
stability proof, and construct the domain of attraction as a union of (potentially infinitely
many) Lyapunov functions. While results in two and three DoF systems are shown, the au-
thors point out that scalability will be a major issue. For quadratic systems, [13] present a
conservative ellipsoidal estimate of the domain of attraction. The method enlarges the ellip-
soidal shape of the Lyapunov function by evaluating the 2n−1 corners of a polytope in Rn.
In [22], an analytical method for estimating the domain of attraction of polynomial systems
is proposed via parametrized quadratic Lyapunov functions. The method, however, provides
only conservative analytical estimates of the stability domain. Examples of at most two DoFs
are presented. The authors in [23] present a conservative stability analysis for linear systems
with quadratic state feedback controllers, where switched feedback is shown to improve the
transient system response. The considered systems are only of two DoFs. The domain of
attraction can virtually have any shape, and while ellipsoidal, circular, polytope solutions
are common, they are also conservative. The authors in [28] propose a method that enlarges
an initial guess of the stability domain by using fuzzy polynomials together with sum-of-
squares techniques. However, only examples with two DoFs are presented. The emergence
of sum-of-squares techniques for convex programming has also led to improved algorithms
for stability analysis for polynomial systems, mostly with quadratic Lyapunov functions, see
[12, 2] for more details. As evidenced by the above literature, stability domain computations
have largely focused on very low-dimensional (≤ 4 DoFs) polynomial systems, and scalability
remains a concern.

This work enables quantitative analysis of stability domains for projection-based and fully
data-driven ROMs via a computationally tractable optimization algorithm. The analysis
of accurate ROMs of high-dimensional systems is a first step towards stability analysis for
complex high-dimensional systems. Our focus is solely on scalable approaches that work well in
those (higher, yet not large-scale) ROM dimensions of O(10). In particular, we propose to use
a convex optimization-based approach from [33] to compute estimates of the stability domain
for quadratic-bilinear systems. Our contributions are thus threefold: First, we derive a new
analytical estimate of the stability domain, which is rather conservative but can be evaluated
efficiently, even in the case of high-dimensional systems. Second, with the goal to enlarge
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this estimate, we show that our efficient implementation of the convex optimization-based
approach from [33] scales well for O(10)-dimensional ROMs, which goes well beyond the four
dimensional systems analyzed in the literature. This allows us to certify ROM simulations with
respect to stability domains centered around equilibria. Third, we demonstrate the methods’
flexibility on several different (projection-based and fully data-driven) ROMs with up to 21
degrees of freedom. This provides us with new insight into the stability characteristics of those
ROM techniques. We do not assume a specific ROM method, so a particular appeal is that
the approach is applicable to quadratic-bilinear models obtained via data-driven approaches,
where ROM stability properties cannot—per definition—be derived from the full-order model.

This paper is organized as follows. Section 2 presents stability definitions and some nec-
essary background material. Section 3 derives an analytical estimate for the stability domain,
and Section 4 presents an optimization-based approach to obtain larger, less-conservative es-
timates. Section 5 illustrates our findings on three test problems with different ROMs for
semi-discretized PDE systems. Section 6 offers conclusions and an outlook to future work.

2. Background: Stability analysis for quadratic-bilinear systems. We present necessary
background material and define the problem under consideration in this paper. Section 2.1
introduces the specific model form of quadratic-bilinear (QB) systems, Section 2.2 discusses
equilibrium solutions, and Section 2.3 defines the domain of attraction (also called stability
domain, region of attraction, or basin of attraction).

2.1. Quadratic-bilinear systems. Consider a quadratic-bilinear (QB) system of the form

Eẋ = Ax + H(x⊗ x) +
n∑
i=1

Nixui + Bu(2.1)

with state x = x(t) ∈ Rn, initial condition x(0) = 0, input u = u(t) ∈ Rm, matrices
E ∈ Rn×n, A ∈ Rn×n, H ∈ Rn×n2

, B ∈ Rn×m, and Ni ∈ Rn×n for i = 1, 2, . . . ,m. Here, the
matrix E is assumed non-singular, and the symbol ⊗ denotes the standard Kronecker product.
Without loss of generality, we assume the matrix H is symmetric in that H(x1 ⊗ x2) =
H(x2 ⊗ x1) for any x1,x2 ∈ Rn, which can be enforced without changing the dynamics, see,
e.g., [4].

