
JET MARCHING METHODS FOR SOLVING THE EIKONAL
EQUATION

SAMUEL F. POTTER AND MARIA K. CAMERON

Abstract. We develop a family of compact high-order semi-Lagrangian label-setting meth-
ods for solving the eikonal equation. These solvers march the total 1-jet of the eikonal, and use
Hermite interpolation to approximate the eikonal and parametrize characteristics locally for each
semi-Lagrangian update. We describe solvers on unstructured meshes in any dimension, and con-
duct numerical experiments on regular grids in two dimensions. Our results show that these solvers
yield at least second-order convergence, and, in special cases such as a linear speed of sound, third-
order of convergence for both the eikonal and its gradient. We additionally show how to march the
second partials of the eikonal using cell-based interpolants. Second derivative information computed
this way is frequently second-order accurate, suitable for locally solving the transport equation. This
provides a means of marching the prefactor coming from the WKB approximation of the Helmholtz
equation. These solvers are designed specifically for computing a high-frequency approximation of
the Helmholtz equation in a complicated environment with a slowly varying speed of sound, and, to
the best of our knowledge, are the first solvers with these properties. We provide a link to a package
online providing the solvers, and from which the results of this paper can be reproduced easily.

Key words. eikonal equation, high-order solver, semi-Lagrangian solver, Hermite interpolation,
direct solver, marching, Helmholtz equation, geometric spreading

AMS subject classifications. 65N99, 65Y20, 49M99

1. Introduction. Our goal is to develop a family of high-order semi-Lagrangian
eikonal solvers which use compact stencils. This is motivated by problems in high-
frequency room acoustics, although the eikonal equation arises in a tremendous variety
of modeling problems [40].

In multimedia, virtual reality, and video games, precomputing room impulse re-
sponses (RIRs) or transfer functions (RTFs) enables convincing spatialized audio, in
combination with binaural or surround sound formats. Such an approach, usually re-
ferred to as numerical acoustics, involves computing pairs of RIRs by placing probes
at different locations in a voxelized domain, numerically solving the acoustic wave
equation, and capturing salient perceptual parameters throughout the domain using
a streaming encoder [33, 34]. These parameters are later decoded using signal process-
ing techniques in real time as the listener moves throughout the virtual environment.
Assuming that the encoded parameters can comfortably fit into memory, a drawback
of this approach is that the complexity of the simulation depends intrinsically on the
highest frequency simulated. In practice, simulations top out at around 1 kHz. The
hearing range of humans is roughly 20 Hz to 20 kHz, which requires these methods
to either implicitly or explicitly extrapolate the bandlimited transfer functions to the
full audible spectrum.

An established alternative to this approach is geometric acoustics, where meth-
ods based on raytracing are used [35]. Contrary to methods familiar from computer
graphics, the focus of geometric acoustics is different. Acoustic waves are mechanical
and have macroscopic wavelengths. This means that subsurface scattering, typically
modeled using BRDFs in raytracing for computer graphics [27], is less relevant, and
is limited to modeling macroscopic scattering from small geometric features, since re-
flections from flat surfaces are specular in nature. What’s more, accurately modeling
diffraction effects is crucial [36]: e.g., we can hear a sound source occluded by an ob-
stacle, but we can’t see it. A variety of other geometric-acoustic methods exist beyond
raytracing. Examples include the image source method [2] and frustum tracing [13].

1

ar
X

iv
:2

00
9.

05
49

0v
3

 [
m

at
h.

N
A

]
 2

3
A

ug
 2

02
1

Geometric acoustics and optics both assume a solution to the wave equation
based on an asymptotic high-frequency (WKB) approximation to the Helmholtz equa-
tion [29]. In this approximation, the eikonal plays the role of a spatially varying phase
function, whose level sets describe propagating wavefronts. The prefactor of this ap-
proximation describes the amplitude of these wavefronts. The WKB approximation
assumes a ray of “infinite frequency”, suitable for optics, since the effects of diffrac-
tion are limited. A variety of mechanisms for augmenting this approximation with
frequency-dependent diffraction effects have been proposed, the most successful of
which is Keller’s geometric theory of diffraction [21] (including the later uniform the-
ory of diffraction [23]).

The complete geometric acoustic field of multiply reflected and diffracted rays
can be parametrized by repeatedly solving the eikonal equation, using boundary con-
ditions derived from the WKB approximation to patch together successive fields. A
related approach is Benamou’s big raytracing (BRT) [5, 6]. This approach requires
one to be able to accurately solve the transport equation describing the amplitude, e.g.
using paraxial raytracing [29]. In order to do this, the first and second order partial
derivatives of the eikonal must be computed. High-order accurate iterative schemes
for solving the eikonal equation exist [50, 48, 24], but their performance deteriorates
in the presence of complicated obstacles. Direct solvers for the eikonal equation allow
one to locally parametrize the characteristics (rays) of the eikonal equation, which puts
one in a position to simultaneously march the amplitude. This enables work-efficient
algorithms, critical if a large number of eikonal problems must be solved.

Benamou’s line of research related to BRT seems to have stalled due to difficulties
faced with caustics [7]. This is reasonable considering that the intended use was
seismic modeling, where the eikonal equation is used to model first arrival times of
P -waves. In this case, the speed of sound is extremely complicated, resulting in
a large number of caustics [47]. On the other hand, in room acoustics, the speed
of sound varies slowly. The main challenge is geometric: the domain is potentially
filled with obstacles. This provides another motivation for compact stencils: such
stencils can be adapted for use with unstructured meshes, and the sort of complicated
boundary conditions that arise when using finite differences are avoided entirely. In
this work, our goal is to develop the underlying approach to obtaining a compact
higher-order semi-Lagrangian eikonal solver. In future work, this will be applied in
the unstructured setting.

The solvers developed in this work are high-order, have optimally local/compact
stencils, and are label-setting methods (much like Sethian’s fast marching method [39]
or Tsitsiklis’s semi-Lagrangian algorithm for solving the eikonal equation [46]). Ad-
ditionally, being semi-Lagrangian, they locally parametrize characteristics (acoustic
rays), making them suitable for use with paraxial raytracing [29], the method of choice
for locally computing the amplitude. To the best of our knowledge, these are the first
eikonal solvers with this collection of properties.

We refer to our solvers as jet marching methods to reflect the fact that the key
idea is marching the jet of the eikonal (the eikonal and its partial derivatives up to
a particular order [43]) in a principled fashion. Sethian and Vladimirsky developed
a fast marching method that additionally marched the gradient of the eikonal in a
short note, but did not prove convergence results or provide detailed numerical exper-
iments [41]. Benamou and collaborators built on these ideas by exploiting information
about the eikonal equation to obtain a compact upwind second-order finite difference
scheme for solving the eikonal equation [8]. Related methods exist in the level set
method community and are referred to as gradient-augmented level set methods or jet

2

schemes [25, 37].
In the rest of this work we lay out these methods, providing detailed numerical

experiments. Our presentation is for unstructured grids in n-dimensions, while our
numerical experiments were carried out in 2D. We plan to extend these solvers to
structured and unstructured meshes in 3D and will report on these later in the context
of room acoustics applications.

1.1. Problem setup. Let Ω ⊆ Rn be a domain, let ∂Ω be its boundary, and let
Γ ⊆ Ω. The eikonal equation is a nonlinear first-order hyperbolic partial differential
equation given by:

‖∇τ(x)‖ = s(x), x ∈ Ω,

τ(x) = g(x), x ∈ Γ.
(1.1)

Here, τ : Ω→ R is the eikonal, a spatial phase function that encodes the first arrival
time of a wavefront propagating with pointwise slowness specified by s : Ω→ (0,∞),
which can be thought of as an index of refraction. The function g : Γ → R specifies
the boundary conditions, and is subject to certain compatibility conditions [9].

One way of arriving at the eikonal equation is by approximating the solution u of
the Helmholtz equation:

(1.2)
(

∆ + ω2s(x)2
)
u(x) = 0,

with the WKB ansatz:

(1.3) u(x) ∼ α(x)eiωτ(x),

where ω is the frequency [29]. As ω → ∞, this asymptotic approximation is O(ω−1)
accurate. This is referred to as the geometric optics approximation [7]. The level sets
of τ denote the arrival times of bundles of rays, and the amplitude α, which satisfies
the transport equation:

(1.4) α(x)∆τ(x) + 2∇τ(x)>∇α(x) = 0,

describes the attenuation of the amplitude of the wavefront due to the propagation
and geometric spreading of rays. The characteristics (rays) of the eikonal equation
satisfy the raytracing ODEs.

The solution of the eikonal equation is given by Fermat’s principle:

(1.5) τ(x) = min
y∈Γ

ψ:[0,1]→Ω
ψ(0)=y,ψ(1)=x

{
τ(y) +

∫ 1

0

s(ψ(σ))‖ψ′(σ)‖dσ
}
.

Observe that this equation is recursive, suggesting a connection with dynamic pro-
gramming and Bellman’s principle of optimality. Indeed, the path ψ is a ray whose
Lagrangian and Hamiltonian are:

(1.6) H(x,∇τ(x)) =
‖∇τ(x)‖2 − s(x)2

2
= 0, L(x, ẋ) = s(x)‖ẋ‖.

