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Abstract. In the classical survey (Chapter 16.2, Mathematics in industrial problem,

Vol. 24, Springer-Verlag, New York, 1989), A. Friedman proposed an open problem on

the collision of two incompressible jets emerging from two axially symmetric nozzles. In

this paper, we concerned with the mathematical theory on this collision problem, and es-

tablish the well-posedness theory on hydrodynamic impinging outgoing jets issuing from

two coaxial axially symmetric nozzles. More precisely, we showed that for any given mass

fluxes M1 > 0 and M2 < 0 in two nozzles respectively, that there exists an incompress-

ible, inviscid impinging outgoing jet with contact discontinuity, which issues from two

given semi-infinitely long axially symmetric nozzles and extends to infinity. Moreover,

the constant pressure free stream surfaces of the impinging jet initiate smoothly from the

mouths of the two nozzles and shrink to some asymptotic conical surface. There exists

a smooth surface separating the two incompressible fluids and the contact discontinuity

occurs on the surface. Furthermore, we showed that there is no stagnation point in the

flow field and its closure, except one point on the symmetric axis. Some asymptotic

behavior of the impinging jet in upstream and downstream, geometric properties of the

free stream surfaces are also obtained. The main results in this paper solved the open

problem on the collision of two incompressible axially symmetric jets in [24].
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1. Introduction

The three-dimensional incompressible, stationary and inviscid flow is governed by the

Euler equations
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∂uj
∂xi

+
1

ρ

∂P

∂xj
= 0, for j = 1, 2, 3,

(1.1)

with the irrotational condition

∇× (u1, u2, u3) = 0.

Here, (u1, u2, u3) is the velocity, P denotes the pressure of the flow, and positive constant

ρ denotes density.

In this paper, we shall be concerned with steady, irrotational incompressible impinging

jets issuing from two semi-infinitely long axially symmetric nozzles with variable cross-

section. We will investigate the well-posedness theory of the collision problem of two

jets issuing from two general axially symmetric nozzles, and solve the open problem (1)

proposed by A. Friedman in 1989.

Consider the axially symmetric flows in this paper and let U(x, r), V (x, r) andW (x, r)

be the axial velocity, the radial velocity and the swirl velocity respectively, x = x1 and

r =
√

x22 + x23. Furthermore, we seek such an axially symmetric flow without swirl, one

has

u1 = U(x, r), u2 = V (x, r)
x2
r
, u3 = V (x, r)

x3
r
. (1.2)

Then, instead of (1.1), we have


































(rU)x + (rV )r = 0,

(

rρU2
)

x
+ (rρUV )r + rPx = 0,

(rρUV )x +
(

rρV 2
)

r
+ rPr = 0.

(1.3)

Consider the flow issuing from the two semi-infinitely long nozzles as (see Figure 1)

N1 =
{

(x, r) ∈ R
2
+ |f1(r) < x < −1, r < R1

}

,

and

N2 =
{

(x, r) ∈ R
2
+ |1 < x < f2(r), r < R2

}

,

where R
2
+ = R

1 × [0,+∞), R1, R2 > 0, f1(r) and f2(r) are smooth functions and satisfy

that

fi(r) = (−1)i∞, r ≤ ri, (ri > 0) (1.4)

and

fi(Ri) = (−1)i, (1.5)

for Ri > ri and i = 1, 2. Without loss of generality, we assume that R1 = R2 = R.

For convenience, we denote the symmetric axis

N0 = {(x, r)|r = 0,−∞ < x < +∞},
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Figure 1. Two axially symmetric semi-infinitely long nozzles
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Figure 2. Collision of two jets
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Figure 3. Impinging outgo-

ing jet

the nozzle walls

N1 = {(x, r)|x = f1(r), r1 < r < R}, N2 = {(x, r)|x = f2(r), r2 < r < R},

and the edge points of the nozzle walls A1 = (−1, R) and A2 = (1, R).

In this paper, we consider two ideal, nonmiscible, irrotational fluids (U1, V1, P1, ρ1)

and (U2, V2, P2, ρ2) issuing from two semi-infinite axisymmetric nozzles. We designate by

(U1, V1, P1, ρ1) and (U2, V2, P2, ρ2) be the axial velocity, the radial velocity and the pressure

of the fluid I and the fluid II, respectively. Denote Ωi as the fluid field of the i-th fluid for

i = 1, 2, and

(U, V, P, ρ) =















(U1, V1, P1, ρ1) in Ω1,

(U2, V2, P2, ρ2) in Ω2,

as the two-phase fluids.

In this paper, we seek a contact discontinuity (U, V, P, ρ) with a smooth interface

Γ: {x = g(r)} between the two fluids. And (U, V, P, ρ) is a week solution of (1.3) in

the distributional sense and (Ui, Vi, Pi, ρi) solves the incompressible Euler system (1.3)

classically in Ωi for i = 1, 2. (Please see Figure 2).

Then the Rankine-Hugoniot jump conditions on Γ become
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= 0, (1.6)

where [·] denotes the jump of a related function crossing the interface Γ.

Set mi = ρi
(

g′(r)Vi − Ui
)

(i = 1, 2) be the mass flux across the interface, if m1 = m2 =

0 on the interface Γ, then (U, V, P, ρ) is a contact discontinuity. The Rankine-Hugoniot

conditions (1.6) read as

− U1 + g′(r)V1 = 0, −U2 + g′(r)V2 = 0 and P1 = P2. (1.7)

The condition (1.7) implies that the normal velocities on both sides of the interface Γ

vanish, while the tangential velocity on both side of Γ may have nontrivial jump.