To ease notation, the material in the following two sections on stability domains is pre-
sented for a generic n-dimensional system. In Section 5 we introduce the reduced-order mod-
eling context formally, which results in low-order models for which these methods can be
applied.

2.2. Stability of equilibrium solutions and domain of attraction. To investigate the
stability of equilibrium solutions for QB systems, consider the system

Eẋ = Ax + H(x⊗ x),(2.2)

and invertible matrix E. The above systems includes the autonomous case, i.e, equation (2.1)
with u ≡ 0 and also the case with state-dependent feedback u = Kx (with proper redefinition
of the matrices A,H). It is clear that xe = 0 is an equilibrium. Moreover, it is sufficient to
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study the zero equilibrium of the QB system. To see this, note that all equilibrium solutions
are given by xe 6= 0 that satisfy

0 = Axe + H(xe ⊗ xe).(2.3)

Introducing z = x− xe and inserting into equation (2.2) gives

Eż = Az + H(z⊗ z) + 2H(xe ⊗ z) + Axe + H(xe ⊗ xe)︸ ︷︷ ︸
=0

(2.4)

= [A + 2H(I⊗ xe)]z + H(z⊗ z).(2.5)

The resulting system is again quadratic and has zero as an equilibrium. Therefore, without
loss of generality we study the zero equilibrium of the QB system, and note that the theory
carries over to nonzero equilibria after the model is shifted as shown above.

2.3. Domain of attraction. For nonlinear systems, stability of equilibrium point requires
a local characterization–whereas for linear systems, stability of the system matrix automati-
cally guarantees global stability. The domain of attraction (DA), also called stability domain,
is the set of all initial conditions that result in bounded trajectories that converge to the
equilibrium solution. Let φ(x0, t) be a solution to (2.2) for a given initial condition x0. The
domain of attraction for the equilibrium xe is defined as

A(xe) :=
{

x0 : lim
t→∞

φ(x0, t) = xe

}
.(2.6)

The domain of attraction can have complicated geometric structure. Computing the domain
of attraction analytically is impossible even in very simple cases. A common solution to this
problem is to lower-bound the DA by a set D ⊆ A of simple geometric shapes, such as ellipsoids
or polyhedrons. The task then becomes to make this lower bound as tight as possible.

We next state the well-known theorem that relates local stability to a suitable Lyapunov
function, and characterizes the domain of attraction.

Theorem 2.1. [33, 11] If there exists a Lyapunov function v(·) : Rn 7→ R+ such that

v(x) > 0, v̇(x) < 0

for all x in a neighborhood of zero, then the zero solution is locally asymptotically stable.
Moreover,

(2.7) D(ρ) = {x : v(x) ≤ ρ2, v̇(x) < 0}.

is an estimate of the domain of attraction for the zero equilibrium.

This theorem presents the basis for our computational algorithms following in the next section.
Finding the largest ρ that satisfies (2.7) can then be shown to require the solution of a convex
optimization problem.
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3. Analytical estimates of the stability domain. Lyapunov functions are the standard
tool for stability analysis of nonlinear systems, and hence for approximating the DA. The
choice of the Lyapunov function is non-trivial and influences the DA approximation as the
level sets of the Lyapunov function are needed in DA estimates. In stability analysis for
quadratic systems, Lyapunov functions such as polyhedral functions [1], polynomials of higher
degree [11], and arc length function approximations [34] have been used. Here, we present an
analytical approach to approximate the domain of attraction. Quadratic Lyapunov functions
lead to ellipsoidal estimates of the DA [13, 22] which are easy to compute, and provide an
initial conservative estimate of the DA.