This provides the connection between the Eulerian perspective given by the eikonal
equation, Fermat’s principle, and the Lagrangian view provided by raytracing.

3

2. Related work. The quintessential numerical method for solving the eikonal
equation is the fast marching method [38]. We discretize Ω into a grid of nodes Ωh,
where h > 0 is the characteristic length scale of elements in Ωh. Let T : Ωh → R
be the numerical eikonal. To compute T , equation (1.1) is discretized using first-
order finite differences and the order in which individual values of T are relaxed
is determined using a variation of Dijkstra’s algorithm for solving the single source
shortest paths problem [39, 40]. If N = |Ωh|, then the fast marching method solves
(1.1) in O(N logN) with O(h log 1

h) worst-case accuracy [51]. The logarithmic factor
only appears when rarefaction fans are present: e.g., point source boundary data,
or if the wavefront diffracts around a singular corner or edge. In these cases, full
O(h) accuracy can be recovered by proper initialization near rarefaction fans, or by
employing a variety of factoring schemes [17, 24, 31].

It is also possible to solve the eikonal equation using semi-Lagrangian numerical
methods, in which the ansatz (1.5) is discretized and applied locally [46, 30]. For
instance, at a point x̂ ∈ Ωh, we consider a neighborhood of points nb(x) ⊆ Ωh, assume
that τ is fixed over the “surface” of this neighborhood, and approximate (1.5). As an
example, if nb(x̂) consists of its 2n nearest neighbors, if we linearly interpolate τ over
the facets of conv(nb(x̂)), and discretize the integral in (1.5) using a right-hand rule,
the resulting solver is equivalent to the fast marching method [42].

The Eulerian approach has generally been favored when developing higher-order
solvers for the eikonal equation [50]. The eikonal equation is discretized using higher-
order finite difference schemes and solved in the same manner as the fast marching
method or using a variety of appropriate iterative schemes. Unfortunately, these
approaches presuppose a regular grid and require wide stencils.

Our goal is to develop solvers for the eikonal equation that are high order, are
optimally local (only use information from the nodes in nb(x̂) to update x̂), and are
flexible enough to work on unstructured meshes. Using a semi-Lagrangian approach
based on a high-order discretization of (1.5) allows us to do this.

This work was inspired by several lines of research. First, are gradient-augmented
level set methods (or jet schemes) [25, 37]. Although developed for solving time-
dependent advection problems, trying to map ideas from the time-dependent to static
setting is natural, and presented an intriguing challenge. Second, the idea of using a
semi-Lagrangian solver to construct a finite element solution to the eikonal equation
incrementally was informative [9]; while the authors only constructed a first-order
finte element approximation, attempting to push past this formulation to obtain a
higher-order solver is a natural extension. Third, we were motivated by Chopp’s idea
of building up piecewise bicubic interpolants locally while marching the eikonal [14];
indeed, Chopp’s work is mentioned in the original work on jet schemes in a similar
capacity.

3. The jet marching method. Label-setting algorithms [12], such as the fast
marching method, compute an approximation to τ by marching a numerical approx-
imation T : Ωh → Rn throughout the domain. The boundary data g is not always
specified at the nodes of Ωh. Let Γh be a discrete approximation of Γ. Once T is
computed at Γh ⊆ Ωh with sufficiently high accuracy, the solver begins to operate.
To drive the solver, a set of states {far, trial, valid} is used for bookkeeping. We
initially set:

(3.1) state(x) =

{
trial, if x ∈ Γh,

far, otherwise.

4

The trial nodes are typically sorted by their T value into an array-based binary
heap implementing a priority queue, although alternatives have been explored [18].
At each step of the iteration, the node x with the minimum T value is removed from
the heap, state(x) is set to valid, the far nodes in nb(x) have their state set to
trial, and each trial node in nb(x) is subsequently updated. We have additionally
provided a video online which shows the algorithm running [11].

From this, we can see that the value T (x) depends on the values of T at the
nodes of a directed graph leading from x back to Γh, noting that T (x) can—and in
general does—depend on multiple nodes in nb(x). This means that the error in T
accumulates as the solution propagates downwind from Γh. We generally assume that
the depth of the directed graph of updates connecting each x ∈ Ωh to Γh is O(h−1).
The error due to each update comes from two sources: the running error accumulated
in T , and the error incurred by approximating the integral in (1.5). For this reason,
we would expect the order of the global error of the solver to be one less than the local
error. However, the situation is more delicate because of the complicated manner in
which the errors mix (see Figure 8.6). Our numerical results in Section 8 indicate
that T converges with between O(h2) and O(h3) accuracy, and ∇T converges with
anywhere between O(h) and O(h3) accuracy.

Regardless, we assume that we only know the values of the eikonal and some of
its derivatives at the nodes x ∈ Ωh. To obtain higher-order accuracy locally, we make
use of piecewise Hermite elements. In particular, at each node x, we approximate
the jet of the eikonal; i.e., τ and a number of its derivatives [43]. If we compute the
jet with sufficiently high accuracy when we set state(x) ← valid, we will be in a
position to approximate τ using Hermite interpolation locally over conv(x1, . . . ,xn).
We consider several variations on this idea.

3.1. The general cost function. Fix a point x̂ ∈ Ωh, thinking of it as the
update point. To compute T (x̂), we consider sets of valid nodes {x1, . . . ,xd} ⊆ nb(x̂),
where 1 ≤ d ≤ n. The tuple of nodes (x̂,x1, . . . ,xd) is an update of dimension d, and
the collection of updates a stencil. We refer to the nodes {x1, . . . ,xd} as the vertices
of the base of the update. In some cases, such as on an unstructured mesh, stencils may
vary with x̂. Sufficient conditions for the updates and stencils to be monotone causal
have been studied [22]. In particular, the cone spanned by {x1−x̂, . . . ,xn−x̂} should
fit inside the nonnegative orthant after being rotated [41, 42]. This is easily satisfied
on a regular grid. For O(h) solvers that do not make use of gradient information, a
variety of choices of stencils are monotone causal.

To describe a general update, without loss of generality we assume d = n, and as-
sume that the update nodes are in general position. That is, if we choose n nodes from
{x̂,x1, . . . ,xn}, the remaining node does not lie in their convex hull. We assume that
we have access to a sufficiently accurate approximation of τ over conv(x1, . . . ,xn),
call it T. We distinguish between T and T in the following way: T denotes the local
numerical approximation of τ used by a particular update, while T denotes the global
numerical approximation of τ . The two may not be equal to each other. Indeed, T is
in general only defined on Ωh, while T is only defined on conv(x1, . . . ,xn).

Let xλ ∈ conv(x1, . . . ,xn), and let L = Lλ = ‖x̂−xλ‖. Recall that ψ : [0, L]→ Ω
is the curve minimizing (1.5) for a particular choice of xλ. We approximate ψ with
a cubic parametric curve ϕ : [0, L]→ Ω such that:

(3.2) ϕ(0) = xλ, ϕ(L) = x̂, ϕ′(0) ∼ tλ, ϕ′(L) ∼ t̂,

and where tλ and t̂ are tangent vectors which enter as parameters. Note that ϕ′(0)

5

x̂

xλ

`(σ)

x̂

xλ

`(σ)

t̂

tλ

ϕ(σ)
ϕ(σ)

Q>t̂

Q>tλ

ϕ1/2 ϕ1/2

x1 x2 x1 x2

Fig. 3.1. Two approaches to parametrizing a cubic curve approximating the characteristic ϕ
leading from xλ to x̂ when numerically minimizing Fermat’s integral to compute T (x̂) and ∇T (x̂).
Left: ϕ is a cubic parametric curve with boundary data set directly from xλ, x̂, tλ, and t̂. Right: ϕ
is the graph of a function in the orthogonal complement of range(`′).

and ϕ′(L) may not be exactly equal to tλ and t̂.
We approximate the integral in (1.5) over ϕ using Simpson’s rule. This gives the

cost functional:

(3.3) F (ϕ) = T(xλ) +
L

6

[
s(xλ)‖ϕ′(0)‖+ 4s

(
ϕ1/2

)∥∥ϕ′1/2∥∥+ s(x̂)‖ϕ′(L)‖
]
,

where ϕ1/2 = ϕ(L/2) and ϕ′1/2 = ϕ′(L/2). We have not yet made this well-defined.

To do so, we must specify T, tλ, and t̂. We describe several different ways of doing
this in the following sections.

3.2. Computing ∇T (x̂). A minimizing extremal ψ of Fermat’s integral is a
characteristic of the eikonal equation. A simple but important consequence of this is
that its tangent vector is locally parallel to ∇τ . Hence:

(3.4) s(ψ(σ))
ψ′(σ)

‖ψ′(σ)‖
= ∇τ(ψ(σ)).

After minimizing F , we will have found an optimal value of t̂. We can then set:

(3.5) ∇T (x̂)← s(x̂)t̂.

This lets us march the gradient of the eikonal locally along with the eikonal itself.