Furthermore, the well-known Bernoulli’s law can be written as

(Ui, Vi) · ∇
(

1

2
(U2

i + V 2
i ) +

Pi
ρi

)

= 0, for i = 1, 2,

namely,
U2
1 + V 2

1

2
+
P1

ρ1
= B1 and

U2
2 + V 2

2

2
+
P2

ρ2
= B2,

where B1 and B2 denote the Bernoulli’s constants of the two fluids, respectively, in view

of (1.7), then

ρ1
(

U2
1 + V 2

1

)

− ρ2
(

U2
2 + V 2

2

)

= 2 (ρ1B1 − ρ2B2) , Λ on Γ, (1.8)

without loss of generality, we assume Λ ≥ 0.

On another hand, on the free surfaces Γ1 and Γ2, the pressure is assumed to be the

constant atmosphere pressure Pat (in absence of gravity and surface tension), namely,

P = Pat on Γ1 ∪ Γ2. (1.9)

Here is our problem of fluid mechanics: determine an impinging outgoing jet (U, V, P, ρ)

issuing from two nozzles N1 and N2 with two mass fluxesM1 andM2, bounded by two free

surfaces Γ1 and Γ2 on which the pressure is a constant Pat. Furthermore, on the interface,

the Rankine-Hugoniot conditions (1.7) and (1.8) hold.

On the solid walls N1 and N2, the flow satisfies the slip-boundary condition,

(Ui, Vi) · ~ni = 0, on Ni, (1.10)

where ~ni is the unit outer normal of the wall Ni, for i = 1, 2. Moreover, on the symmetry

axis N0,

Vi = 0. (1.11)

Denote M1 and M2 as the mass fluxes in nozzles N1 and N2, respectively, then
ˆ

Σi

(rU, rV, 0) · ~lidS =
Mi

2π
, (1.12)

where Σi is any curve transversal to the x-axis direction and ~li is the normal of Σi in the

positive x-axis direction for i = 1, 2.
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1.1. Impinging outgoing jet problem and main results. We define the axially sym-

metric impinging outgoing jet problem as follows.

Axially symmetric impinging outgoing jet problem. For given any mass fluxes

M1 > 0 and M2 < 0 in the two semi-infinitely long axially symmetric nozzles N1 and N2,

respectively, there exists an axially symmetric impinging outgoing jet extending to the

infinity, the free stream surfaces initiate at the edges of the nozzles smoothly and shrink

to some conical surface at the far field, and a smooth interface separates the two jets,

furthermore, the pressure remains a constant on free stream surfaces (see Figure 3).

Next, we give the definition of the solution to the impinging outgoing jet problem.

A solution to the axially symmetric impinging outgoing jet problem. A

quintuple (U, V, P,Γ1,Γ2) is called a solution to the axially symmetric impinging outgoing

jet problem, provided that

(1). The smooth surfaces Γ1 and Γ2 are given by two functions x = g1(r) ∈ C1((R,+∞))

and x = g2(r) ∈ C1((R,+∞)) with g1(r) < g2(r), and

g1(R+ 0) = f1(R− 0), g2(R + 0) = f2(R − 0) (continuous fit conditions), (1.13)

and

g′1(R + 0) = f ′1(R− 0), g′2(R+ 0) = f ′2(R− 0) (smooth fit conditions). (1.14)

Moreover, there exists an asymptotic direction ν = (cos θ, sin θ) with θ ∈ (0, π), such that

g1 and g2 are close to the asymptotic direction ν at far field (See Figure 4), ie.,

lim
r→∞

(g2(r)− g1(r)) = 0 and lim
r→∞

g′1(r) = lim
r→∞

g′2(r) = cot θ, (1.15)

the angle θ is called the asymptotic deflection angle of the impinging outgoing jet.

(2). Denote the flow field G bounded by the symmetric axis N0, the nozzle walls

N1, N2 and the free boundaries Γ1,Γ2. (U, V, P ) ∈
(

C1,α(G) ∩ C0(G)
)3

solves the steady

incompressible Euler system (1.3), the boundary condition (1.10), the Rankine-Hugoniot

conditions (1.7) and the mass flux conditions (1.12);

(3). The radial velocity V is positive in flow field and its closure, except the symmetric

axis and interface Γ, namely, V > 0 in Ḡ \ (N0 ∪ Γ);

(4). P = Pat on Γ1 ∪ Γ2;

(5). The interface Γ satisfies the condition (1.8).

The first result in this paper is the existence of the impinging outgoing jet as follows.

Theorem 1.1. For any given atmosphere pressure Pat, mass fluxes M1 > 0, M2 < 0

and Λ ≥ 0 issuing from the two axially symmetric nozzles N1 and N2, respectively, there

exists a solution (U, V, P,Γ1,Γ2) to the axially symmetric impinging outgoing jet problem.

Furthermore, there exists a C1-smooth surface x = g(r) satisfying g1(r) < g(r) < g2(r)

for R < r <∞, which separates the two fluids and initiates at the branching point on the

symmetric axis (Figure 5). Furthermore, there exists a positive constant λ, such that

r(g(r)−g1(r)) →
M1

2π
√

ρ1(Λ + λ) sin θ
and r(g(r)−g2(r)) →

M2

2π
√
ρ2λ sin θ

as r → +∞.

