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Abstract

Ensemble Kalman inversion (EKI) is a derivative-free optimization method that lies between
the deterministic and the probabilistic approaches for inverse problems. EKI iterates the Kalman
update of ensemble-based Kalman filters, whose ensemble converges to a minimizer of an ob-
jective function. EKI regularizes ill-posed problems by restricting the ensemble to the linear
span of the initial ensemble, or by iterating regularization with early stopping. Another regu-
larization approach for EKI, Tikhonov EKI, penalizes the objective function using the l2 penalty
term, preventing overfitting in the standard EKI. This paper proposes a strategy to implement
lp, 0 < p ≤ 1, regularization for EKI to recover sparse structures in the solution. The strategy
transforms a lp problem into a l2 problem, which is then solved by Tikhonov EKI. The trans-
formation is explicit, and thus the proposed approach has a computational cost comparable to
Tikhonov EKI. We validate the proposed approach’s effectiveness and robustness through a suite
of numerical experiments, including compressive sensing and subsurface flow inverse problems.

1 Introduction

A wide range of problems in science and engineering are formulated as inverse problems. Inverse
problems aim to estimate a quantity of interest from noisy, imperfect observation or measurement
data, such as state variables or a set of parameters that constitute a forward model. Examples
include deblurring and denoising in image processing [13], recovery of permeability in subsurface
flow using pressure fields [21], and training a neural network in machine learning [14, 18] to name
a few. In this paper, we consider the inverse problem of finding u ∈ RN from measurement data
y ∈ Rm where u and y are related as follows

y = G(u) + η. (1)

Here G : RN → Rm is a forward model that can be nonlinear and computationally expensive to
solve, for example, solving a PDE problem. The last term η is a measurement error. The mea-
surement error is unknown in general, but we assume that it is drawn from a known probability
distribution, a Gaussian distribution with mean zero and a known covariance Γ. By assuming
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that the forward model G and the observation covariance Γ are known, the unknown variable u is
estimated by solving an optimization problem

argmin
u∈RN

1

2
‖y −G(u)‖2Γ, (2)

where ‖ · ‖Γ is the norm induced from the inner product using the inverse of the covariance matrix
Γ, that is ‖a‖2Γ = 〈a,Γ−1a〉 for the standard inner product 〈, 〉 in Rm.

Ensemble Kalman inversion (EKI), pioneered in the oil industry [21] and mathematically for-
mulated in an application-neutral setting in [16], is a derivative-free method that lies between
the deterministic and the probabilistic approaches for inverse problems. EKI’s key feature is an
iterative application of the Kalman update of the ensemble-based Kalman filters [1, 11]. Ensemble-
based Kalman filters are well known for their success in numerical weather prediction, stringent
inverse problems involving high-dimensional systems. EKI iterates the ensemble-based Kalman
update in which the ensemble mean converges to the solution of the optimization problem eq. (2).
EKI can be thought of as a least-squares method in which the derivatives are approximated from
an empirical correlation of an ensemble [5], not from a variational approach. Thus, EKI is highly
parallelizable without calculating the derivatives related to the forward or the adjoint problem
used in the gradient-based methods.

Inverse problems are often ill-posed, which suffer from non-uniqueness of the solution and lack
stability. Also, in the context of regression, the solution can show overfitting. A common strategy
to overcome ill-posed problems is regularizing the solution of the optimization problem [3]. That
is, a special structure of the solution from prior information, such as sparsity, is imposed to ad-
dress ill-posedness. The standard EKI [16] implements regularization by restricting the ensemble
to the linear span of the initial ensemble reflecting prior information. The ensemble-based Kalman
update is known for that the ensemble remains in the linear span of the initial ensemble [19, 16].
Thus, the EKI ensemble always stays in the linear span of the initial ensemble, which regularizes
the solution. Although this approach shows robust results in certain applications, numerical ev-
idence demonstrates that overfitting may still occur [16]. As an effort to address the overfitting
of the standard EKI, an iterative regularization method has been proposed in [17], which approx-
imates the regularizing Levenberg-Marquardt scheme [15]. As another regularization approach
using a penalty term to the objective function, a recent work called Tikhonov EKI (TEKI) [8] im-
plements the Tikhonov regularization (which imposes a l2 penalty term to the objective function)
using an augmented measurement model that adds artificial measurements to the original mea-
surement. TEKI’s implementation is a straightforward modification of the standard EKI method
with a marginal increase in the computational cost.

The regularization methods for EKI mentioned above address several issues of ill-posed prob-
lems, including overfitting. However, it is still an open problem to implement other types of
regularizers, such as l1 or total variation (TV) regularization. This paper aims to implement
lp, 0 < p ≤ 1, regularization to recover sparse structures in the solution of inverse problems. In
other words, we propose a highly-parallelizable derivative-free method that solves the following
lp regularized optimization problem

argmin
u∈X

λ

2
‖u‖pp +

1

2
‖y −G(u)‖2Γ, (3)

where ‖u‖p is the lp norm of u, i.e.,
∑N
i |ui|p, and λ is a regularization coefficient. The proposed

method’s key idea is a transformation of variables that converts the lp regularization problem to