3.3. Parametrizing ϕ. We consider two methods of choosingϕ (see Figure 3.1).
First, let ` be interval connecting xλ to x̂, parametrized by arc length, and define:

(3.6) `(σ) = xλ + σ`′, `′ = (x̂− xλ)/Lλ.

Using a cubic parametric curve. For one approach, we define:

(3.7) ϕ(σ) = `(σ) + δϕ(σ),

where δϕ : [0, L]→ Ω is a perturbation away from ` that satisfies:

(3.8) δϕ(0) = 0, δϕ(L) = 0, δϕ′(0) = tλ − `′, δϕ′(L) = t̂− `′.
6

We can explicitly write δϕ as:

(3.9) δϕ(σ) =
(
tλ − `′

)
K0(σ) +

(
t̂− `′

)
K1(σ),

where K0,K1 : [0, L]→ R are Hermite basis functions such that:

K0(0) = 0 = K0(L), K1(0) = 0 = K1(L),

K ′0(0) = 1 = K ′1(L), K ′1(0) = 0 = K ′0(L).
(3.10)

Explicitly, these are given by:

(3.11) K0(σ) = σ − 2
σ2

L
+
σ3

L2
, K1(σ) =

−σ2

L
+
σ3

L2
.

Let tλ, t̂ ∈ Sn−1 so that ‖tλ‖ = 1 = ‖t̂‖. As L → 0, this results in a curve that
is approximately parametrized by arc length: i.e., ‖ϕ′(σ)‖ → 1 for all σ such that
0 ≤ σ ≤ L [16]. This simplifies the general cost function given by (3.3) to:

(3.12) F (ϕ) = T(xλ) +
L

6

[
s(xλ) + 4s

(
ϕ1/2

)∥∥ϕ′1/2∥∥+ s(x̂)
]
.

Using (3.11), ϕ1/2 and ϕ′1/2 can be written:

(3.13) ϕ1/2 =
xλ + x̂

2
+
L

8

(
tλ − t̂

)
, ϕ′1/2 =

3

2
`′ − tλ + t̂

4
.

Note that ϕ1/2 ∼ (xλ+ x̂)/2 and ϕ′1/2 ∼ `′ as L→ 0 if we assume that the wavefront

is well-approximated by a plane wave near the update, since in this case tλ ∼ t̂ ∼ `′.
Parametrizing ϕ as the graph of a function. We can also define the perturbation

away from ` as the graph of a function; i.e., we assume that the perturbation is
orthogonal to `′. Letting Q ∈ Rn×(n−1) be an orthogonal matrix such that Q>`′ = 0,
and letting ζ : [0, L]→ Rn−1 be a curve specifying the components of the perturbation
in this basis, we choose δϕ(σ) = Qζ(σ) so that:

(3.14) ϕ(σ) = `(σ) +Qζ(σ).

where ζ(σ) = b0K0(σ) + b1K1(σ). In this approach, instead of t̂ and tλ, we optimize
over b0, b1 ∈ Rn−1. Now, noting that:

(3.15) ‖ϕ′(σ)‖ =
√
‖`′‖2 + ‖Qζ′(σ)‖2 =

√
1 + ‖ζ′(σ)‖2,

we can write the cost functional F as:

F (ϕ) = T(xλ) +
L

6

[
s(xλ)

√
1 + ‖b0‖2

+ 4s(ϕ1/2)
√

1 + ‖(b0 + b1)/4‖2 + s(x̂)
√

1 + ‖b1‖2
]
.

(3.16)

Trade-offs between the two parametrizations of ϕ. When ϕ is a cubic parametric
curve, we run into an interesting problem described in more detail by Floater [16].
In particular, the order of accuracy of ϕ in approximating ψ is limited by our pa-
rametrization of ϕ. If we parametrize ϕ over σ ∈ [0, 1] (that is uniformly), then the

7

interpolant is at most O(h2) accurate. If we parametrize it using a chordal parametri-
zation, i.e. σ ∈ [0, L], then it is at most O(h4) accurate. Indeed, any Hermite spline
using a chordal parametrization over each of its segment is at most O(h4) accurate
globally. To design a higher order solver than this requires us to parametrize ϕ using
a more accurate approximation of the arc length of ψ (consider, e.g., using a quintic
parametric curve). On the other hand, if we parametrize ϕ as the graph of a function,
we can directly apply Hermite interpolation theory [45], and there is no such obstacle.

4. Different types of minimization problems. In this section, we consider
four different ways of using F to pose a minimization problem which would allow us
to compute T (x̂). We note that each of these formulations is compatible with the
version of F where we take ϕ to be a parametric curve and where we define it as
the graph of a function orthogonal to `(σ). Altogether, this leads to eight different
JMMs.

4.1. Determining tλ by minimizing Fermat’s integral. Since the optimal
ϕ is a characteristic of the eikonal equation, one approach to setting tλ and t̂ is to
simply let them enter into the cost function as free parameters to be optimized over.
This leads to the optimization problem:

minimize F (xλ, tλ, t̂)

subject to xλ ∈ conv(x1, . . . ,xn),

tλ, t̂ ∈ Sn−1,

(4.1)

if we parametrize ϕ as a curve; or, if we parametrize ϕ as the graph of a function:

minimize F (xλ, b0, b1)

subject to xλ ∈ conv(x1, . . . ,xn),

b0, b1 ∈ Rn−1,

(4.2)

For a d-dimensional update, the domain of each of these minimization problems has
dimension (d− 1)(n− 1)2, since dim(conv(x1, . . . ,xd)) = d− 1.

4.2. Determining tλ from the eikonal equation. When we compute up-
dates, we only require high-order accurate jets over conv(x1, . . . ,xn). This is a sub-
set of Ω of codimension one: an interval in 2D, or triangle in 3D. If we know T and
∇T at the vertices of this set, then we can use Hermite interpolation to compute T.
Unfortunately, this means that we can only approximate directional derivatives of T
in the linear span of this set. To compute ∇T, we need to recover the directional
derivative normal to the facet.

Let Ṽ ∈ Rn×(n−1) be an orthogonal matrix such that:

(4.3) range(Ṽ) = range
([
x2 − x1 · · · xn − x1

])
,

and let v ∈ Rn be a unit vector such that Ṽ >v = 0. Let ∇Ṽ be the gradient restricted

to the range of Ṽ , and likewise let dv denote the v-directional derivative. Then, from
the eikonal equation, we have:

(4.4) s(x)2 = ‖∇τ(x)‖2 = |dvτ(x)|2 + ‖∇Ṽ τ(x)‖2.

To recover ∇τ(x), first note that ∇τ(x) should point in the same direction as `′.
Choosing v so that v>`′ > 0, we get:

(4.5) dvτ(x) =
√
s(x)2 − ‖∇Ṽ τ(x)‖2.

8

Letting V =
[
v Ṽ

]
, equation (4.5) combined with ∇τ(x) = V ∇V τ(x) gives us a

means of recovering ∇τ(x) from ∇Ṽ τ(x).
Using this technique, we can pose the following optimization problem:

minimize F (xλ, t̂)

subject to xλ ∈ conv(x1, . . . ,xn),

t̂ ∈ Sn−1,

(4.6)

or, optimizing over b1 directly:

minimize F (xλ, b1)

subject to xλ ∈ conv(x1, . . . ,xn),

b1 ∈ Rn−1

(4.7)

For each xλ, we set:

(4.8) tλ ←
V ∇V T(xλ)

‖V ∇V T(xλ)‖
.

Note that the dimension of a d-dimensional update based on this minimization prob-
lem is (d− 1)(n− 1)

4.3. Determining tλ by marching cell-based interpolants. Another ap-
proach is to march cells that approximate the jet of the eikonal at each point. For
example, if we have constructed a finite element interpolant using valid data on a
cell whose boundary contains conv(x1, . . . ,xn) then we can evaluate its gradient to
obtain:

(4.9) tλ ←
∇T(xλ)

‖∇T(xλ)‖
.

We can combine this approach with the cost functional given by (4.6), albeit with a
modified tλ. We elaborate on how we march cells in section 7. An advantage of this
approach is that it allows one to simultaneously march the second partials of T .

4.4. A simplified method using a quadratic curve. In some cases, in par-
ticular if the speed of sound is linear, i.e.:

(4.10) c(x) =
1

s(x)
= c0 + c>x, c0 ∈ R, c ∈ Rn,

the characteristic ψ is well-approximated by a quadratic. In this case, we again have
a cost functional of the form (4.6).

If ϕ is parametrized as curve, we set tλ to be the reflection of t̂ across `′:

(4.11) tλ = −
(
I − 2`′`′>

)
t̂,

giving tλ + t̂ = 2`′`′>t̂ and tλ − t̂ = −2
(
I − `′`′>

)
t̂. Then:

(4.12) ϕ1/2 =
xλ + x̂

2
− L

4

(
I − `′`′>

)
t̂, ϕ′1/2 =

3 + `′>t̂

2
`′.

This simplifies F given by (3.12) to:

(4.13) F (xλ, t̂) = T(xλ)+
L

6

[
s(xλ)+2

(
3+`′>t̂

)
s
(xλ + x̂

2
− L

4

(
I−`′`′>

))
+s(x̂)

]
.