(1.16)

We would like to give the following comments on the existence theorem.



IMPINGING OUTGOING JETS 6

x1

N1

N2

r1

−1

r2

R R

r

A1 A2

Γ1 Γ2

Asymptotic

direction

θ

N0

Figure 4. Axisymmetric im-
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cylindrical coordinates
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Figure 5. Impinging outgo-

ing jet and the interface Γ

Remark 1.1. One of key points in this work is the appearance of the interface between the

two fluids, which is also a free boundary and is determined by the solution itself. In this

paper, the impinging outgoing jets possess a smooth surface separating the two immiscible

fluids, which intersects the symmetric axis at a unique point, called the branching point.

However, the appearance of the interface takes many essential difficulties to solve the free

boundary problem in mathematics. The first one is the non-trivial jump of the velocity

field on the interface (see (1.8)), which leads that we have to seek a non-smooth solution

in the whole fluid field. The second one is that the interface is common boundaries of two

fluids, which is totally free. And we shall define the interface as the level set of the stream

function and show that it is indeed a smooth curve. The third one is the regularity of the

two-phase fluids near the branching point.

Remark 1.2. There are many numerical results on the impinging free jets in absence of

rigid nozzle walls, such as unsymmetrically impinging jets in [29], impinging free jets in

[28], compressible impinging jets in [10]. However, here we have to consider the geometry

of both solid boundaries and free boundaries, the one of main difficulties is to verify the

continuous fit and smooth fit conditions. In present work, an essential point is that we

can choose a suitable pair of parameters (λ, θ), such that the continuous fit conditions are

fulfilled. In other word, the parameters λ and θ can be determined by the continuous fit

conditions, which is the main difference from the analysis of impinging free jets without

rigid boundaries. Therefore, we first solve the free boundary problem for any λ and θ, and

then show the existence of a suitable pair of parameters (λ, θ) to guarantee the continuous

fit conditions of impinging outgoing jet. Furthermore, we can show that the continuous

fit conditions imply the smooth fit conditions.

Theorem 1.1 gives that there exists a pair of parameters (λ, θ) to guarantee the ex-

istence of the axially symmetric impinging outgoing jet. However, to the best of our

knowledge, the uniqueness of the jet with two free boundaries is totally open. Next, for

Λ = 0, we give the uniqueness results on the axially symmetric impinging outgoing jet, the

idea borrows from the recent work [11] on the uniqueness of the asymmetric incompressible

jet.

Theorem 1.2. (Uniqueness of the axially impinging outgoing jet)(1) Given any parame-

ters (λ, θ), such that the continuous fit conditions (1.13) hold, then the axially symmetric

impinging outgoing jet (U, V, P,Γ1,Γ2) established in Theorem 1.1 is unique.
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(2) Suppose that there exist two pairs of the parameters (λ, θ) and (λ, θ̃), such that the

continuous fit conditions (1.13) to the axially symmetric impinging outgoing jet hold, then

θ = θ̃.

Next, we give the asymptotic behaviors and the decay rate of the impinging outgoing

jet in the far field.

Theorem 1.3. The impinging outgoing jet flow (U, V, P,Γ1,Γ2) established in Theorem

1.1 satisfies the following asymptotic behavior in far fields,

(U(x, r), V (x, r), P (x, r)) →
(

M1

πρ1r
2
1

, 0,
λ+ Λ

2ρ1
+ Pat −

M2
1

2ρ1π2r
4
1

)

, (1.17)

and

∇U → 0, ∇V → 0, ∇P → 0, (1.18)

as x→ −∞, in any compact subset of (0, r1) and

(U(x, r), V (x, r), P (x, r)) →
(

M2

πρ2r21
, 0,

λ

2ρ2
+ Pat −

M2
2

2ρ2π2r42

)

, (1.19)

and

∇U → 0, ∇V → 0, ∇P → 0, (1.20)

as x→ +∞, in any compact subset of (0, r2), and in the downstream,

(U(x, r), V (x, r), P (x, r)) →
(
√

Λ+ λ

ρ1
cos θ,

√

Λ+ λ

ρ1
sin θ, Pat

)

, (1.21)

uniformly in any compact subset of Ω1 as r → +∞, and

(U(x, r), V (x, r), P (x, r)) →
(
√

λ

ρ2
cos θ,

√

λ

ρ2
sin θ, Pat

)

, (1.22)

uniformly in any compact subset of Ω2 as r → +∞, and

∇U → 0, ∇V → 0, ∇P → 0, (1.23)

uniformly in any compact subset of Ω1 ∪ Ω2 as r → +∞.

Furthermore, for any α ∈ (0, 2), one has

rα

(∣

∣

∣

∣

∣

U1(x, r)−
√

Λ + λ

ρ1
cos θ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

V1(x, r)−
√

Λ+ λ

ρ1
sin θ

∣

∣

∣

∣

∣

)

→ 0, (1.24)

rα

(
∣

∣

∣

∣

∣

U2(x, r)−
√

λ

ρ2
cos θ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

V2(x, r)−
√

λ

ρ2
sin θ

∣

∣

∣

∣

∣

)

→ 0, (1.25)

as r → +∞.