A Lyapunov matrix is a positive definite matrix P that satisfies

(3.1) A>PE + E>PA + Q = 0

for some positive definite matrix Q = Q>f Qf . Given a Lyapunov matrix, we define a quadratic,
nonnegative Lyapunov function via

(3.2) v(x) = x>E>PEx,

with a derivative along trajectories as

v̇(x) = ẋ>E>Px + x>PEẋ.(3.3)

Proposition 3.1. Let A be Hurwitz and P be a Lyapunov matrix, i.e., a solution to equa-
tion (3.1). Let v(x) = x>E>PEx be a Lyapunov function. Then xe = 0 is a locally stable

equilibrium and D(ρ) ⊆ A(0) with ρ =
σ2
min(Qf )

2‖H‖2
√
‖P‖2

is an estimate of the domain of attraction.

Proof. Since P is symmetric positive definite, and E is positive definite, the Lyapunov
function v(x) = x>E>PEx is positive. We next consider the region where its derivative is
negative. We have

v̇(x) = ẋ>E>PEx + x>E>PEẋ,(3.4)

= [Ax + H(x⊗ x)]>PEx + x>E>P[Ax + H(x⊗ x)],(3.5)

= x>[A>PE + E>PA]x + (x> ⊗ x>)H>PEx + x>E>PH(x⊗ x),(3.6)

= −x>Q>f Qfx + 2x>E>PH(x⊗ x),(3.7)

≤ −σ2min(Qf )‖x‖22 + 2‖x‖32‖E‖2‖P‖2‖H‖2.(3.8)

where σmin(Qf ) is the smallest non-zero singular value of Qf . Thus we have that

(3.9) v̇(x) < 0 ⇔ ‖x‖2 <
σ2min(Qf )

2‖E‖2‖P‖2‖H‖2
.

This shows that the zero equilibrium is locally asymptotically stable. To get an estimate of the
domain of attraction (2.7), we need to find the radial upper bound on the Lyapunov function
for all x where v̇(x) < 0. In particular,

(3.10) v(x) = x>E>PEx ≤ ‖x‖22‖P‖2‖E‖22 <
σ4min(Qf )

4‖P‖2‖H‖22
= ρ2

which yields the claimed result after taking a square root.
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Remark 3.2. Several observations are in order. First, for H = 0 we see that ρ = ∞, so
the stability region is Rn, which is consistent with the assumption that A is Hurwitz. Second,
note that ρ is always nonzero as σmin(Qf ) is the smallest non-zero singular value of Qf , and
the Lyapunov matrix is positive definite for the right-hand-side Q>f Qf . Therefore xe = 0 is
guaranteed to be a stable solution of the QB system as long as A is Hurwitz. However, the
size of the corresponding stability domain (indicated by ρ) intuitively is inversely proportional
to ‖H‖2. For weak nonlinear terms, the estimate of the stability domain is larger, and for
strong nonlinear terms, this estimate shrinks. Third, as with most analytical approaches, the
result in Proposition 3.1 is rather conservative. Computational approaches can enlarge the
estimate of the stability domain, which we discuss next.

4. Estimating the stability domain via optimization. We present an optimization-based
approach to enlarge the estimate of the stability domain. For the purpose of this analysis we
rewrite the QB system in the form

(4.1) Eẋ = Ax +

n∑
i=1

xiKix,

with x(0) = 0 and where xi is the ith component of the vector x, Ki ∈ Rn×n are matrices
such that Ki = H(:, (i− 1)n+ 1 : in) for i = 1, 2, . . . n. We observe that the quadratic part of
the right-hand side is invariant under skew-symmetric matrix additions, namely

n∑
i=1

xiKix =

n∑
i=1

xi[Ki + Si]x

for any skew-symmetric matrices Si. Therefore, the nonlinearity can be parametrized with
the vector

(4.2) µ = vec([S1,S2, . . . ,Sn]) ∈ Rdn , dn = n2(n− 1)/2.

where vec() stacks the columns of the matrix into a column vector. We then define

(4.3) F(x,µ) =

n∑
i=1

xi[Ki + Si] =

n∑
i=1

xiMi(µ),

and note that F(x,µ1)x = F(x,µ2)x for µ1 6= µ2 but F(x,µ1) 6= F(x,µ2). The parametrized
dynamics of the quadratic system can be written as

(4.4) Eẋ = Ax + F(x,µ)x.

This parametrized formulation is the basis for the optimization routine to estimate the stability
domain.