2



the Tikhonov regularization problem. Therefore, a local minimizer of the original lp problem can
be found by a local minimizer of the l2 problem that is solved using the idea of Tikhonov EKI. As
this transformation is explicit and easy to calculate, the proposed method’s overall computational
complexity remains comparable to the complexity of Tikhonov EKI. In general, a transformed
optimization problem can lead to additional difficulties, such as change of convexity, increased
nonlinearity, additional/missing local minima of the original problem, etc. [12]. We show that the
transformation does not add or remove local minimizers in the transformed formulation. A work
imposing sparsity in EKI has been reported recently [25]. The idea of this work is to use thresh-
olding and a l1 constraint to impose sparsity in the inverse problem solution. The l1 constraint is
further relaxed by splitting the solution into positive and negative parts. The split converts the l1
problem to a quadratic problem, while it still has a non-negativity constraint. On the other hand,
our method does not require additional constraints by reformulating the optimization problem
and works as a solver for the lp regularized optimization problem eq. (3).

This paper is structured as follows. Section 2 reviews the standard EKI and Tikhonov EKI. In
section 3, we describe a transformation that converts the lp regularization problem eq. (3), 0 < p ≤
1, to the Tikhonov (that is, l2) regularization problem, and provide the complete description of the
lp regularized EKI algorithm. We also discuss implementation and computation issues. Section 4
is devoted to the validation of the effectiveness and robustness of regularized EKI through a suite
of numerical tests. The tests include a scalar toy problem with an analytic solution, a compressive
sensing problem to benchmark with a convex l1 minimization method, and a PDE-constrained
nonlinear inverse problem from subsurface flow. We conclude this paper in section 5, discussing
the proposed method’s limitations and future work.

2 Ensemble Kalman inversion

The lp regularized EKI uses a change of variables to transform a lp problem into a l2 problem,
which is then solved by the standard EKI using an augmented measurement model. This section
reviews the standard EKI and the application of the augmented measurement model in Tikhonov
EKI to implement l2 regularization. The review is intended to be concise, delivering the minimal
ideas for the lp regularized EKI. Detailed descriptions of the standard EKI and the Tikhonov EKI
methods can be found in [16] and [8], respectively.

2.1 Standard ensemble Kalman inversion

EKI incorporates an artificial dynamics, which corresponds to the application of the forward
model to each ensemble member. This application moves each ensemble member to the measure-
ment space, which is then updated using the ensemble Kalman update formula. The ensemble
updated by EKI stays in the linear span of the initial ensemble [16, 19]. Therefore, by choos-
ing an initial ensemble appropriately for prior information, EKI is regularized as the ensemble is
restricted to the linear span of the initial ensemble. Under a continuous-time limit, when the op-
erator G is linear, it is proved in [24] that EKI estimate converges to the solution of the following
optimization problem

argmin
u∈RN

1

2
‖y −G(u)‖2Γ. (4)

In this paper, we consider the discrete-time EKI in [16], which is described below.
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Algorithm: standard EKI
Assumption: an initial ensemble of size K, {u(k)

0 }Kk=1 from prior information, is given.
For n = 1, 2, ...,

1. Prediction step using the artificial dynamics:

(a) Apply the forward model G to each ensemble member

g(k)
n := G(u

(k)
n−1) (5)

(b) From the set of the predictions {g(k)
n }Kk=1, calculate the mean and covariances

gn =
1

K

K∑
k=1

g(k)
n , (6)

Cugn =
1

K

K∑
k=1

(u(k)
n − un)⊗ (g(k)

n − gn),

Cggn =
1

K

K∑
k=1

(g(k)
n − gn)⊗ (g(k)

n − gn),

(7)

where un is the mean of {u(k)
n }, i.e.,

1

K

K∑
k=1

u(k)
n .

2. Analysis step:

(a) Update each ensemble member u(k)
n using the Kalman update

u
(k)
n+1 = u(k)

n + Cugn (Cggn + Γ)−1(y(k)
n − g(k)

n ), (8)

where y(k)
n+1 = y + ζ

(k)
n+1 is a perturbed measurement using Gaussian noise ζ(k)

n+1 with
mean zero and covariance Γ.

(b) Compute the mean of the ensemble as an estimate for the solution

un+1 =
1

K

K∑
k=1

u(k)
n (9)

Remark 1. The term Cugn (Cggn + Γ)−1 in eq. (8) is from the Kalman gain matrix. The standard EKI uses
an extended space, (u,G(u)) ∈ RN+m, and then use the Kalman update for the extended space variable.
However, as we need to update only u while G(u) is subordinate to u, we have the update formula eq. (8).
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2.2 Tikhonov ensemble Kalman inversion

EKI is regularized through the initial ensemble reflecting prior information. However, there are
several numerical evidence showing that EKI regularized only through an ensemble may have
overfitting [16]. Among other approaches to regularize EKI, Tikhonov EKI [8] uses the idea of an
augmented measurement to implement l2 regularization, which is a simple modification of the
standard EKI. For the original measurement y, the augmented measurement model extends y by
adding the zero vector in RN , which yields an augmented measurement vector z ∈ Rm+N

augmented measurement vector: z = (y, 0). (10)

The forward model is also augmented to account for the augmented measurement vector, which
adds the identity measurement

augmented forward model: F (u) = (G(u), u). (11)

Using the augmented measurement vector and the model, Tikhonov EKI has the following inverse
problem of estimating u from z

z = F (u) + ζ. (12)

Here ζ is a m+N -dimensional measurement error for the augmented measurement model, which
is Gaussian with mean zero and covariance

Σ =

(
Γ 0
0 1

λIN

)
, (13)

for the N ×N identity matrix IN .
The mechanism enabling the l2 regularization in Tikhonov EKI is the incorporation of the l2

penalty term as a part of the augmented measurement model. From the orthogonality between
different components in Rm+N , we have

1

2
‖z − F (u)‖2Σ =

1

2
‖y −G(u)‖2Γ +

1

2
‖0− u‖21

λ IN

=
1

2
‖y −G(u)‖2Γ +

λ

2
‖u‖22.