9

If ϕ is parametrized as the graph of a function, then:

(4.14) ζ1/2 =
x̂+ xλ

2
+
L

4
Q>t̂, ζ′ = 0,

simplifying the version of F in (3.16) to:

(4.15) F (xλ, t̂) = T(xλ) +
L

6

[(
s(xλ) + s(x̂)

)√
1 + ‖b0‖2 + 4s(ϕ1/2)

]
.

since Q>t̂ = b0 = −b1.

4.5. Other approaches. We tried two other approaches which failed to provide
satisfactory results:

• A combination of the quadratic simplification in subsection 4.4 with the meth-
ods in subsections 4.2 or 4.3. In this case, we use our knowledge of ∇T (xλ)
along the base of the update to choose t̂ and tλ. This reduces the dimension-
ality of the cost function to d − 1. However, except for in special cases (e.g.
s ≡ 1), this propagates errors in a manner that causes the solver to diverge;
or, at best, allows it converge with O(h) accuracy. We note that if s ≡ 1,
still simpler methods can be used, so this combination of approaches does not
seem to be useful.

• We can extract not only tλ from the Hermite interpolant on conv(x1, . . . ,xn),
but also ϕ′′(0). From the Euler-Lagrange equations for the eikonal equation,
we obtain:

(4.16) Q>∇s(xλ) = s(xλ)
Q>ϕ′′(0)

‖ϕ′(0)‖
.

With ϕ parametrized as a graph, we have Q>ϕ′′(0) = ζ′′(0), giving:

(4.17) ζ′′(0) =
Q>∇s(xλ)(1 + ‖Q>xλ‖2)

s(xλ)
.

This completely defines ϕ as the graph of a cubic polynomial using the graph
parametrization. Unfortunately, this method diverges for the same reason as
the method described in the previous bullet.

4.6. A warm start. Certain of the optimization problems in the preceding sec-
tion are clearly nonconvex; e.g., (4.1) is nonconvex since its domain, the product of
conv(x1, . . . ,xn) and two copies of Sn−1, is nonconvex. For h small, if xλ is nearly
optimal, then the optimal local ray ϕ should be close to `, the straight line segment
connecting xλ and x̂. This suggests an approach to finding an initial iterate (a warm
start) for (4.1) or the other optimization problems considered (i.e., (4.2), (4.6), and
(4.7)). In 2D, following a similar approach to the simplified midpoint rule (denoted
“mp0”) rule used in our earlier work on ordered line integral methods (OLIMs) for the
solving the eikonal equation [30], we let T be a cubic Hermite polynomial approxima-
tion of τ over λ ∈ [0, 1] and approximate (1.5) by solving:

minimize T(λ) +
L

2

(
s(xλ) + s(x̂)

)
,

subject to 0 ≤ λ ≤ 1.
(4.18)

10

After solving this problem, we can compute an initial iterate for (4.1) from λ∗, the
optimum of (4.18). For example, we set xλ ← xλ∗ ; we set tλ using λ∗ and one
of the approaches outlined in the preceding sections; and, if required, we set t̂ ←
(x̂ − xλ∗)/‖x̂ − xλ∗‖. In practice, (4.18) can be solved rapidly and robustly using a
rootfinder.

4.7. Optimization algorithms. We do not dwell on the details of how to nu-
merically solve the minimization problems in the preceding sections. We make some
general observations:

• These optimization problems are very easy to solve—what’s costly is that
we have to solve O(N) of them. As h → 0, they are strictly convex and
well-behaved. Empirically, Newton’s method converges in O(1) steps (typi-
cally fewer than 5 with a well-chosen warm start—see section 4.6). We leave
a detailed comparison of different approaches to numerically solving these
optimization problems for future work.

• The gradients and Hessians of these cost functions are somewhat complicated.
Programming them can be tricky and tedious, suggesting that automatic
differentiation may be a worthwhile approach [26, 19].

• The constraint xλ ∈ conv(x1, . . . ,xn) corresponds to a set of linear inequal-
ity constraints, which are simple to incorporate. Because of the form of
these constraints, checking the KKT conditions at the boundary is cheap and
easy [30, 49]. See the next section on skipping updates.

• The constraints tλ, t̂ ∈ Sn−1 are nonlinear; however, they can be eliminated.
If n = 2, then we can set t̂ = (cos(θ), sin(θ)), letting θ ∈ R. For n > 2, we can
use a Riemannian Newton’s method for minimization on Sn−1, which is simple
to implement and known to converge superlinearly [1]. Alternatively, we could
use spherical coordinates, although the expressions become unwieldy.

5. Hierarchical update algorithms. Away from shocks, where multiple wave-
fronts collide, exactly one characteristic will pass through a point x̂. When we mini-
mize F over each update in the stencil, the characteristic will pass through the base of
the minimizing update, or possibly through the boundary of several adjacent updates.
We can use this fact to sequence the updates that are performed to design a work-
efficient solver. In our previous work on ordered line integral methods (OLIMs), we
explored variations of this idea [30, 49]. An approach that works well is the bottom-up
update algorithm.

To fix the idea in 3D, consider nb(x) as shown in Figure 5.1, for which |nb(x)| =
26. There are 26 “line” updates, where d = 1. To start with, each valid line update
is done, and x1 for the minimizing line update is recorded. Next, we fix x1 and
perform “triangle” updates (d = 2) where x2 is varying. In this case, we can restrict
the number of triangle updates that are done by assuming either that (x1,x2) is an
edge of mesh discretizing the surface of the 3D stencil shown in Figure 5.1, or that
‖x1 − x2‖ is small enough (measuring the distance of these two points in different
norms leads to a different number of triangle updates—we find the `1 norm to work
well). Finally, we fix x2 corresponding to the minimizing triangle update, and do
tetrahedron updates containing x1 and x2. Throughout this process, x1,x2, and x3

must all be valid.
We emphasize that our work-efficient OLIM update algorithms work equally well

for the class of algorithms developed here. The main differences between the JMMs
studied here and the earlier OLIMs are the cost functionals and the we way approxi-
mate T .

11

|nb(x̂)| = 8 |nb(x̂)| = 26

x1

x2

x̂

x1

x2x3

x̂

Fig. 5.1. The neighborhoods typically used by semi-Lagrangian solvers in 2D and 3D on a
regular grid. These are the stencils used by Tsitsiklis’s algorithm and two of the OLIM stencils [46,
30]. Left: “olim8” in R2. This is the 8-point stencil used in this paper. Right: “olim26” in R3.

6. Initialization methods. A common problem with the convergence of nu-
merical methods for solving the eikonal equation concerns how to treat rarefaction
fans. Our numerical tests consist of point source problems, around which a rarefaction
forms. A standard approach is to introduce the factored eikonal equation [17, 24, 31].
If a point source is located at x◦ ∈ Ωh and if we set Γh = {x◦}, then we let
d(x) = ‖x− x◦‖ and use the ansatz:

(6.1) τ(x) = z(x) + d(x), x ∈ Ω.

We insert this into the eikonal equation, modifying our numerical methods as neces-
sary, and solve for z(x) instead. This is not complicated—see our previous work on
OLIMs for solving the eikonal equation to see how the cost functions should generally
be modified [30, 49].

Yet another approach would be to solve the characteristic equations to high-order
for each x in such a ball. This would require solving O(N) boundary value problems,
each discretized into O(N1/3) intervals, resulting in an O(N4/3) cost overall (albeit
with a very small constant). One issue with this approach is that it only works
well if the ball surrounding x◦ is contained in the interior of Ω. For our numerical
experiments, we simply initialize T and ∇T to the correct, ground truth values in a
ball or box of constant size centered at x◦.

7. Cell marching. Of particular interest is solving the transport equation gov-
erning the amplitude α while simultaneously solving the eikonal equation. Equation
(1.4) can be solved using upwind finite differences [5] or paraxial raytracing [29]. We
prefer the latter approach since it can be done locally, using the characteristic path
ϕ recovered when computing T (x̂). Either approach requires accurate second de-
rivative information (we need ∆T for upwind finite differences, or ∇2T for paraxial
raytracing).