In order to compute a less conservative estimate of the stability domain, we define a
program to maximize the stability radius ρ, as in [33]. The optimization problem becomes

(4.5)
ρ∗2 = inf

x∈Rn
x>E>PEx,

s.t. v̇(x) = 0.
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The derivative of v(·) along trajectories of equation (4.4) is

v̇(x) = ẋ>E>PEx + x>E>PEẋ(4.6)

= [Ax + F(x,µ)x]>PEx + x>E>P[Ax + F(x,µ)x](4.7)

= x>

[
−Q +

n∑
i=1

xi[Mi(µ)>PE + E>PMi(µ)]

]
x(4.8)

for the positive definite matrix −(A>PE + E>PA) = Q = Q>f Qf . Let P = P>f Pf , and
define the matrices

G(µ) =
[
M1(µ)>PE + E>PM1(µ)| . . . |Mn(µ)>PE + E>PMn(µ)

]>
∈ Rn

2×n

as well as

(4.9) J(µ) = (P>f ⊗Q>f )−1G(µ)Q−1f ∈ Rn
2×n

which is affine linear in the parameters µ, a property that is important for optimization later1.
Taken together, we have

(4.10) v̇(x) = x>Q>f

[
−In + (x>P>f ⊗ In)J(µ)

]
Qfx.

The next theorem then addresses the solution of the optimization problem (4.5).

Theorem 4.1. [33] For a given Lyapunov matrix P, a guaranteed stability domain D(ρ) ⊆
A(0) is given through

(4.11) ρ < ρ∗ =
1

α∗
,

where

(4.12) α∗ = min
µ∈Rdn

‖J(µ)‖2.

Moreover, the estimate is optimal, i.e., ρ∗ is the maximum achievable value of ρ in equa-
tion (2.7).

We observe that the optimization problem (4.12) is convex, as it involves the two-norm com-
putation of an matrix that is affine linear in µ. We can therefore employ special convex
optimization solvers, which makes this problem formulation appealing, despite the polyno-
mial growth (see (4.2)) of the optimization variables with respect to the dimension of the
model.

1If the Lyapunov equation (3.1) is solved with low-rank methods, see e.g., the survey [8], then P>f ∈ Rn×nr

with nr � n, in which case the inverse in (4.9) becomes a pseudo-inverse.
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5. Numerical results. We present three different test cases, spanning different PDE mod-
els, as well as different techniques to obtain the ROMs. This shows the wide applicability
of this framework, as it is agnostic to the way the ROM was obtained. We consider Burg-
ers’ equation in Section 5.1 for which we obtain ROMs through LQG-balanced truncation,
and in Section 5.2 we use POD projection-based model reduction to obtain ROMs for the
FitzHugh-Nagumo system. Section 5.3 then illustrates our framework on a ROM that was
learned purely from data, where that data was generated from yet a different configuration of
Burgers’ equation.

To solve the optimization problem (4.12), we use Matlab’s fmincon optimizer with relative
tolerances TolX=0.1, tolFun=0.001, MaxIter=1000, random initial condition µ0, and we
bound the entries µ(i) of the vector µ within the optimization as −104 ≤ µ(i) ≤ 104.

5.1. LQG-balanced ROM for Burgers’ equation.

5.1.1. Burgers’ equation and discretization. We consider the one-dimensional Burgers’
equation following the setup in [9]. The PDE model is

(5.1) ż(ξ, t) = εzξξ(ξ, t)−
1

2
(z2(ξ, t))ξ +

m∑
k=1

χ[(k−1)/m,k/m](ξ)uk(t)

for t > 0, ξ ∈ [0, 1] is the spatial variable and z(ξ, 0) = z0(ξ) = 0.5 sin(2πξ)2 for ξ ∈ [0, 0.5] and

zero otherwise. The notation zξξ(ξ, t) := ∂2

∂ξ2
z(ξ, t) denotes a second order spatial derivative;

similarly, zξ(ξ, t) denotes a first spatial derivative. Moreover, z ∈ H1
per(0, 1), which means

that the system has periodic boundary conditions. Here, ui(t), i = 1, 2, . . . ,m are the input
functions. The function χ[a,b](x) denotes the characteristic function on [a, b]. Practically, this
means that the spatial domain is subdivided into m intervals of equal length, and each control
is applied in one of the corresponding intervals. When discretized with linear finite elements,
the N -dimensional semi-discretized system has the form