Remark 1.3. The one of main differences between the impinging outgoing jet in two-

dimensional and axially symmetric case is that the two-dimensional outgoing jet possesses

a uniform positive width in far field, and however, the distance of free streamlines goes

to zero in downstream in axially symmetric case. Here, we have to establish the decay

estimates of outgoing jets and the free boundaries in far field. Indeed, the facts (1.16) and

(1.24) give the decay rates of the velocity field and the distance of the two free stream

surfaces in downstream. In particular, (1.16) implies that the optimal decay rate of the

distance of two free stream surfaces is
1

r
in downstream.
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1.2. Motivation and history of the problem. The motivation to investigate the im-

pinging outgoing jets from two nozzles comes from Chapter V. § 5 in the classical book

[9] by G. Birkhoff and E. H. Zarantonello, in which the impinging outgoing jets from two

plane symmetric cylinders were considered. Except for some simple channel geometries,

the impinging problem of two jets can not be solved analytically, as was shown in the

monographs [9] and [27]. Here, we consider the general case that the impinging jet issuing

from two axially symmetric nozzles with variable cross-section.

fire hose
garden hose

ms

mj

m

Figure 6. Collision of two jets (Figure 16.7 in [24])

Another motivation to investigate the impinging outgoing jets issuing from two nozzles

comes from the Chapter 16 in famous survey [24]. The physical problem is also related to

the shaped charge question in [13]. As mentioned in Page 152 [24], ”... we can formulate

this problem as a collision of two jets, say a garden hose and a fire hose; see Figure 16.7.”

(see Figure 6) and A. Friedman proposed an open problem that

“Problem (1). Analyze the axially symmetric free boundary problem associated with

the flow in Figure 16.7 in incompressible case.”

On another side, there are many numerical results on this impinging outgoing jet

problem, such as the incompressible problem for an arbitrary polygonal nozzle in [14], and

the incompressible jet with gravity in [15] and so on. Moreover, Hurean and Weber in

[28] considered the impinging of two incompressible ideal free jets (in the absence of rigid

nozzle walls) numerically, and some existence results on two compressible free jets were

also investigated in [10]. However, we also would like to mention the numerical result on

asymmetric impinging free jets in [29].

The study of liquid jets issuing from containers is centuries old. As far back as

1868, Helmholtz and Kirchhoff introduced the classical theory of free streamlines in two-

dimensional jets. The steady irrotational flows of ideal incompressible fluid, bounded by

nozzle walls and free streamlines were investigated. The following decades saw extensions

of a great many different kinds of two-dimensional flows, on the basis of the complex

analysis methods by Planck, Joukowsky, Réthy, Levi-Civita, Greenhill and others.

Some substantial post-war monographs are those of Birkhoff-Zarantonello [9], Gurevich

[27], Milne-Thomson [30]. For two-dimensional irrotational case, a generalized Schwarz-

Christoffel transformation, combined with a Fourier technique to formulate a free boundary
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problem into a nonlinear integral-differential equation, some existence results on jets in

special nozzles have been constructed. However, two-dimensional jets have been given most

of the attention in the existence theory, and the limited amount of work on axisymmetric

jets has been confined. The reason is that the complex analysis method which has been

adapted to two-dimensional jets has noneffective in the axially symmetric case. A first

breakthrough work on the axially symmetric free streamline was due to Garabedian, Lewy

and Schiffer in [25] in 1952, in which some existence results on the axially symmetric

cavity were established by variational approach. Furthermore, Alt, Caffarelli and Friedman

developed the variational method to deal the free streamlines problem in their elegant

works [1, 8]. Based on their framework, some well-posedness results on axially symmetric

jet in [4], asymmetric jet in [2], jet with gravity in [3], and jets with two fluids in [6, 7]

have been established. In this paper, some fundamental ideas on the existence theory

are still borrowed from the variational method in [1]. Recently, if we assume that the

fluid is smooth across the interface Γ (ie. Λ = 0) apriorily, some existence results for

incompressible plane symmetric impinging outgoing jets has been obtained in [17]. In fact,

the interface Γ is a contact discontinuity and the jump Λ is always non-trivial and non-zero

generally. As we mentioned before, we have to investigate the non-zero jump Λ 6= 0, which

is one of main differences between this paper to the previous paper [17]. As a first step

to attack the original problem on impinging outgoing jets with nontrivial jump, Wang

and Xiang in [31] considered a toy model on the incompressible fluids issuing from two

infinity long co-axis and symmetric nozzles without jet free boundary and established some

properties on the contact discontinuity between the two fluids. Therefore, the objective

of the present paper is to establish the well-posedness theory on the impinging outgoing

jet problem and solve the open problem proposed by A. Frideman in 1989.

1.3. Methodology. From the physical problem here, the main difference and difficulty

here stems from the shape of nozzle walls, we have to find a mechanism, such that the

free boundaries of the jets connecting smoothly at the edge of the nozzle walls (so-called

continuous fit and smooth fit conditions). Another main difficulty is how to analyze the

interface with contact discontinuity between the two incompressible ideal fluids.