For the purposes of explanation and our numerical tests, we consider a rectilinear
grid with square cells in R2. On each cell, our goal is to build a bicubic interpolant,
approximating T (x). This requires knowing T,∇T , and Txy at each cell corner. If we
know these values with O(h4−p) accuracy, where p is the order of the derivative, then

12

∇T ij ∇T i,j+1

∇T i+1,j ∇T i+1,j+1

T
i,j+ 1

2
xy

T
i+ 1

2 ,j+1
xyT

i+ 1
2 ,j

xy

T
i+1,j+ 1

2
xy

T̃xy(0, 0)
λ+

µ+

T̃xy(1, 1)

T̃xy(0, 1)

T̃xy(1, 0)

T̃xy(− 1
2 ,

1
2) T̃xy(1

2 ,
3
2)

T̃xy(3
2 ,

1
2)T̃xy(1

2 ,−
1
2)

approximate Txy at cell edge
midpoints using central differences

approximate Txy at cell vertices
using bilinear extrapolation

Fig. 7.1. Cell-based interpolation. To approximate the mixed second partials of a function with
O(h2) accuracy from O(h3) accurate gradient values available at the corners of a cell, the following
method of using central differences to approximate the mixed partials at the midpoints of the edges
of the cell, followed by bilinear extrapolation, can be used.

x0 x0 x0

compute new Txy

values at corners of
new valid cell

average Txy values
over adjacent valid

cells

rebuild bicubics on
affected valid cells

x0

update neighboring
trial nodes using
triangle updates

x1

xλ

x̂

Fig. 7.2. Local cell marching. After computing values of Txy as shown in Figure 7.1 (left), to
ensure continuity of the global interpolant, nodal values incident on the newly valid cell (containing
x0) can be recomputed by averaging over Txy values taken from incident valid cells (middle).
Finally, a bicubic cell-based interpolant is constructed (right).

the bicubic is O(h4−p) accurate over the cell. So far, we have described an algorithm
that marches T and ∇T , which together constitute the total 1-jet. We now show how
Txy can also be marched, allowing us to march the partial 1-jet.1

Let xij with (i, j) ∈ {0, 1}2 denote the corners of a square cell with sides of length
h, and assume that we know ∇T (xij) with O(h3) accuracy. We can use the following
approach to estimate Txy(xij) at each corner:

• First, at the midpoints of the edges oriented in the x direction (resp., y
direction), approximate Txy using the central differences involving Ty (resp.,
Tx) at the endpoints. This approximation is O(h2) accurate at the midpoints.

• Use bilinear extrapolation to reevaluate Txy at the corners of the cell, yielding
Txy(xij), also with O(h2) accuracy.

This procedure is illustrated in Figure 7.1.
One issue with this approach is that it results in a piecewise interpolant that is

only C1 globally. That is, if we estimate the value of Txy at a corner from each of the
cells which are incident upon it, we will get different values in general. To compute
a globally C2 piecewise interpolant, we can average Txy values over incident valid

cells, where we define a valid cell to be a cell whose vertices are all valid. How to

1The total k-jet of a function f is the set {∂αf}α, where ‖α‖1 ≤ k; the partial k-jet is {∂αf}α
where ‖α‖∞ ≤ k.

13

do this is shown in Figure 7.2.
The idea of approximating the partial 1-jet from the total 1-jet in an optimally lo-

cal fashion by combining central differences with bilinear extrapolation, and averaging
nodal values over adjacent cells to increase the degree of continuity of the interpolant,
is borrowed from Seibold et al. [37]. However, applying this idea in this context, and
doing the averaging in an upwind fashion is novel.

The scheme arrived at in this way is no longer optimally local. However, the
sequence of operations described here can be done on an unstructured triangle or
tetrahedron mesh. This makes this approach suitable for use with an unstructured
mesh that conforms to a complicated boundary. We should mention here that our
approach to estimating Txy is referred to as twist estimation in the computer-aided
design (CAD) community [15], where other approaches have been proposed [10, 20].
We leave adapting these ideas to the present context for future work.

7.1. Marching the amplitude. In this section we show how to compute a
numerical approximation of α, denoted A : Ωh → R. One simple approach would
be to discretize (1.4) using upwind finite differences and compute A(x̂) using valid

nodes after T (x̂) and ∇T (x̂). One potential shortcoming of this approach is that A
is singular at caustics. Instead, we will explore using paraxial raytracing to compute
A in this section [28]. The background material on paraxial raytracing used in this
section can be found in more detail in M. Popov’s book [29].

The basic idea of paraxial raytracing is to consider a fixed, central ray, which we
denote ϕ0, and a surrounding tube of rays, parametrized by:

(7.1) ϕ(σ, q) = ϕ0(σ) +E(σ)q,

where E : [0, L]→ Rn×(n−1) is an orthogonal matrix such that E>ϕ′0 ≡ 0. For each
q, the corresponding ray should satisfy the Euler-Lagrange equations for (1.1). If we
let c0(σ) = c(ϕ0(σ)), where c = 1/s, then q along with the conjugate momenta p (the
exact form of which is not important in this instance) will satisfy:

(7.2)

[
dq/dσ
dp/dσ

]
=

[
c0(σ)I

−1
c0(σ)2

∂2c
∂q∂q>

∣∣∣
q=0

] [
q
p

]
.

If we let Q(σ),P (σ) : [0, L]→ R(n−1)×(n−1) be a linearly independent set of solutions
to (7.2), then along the central ray, the amplitude satisfies:

(7.3) A(ϕ0(σ)) =

√
c0(σ)

|det(Q(σ))|
A(ϕ0(0)).

Note that when we compute an update, we obtain a cubic path ϕ approximating a
ray of (1.1), such that ϕ(0) = xλ and ϕ(L) = x̂.

The quantity |det(Q(σ))| is known as the geometric spreading along the ray tube.
We denote it J(σ). Letting A denote a polynomial approximation of A off of the grid
nodes in Ωh, using (7.3), we can compute A(x̂) from:

(7.4) A(x̂) =

√
c0(Lλ)

|det(Q(Lλ))|
A(xλ) =

√
c(x̂)

J(xλ)
A(xλ).

Since this depends on Q(L), we must solve (7.2) along ϕ, requiring us to provide
initial conditions at σ = 0. Note that if we set σ = 0 in (7.3), we can see that

14

|det(Q(0))| = c0(0) is necessary. A simple choice for the initial conditions for Q is
Q(0) = c0(0)1/nI. This assumes that we aren’t too close to a point source, where A
is singular.

To find initial conditions for P , first expand τ in a Taylor series orthogonal to
the central ray, i.e. in the coordinates q. Doing this, we find that:

(7.5) τ(ϕ(σ, q)) = τ(ϕ0(σ)) +
1

2
q>

∂2τ

∂q∂q>

∣∣∣∣
q=0

q +O(q3).

In this Taylor expansion, the linear term disappears since the rays and wavefronts are
orthogonal. If we let:

(7.6) Γ =
∂2τ

∂q∂q>

∣∣∣∣
q=0

,

we find that Γ satisfies the matrix Ricatti equation:

(7.7)
dΓ

dσ
+ c0Γ

2 +
1

c20

∂2c

∂q∂q>

∣∣∣∣
q=0

= 0.

The standard way to solve (7.7) is to use the ansatz Γ = PQ−1, which, indeed, leads
us back to (7.2). However, this viewpoint furnishes us with the initial conditions for
P , since Γ(0) can now be readily computed from ∇2T(xλ).

Marching the amplitude of a linear speed of sound. As a simple but important
test case, we consider a problem with a constant speed of sound, i.e.:

(7.8) s(x) =
1

c(x)
, c(x) = v0 + v>x.

In this case, (7.2) simplifies considerably since ∇2c ≡ 0, implying P (σ) ≡ P (0) =
Γ(0)Q(0). From this, we can integrate dQ/dσ from 0 to L to obtain:

(7.9) Q(L) =

[
I +

(∫ L

0

c(ϕ(σ))dσ

)
Γ(0)

]
Q(0).

Denote the integral in this expression for Q(L) by ε. To evaluate ε approximately, we
can apply the trapezoid rule to get:

(7.10) ε =

∫ L

0

c(ϕ(σ))dσ = L ·
(
v0 + v>(x̂+ xλ)/2

)
+O(L2),

which implies that |ε| = O(L). The fact that the error is O(L2) in this case follows
from usual error bound for the trapezoid rule and the fact that max0≤σ≤L |ϕ′′(σ)| =
O(L−1), by our choice of parametrization.

We would like to develop a simple update rule for the geometric spreading. First,
note that the determinant satisfies the following identity:

(7.11) det(I + εΓ(0)) = 1 + ε tr(Γ(0)) +O(ε2).

Next, recall that E(0) is an orthogonal matrix such that E(0)>ϕ′0 = E(0)>tλ = 0.
Let U =

[
E(0) tλ

]
and write:

(7.12) tr∇2T (xλ) = trU>∇2T (xλ)U = trE(0)>∇2T (xλ)E(0) + t>λ∇2T (xλ)tλ.

15

By definition, Γ(0) = E(0)>∇2T (xλ)E(0). Taking the gradient of (1.1), we get:

(7.13) ∇2T (xλ)∇T (xλ) = s(xλ)∇s(xλ),

which leads immediately to:

(7.14) t>λ∇2T (xλ)tλ = t>λ∇s(xλ),

noting that tλ = ∇T (xλ)/‖∇T (xλ)‖. Combining (7.12) and (7.14) gives:

(7.15) tr Γ(0) = ∆T (xλ)− t>λ∇s(xλ),

since tr∇2T (xλ) = ∆T (xλ). This gives the following update for J :

(7.16) J(x̂) =
∣∣∣1 + ε ·

(
∆T (xλ)− t>λ∇s(xλ)

)∣∣∣ · J(xλ).

Here, J denotes a local polynomial approximation to J . This can be computed di-
rectly from data immediately available after solving the optimization problem that
determines T (x̂) and ∇T (x̂).