(14)

Therefore, the standard EKI algorithm applied to the augmented measurement minimizes 1
2‖z −

F (u)‖2Σ, which equivalently minimizes the l2 regularized problem.

3 lp-regularization for EKI

This section describes a transformation that converts a lp, 0 < p ≤ 1, regularization problem to a l2
regularization problem. lp-regularized EKI (lpEKI), which we completely describe in section 3.2,
utilizes this transformation and solves the transformed l2 regularization problem using the idea of
Tikhonov EKI [8], the augmented measurement model.
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3.1 Transformation of lp regularization into l2 regularization

For 0 < p ≤ 1, we define a function ψ : R→ R given by

ψ(x) = sgn(x)|x|
p
2 , x ∈ R. (15)

Here sgn(x) is the sign function of x, which has 1 for x > 0, 0 for x = 0, and -1 for x < 0. It is
straightforward to check that ψ is bijective and has an inverse ξ : R→ R defined as

ξ(x) = sgn(x)|x|
2
p , x ∈ R. (16)

For u in RN , we define a nonlinear map Ψ : RN → RN , which applies ψ to each component of
u = (u1, u2, ..., uN ),

Ψ(u) = (ψ(u1), ψ(u2), ..., ψ(uN )). (17)

As ψ has an inverse, the map Ψ also has an inverse, say Ξ

Ξ(u) = Ψ−1(u) = (ξ(u1), ξ(u2), ..., ξ(uN )). (18)

For v = Ψ(u), it can be checked that for each i = 1, 2, ..., N ,

|vi|2 = |ψ(ui)|2 = |ui|p,

and thus we have the following norm relation

‖v‖22 = ‖u‖pp. (19)

This relation shows that the map v = Ψ(u) converts the lp-regularized optimization problem in u
eq. (3) to a l2 regularized problem in v,

argmin
v∈RN

λ

2
‖v‖22 +

1

2
‖y − G̃(v)‖2Γ, (20)

where G̃ is the pullback of G by Ξ

G̃ = G ◦ Ξ. (21)

A transformation between l1 and l2 regularization terms has already been used to solve an
inverse problem in the Bayesian framework [26]. In the context of the randomize-then-optimize
framework [2], the method in [26] draws a sample from a Gaussian distribution, which is then
transformed to a Laplace distribution. As this method needs to match the corresponding densities
of the variables (the original and the transformed variables) as random variables, the transforma-
tion involves calculations related to cumulative distribution functions. For the scalar case, v ∈ R,
the transformation from l2 to l1, denoted as gl, is given by

gl(v) = − sgn(v) log

(
1− 2

∣∣∣∣φ(v)− 1

2

∣∣∣∣) . (22)

where φ(u) is the cumulative distribution function of the standard Gaussian distribution. fig. 1
shows the two transformations ξ eq. (16) and gl eq. (22); the former is based on the norm rela-
tion eq. (19) and the latter is based on matching densities as random variables. We note that the
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Figure 1: ξ: transformation matching the norm relation eq. (19), gl: transformation from Gaussian
to Laplace distributions.

transformation ξ has a region around 0 flatter than the transformation gl, but ξ diverts quickly as
v moves further away from 0. From this comparison, we expect that the flattened region of ξ plays
another role in imposing sparsity by trapping the ensemble to the flattened area.

In general, a reformulation of an optimization problem using a transformation has the follow-
ing potential issues [12]: i) the degree of nonlinearity may be significantly increased, ii) the desired
minimum may be inadvertently excluded, or iii) an additional local minimum can be included. In
[9], for a non-convex problem, it is shown that TEKI converges to an approximate local minimum
if the gradient and Hessian of the objective function are bounded. It is straightforward to check
that the transformed objective function has bounded gradient and Hessian if 0 < p ≤ 1 regardless
of the convexity of the problem. Therefore, if we can show that the original and the transformed
problems have the same number of local minima, then it is guaranteed to find a local minimum
of the original problem by finding a local minimum of the transformed problem using TEKI. We
want to note the importance of the sign function in defining ψ and ξ. The sign function is not
necessary to satisfy the norm relation eq. (19), but it is essential to make the transformation Ψ and
its inverse Ξ bijective. Without being bijective, the transformed l2 problem can have more or less
local minima than the original problem.

The following theorem shows that the transformation does not add or remove local minima.

Theorem 1. For an objective function J(u) : RN → R, if u∗ is a local minimizer of J(u), Ψ(u∗) is also a
local minimizer of J̃(v) = J ◦ Ξ(v). Similarly, if v∗ is a local minimizer of J̃(v), then Ξ(v∗) is also a local
minimizer of J(u) = J̃ ◦Ψ(u).