We would like to comment the main ideas of the proof as follows. The variational

method developed by H. Alt, L. Caffarelli and A. Friedman in 1980s has been shown to

be powerful and effective to solve the free streamline theory for more general models. In

two-dimensional case, the stream function is harmonic in the fluid domain, while in axially

symmetric case, it solves a linear elliptic equation with some lower-order term, and we

have to deal with the regularity near the symmetric axis. This is the first difficulty in

this paper. The second one is that the distance of the two free boundaries converges to

a positive constant in two-dimensional case (see [17]), and however, the distance goes to

zero in axially symmetric jet here. Therefore, we can not borrow some uniform special

flow to show some fundamental properties of the free boundaries as in 2D case, such as

the vanishing and non-vanishing of free boundary, and the asymptotic behaviors of the jet

in far fields, and so on. Here, our strategy is to establish firstly the decay rate of distance

of the two free boundaries and the impinging outgoing jet in far field, and then to obtain

the desired properties via some rescaling arguments. The third principal difficulty in this

paper centers about how to choose the suitable parameters (λ, θ) to assure the continuous

fit conditions in impinging outgoing jets. Some continuous dependent relationships and
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monotonic properties to the impinging outgoing jets with respect to the parameters (λ, θ)

are established and guarantee the fact to be fulfilled. The fourth difficulty here is the

occurrence of three free boundaries Γ1, Γ2 and Γ, which is main difference to the previous

results, such as [17, 31]. In particular, the solution is not smooth across the interface Γ

and it is a contact discontinuity between the two fluids. To our knowledge, this is the first

well-posedness work on the jet flows problem with three free boundaries.

The remain of this paper is organized as follows. First, we establish the free boundary

value problem to the physical problem in Section 2. The solvability of the free boundary

value problem follows from the standard variational approach, which has been developed

by Alt, Caffarelli and Friedman in the celebrated works [1, 2, 4]. Moreover, some properties

of the free boundaries will be obtained and we can verify the continuous fit and smooth fit

conditions for suitable parameters λ and θ. Additionally, we will investigate the existence

and properties of the interface between the two fluids. Hence, we can obtain the existence

of impinging outgoing jet in Section 3. In Section 4, we will give the uniqueness of the

impinging outgoing jet and the parameters. In Section 5, the asymptotic behavior of the

impinging outgoing jet is obtained along the blow-up argument, which has been used to

deal with the subsonic compressible flows in infinitely long nozzles in [16, 18, 19, 20, 21,

22, 32, 33, 34]. Some results on the variational problem are given in the Appendix.

2. Mathematical settings of the free boundary problem

Due to the continuity equation (1.3), one can introduce stream functions Ψi(x, r)

(i = 1, 2) such that

∂xΨi = −rρiVi, ∂rΨi = rρiUi. (2.1)

In order to convenient to the analysis, we introduce the scaled stream function ψi =
Ψi√
ρi

(i = 1, 2), and denote ψ as

ψ =















ψ1 in Ω1,

ψ2 in Ω2.

This together with the irrotational condition gives

∆ψ − 1

r

∂ψ

∂r
= 0 in Ω1 ∪ Ω2. (2.2)

Here and after, Ωi denotes the flow field, bounded by the nozzle walls Ni, the symmetric

axis N0, the interface Γ and the free boundaries Γi (i = 1, 2).

In this paper, we expect to seek an axially symmetric impinging outgoing jet flow with

positive vertical velocity, and thus denote Ω bounded by Ni, N0 and Li (i = 1, 2) as the

possible flow field of impinging outgoing jet (see Figure 7), where

L1 = {(x, r) | r = R,x < −1} and L2 = {(x, r) | r = R,x > 1}.

Moreover, the nozzles N1 ∪ N2 and the free boundaries Γ1 ∪ Γ2 are streamlines, thus

ψ remains some constant on those boundaries, without loss of generality, we can impose
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x

N1
N2

L1 L2

Ω

Ω

A1 A2

N0

Figure 7. The possible flow field Ω

ψ = m1 on N1 ∪ Γ1 and ψ = m2 on N2 ∪ Γ2. Thus, the free boundaries Γ1 and Γ2 can be

defined as

Γ1 = Ω ∩ ∂ {ψ < m1} , Γ2 = Ω ∩ ∂ {ψ > m2} ,

respectively, where Ω is the possible flow field defined before and mi =
Mi

2π
√
ρi

(i = 1, 2).

And the constant pressure boundary condition on free boundaries can be rewritten as
∣

∣

∣

∣

1

r

∂ψ

∂ν

∣

∣

∣

∣

=
√
Λ+ λ on Γ1,

∣

∣

∣

∣

1

r

∂ψ

∂ν

∣

∣

∣

∣

=
√
λ on Γ2, (2.3)

where ν is unit outward normal to the free stream surfaces Γ1 and Γ2.

Hence, we formulate the boundary value problem to the stream function ψ,






































































∆ψ − 1

r

∂ψ

∂r
= 0, in Ω1 ∪ Ω2,

∣

∣

∣

∣

1

r

∂ψ

∂ν

∣

∣

∣

∣

=
√
Λ+ λ, on Γ1,

∣

∣

∣

∣

1

r

∂ψ

∂ν

∣

∣

∣

∣

=
√
λ, on Γ2,

∣

∣

∣

∣

∇ψ+

r

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∇ψ−

r

∣

∣

∣

∣

2

= Λ, on Γ,

ψ = m1, on N1 ∪ Γ1, ψ = m2, on N2 ∪ Γ2,

ψ = 0, on N0 ∪ Γ,

(2.4)

where ψ±(X0) (X0 ∈ Γ) denotes the limit of ψ(X) with X ∈ {±ψ > 0}, as X → X0.