Initial data for J and A. Determing the initial data for the amplitude is in-
volved [3, 4, 29, 32], and detailed consideration of this problem is outside the scope
of this work. Instead, we note that for a point source in 2D, the following hold
approximately near the point source:

(7.17) J(x) ∼ |x|, A(x) ∼ eiπ/4

2
√

2πω

√
c(x)

J(x)
.

See Popov for quick derivations of these approximations [29]. In our test problems,
we initialize J to |x| near the point source, march J according to (7.16) where J =
(1− λ)J(x1) + λJ(x2), and compute the final amplitude from:

(7.18) A(x) =
eiπ/4

2
√

2πω

√
c(x)

J(x)
.

We emphasize that this is only valid for two-dimensional problems. The same sort of
approach can be used for 3D problems, but (7.17) must be modified.

Marching the amplitude for more general slowness functions. The update given
by (7.16) is valid if we approximate the speed function c = 1/s with a piecewise
linear function with nodal values taken from c(x), where x ∈ Ωh. This should be a
reasonable thing to do, since the update rule given by (7.16) in this case appears to be
O(h2) accurate. Since the accuracy of ∇2T computed by our method is limited, we
should not expect to be able to obtain much better than O(h) accuracy for J . That
said, a more accurate update for J could be obtained by numerically integrating (7.2).

8. Numerical experiments. In this section, we first present a variety of test
problems which differ primarily in the choice of slowness function s. The choices
of s range from simple, such as s ≡ 1 (an overly simplified but reasonable choice
for speed of sound in room acoustics), to more strongly varying. We then present
experimental results for our different JMMs as applied to these different slowness
functions, demonstrating the significant effect the choice of s has on solver accuracy.
The solvers used in these experiments are:

16

• JMM1: ϕ is approximated using a cubic curve, and tangent vectors are found
by solving 4.1.

• JMM2: ϕ is approximated using a cubic curve, with t̂ optimized from 4.6 and
tλ found from Hermite interpolation at the base of the update.

• JMM3: ϕ is approximated using a quadratic curve, with its tangent vectors
being found by optimizing.

• JMM4: JMM2 combined with the cell-marching method described in section 7.
We also plot the same results obtained by the FMM [38] and olim8 mp0 [30]. We do
not include least squares fits for these solvers in our tables. They are mostly O(h),
with some exceptions for ∇T as computed by the FMM.

We note that s does not significantly affect the runtime of any of our solvers—
formally, our solvers run in O(|Ωh| log |Ωh|) time, where the constant factors are es-
sentially insensitive to the choice of s. We note that the cost of updating the heap is
very small compared to the cost of doing updates. Since only |Ωh| updates must be
computed, the CPU time of the solver effectively scales like O(|Ωh|) for all problem
sizes considered in this paper.

8.1. Test problems. In this section, we provide details for the test problems
used in our numerical tests.

Constant slowness with a point source. For this problem, the slowness and solu-
tion are given by:

(8.1) s ≡ 1, τ(x) = ‖x‖.

We take the domain to be Ω = [−1, 1] × [−1, 1] ⊆ R2. To control the size of the
discretized domain, we let M > 0 be an integer and set h = 1/M , from which we
define Ωh accordingly. We place a point source at x◦ = (0, 0) ∈ Ωh. The set of initial
boundary data locations given by is Γh = {x◦}, with boundary conditions given by
g(x◦) = 0.

Linear speed with a point source (#1). Our next test problem has a linear ve-
locity profile. This might model the variation in the speed of sound due to a linear
temperature gradient (e.g., in a large room). The slowness is given by [17, 44]:

(8.2) s(x) =

[
1

s0
+ v>x

]−1

,

where s0 > 0, and v ∈ R2 are parameters. The solution is given by:

(8.3) τ(x) =
1

‖v‖
cosh−1

(
1 +

1

2
s0s(x)‖v‖2‖x‖2

)
.

For our first test with a linear speed function, we take s0 = 1 and v = (0.133,−0.0933).
For this problem, Ω = [−1, 1]× [−1, 1], Γh = {x◦}, and g(x◦) = 0.

Linear speed with a point source (#2). For our second linear speed test problem,
we set s0 = 2 and v = (0.5, 0) as in [31]. For this problem, we let Ω = [0, 1] × [0, 1],
discretize into M nodes along each axis, and define Ωh accordingly (i.e., |Ωh| = M2,
with M = h−1). We take x◦, Γh, and g to be same as in the previous two test
problems.

A nonlinear slowness function involving a sine function. For x = (x1, x2), we set:

(8.4) τ(x) =
x2

1

2
+ 2 sin

(
x1 + x2

2

)2

.

17

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

T

0.00

0.02

0.04

0.06

0.08

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

| T|

6

4

2

0

2

4

6
1e 6

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Tx

0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

| x Tx|

7.5

5.0

2.5

0.0

2.5

5.0

7.5
1e 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Ty

0.2

0.1

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

| y Ty|

5

0

5

1e 4

Fig. 8.1. A test problem with two point sources. The domain is Ω = [0, 1]2 discretized into a
33× 33 grid. The top row contains computed values and the bottom row contains signed errors. We
overlay several contours of the numerically computed eikonal, T , for context. The two point sources
are separated by a shockline, which is accurately localized even for this extremely coarse mesh. E.g.,
if we compared values of Tx or Ty on the “wrong” side of the shockline, we would observe O(1)
error. Left: T . Middle: Tx. Right: Ty.

This eikonal has a unique minimum, τ(0, 0) = 0, and is strictly convex in Ω = [−1, 1]×
[−1, 1]. This lets us determine the slowness from the eikonal equation, giving:

(8.5) s(x) =

√
sin(x1 + x2)2 +

(
x1 + sin(x1 + x2)

)2
.

For this test problem, we take Γh and Ωh as in the constant slowness point source
problem.

Sloth. A slowness function called “sloth” (jargon from geophysics) is taken from
Example 1 of Fomel et al. [17]:

(8.6) s(x) =
√
s2

0 + 2v>x.

For our test with this slowness function, we set s0 = 2, and v = (0,−3). In this case,
to avoid shadow zones formed by caustics, we take Ω = [0, 1

2]× [0, 1
2]. The discretized

domain and boundary data are determined analogously to the earlier cases.
Two point sources. We consider a linear speed function:

(8.7) c(x) =
1

s(x)
= 2 + 5x1 + 20x2,

with point sources located at x0 = (0, 0) and x1 = (0.8, 0). This is the same problem
considered in Figure 4 of Qi and Vladimirsky [31]. We use (8.3) to compute the
groundtruth eikonal for each point source. If we let τ0 and τ1 denote the eikonals for
each point source problem considered individually, then the combined eikonal is:

(8.8) τ(x) = min(τ0(x), τ1(x)).

We can easily see that all derivatives of τ are undefined on the shockline, where
τ0 ≡ τ1. However, away from the shockline, the derivatives are well-defined and

18

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y Tin

T [s]

Trefl

0.0000

0.0708

0.1416

0.2124

0.2832

0.3541

0.4249

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(U)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Fig. 8.2. A single reflection from a wall in a semi-infinite domain for ω = 1000 (we consider
only the top edge of the boundary to be reflecting). Left: T for the incident and reflected fields. The
reflected field satisfies a specular reflection condition along the edge of the domain. Right: the real
part of the approximation to the solution of the Helmholtz equation so obtained, given by (8.15).

smooth: if j = arg mini τi(x), then Dτ ≡ Dτj . We solve this problem on Ω = [0, 1]2,
so that Ωh is a grid with N = 33 nodes in each direction. The results are shown in
Figure 8.1.

For this problem, we note that the shockline is localized sufficiently well: all
nodes x ∈ Ωh are on the correct side, so that when we compute the errors, each nodal
value is compared with the correct branch of τ = min(τ0, τ1). Note the use of an
extremely coarse mesh. The mesh used here is coarser than any mesh used in Qi and
Vladimirsky’s Figure 4, but the eikonal achieves a smaller maximum error than all of
their test problems.

A single reflection. We additionally include a simple test for computing multiple
arrivals. For the linear speed function:

(8.9) c(x) =
1

s(x)
= 2 + 5x1 + 7x2,

we solve (1.1) on Ω = [0, 1]2, discretized into N = 101 nodes in each direction. We
place a point source at x = (0, 0) and compute the eikonal, which we denote τin. We
then restrict τin and ∇τin (after reflection) to the set Γ = [0, 1]×{1} (the top edge of
the domain), and solve the reflected eikonal equation:

‖∇τrefl(x)‖ = s(x), x ∈ Ω,(8.10)

τrefl(x) = τin(x), x ∈ Γ,(8.11)

∂τrefl

∂x

∣∣∣∣
x

=
∂τin
∂x

∣∣∣∣
x

, x ∈ Γ,(8.12)

∂τrefl

∂y

∣∣∣∣
x

= − ∂τin
∂y

∣∣∣∣
x

, x ∈ Γ.(8.13)

Note the minus sign in (8.13). This corresponds to a specular reflection from the
“wall” Γ. After we compute Tin and Trefl numerically, we can then compute the
geometric spreading Jin and reflected geometric spreading Jrefl. Since the reflecting
set is flat, we can use the boundary condition [29]:

(8.14) Jrefl(x) = Jin(x), x ∈ Γ.