Proof. From the definition eq. (17) and eq. (18), Ψ and Ξ are continuous and bijective. Thus for
u ∈ RN , both Ψ and Ξ map a neighborhood of u ∈ RN to neighborhoods of Ψ(u) and Ξ(u),
respectively. As u∗ is a local minimizer, there exists a neighborhood N of u∗ such that

J(u∗) ≤ J(w) for all w ∈ N . (23)

Let v = Ψ(u∗) andM := Ψ(N ) that is a neighborhood of v. For any w ∈ M, Ξ(w) ∈ N and thus
we have

J̃(v) = J(Ξ(v)) = J(u) ≤ J(Ξ(w)) = J̃(w), (24)
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which shows that v is a local minimizer of J̃ . The other direction is proved similarly by changing
the roles of Ψ and Ξ and of J and J̃ .

We note that an insolated local minimizer can replace the local minimizer in the theorem. If
there is a unique global minimizer of the lp regularization problem eq. (3), the theorem guarantees
that we can find it by finding the global minimizer of the l2 regularized problem eq. (20).

Corollary 1. For 0 < p ≤ 1, if the lp regularized optimization eq. (3) has a unique global minimizer, say
u†, the l2 regularized optimization eq. (20) also has a unique global minimizer. By finding the minimizer u†

of eq. (20), say v†, u† is given by
u† = Ξ(v†). (25)

3.2 Algorithm

lp-regularized EKI (lpEKI) solves the transformed l2 regularization problem using the standard
EKI with the augmented measurement model. For the current study’s completeness to implement
lpEKI, this subsection describes the complete lpEKI algorithm and discuss issues related to im-
plementation. Note that the Tikhonov EKI (TEKI) part in lpEKI is slightly modified to reflect the
setting assumed in this paper. The general TEKI algorithm and its variants can be found in [8].

We assume that the forward model G and the measurement error covariance Γ are known, and
measurement y ∈ Rm is given (and thus z = (y, 0) is also given). We also fix the regularization
coefficient λ and p. Under this assumption, lpEKI uses the following iterative procedure to update

the ensemble until the ensemble mean v =
1

K

K∑
k=1

v(k) converges.

Algorithm: lp-regularized EKI
Assumption: an initial ensemble of size K, {v(k)

0 }Kk=1, is given.
For n = 1, 2, ...,

1. Prediction step using the forward model:

(a) Apply the augmented forward model F to each ensemble member

f (k)
n := F (v(k)

n ) = (G̃(v(k)
n ), v(k)

n ) (26)

(b) From the set of the predictions {f (k)
n }Kk=1, calculate the mean and covariances

fn =
1

K

K∑
k=1

f (k)
n , (27)

Cvfn =
1

K

K∑
k=1

(v(k)
n − vn)⊗ (f (k)

n − fn),

Cffn =
1

K

K∑
k=1

(f (k)
n − fn)⊗ (f (k)

n − fn)

(28)
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where vn is the ensemble mean of {v(k)
n }, i.e.,

1

K

K∑
k=1

v(k)
n .

2. Analysis step:

(a) Update each ensemble member v(k)
n using the Kalman update

v
(k)
n+1 = v(k)

n + Cvfn (Cffn + Σ)−1(z
(k)
n+1 − f (k)

n ), (29)

where z(k)
n+1 = z + ζ

(k)
n+1 is a perturbed measurement using Gaussian noise ζ(k)

n+1 with
mean zero and covariance Σ.

(b) For the ensemble mean vn, the lpEKI estimate, un, for the minimizer of the lp regular-
ization is given by

u = Ξ(vn). (30)

Remark 2. In EKI and TEKI, the covariance of ζ(k)
n+1 can be set to zero so that all ensemble member uses the

same measurement z without perturbations. In our study, we focus on the perturbed measurement using
the covariance matrix Γ.

Remark 3. The above algorithm is equivalent to TEKI, except that the forward model G is replaced with
the pullback of G by the transformation Ξ. In comparison with TEKI, the additional computational cost for
lpEKI is to calculate the Transformation Ξ(v). In comparison with the standard EKI, the additional cost
of lpEKI, in addition to the cost related to the transformation, is the matrix inversion (Cggn + Σ)−1 in the
augmented measurement space Rm+N instead of a matrix inversion in the original measurement space Rm.
As the covariance matrices are symmetric positive definite, the matrix inversion can be done efficiently.

Remark 4. In lpEKI, it is also possible to consider estimating u by transforming each ensemble member
and take average of the transformed members, that is,

u =
1

K

K∑
k=1

Ξ(v(k)
n ) (31)

instead of eq. (30). If the ensemble spread is large, these two approaches will make a difference. In our
numerical tests in the next section, we do not incorporate covariance inflation. Thus the ensemble spread
becomes relatively small when the estimate converges, and thus eq. (30) and eq. (31) are not significantly
different. In this study, we use eq. (30) to measure the performance of lpEKI.

In recovering sparsity using the lp penalty term, if the penalty term’s convexity is not necessary,
it is preferred to use a small p < 1 as a smaller p imposes stronger sparsity. The transformation in
lpEKI works for any positive p, but the transformation can lead to an overflow for a small p; the
function ξ depends on an exponent 2

p that becomes large for a small p. Therefore, there is a limit
for the smallest p. In our numerical experiments in the next section, the smallest p is 0.7 in the
compressive sensing test.