We would like to emphasize that the undetermined constants λ and θ are regarded

as two parameters to solve the free boundary problem. We will solve the free boundary

problem for any λ and θ, and then to show the existence of suitable parameters to guarantee

the continuous fit conditions.

3. Existence of the impinging outgoing jets

3.1. Truncated variational problem. In order to solve the free boundary value problem

(2.4), we first introduce some notations and two auxiliary functions as follows. Define

domain D as

D = Ω ∩ {r < R} .
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Next, we define two bounded functions Φ1 and Φ2 as follows,

∆Φ1 −
1

r

∂Φ1

∂r
= 0 in D, and m2 < Φ1 < m1 in D,

Φ1(x, r) =



















































0, if (x, r) ∈ N0,

m2, if r2 < r ≤ R, (x, r) lies right N2,

m1, if r1 < r ≤ R, (x, r) lies left N1,

m1, if (x, r) ∈ Ω ∩ {r ≥ R} ,

(3.1)

and

∆Φ2 −
1

r

∂Φ2

∂r
= 0 in D, m2 < Φ2 < m1 in D,

Φ2(x, r) =



















































0, if (x, r) ∈ N0,

m2, if r2 < r ≤ R, (x, r) lies right N2,

m1, if r1 < r ≤ R, (x, r) lies left N1,

m2, if (x, r) ∈ Ω ∩ {r ≥ R} .

(3.2)

We introduce the admissible set as

K =
{

ψ ∈ H1
loc(Ω)| Φ2 ≤ ψ ≤ Φ1

}

,

set e = (− sin θ, cos θ) with θ ∈ [0, π], and a functional

Jλ,θ(ψ) =

ˆ

Ω
r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ+ λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dxdr. (3.3)

Since the functional Jλ,θ is unbounded for any ψ ∈ K, we have to truncate the possible

flow field Ω and formulate truncated problems as follows.

For any µ > 1 and i = 1, 2, we define

ri,µ = min {r| (−1)iµ = fi(r)}, Hi,µ =
{(

(−1)iµ, r
)

| 0 ≤ r ≤ ri,µ
}

,

N0,µ = N0 ∩ {−µ < x < µ}, and Ni,µ = {(x, r)| x = fi(r), ri,µ < r ≤ R} .
(3.4)

Moreover, we introduce a cutoff domain Ωµ (see Figure 8) as

Ωµ is bounded by Ni,µ, Li, N0,µ and Hi,µ, (3.5)

and denote

Dµ = Ωµ ∩ {r < R} .

We also introduce an admissible set

Kµ =

{

ψ ∈ K

∣

∣

∣

∣

∣

ψ =
m1

r21,µ
r2 on H1,µ, ψ =

m2

r22,µ
r2 on H2,µ

}

,
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x

N1,µ

N2,µ

L1 L2

Ωµ

Ωµ

A1 A2

N0,µ

H1,µ
H2,µ

Figure 8. The truncated domain Ωµ

and an auxiliary functional

Jλ,θ,µ(ψ) =

ˆ

Ωµ

r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ + λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX, ψ ∈ Kµ,

where χE is the indicator function of the set E. Here and after, we denote dX = dxdr

and X = (x, r) for simplicity.

The truncated variational problem (Pλ,θ,µ): Find a ψλ,θ,µ ∈ Kµ, such that

Jλ,θ,µ(ψλ,θ,µ) = min
ψ∈Kµ

Jλ,θ,µ(ψ). (3.6)

Furthermore, the free boundaries of the truncated variational problem (Pλ,θ,µ) are

defined as follows.

Definition 3.1. The set

Γ1,µ = Ωµ ∩ ∂ {ψλ,θ,µ < m1} ,
is called the left free boundary, and

Γ2,µ = Ωµ ∩ ∂ {ψλ,θ,µ > m2} ,
is called the right free boundary.

Furthermore, define

Γµ = Ωµ ∩ {ψλ,θ,µ = 0},
be the interface separating the two fluids.

3.2. Existence of minimizer to the truncated variational problem. First, we give

the existence of the minimizer to the truncated variational problem.

Proposition 3.1. For any λ > 0, θ ∈ [0, π] and µ > 1, there exists a minimizer ψλ,θ,µ ∈
Kµ to the truncated variational problem (Pλ,θ,µ).

Proof. Due to Theorem 1.3 in [1], it suffices to construct a function ψ0 ∈ Kµ such that

Jλ,θ,µ(ψ0) < +∞.

Case 1: For θ ∈ (0, π) in Ωµ.

Indeed, for some sufficiently large

R0 > max

{

1,
m1√

Λ + λ(R+ 1) sin θ
− (R+ 1) cot θ,− m2√

λ(R + 1) sin θ
+ (R + 1) cot θ

}

,
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and taking ψ be a smooth function such that ψ0 ∈ Kµ. Define ψ0 in Ωµ as follows

ψ0(X) =























































































min
{

max
{√

Λ+ λr (r cos θ − x sin θ) , 0
}

,m1

}

, if r ≥ R+ 1, r cos θ − x sin θ ≥ 0,

max
{

min
{√

λr (r cos θ − x sin θ) , 0
}

,m2

}

, if r ≥ R+ 1, r cos θ − x sin θ ≤ 0,

m1, if x ≤ −R0, R ≤ r ≤ R+ 1,

m2, if x ≥ R0, R ≤ r ≤ R+ 1,

ψ(X), if (x, r) ∈ Ωµ,R0
,

η(x)
m1

r21,µ
r2 + (1− η(x))

m2

r22,µ
r2, if (x, r) ∈ Ω′

µ.