19

105 107 109 1011

| h|

10 10

10 8

10 6

10 4

10 2

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|
RM

S
er

ro
r (

T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Constant

105 107 109 1011

| h|

10 10

10 8

10 6

10 4

10 2

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|
 e

rro
r (

T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Sloth

105 107 109 1011

| h|

10 8

10 6

10 4

10 2

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Sine

105 107 109 1011

| h|

10 10

10 8

10 6

10 4

10 2

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Linear #1

105 107 109 1011

| h|

10 10

10 7

10 4

10 1

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

105 107 109 1011

| h|

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Linear #2

Fig. 8.3. Plots comparing domain size (|Ωh|) and `∞ and RMS errors for T and ∇T .

Afterwards, we use (7.18) to obtain:

(8.15) U(x) = Ain(x) exp(−iωTin(x)) +Arefl(x) exp(−iωTrefl(x)).

In Figure 8.2, we plot Tin, Tout, and the real part of U .

8.2. Experimental results. The results of our numerical experiments evalu-
ating the JMMs described in Section 4 are presented in Table 8.1 and Figures 8.3
and 8.4. The numerical tests for JMM4, which uses cell marching, are given in Ta-

20

10 3 10 1 101

CPU Time (s)

10 10

10 8

10 6

10 4

10 2

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)
RM

S
er

ro
r (

T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Constant

10 3 10 1 101

CPU Time (s)

10 10

10 8

10 6

10 4

10 2

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)
 e

rro
r (

T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Sloth

10 3 10 1 101

CPU Time (s)

10 8

10 6

10 4

10 2

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Sine

10 3 10 1 101

CPU Time (s)

10 10

10 8

10 6

10 4

10 2

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Linear #1

10 3 10 1 101

CPU Time (s)

10 11

10 9

10 7

10 5

10 3

10 1

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

 e
rro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

10 3 10 1 101

CPU Time (s)

RM
S

er
ro

r (
T)

JMM1
JMM2
JMM3
FMM
OLIM

Slowness: Linear #2

Fig. 8.4. Plots comparing CPU runtime in seconds and errors.

ble 8.2 and Figures 8.5 and 8.6. An example where the geometric spreading and
amplitude are computed using cell marching method is shown in Figure 8.7.

For more benign choices of s, the errors generally convergence withO(h3) accuracy
for T and O(h2) accuracy for ∇T in the RMS error. For the special case of s ≡ 1, the
gradients also converge with nearly O(h3) accuracy. For more challenging nonlinear
choices of s, the eikonal converges with somewhere between O(h2) and O(h3) accuracy,
while the gradient converges with nearly O(h2) accuracy.

We note that in some cases the gradient begins to diverge for large problem sizes.

21

105 107 109 1011

| h|

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

RM
S

Er
ro

r

Constant

T
x Tx

y Ty

xx Txx

xy Txy

yy Tyy

105 107 109 1011

| h|

Linear #1

105 107 109 1011

| h|

Linear #2

105 107 109 1011

| h|

Sine

105 107 109 1011

| h|

Sloth

Fig. 8.5. Domain size vs. RMS error for JMM4.

JMM Emax(T) ERMS(T) Emax(∇T) ERMS(∇T)

Constant
#1 2.87 2.87 2.28 2.72
#2 2.87 2.87 2.28 2.72
#3 2.87 2.87 2.28 2.72

Linear #1
#1 2.77 2.85 2.14 2.52
#2 2.77 2.85 1.70 2.48
#3 2.86 2.87 2.28 2.73

Linear #2
#1 2.48 2.52 1.70 1.97
#2 2.38 2.52 1.16 1.88
#3 3.03 3.03 2.70 3.02

Sine
#1 2.76 2.57 1.77 2.09
#2 2.51 2.46 1.58 1.94
#3 2.37 2.38 1.54 1.79

Sloth
#1 2.39 2.48 1.49 1.84
#2 2.37 2.47 0.87 1.73
#3 2.15 2.21 1.47 1.76

Table 8.1
The order of convergence p for each combination of test problems and solvers, computed for

different types of errors and fit as Chp.

This occurs because our tolerance for minimizing F is not small enough, and also
because ∇2F is O(h). For our application, our goal is to save memory and compute
time by using a higher-order solver; it is unlikely we would solve problems with such a
fine discretization in practice. At the same time, choosing the tolerance for numerical
minimization based on h is of interest—partly to see how much time can be saved for
coarser problems, but also to determine to what extent the full order of convergence
can be maintained using different floating point precisions.

The JMMs using cubic approximations for ϕ tend to perform better than those
using quadratic approximations when s is nonlinear and the characteristics of (1.1)
are not circular arcs. When s corresponds to a linear speed of sound, the JMMs with
quadratic ϕ are a suitable choice, generally outperforming the “cubic ϕ” solvers,
exhibiting cubically (or nearly cubically) convergent RMS errors in T and ∇T . This
is a useful finding since the simplified solver requires fewer floating-point operations
per update, and since linear speed of sound profiles (e.g., as a function of a linear
temperature profile) are a frequently occurring phenomenon in room acoustics.

22

τ − T τx − Tx τy − Ty τxx − Txx τxy − Txy τyy − Tyy
Constant 3.09 3.11 3.11 2.01 2.05 2.01
Linear #1 2.99 2.43 2.40 1.39 2.01 1.39
Linear #2 2.10 1.76 1.72 0.77 1.25 0.77

Sine 2.91 1.80 1.89 0.73 1.31 0.80
Sloth 2.03 1.76 1.75 0.75 1.33 0.76

Table 8.2
The order of convergence p for JMM4 for each component of the total 2-jet of τ , computed from

least squares fits of the RMS error. The fits only incorporate the 4th through the 8th problem sizes
to avoid artifacts for small and large problem sizes. See Figure 8.5.

Co
ns

ta
nt

T x Tx y Ty xx Txx xy Txy yy Tyy

Lin
ea

r #
1

Lin
ea

r #
2

Si
ne

Sl
ot

h

O(h)

O(h2)

O(h3)

O(h4)

Fig. 8.6. A plot of the pointwise convergence at each point in Ωh for JMM4. To obtain these
plots, starting with N = 129, we decimate each larger problem size (up to N = 2, 049) to a 129×129
grid, and do a least squares fit at each point. This gives us an estimate of the order of convergence
at each point.

9. Online Package. To recreate our results, to experiment with these solvers,
and to understand their workings, a package has been made available online on GitHub
at https://github.com/sampotter/jmm/tree/jmm-sisc-figures. Details explain-
ing how to obtain this package and the collect the results are available at this link.

10. Conclusion. We have presented a family of semi-Lagrangian label-setting
methods (à la the fast marching method) which are high-order and compact, which
we refer to as jet marching methods (JMMs). We examine a variety of approaches
to formulating one of these solvers, and in 2D, provide extensive numerical results

23

-1 -1/2 0 1/2 1
-1

-1/2

0

1/2

1
J(x, y)

-1 -1/2 0 1/2 1
-1

-1/2

0

1/2

1
|A(x, y)|

-1 -1/2 0 1/2 1
-1

-1/2

0

1/2

1
U(x, y)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.10

0.05

0.00

0.05

0.10

Fig. 8.7. Plots related to computing the amplitude and a numerical approximation to the
solution to (∆ + ω2s(x)2)u(x) = δ(x), denoted U(x) for the Linear #1 test problem. Left: the
geometric spreading. Middle: the amplitude function. Right: the numerical solution U .

demonstrating the efficacy of these approaches. We show how a form of “adaptive”
cell-marching can be done which is compatible with our stencil compactness require-
ments, although this scheme no longer displays optimal locality.

Our solvers are motivated by problems involving repeatedly solving the eikonal
equation in complicated domains where:

• time and memory savings via the use of high-order solvers,
• high-order local knowledge of characteristic directions,
• and compactness of the solver’s “stencil” (the neighborhood over which the

semi-Lagrangian updates require information)
is paramount. In particular, our goal is to parametrize the multipath eikonal in a
complicated polyhedral domain in a work-efficient manner. This solver is a necessary
ingredient for carrying out this task.

We will be continue to work along the following directions:
• Extension to regular grids in 3D, which should be straightforward and yield

considerable savings over existing approaches, and extension to unstructured
simplex meshes in 2D and 3D. Especially in 3D, this problem is more com-
plicated, requiring the computation of “causal stencils” [22, 41].

• A rigorous proof of convergence for the solvers developed in this work, includ-
ing a careful investigation of the conditions resulting in cubic convergence for
both the eikonal and its gradient as observed in the case of constant and
linear speed functions.

11. Acknowledgments. This work was partially supported by NSF Career
Grant DMS1554907 and MTECH Grant No. 6205. We thank Prof. Ramani Du-
raiswami for the illuminating discussions and trenchant observations provided through-
out the course of this work.

REFERENCES

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds,
Princeton University Press, 2009.

[2] J. B. Allen and D. A. Berkley, Image method for efficiently simulating small-room acoustics,
The Journal of the Acoustical Society of America, 65 (1979), pp. 943–950.