There is a variant of lpEKI worth further consideration. In [24], a continuous-time limit of EKI
has been proposed, which rescales Γ → h−1Γ using h > 0 so that the matrix inversion (Cggn +
h−1Γ)−1 is approximated by hΓ−1 as a limit of h → 0. In many applications, the measurement
error covariance is assumed to be diagonal. That is, the measurement error corresponding to
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different components are uncorrelated. Thus the inversion Γ−1 becomes a cheap calculation in
the continuous-time limit. The continuous-time limit is then discretized in time using an explicit
time integration method with a finite time step. The latter is called ‘learning rate’ in the machine
learning community, and it is known that an adaptive time-stepping to solve an optimization often
shows improved results [10, 22]. The current study focuses on the discrete-time update described
in eq. (8) and we leave adaptive time-stepping for future work.

4 Numerical tests

We apply lp-regularized EKI (lpEKI) to a suite of inverse problems to check its performance in reg-
ularizing EKI and recovering sparse structures of solutions. The tests include: i) a scalar toy model
where an analytic solution is available, ii) a compressive sensing problem to recover a sparse signal
from random measurements of the signal, iii) an inverse problem in subsurface flow; estimation
of permeability from measurements of hydraulic pressure field whose forward model is described
by a 2D elliptic partial differential equation [7, 21]. In all tests, we run lpEKI for various values of
p ≤ 1, and compare with the result of Tikhonov EKI. We analyze the results to check how effec-
tively lpEKI implements lp regularization and recover sparse solutions. When available, we also
compare lpEKI with a l1 convex minimization method. As quantitative measures for the estimation
performance, we calculate the l1 error of the lpEKI estimates and the data misfit ‖y −G(u)‖2.

Several parameters are to be determined in lpEKI to achieve robust estimation results, the reg-
ularization coefficient λ, ensemble size, and its initialization. The regularization coefficient can be
selected, for example, using cross-validation. As the coefficient can significantly affect the perfor-
mance, we find the coefficient by hand-tuning so that lpEKI achieves the best result for a given p.
Ensemble initialization plays a role in regularizing EKI, restricting the estimate to the linear span
of the initial ensemble. In our experiments, instead of tuning the initial ensemble for improved
results, we initialize the ensemble using a Gaussian distribution with mean zero and a constant
diagonal covariance matrix (the variance will be specified later for each test). As this initializa-
tion does not utilize any prior information, a sparse structure in the solution, we regularize the
solution mainly through the lp penalty term. For each test, we run 100 trials of lpEKI through 100
realizations of the initial ensemble distribution and use the estimate averaged over the trials along
with its standard deviation to measure the performance difference.

Regarding the ensemble size, for the scalar toy and the compressive sensing problems, we test
ensemble sizes larger than the dimension of u, the unknown variable of interest. The purpose
of a large ensemble size is to minimize the sampling error while we focus on the regularization
effect of lpEKI. To show the applicability of lpEKI for high-dimensional problems, we also test a
small ensemble size using the idea of multiple batches used in [23]. The multiple batch approach
runs several batches where small magnitude components are removed after each batch. After
removing small magnitude components from the previous batch, the ensemble is used for the
next batch. The multiple batch approach enables a small ensemble size, 50 ensemble members, for
the compressive sensing and the 2D elliptic inversion problems where the dimensions of u are 200
and 400, respectively.

In ensemble-based Kalman filters, covariance inflation is an essential tool to stabilize and im-
prove the performance of the filters. In a connection with the inflation, an adaptive time-stepping
has been investigated to improve the performance of EKI. Although the adaptive time-stepping
can be incorporated in lpEKI for performance improvements, we use the discrete version lpEKI
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described in section 3.2 focusing on the effect of different types of regularization on inversion. We
will report a thorough investigation along the line of adaptive time-stepping in another place.

4.1 A scalar toy problem

The first numerical test is a scalar problem for u ∈ R with an analytic solution. As this is a scalar
problem, there is no effect of regularization from ensemble initialization, and we can see the effect
from the lp penalty term. The scalar optimization problem we consider here is the minimization
of an objective function J(u) = 1

4 |u|
p + 1

2 (1− u)2

argmin
u∈R

J(u) = argmin
u∈R

1

4
|u|p +

1

2
(1− u)2. (32)

This setup is equivalent to solving the optimization problem eq. (3) using lp regularization with
λ = 1/2, where y = 1, G(u) = u, and η is Gaussian with mean zero and variance 1. Using the
transformation v = Ψ(u) = ψ(u) = sgn(u)|u|

p
2 defined in eq. (15), lpEKI minimizes a transformed

objective function J̃(v) = 1
4 |v|

2 + 1
2 (1− sgn(v)|v|2/p)2

argmin
v∈R

J̃(v) = argmin
v∈R

1

4
|v|2 +

1

2
(1− sgn(v)|v|2/p)2, (33)

which is an l2 regularization of 1
2 (1− sgn(v)|v|

2
p )2.

Figure 2: Objective functions of eq. (32) and eq. (33) for p = 1 (first row) and p = 0.5 (second row).

For p = 1, the first row of fig. 2 shows the objective functions of lp eq. (32) and the transformed
l2 eq. (33) formulations. Each objective function has a unique global minimum without other
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local minima. The minimizers are 3
4 and

√
3

2 for l1 and l2, respectively. We can check that the
transformation does not add/remove local minimizers, but the convexity of the objective function
changes. The transformed objective function J̃ has an inflection point at u = 0, which is also a
stationary point. Note that the original function has no other stationary points than the global
minimizer.