EN ẋN = ANx + HN (xN ⊗ xN ) + BNu xN (0) = xN,0(5.2)

yN = CNxN .(5.3)

The output matrix CN produces an observation yN of the system. Here, we observe the entire
state, so CN = IN . We choose m = 3 inputs and the viscosity is set to ε = 10−3 to make
the nonlinear quadratic term dominant. The model dimension is N = 101, which is still not
tractable for stability domain computation.

5.1.2. LQG-balanced reduced-order model. The ROM for Burgers’ equation is obtained
through the LQG-balancing framework [19], which also allows for finding a proper energy
function. For linear time-invariant systems, the LQG-balancing framework finds a coordinate
transformation (and subsequent reduction) so that the LQG solutions to the algebraic Riccati
equations of the ROM are equal and diagonal. This yields a ROM with favorable control-
theoretic properties. We outline the main steps of this well-known method here, and refer to
[19, 3] for details. First, we compute the solutions to the LQG algebraic Riccati equations
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based on the linearized system matrices, i.e.,

(5.4)
ANPN + PNA>N −PNC>NCNPN + BNB>N = 0,

A>NQN + QNAN −QNBNB>NQN + C>NCN = 0.

Since PN and QN are symmetric positive definite they can be used to define a Lyapunov
function in (3.2), in a similar way as the symmetric positive definite solutions to the linear
Lyapunov equation are used. The transformation requires the Cholesky factors PN = RNR>N
and QN = LNL>N , and then the singular value decomposition

UNΣNWN = L>NRN .

Based on the singular value decay, we choose a truncation order n � N , and define Σn =

ΣN (1 : n, 1 : n). The LQG-BT projection matrices are Tn = RN (:, 1 : n)WN (:, 1 : n)Σ
− 1

2
n

and T−1n = Σ
− 1

2
n UN (:, 1 : n)>LN (:, 1 : n)>, which yields the ROM matrices in n-dimensions:

(5.5) A = T−1n ANTn, B = T−1n BN , C = CNTn, H = T−1n HN (Tn ⊗Tn).

Note that the ROM is a quadratic model of dimension n and we only used the matrices of
the linearized system to compute the transformations. Per definition of the LQG balancing
transformation, the matrices in reduced dimensions satisfy

(5.6)
AΣn + ΣnA

> −ΣnC
>CΣn + BB> = 0,

A>Σn + ΣnA−ΣnBB>Σn + C>C = 0.

Figure 1, left, shows the singular values for the matrix L>NRN , which are typically used
to decide about the truncation of the system. The singular values decay rather slowly at first,
but have a steep drop at n = 20, after which they become machine zero. Therefore, increasing
n beyond twenty should not be expected to yield better results ROMs. We compute ROMs of
dimensions n = 3, 5, 7, . . . , 21, for which we analyze the stability domain in the next section.

5.1.3. Stability domain computation. We have seen that Σn satisfies the LQG Riccati
equations (5.6), i.e., it is symmetric positive definite (trivially so, as a diagonal matrix).
Thus, we can choose P = Σn to define a Lyapunov function v(x) = x>Σnx, and moreover

Pf = Σ
1/2
n and Qf = C. We then solve the optimization problem (4.5) to compute the

optimal estimate ρ∗. Figure 1, right, shows the stability radii ρ obtained from the analytical
estimate in Proposition 3.1, and the optimal estimate ρ∗ from Theorem 4.1.

We observe that the optimized stability domain is several orders of magnitude larger than
the conservative analytical estimate from Proposition 3.1. Furthermore, we observe that while
the estimate ρ∗ initially reduces significantly until n = 13, the stability region again increases
until n = 21. This hints at the fact that as the ROM increases in fidelity, it also becomes
more stable. This observation is not possible by considering only the analytical estimate ρ,
and is therefore a major appeal to using the optimized estimate. The analytic estimate from
Proposition 3.1 for the full-order model is ρFOM = 9.81 × 10−4. Note, that the ROM-based
analytic estimate appears to converge to zero, therefore not approaching the FOM analytical
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estimate. We observe that the optimization-based result for the ROM is much closer to ρFOM.
Due to the high dimension of the state space, the optimization-based estimate ρ∗FOM was not
computationally tractable.