Here, Ω′
µ = Ωµ ∩ {r ≤ min{r1,µ, r2,µ}}, η(x) be a cut-off function satisfying

η(x) = 1 for x ≤ −µ, η(x) =
µ− x

2µ
for − µ ≤ x ≤ µ, η(x) = 0 for x ≥ µ, (3.7)

and

Ωµ,R0
= Ωµ ∩ {min{r1,µ, r2,µ} ≤ r ≤ R} ∪ {−R0 ≤ x ≤ R0, R ≤ r ≤ R+ 1} .

It is easy to check that Jλ,θ,µ(ψ0) < +∞.

Case 2: For θ = 0 or π.

Without loss of generality, assume θ = 0. It suffice to define a function ψ0(X) as

follows. Set

Ω̃µ,R0
= Ωµ ∩ {min{r1,µ, r2,µ} ≤ r ≤ R} ∪ {−2 ≤ x ≤ 2, R ≤ r ≤ R0} ,

for some sufficiently large R0 >

√

R2 +
2m1√
Λ+ λ

− 2m2√
λ
, and define a function ψ0 as

ψ0(X) =































































































√
λ(r2 −R2)

2
+m2, if x ≥ 2, R ≤ r ≤

√

R2 − 2m2√
λ
,

min

{
√
Λ + λ

2

(

r2 +
2m2√
λ

−R2

)

,m1

}

, if x ≥ 2, r ≥
√

R2 − 2m2√
λ
,

m1, if x ≤ 2, r ≥ R0,

m1, if x ≤ −2, R ≤ r ≤ R0,

ψ(X), if (x, r) ∈ Ω̃µ,R0
,

η(x)
m1

r21,µ
r2 + (1− η(x))

m2

r22,µ
r2, if (x, r) ∈ Ωµ ∩ {r ≤ {r1,µ, r2,µ}},

where η(x) is defined as (3.7), and ψ be a smooth function such that ψ0 ∈ Kµ.

Therefore, we finish the proof of Proposition 3.1. �

Next, we will obtain the regularity of the minimizer.
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Proposition 3.2. Let ψλ,θ,µ be a minimizer to the truncated variational problem (Pλ,θ,µ),

and for any open subset Ω0 ⊂⊂ Ωµ ∩ {m2 < ψλ,θ,µ < m1} ∩ {ψλ,θ,µ 6= 0}, then ψλ,θ,µ ∈
C0,1(Ωµ), ψλ,θ,µ ∈ C2,σ(Ω0) and ψλ,θ,µ ∈ C1,σ(Ω0 ∪N1,µ ∪N2,µ) for some 0 < σ < 1.

Proof. Firstly, ψλ,θ,µ ∈ C0,1(Ωµ) follows in the same manner as Corollary 4.4 in [6].

Next, the standard interior estimates to linear elliptic equation in Chapter 8 in [26]

gives ψλ,θ,µ ∈ C2,σ(Ω0) and ψλ,θ,µ ∈ C1,σ(N1,µ ∪N2,µ).

The regularity of ψλ,θ,µ near the axis N0,µ can be obtained by the standard arguments

as in [16] and [33].

Therefore, we finish the proof of Lemma 3.2. �

3.3. Uniqueness and monotonicity of the minimizer. Firstly, we will give a lower

bound and an upper bound to the minimizer ψλ,θ,µ.

Lemma 3.3. For any minimizer ψλ,θ,µ to the variational problem (Pλ,θ,µ), one has

max

{

m2

r22,µ
r2,m2

}

≤ ψλ,θ,µ(x, r) ≤ min

{

m1

r21,µ
r2,m1

}

in Ωµ, (3.8)

where r1,µ and r2,µ are defined in (3.4).

Proof. Firstly, consider the lower bound of ψλ,θ,µ.

Set φ1 = max

{

m2

r22,µ
r2,m2

}

, φ2 = min

{

m1

r21,µ
r2,m1

}

and ψ = ψλ,θ,µ for simplicity.

Firstly, since ψ ∈ Kµ, one has

m2 ≤ ψ ≤ m1 in Ωµ. (3.9)

Next, we shall prove that

φ1 ≤ ψ in Ωµ.

Due to the fact that max {ψ, φ1} ∈ Kµ, we have

Jλ,θ,µ(ψ) ≤ Jλ,θ,µ(max {ψ, φ1}).
Furthermore, the fact

φ1 = m2 for r ≥ r2,µ, (3.10)

gives that

ψ ≥ φ1 in Ωµ ∩ {r ≥ r2,µ}.
Therefore, we obtain

0 ≥
ˆ

Ωµ,r2,µ

r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ + λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

· e
∣

∣

∣

∣

2

dX

−
ˆ

Ωµ,r2,µ

r

∣

∣

∣

∣

∇max {ψ, φ1}
r

−
(√

Λ + λχ{0<max{ψ,φ1}<m1} +
√
λχ{m2<max{ψ,φ1}≤0}

)

· e
∣

∣

∣

∣

2

dX,

(3.11)

here, Ωµ,r2,µ = Ωµ ∩ {r < r2,µ}. This together with the similar arguments as Lemma 3.4

in [31] yields to
ˆ

Ωµ,r2,µ

|∇min (ψ − φ1, 0)|2 dX ≤ 0,
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which implies that

ψ − φ1 = constant in Ωµ,r2,µ .