When p = 0.5, a potential issue of the transformation can be seen explicitly. The original
objective and the transformed objective functions are shown in the second row of fig. 2. Due to
the regularization term with p = 0.5, the objective functions are non-convex and have a local
minimizer at u = v = 0 in addition to the global minimizers. In the transformed formulation
(bottom right of fig. 2), the objective function flattens around v = 0, which shows a potential issue
of trapping ensemble members around v = 0. Numerical experiments show that if the ensemble is
initialized with a small variance, the ensemble is trapped around v = 0. On the other hand, if the
ensemble is initialized with a sufficiently large variance (so that some of the ensemble members
are initialized out of the well around v = 0), lpEKI shows convergence to the true minimizer,
v = 0.9304 (or u = 0.8656) even when it is initialized around 0.

Figure 3: Time series of lpEKI estimate, ξ(vn), which is averaged over 100 different trials.

We use 100 different realizations for the ensemble initialization and each trial uses 50 ensemble
members. The estimates at each iteration, which is averaged over different trials, are shown in
fig. 3. For p = 1 (first row) and p = 0.5 (second row), the left and right columns show the results
when the ensemble is initialized with mean 1 and 0, respectively. When p = 1 and initialized
around 1, the ensemble estimate quickly converges to the true value 0.75 as the objective function
is convex, and the initial guess is close to the true value. When p = 0.5, as the objective function is
non-convex due to the regularization term, the convergence is slower than the p = 1 case. When
the ensemble is initialized around 0 for p = 0.5, a local minimizer, the ensemble needs to be initial-
ized with a large variance. Using variance 1, which is 10 times larger than 0.1, the variance for the
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Method l1 error data misfit
p = 2, ens size 2000 14.0802 0.0515
p = 1, ens size 2000 0.7848 0.8018
p = 0.7, ens size 2000 0.2773 1.2737
p = 1, ens size 50 1.6408 1.4095
p = 0.7, ens size 50 0.6027 1.8958

l1 convex minimization 0.5623 0.9030

Table 1: Compressive sensing. lpEKI estimate l1 error and data misfit for p = 2, 1 and 0.7.

ensemble initialization around 1, lpEKI converges to the true value. The performance difference
between different trials is marginal. The standard deviations of the estimate after 50 iterations are
6.62 × 10−3 (p = 1 initialized with 1), 7.95 × 10−3 (p = 1 initialized with 0), 8.79 × 10−3 (p = 0.5
initialized with 1), and 1.14 × 10−2 (p = 0.5 initialized with 0). As a reference, the estimate using
the transformation eq. (22) based on matching the densities of random variables converges to 0.71.

4.2 Compressive sensing

The second test is a compressive sensing problem. The true signal u is a vector in R200, which
is sparse with only four randomly selected non-zero components (their magnitudes are also ran-
domly chosen from the standard normal distribution.) The forward model G : R200 → R20 is a
random Gaussian matrix of size 20 × 200, which yields a measurement vector in R20. The mea-
surement y is obtained by applying the forward model to the true signal u polluted by Gaussian
noise with mean zero and variance 0.01. As the forward model is linear, several robust methods
can solve the sparse recovery problem, including the l1 convex minimization method [4]. This test
aims to compare the performance of lpEKI for various p values, rather than to advocate the use
of lpEKI over other standard methods. As the forward model is linear and cheap to calculate, the
standard methods are preferred over lpEKI for this test.

We first use a large ensemble size, 2000 ensemble members, to run lpEKI. The ensemble is ini-
tialized by drawing samples from a Gaussian distribution with mean zero and a diagonal covari-
ance (which yields variance 0.1 for each component). For p = 1 and 0.7, the tuned regularization
coefficients, λ, are 100 and 300. When p = 2, which corresponds to TEKI, the best result can be
obtained using λ ranging from 10 to 200; we use the result of λ = 50 to compare with the other
cases. For p = 1, we also compare the result of the convex l1 minimization method using the KKT
solver in the Python library CVXOPT [20].

Figure 4 shows the lpEKI estimates after 20 iterations averaged over 100 trials for p = 2 (top
left), p = 1 (top right), and p = 0.7 (bottom left), along with the estimate by the convex optimiza-
tion (bottom right). As it is well known in compressive sensing, l2 regularization fails to capture
the true signal’s sparse structure. As p decreases to 1, lpEKI develops sparsity in the estimate,
comparable to the estimate of the convex l1 minimization method. The slightly weak magnitudes
of the three most significant components by lpEKI improve as p decreases to 0.7. When p = 0.7,
lpEKI captures the correct magnitudes at the cost of losing the smallest magnitude component. We
note that the smallest magnitude component is difficult to capture; the magnitude is comparable
to the measurement error 0.1 =

√
0.01.

Another cost of using p < 1 to impose stronger sparsity than p = 1 is a slow convergence rate
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Figure 4: Compressive sensing. Reconstruction of sparse signal using lpEKI for p=2, 1, and 0.7.
Ensemble size is 2000. The bottom right plot is the reconstruction using the convex l1 minimization
method. For the true signal, only the nonzero components are marked

.