We note that we tried the SMRSOFT toolbox https://www.eee.hku.hk/∼chesi/y smrsoft.
htm, but for n ∈ {2, 3} it did not yield a lower bound other than zero, and for higher-order
systems it became very cumbersome to implement due to the toolbox not accepting matrix-
vector multiplications in right-hand-side. The toolbox seemingly was written for low-order
systems, and our work is specifically aimed at high-order systems.
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Figure 1. Burgers’ equation: (Left) Singular values of the matrix L>NRN in LQG balancing; (Right) The
value of ρ for the stability domain estimate for the analytic method from Proposition 3.1 and the optimal
estimate ρ∗ from Theorem 4.1.

5.2. Proper orthogonal decomposition ROM for FitzHugh-Nagumo equation.

5.2.1. FitzHugh-Nagumo equation and discretization. This section illustrates our non-
linear model reduction approach on the FitzHugh-Nagumo system, which is a model for the
activation and deactivation of a spiking neuron. The original FitzHugh-Nagumo is a cubic
system and here we consider a lifted quadratic bilinear model, see [4, 21] for more details on
the model. The lifted QB system then reads as

εv̇(ξ, t) = ε2vξξ(ξ, t)− v(ξ, t)3 + 0.1v(ξ, t)2 − 0.1v(ξ, t)− w(ξ, t) + c,

ẇ(ξ, t) = hv(ξ, t)− γw(ξ, t) + c

ż(ξ, t) = 2[ε2vvξξ(ξ, t)− z2(ξ, t) + 0.1z(ξ, t)v(ξ, t)− 0.1z(ξ, t)− w(ξ, t)v(ξ, t) + cv(ξ, t)].

where ξ ∈ [0, L] is the spatial variable and the time horizon of interest is t ∈ [0, tf ]. The
states of the system are voltage v(ξ, t) and recovery of voltage w(ξ, t). The initial conditions
are specified as v(ξ, 0) = w(ξ, 0) = z(ξ, 0) = 0 for ξ ∈ [0, L], and the boundary conditions
are vξ(0, t) = u(t), where u(t) = 5 × 104 t3 exp(−15t) so the system is excited through the
boundary; vξ(L, t) = 0 for t ≥ 0; zξ(L, t) = 2v(L, t), zs(0, t) = 2v(0, t)u(t). In the problem

https://www.eee.hku.hk/~chesi/y_smrsoft.htm
https://www.eee.hku.hk/~chesi/y_smrsoft.htm
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setup we consider, the parameters are given by L = 0.1, c = 0.05, γ = 2, h = 0.5, and
ε = 0.015. The PDE model is semi-discretized in space by using finite differences, resulting in
the finite-dimensional QB system

EN ẋN = ANxN + BNu + HN (xN ⊗ xN ) +

2∑
k=1

NN,kxNuk,

where EN = εIN is diagonal, AN ,NN,1,NN,2 ∈ RN×N and HN ∈ RN×N2
. The input matrix

is BN ∈ RN×2, with the second column of BN being copies of c (the constant in the FHN
PDE) and the first column of BN having a 1 at the first entry. Thus, the input u = [u(t), 1].
Here, each variable is discretized with 200 degrees of freedom, i.e., the overall dimension of
the QB model is N = 600.

5.2.2. Proper orthogonal decomposition reduced-order model. We generate a ROM
via the method of proper orthogonal decomposition [18] and follow directly the implemen-
tation in [21]. We simulate the system for tf = 12s with Matlab’s ode15s solver with
’RelTol’,1e-8,’AbsTol’,1e-10 tolerances, and collect simulated data every 0.1s, for a total
of 120 snapshots. For each of the three discretized variables we compute a POD basis of order
n, where we use the same n for each variable. The POD basis is the optimal basis to represent
the snapshot set in the `2 sense. The projection matrix is then assembled as a block-diagonal
matrix with the POD basis for each variable as blocks. Thus, the ROM is the 3n dimensional
ROM

Eẋ = Ax + Bu + H(x⊗ x) +
2∑

k=1

Nkxuk.