[3] G. S. Ávila and J. B. Keller, The high-frequency asymptotic field of a point source in an
inhomogeneous medium, Communications on Pure and Applied mathematics, 16 (1963),
pp. 363–381.

[4] V. M. Babich and N. Y. Kirpichnikova, The boundary-layer method in diffraction problems,
vol. 3, Springer, 1979.

[5] J.-D. Benamou, Big ray tracing: Multivalued travel time field computation using viscosity

24

solutions of the eikonal equation, Journal of Computational Physics, 128 (1996), pp. 463–
474.

[6] J.-D. Benamou, Multivalued solution and viscosity solutions of the eikonal equation. 1997.
[7] J.-D. Benamou, An introduction to eulerian geometrical optics (1992–2002), Journal of scien-

tific computing, 19 (2003), pp. 63–93.
[8] J.-D. Benamou, S. Luo, and H. Zhao, A compact upwind second order scheme for the eikonal

equation, Journal of Computational Mathematics, (2010), pp. 489–516.
[9] F. Bornemann and C. Rasch, Finite-element discretization of static hamilton-jacobi equations

based on a local variational principle, Computing and Visualization in Science, 9 (2006),
pp. 57–69.

[10] P. Brunet, Increasing the smoothness of bicubic spline surfaces, Computer Aided Geometric
Design, 2 (1985), pp. 157–164.

[11] M. K. Cameron, Jet marching method, September 2020, https://youtu.be/Ze9AeDbaDVM.
[12] A. Chacon and A. Vladimirsky, Fast two-scale methods for eikonal equations, SIAM Journal

on Scientific Computing, 34 (2012), pp. A547–A578.
[13] A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and D. Manocha, Ad-frustum: Adaptive

frustum tracing for interactive sound propagation, IEEE Transactions on Visualization and
Computer Graphics, 14 (2008), pp. 1707–1722.

[14] D. L. Chopp, Some improvements of the fast marching method, SIAM Journal on Scientific
Computing, 23 (2001), pp. 230–244.

[15] G. Farin, Curves and surfaces for computer-aided geometric design: a practical guide, Elsevier,
2014.

[16] M. S. Floater, Chordal cubic spline interpolation is fourth-order accurate, IMA Journal of
Numerical Analysis, 26 (2006), pp. 25–33.

[17] S. Fomel, S. Luo, and H. Zhao, Fast sweeping method for the factored eikonal equation,
Journal of Computational Physics, 228 (2009), pp. 6440–6455.

[18] J. V. Gómez, D. Alvarez, S. Garrido, and L. Moreno, Fast methods for eikonal equations:
an experimental survey, IEEE Access, (2019).

[19] A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algorith-
mic differentiation, vol. 105, Siam, 2008.

[20] H. Hagen and G. Schulze, Automatic smoothing with geometric surface patches, Computer
Aided Geometric Design, 4 (1987), pp. 231–235.

[21] J. B. Keller, Geometrical theory of diffraction, JOSA, 52 (1962), pp. 116–130.
[22] R. Kimmel and J. A. Sethian, Computing geodesic paths on manifolds, Proceedings of the

national academy of Sciences, 95 (1998), pp. 8431–8435.
[23] R. G. Kouyoumjian and P. H. Pathak, A uniform geometrical theory of diffraction for an

edge in a perfectly conducting surface, Proceedings of the IEEE, 62 (1974), pp. 1448–1461.
[24] S. Luo, J. Qian, and R. Burridge, High-order factorization based high-order hybrid fast

sweeping methods for point-source eikonal equations, SIAM Journal on Numerical Analysis,
52 (2014), pp. 23–44.

[25] J.-C. Nave, R. R. Rosales, and B. Seibold, A gradient-augmented level set method with an
optimally local, coherent advection scheme, Journal of Computational Physics, 229 (2010),
pp. 3802–3827.

[26] R. D. Neidinger, Introduction to automatic differentiation and matlab object-oriented pro-
gramming, SIAM review, 52 (2010), pp. 545–563.

[27] F. E. Nicodemus, Directional reflectance and emissivity of an opaque surface, Applied optics,
4 (1965), pp. 767–775.

[28] M. Popov, I. Pšenč́ık, and V. Červenỳ, Computation of ray amplitudes in inhomogeneous
media with curved interfaces, Studia Geophysica et Geodaetica, 22 (1978), pp. 248–258.

[29] M. M. Popov, Ray theory and Gaussian beam method for geophysicists, EDUFBA, 2002.
[30] S. F. Potter and M. K. Cameron, Ordered line integral methods for solving the eikonal

equation, Journal of Scientific Computing, 81 (2019), pp. 2010–2050.
[31] D. Qi and A. Vladimirsky, Corner cases, singularities, and dynamic factoring, Journal of

Scientific Computing, 79 (2019), pp. 1456–1476.
[32] J. Qian, L. Yuan, Y. Liu, S. Luo, and R. Burridge, Babich’s expansion and high-order

eulerian asymptotics for point-source helmholtz equations, Journal of Scientific Computing,
67 (2016), pp. 883–908.

[33] N. Raghuvanshi and J. Snyder, Parametric wave field coding for precomputed sound propa-
gation, ACM Transactions on Graphics (TOG), 33 (2014), p. 38.

[34] N. Raghuvanshi and J. Snyder, Parametric directional coding for precomputed sound prop-
agation, ACM Transactions on Graphics (TOG), 37 (2018), p. 108.

[35] L. Savioja and U. P. Svensson, Overview of geometrical room acoustic modeling techniques,

25

https://youtu.be/Ze9AeDbaDVM

The Journal of the Acoustical Society of America, 138 (2015), pp. 708–730.
[36] C. Schissler, R. Mehra, and D. Manocha, High-order diffraction and diffuse reflections

for interactive sound propagation in large environments, ACM Transactions on Graphics
(TOG), 33 (2014), p. 39.

[37] B. Seibold, J.-C. Nave, and R. R. Rosales, Jet schemes for advection problems, arXiv
preprint arXiv:1101.5374, (2011).

[38] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proceed-
ings of the National Academy of Sciences, 93 (1996), pp. 1591–1595.

[39] J. A. Sethian, Fast marching methods, SIAM review, 41 (1999), pp. 199–235.
[40] J. A. Sethian, Level set methods and fast marching methods: evolving interfaces in compu-

tational geometry, fluid mechanics, computer vision, and materials science, vol. 3, Cam-
bridge University Press, 1999.

[41] J. A. Sethian and A. Vladimirsky, Fast methods for the Eikonal and related Hamilton–Jacobi
equations on unstructured meshes, Proceedings of the National Academy of Sciences, 97
(2000), pp. 5699–5703.

[42] J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton–Jacobi equa-
tions: theory and algorithms, SIAM Journal on Numerical Analysis, 41 (2003), pp. 325–363.

[43] G. E. Shilov and R. A. Silverman, Linear Algebra, Prentice-Hall, 1971.
[44] M. M. Slotnick, Lessons in seismic computing: A memorial to the author, Society of explo-

ration geophysicists, 1959.
[45] J. Stoer and R. Bulirsch, Introduction to numerical analysis, vol. 12, Springer Science &

Business Media, 2013.
[46] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Transactions on

Automatic Control, 40 (1995), pp. 1528–1538.
[47] R. Versteeg, The marmousi experience: Velocity model determination on a synthetic complex

data set, The Leading Edge, 13 (1994), pp. 927–936.
[48] T. Xiong, M. Zhang, Y.-T. Zhang, and C.-W. Shu, Fast sweeping fifth order WENO scheme

for static Hamilton-Jacobi equations with accurate boundary treatment, Journal of Scien-
tific Computing, 45 (2010), pp. 514–536.

[49] S. Yang, S. F. Potter, and M. K. Cameron, Computing the quasipotential for nongradient
SDEs in 3D, Journal of Computational Physics, 379 (2019), pp. 325–350.

[50] Y.-T. Zhang, H.-K. Zhao, and J. Qian, High order fast sweeping methods for static Hamilton-
Jacobi equations, Journal of Scientific Computing, 29 (2006), pp. 25–56.

[51] H. Zhao, A fast sweeping method for eikonal equations, Mathematics of computation, 74
(2005), pp. 603–627.

26

	1 Introduction
	1.1 Problem setup

	2 Related work
	3 The jet marching method
	3.1 The general cost function
	3.2 Computing T()
	3.3 Parametrizing bold0mu mumu subsection

	4 Different types of minimization problems
	4.1 Determining bold0mu mumu ttttttbold0mu mumu by minimizing Fermat's integral
	4.2 Determining bold0mu mumu ttttttbold0mu mumu from the eikonal equation
	4.3 Determining bold0mu mumu ttttttbold0mu mumu by marching cell-based interpolants
	4.4 A simplified method using a quadratic curve
	4.5 Other approaches
	4.6 A warm start
	4.7 Optimization algorithms

	5 Hierarchical update algorithms
	6 Initialization methods
	7 Cell marching
	7.1 Marching the amplitude

	8 Numerical experiments
	8.1 Test problems
	8.2 Experimental results

	9 Online Package
	10 Conclusion
	11 Acknowledgments
	References