Figure 5: Compressive sensing. l1 error of the lpEKI estimate and data misfit.

oflpEKI. The time series of the l1 estimation error and the data misfit of lpEKI averaged over 100
trials are shown in fig. 5 alongside those of the convex optimization method. The results show that
p = 0.7 converges slower than p = 1 (see Table table 1 for the numerical values of the error and the
misfit). Although there is a slowdown in convergence, it is worth noting that lpEKI with p = 0.7
converges in a reasonably short time, 15 iterations, to achieve the best result. lpEKI with p = 2
converges fast with the smallest data misfit. However, the l2 regularization is not strong enough
to impose sparsity in the estimate and yields the largest estimation error, which is 20 times larger
than the case of p = 1. Note that the convex optimization method has the fastest convergence
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rate; it converges within three iterations and captures the four nonzero components with slightly
smaller magnitudes than p = 0.7 for the three most significant components.

Figure 6: Compressive sensing. Reconstruction of sparse signal using lpEKI for p=1 and 0.7. En-
semble size is 50. For the true signal, only the nonzero components are marked.

The ensemble size 2000 is larger than the dimension of the unknown vector u, 200. A large
ensemble size can be impractical for a high-dimensional unknown vector. To see the applicability
of lpEKI using a small ensemble size, we use 50 ensemble members and two batches following the
multiple batch approach [23]. The first batch runs 10 iterations, and all components whose mag-
nitudes are less than 0.1 (the square root of the observation variance) are removed. The problem’s
size the second batch solves ranges from 30-45 (depending on a realization of the initial ensemble),
which is then solved for another 10 iterations. The estimates using 50 ensemble members for p = 1
and p = 0.7 after two batch runs (i.e., 20 iterations) are shown in fig. 6. Compared with the large
ensemble size case, the small ensemble size run also captures the most significant components at
the cost of fluctuating components larger than the large ensemble size test. We note that the esti-
mates are averaged over 100 trials, and thus there are components whose magnitudes are less than
the threshold value 0.1 used in the multiple batch run.

As a measure to check the performance difference for different trials, fig. 7 shows the standard
deviations of lpEKI estimates for p = 1 and 0.7 after 20 iterations. The first row shows the results
using 2000 ensemble members, while the second row shows the ones using 50 ensemble members.
The standard deviations of the large ensemble size are smaller than those of the small ensemble
size case as the large ensemble size has a smaller sampling error. In all cases, the standard devia-
tions are smaller than 6% of the magnitude of the most significant components. In terms of p, the
standard deviations of p = 0.7 are smaller than those of p = 1.

4.3 2D elliptic problem

Next, we consider an inverse problem where the forward model is given by an elliptic partial
differential equation. The model is related to subsurface flow described by Darcy flow in the two-
dimensional unit square (0, 1)2 ⊂ R2

−∇ · (k(x)∇p(x)) = f(x), x = (x1, x2) ∈ (0, 1)2. (34)

The scalar field k(x) > α > 0 is the permeability, and another field p(x) is the piezometric head
or the pressure field of the flow. For a known source term f(x), the inverse problem estimates
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Figure 7: Compressive sensing. Standard deviation of the estimates using 100 trials.

the permeability from measurements of the pressure field p. This model is a standard model
for an inverse problem in oil reservoir simulations and has been actively used to measure EKI’s
performance and its variants, including TEKI [16, 8].

We follow the same setting used in TEKI [8] for the boundary conditions and the source term.
The boundary conditions consist of Dirichlet and Neumann boundary conditions

p(x1, 0) = 100,
∂p

∂x1
(1, x2) = 0,−k ∂p

∂x1
(0, x2) = 500,

∂p

∂x2
(x1, 1) = 0,

and the source term is piecewise constant

f(x1, x2) =

 0 if 0 ≤ x2 ≤ 4
6 ,

137 if 4
6 < x2 ≤ 5

6 ,
274 if 5

6 < x2 ≤ 1.

A physical motivation of the above configuration can be found in [7]. We use 15 × 15 regularly
spaced points in (0, 1)2 to measure the pressure field with a small measurement error variance
10−6. For a given k, the forward model is solved by a FEM method using the second-order poly-
nomial basis on a 60× 60 uniform mesh.

In addition to the standard setup, we impose a sparse structure in the permeability. We assume
that the log permeability, log k, can be represented by 400 components in the cosine basis φij =
cos(iπx1) cos(jπx2), i, j = 0, 1, ..., 19,

log k(x) =

19∑
i,j=0

uijφij(x), (35)
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p l1 error data misfit
2 21.3389 4.1227
1 0.1553 0.5707

0.8 0.0719 0.5682

Table 2: 2D elliptic problem. lpEKI estimate l1 error and data misfit for p = 2, 1 and 0.8.

where only six of {uij} are nonzero. That is, we assume that the discrete cosine transform of log k
is sparse with only 6 nonzero components out of 400 components. Thus, the problem we consider
here can be formulated as an inverse problem to recover u = {uij} ∈ R400 (which has only six
nonzero components) from a measurement y ∈ R225, the measurement of p at 15 × 15 regularly
spaced points. In terms of sparsity reconstruction, the current setup is similar to the previous
compressive sensing problem, but the main difference lies in the forward model. In this test, the
forward model is nonlinear and computationally expensive to solve, where the forward model in
the compressive sensing test was linear using a random measurement matrix.