Figure 2, left, shows the decay of the singular values of the POD snapshot matrices for each
variable. We observe that until n = 12 the singular values drop significantly, after which
a slow decay appears. Therefore, for n ≤ 12, increasing n should lead to improved ROM
accuracy.

5.2.3. Stability domain computation. For the Lyapunov matrix, we choose Q = In and
compute the corresponding solution P of the Lyapunov equation (3.1). We again compute
the stability radii ρ obtained from the analytical estimate in Proposition 3.1, and the optimal
estimate ρ∗ from Theorem (4.1). Figure 2, right, shows the obtained results, where the
horizontal axis plots the reduced dimension 3n, so for the ROM of dimension 21, each variable
was approximated with seven POD modes. Similar to the previous example, we observe that
the optimal computed estimate is roughly three orders of magnitude larger than the analytic
one. Moreover, this time the size of the stability domain seems to stay approximately the
same after six modes are used. We also compute the analytic estimate from Proposition 3.1
for the full-order model, and obtain ρFOM = 2.27× 10−6. We observe that the ROM stability
radius approximates the FOM stability radius well, within the same order of magnitude.
This, together with a measure of accuracy of predictions could give confidence in having
a good reduced-order model strategy. Due to the high dimension of the state space, the
optimization-based estimate ρ∗FOM was not computationally tractable.
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Figure 2. FitzHugh-Nagumo equation: (Left) Singular values of the POD snapshot matrix for each variable.
(Right) The value of ρ for the stability domain estimate for the analytic method from Proposition 3.1 and the
optimal estimate from Theorem 4.1.

5.3. Non-intrusive ROM for Burgers’ equation. In this example, we demonstrate one of
the major appeals of this method, namely that we can apply it to non-intrusive ROMs. The
model presented here is learned from data of Burgers’ equation using the operator inference
method following the setup in [27, Sec 4.2]. This setup deviates from Section 5.1 in the
discretization parameters and implementation of the control term.

5.3.1. Learned reduced-order model. We are given a simulator for the following Burgers’
equation PDE:

(5.7) ż(ξ, t) = εzξξ(ξ, t)−
1

2
(z2(ξ, t))ξ

for t > 0, z(·, 0) = 0, and the input enters through the Dirichlet boundary condition,
z(t, 0) = u(t) and z(t, 1) = −u(t). We generate non-intrusive ROMs via the operator in-
ference2 approach from [27]. The data are generated from a finite difference solver with
equidistant grid of N = 128. The viscosity is set to ε = 10−1 and the model is simulated
for t ∈ [0, tf ] and tf = 1s. The one-dimensional input u(t) is generated via Matlab’s rand

command with setting rng default for reproducibility. We collect snapshots of the state
every dt = 10−4 steps and store the snapshots and the corresponding inputs as

XN = [x
(0)
N . . .x

(K)
N ] ∈ RN×K , U = [u0, . . . , uK ] ∈ Rm×K ,

where x
(i)
N = xN (ti) with 0 = t0 < t1 < · · · < tK = tf . We next compute a low-dimensional

POD subspace in which to optimally represent the snapshot data, i.e., we compute the singular

2For a Matlab code for this model, and the operator inference approach, see https://github.com/
elizqian/operator-inference. A scalable Python implementation can be found at https://github.com/
Willcox-Research-Group/rom-operator-inference-Python3.

https://github.com/elizqian/operator-inference
https://github.com/elizqian/operator-inference
https://github.com/Willcox-Research-Group/rom-operator-inference-Python3
https://github.com/Willcox-Research-Group/rom-operator-inference-Python3
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value decomposition of the snapshot matrix as

XN = VNΣNW>
N ,

where VN ∈ RN×K , Σ ∈ RK×K and WN ∈ RK×K . We then obtain the n� N -dimensional
POD basis as Vn = VN (:, 1 : n). The high-dimensional snapshot data are projected onto the
POD subspace spanned by the columns of Vn, which yields the projected data

X = V>nXN = [x(0) . . . x(K)] ∈ Rn×K , Ẋ = [ẋ(0) ẋ(1) . . . ẋ(K)] ∈ Rn×K .