For this test, we run lpEKI using only a small ensemble size due to the high computational cost
of running the forward model. As in the previous test, we use the multiple batch approach. First,
the lpEKI ensemble of size 50 is initialized around zero with Gaussian perturbations of variance
0.1. After the first five iterations, all components whose magnitudes less than 5×10−3 are removed
at each iteration. The threshold value is slightly smaller than the smallest magnitude component
of the true signal. Over 100 different trials, the average number of nonzero components after 30
iterations is 18 that is smaller than the ensemble size.

The true value of u used in this test and its corresponding log permeability, log k, are shown in
the first row of fig. 8 (u is represented as a one-dimensional vector by concatenating the row vectors
of {uij}). The lpEKI estimates for p = 2, 1, and 0.8 are shown in the second to the fourth rows of
fig. 8. Here p = 0.8 was the smallest value we can use for lpEKI due to the numerical overflow
in the exponentiation of log k. A smaller p can be used with a smaller variance for ensemble
initialization, but the gain is marginal. The results of lpEKI are similar to the compressive sensing
case. p = 0.8 has the best performance recovering the four most significant components of u.
p = 1 has slightly weak magnitudes missing the correct magnitudes of the two most significant
components (corresponding to one-dimensional indices 141 and 364). Both cases converge within
20 iterations to yield the best result (see fig. 9 and Table table 2 for the time series and numerical
values of the l1 error and data misfit). When p = 2, lpEKI performs the worst; it has the largest l1
error and data misfit. We note that p = 2 uses the result after running 50 iterations at which the
estimate converges.

The performance difference between different trials is not significant. The standard deviations
of the lpEKI estimates using 100 trials are shown in fig. 10. The standard deviations for nonzero
components are larger than the other components, but the largest standard deviation is less than
3% of the magnitude of the true signal. As in the compressive sensing test, the deviations are
slightly smaller for p < 1 than p = 1.

5 Discussions and conclusions

We have proposed a strategy to implement lp, 0 < p ≤ 1, regularization in ensemble Kalman in-
version (EKI) to recover sparse structures in the solution of an inverse problem. The lp-regularized
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(a) true

(b) p = 2

(c) p = 1

(d) p = 0.8

Figure 8: 2D elliptic problem. Left column: the true u and lpEKI estimates for p = 2, 1, and 0.8.
Right column: log k of the true and lpEKI estimates. All plots have the same grey scale. p = 1 and
0.8 use the results after 20 iterations while p = 2 uses the result after 50 iterations. For the true
signal, only the nonzero components are marked.
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Figure 9: 2D elliptic problem. l1 error of the lpEKI estimates and data misfit.

Figure 10: 2D elliptic problem. Standard deviation of the estimates using 100 trials.

ensemble Kalman inversion (lpEKI) proposed here uses a transformation to convert the lp regu-
larization to the l2 regularization, which is then solved by the standard EKI with an augmented
measurement model used in Tikhonov EKI. We showed a one-to-one correspondence between
the local minima of the original and the transformed formulations. Thus a local minimum of the
original problem can be obtained by finding a local minimum of the transformed problem. As
other iterative methods for non-convex problems, initialization plays a vital role in the proposed
method’s performance. The effectiveness and robustness of regularized EKI are validated through
a suite of numerical tests, showing robust results in recovering sparse solutions using p ≤ 1.

In implementing lp regularization for EKI, there is a limit for p < 1 due to an overflow. One
possible workaround is to use a nonlinear augmented measurement model related to the transfor-
mation Ψ, not the transformation Ξ. The nonlinear measurement model is general to incorporate
the lp regularization term directly instead of using the transformed l2 problem. However, this ap-
proach lacks a mathematical framework to prevent the inadvertent addition of local minima. This
approach is under investigation and will be reported in another place.

For successful applications of lpEKI for high-dimensional inverse problems, it is essential to
maintain a small ensemble size for efficiency. In the current study, we considered the multiple
batch approach. The approach removes non-significant components after each batch, and thus
the problem size (i.e., the dimension of the unknown signal) decreases over different batch runs.
This approach enabled lpEKI to use only 50 ensemble members to solve 200 and 400-dimensional
inverse problems. Other techniques, such as variance inflation and localization, improve the per-
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formance of the standard EKI using a small ensemble size [24]. It would be natural to investigate
if these techniques can be extended to lpEKI to decrease the sampling error of lpEKI.

In the current study, we have left several variants of lpEKI for future work. Weighted l1 has
been shown to recover sparse solutions using fewer measurements than the standard l1 [6]. It is
straightforward to implement weighted l1 (and further weighted lp for p < 1) in lpEKI by replacing
the identity matrix in eq. (13) with another type of covariance matrix corresponding to the desired
weights. We plan to study several weighting strategies to improve the performance oflpEKI. As
another variant oflpEKI, we plan to investigate the adaptive time-stepping under the continuous
limit. The time step for solving the continuous limit equation, which is called ‘learning rate’ in
the machine learning community, is known to affect an optimization solver [10]. The standard
ensemble Kaman inversion has been applied to machine learning tasks, such as discovering the
vector fields defining a differential equation, using time series data [18] and sparse learning using
thresholding [25]. We plan to investigate the effect of an adaptive time-stepping for performance
improvements and compare with the sparsity EKI method using thresholding in dimension re-
duction in machine learning.
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