The columns of the time-derivative data matrix Ẋ are computed with a fourth-order implicit
Runge-Kutta backward differencing method.

In order to learn the ROM, the operator inference framework solves a least squares problem
to find the reduced operators that yield the ROM that best matches the projected snapshot
data in a minimum residual sense. To learn the Burgers’ ROM, we solve

min
A∈Rn×n,H∈Rn×n2

,B∈Rn×m

∥∥∥X>NA> + (XN ⊗XN )>H> + U>B> − Ẋ>N

∥∥∥2
2
.

This allows us to compute the ROM operators A, H, and B without needing explicit access to
the original high-dimensional operators AN , HN , BN , which constitutes a fully non-intrusive
method. Finally, the learned ROM takes the form

(5.8) ẋ = Ax + H(x⊗ x) + Bu.

Figure 3, left, shows the relative state reconstruction error ‖XN −VNX‖/‖XN‖ for the oper-
ator inference ROM. For n = 1, 2, 3 we did not obtain stable models. The state reconstruction
error decays monotonically, and operator inference produces accurate ROM simulations.

5.3.2. Stability domain computation. For the Lyapunov matrix, we choose Q = In and
compute the corresponding solution P of the Lyapunov equation (3.1). We again compute
the stability radii ρ obtained from the analytical estimate in Proposition 3.1, and the optimal
estimate ρ∗ from Theorem (4.1).3 Figure 3, right, shows the numerical result. First, we note
that for n > 12, the ROM simulations continued to increase in accuracy, but the A matrix
had few eigenvalues that were positive (in the order O(10−8)), so the approach to compute a
quadratic Lyapunov function via solution of the Lyapunov matrix 3.1 is not applicable. Other
approaches that work in this setting are needed, which we will discuss as part of future work.
Similar to the previous examples, we observe from Figure 3, right, that the analytical estimate
ρ is two to four orders of magnitude smaller than the estimate ρ∗ computed via optimization.
Moreover, we observe that while ρ, ρ∗ initially decrease, after n = 8 they stagnate and then
increase, indicating improved stability properties of the larger-dimensional ROMs.

3Since this is a non-intrusive setting, we cannot compute the analytic stability radius for the full-order
model, as we only have model data, but not the FOM operators.
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Figure 3. Learned ROM for Burgers’ equation: (Left) Relative state reconstruction error ‖XN −
VNX‖/‖XN‖. (Right) The value of ρ for the stability domain estimate for the analytic method from Proposi-
tion 3.1 and the optimal estimate ρ∗ from Theorem 4.1.

6. Conclusions and future directions. For nonlinear reduced-order models (ROMs), com-
puting the stability domain of equilibrium points is important for both open and closed-loop
applications. We presented a framework to compute the optimal stability domain estimates
for quadratic-bilinear ROMs for a given quadratic Lyapunov function. Quadratic-bilinear
ROMs represent a large class of nonlinear systems, as many of those systems can be recast
into QB form via variable transformations and the addition of extra variables. Our numerical
findings on three different ROM test problems show that the classical analytical estimates of
the stability domain are overly conservative—up to four orders of magnitude—compared to
the stability radii computed via the suggested convex optimization problem. The numerical
results also demonstrate various ways to pick quadratic Lyapunov functions, which can be
informed by the model reduction process itself. This work motivates several directions of
future research. First, as seen in Section 5.3, this approach has its limitations when the linear
system matrix is unstable, since the Lyapunov equation does not have a solution. Alternative
approaches in this case are needed that can take into account the quadratic influence on the
system. Moreover, Section 5.3 suggests an interesting direction of future research. The op-
erator inference problem is unconstrained, however, the stability domain computation could
be integrated as an additional constraint for the learning problem, yielding learned ROMs
with favorable stability properties. Lastly, in the projection-based setting, theoretical results
relating the ROM stability radius to the high-fidelity stability radius would be desirable. For
large-scale systems, a proper choice of norm would like need to be made to avoid degeneration
of the l2 norm.
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