Since ψ ≥ φ1 on ∂Ωµ,r2,µ , we conclude that

ψ ≥ φ1 in Ωµ,r2,µ .

Therefore, we obtain the lower bound of ψλ,θ,µ in (3.8).

Next, we can now proceed as before to show the upper bound of ψλ,θ,µ.

Similarly, it suffices to prove that the upper bound holds in Ωµ,r1,µ = Ωµ ∩ {r < r1,µ}.
Due to (6.2), one has

∆ψλ,θ,µ −
1

r

∂ψλ,θ,µ
∂r

≥ 0 in Ωµ,r1,µ in a weak sense,

and ψλ,θ,µ ≤ m1

r21,µ
r2 on ∂Ωµ,r1,µ , then the maximum principle implies ψλ,θ,µ(x, r) ≤

m1

r21,µ
r2

in Ωµ,r1,µ . We complete the proof of Lemma 3.3. �

Next, in view of Lemma 3.3, using the similar arguments Proposition 3.5 in [31], we will

establish the uniqueness and some monotonicity of the minimizer ψλ,θ,µ to the variational

problem (Pλ,θ,µ), and we omit the proof here.

Proposition 3.4. For any λ ∈ (0,+∞) and θ ∈ [0, π], the minimizer ψλ,θ,µ to the trun-

cated variational problem (Pλ,θ,µ) is unique. Furthermore, the solution ψλ,θ,µ is monotonic

with respect to x, namely

ψλ,θ,µ(x, r) ≤ ψλ,θ,µ(x̃, r) for any x ≥ x̃. (3.12)

3.4. Some properties of the free boundaries.

3.4.1. Preliminaries. Before we investigate the properties of the free boundaries, we give

some important auxiliary lemmas, and we refer the proofs in [1, 2, 23]. So we only state

the result and omit the proof as follows.

Lemma 3.5. There exists a universal constant c > 0, such that for X0 = (x0, r0) ∈
Ωµ ∩ {ψλ,θ,µ < 0} and Br(X0) ⊂ Ωµ ∩ {ψλ,θ,µ < 0} with

1

r

 

∂Br(X0)
(ψλ,θ,µ −m2) dS ≥

√
λcr0,

then we have ψλ,θ,µ > m2 in Br(X0); Similarly, X0 = (x0, r0) ∈ Ωµ ∩ {ψλ,θ,µ > 0} and

Br(X0) ⊂ Ωµ ∩ {ψλ,θ,µ > 0}, if
1

r

 

∂Br(X0)
(m1 − ψλ,θ,µ) dS ≥

√
λ+ Λcr0,

then we have ψλ,θ,µ < m1 in Br(X0). Here and after, Br(X) denotes some ball with radius

r > 0 and center X ∈ Ωµ.

Next, we will establish a non-degeneracy lemma to ψλ,θ,µ − m2 and m1 − ψλ,θ,µ as

follows.
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Lemma 3.6. (Non-degeneracy lemma) For any 0 < κ1 < 1, there exists a positive constant

c (depending on κ1), if Br(X0) ⊂ Ωµ ∩ {ψλ,θ,µ < 0} (X0 = (x0, r0)) and

1

r

 

∂Br(X0)
(ψλ,θ,µ −m2) dS ≤

√
λcr0, and ψλ,θ,µ < 0 in Br(X0),

then ψλ,θ,µ = m2 in Bκ1r(X0); Similarly, for any 0 < κ2 < 1, there exists a positive

constant c (depending on κ2) and

1

r

 

∂Br(X0)
(m1 − ψλ,θ,µ) dS ≤

√
λ+ Λcr0, and ψλ,θ,µ > 0 in Br(X0),

then ψλ,θ,µ = m1 in Bκ2r(X0).

A direct application of Lemma 3.6 gives the following lemma.

Lemma 3.7. Suppose that X0 = (x0, r0) ∈ {ψλ,θ,µ > m2} ∩ (Ωµ\Dµ) and ψλ,θ,µ < 0 in

Br(X0) for some r > 0, then

1

r

 

∂Br(X0)
(ψλ,θ,µ −m2) dS ≥

√
λcr0. (3.13)

In particular,

sup
∂Br(X0)

(ψλ,θ,µ −m2) ≥
√
λcr0r. (3.14)

We shall establish a non-oscillation lemma, which implies that the free boundary Γi,µ
for i = 1, 2 cannot oscillate near the solid boundaries. Without loss of generality, consider

the right free boundary Γ2,µ, and introduce a domain G ⊂ Ωµ\Dµ bounded by

x = x1, x = x1 + h (h > 0),

and

γ1 : X = X1(t) = (x1(t), r1(t)), γ2 : X = X2(t) = (x2(t), r2(t)),

where 0 ≤ t ≤ T with

x1 < xi(t) < x1 + h for 0 < t < T,

and

xi(0) = x1, xi(T ) = x1 + h, r1 ≤ ri(t) ≤ r1 + δ, i = 1, 2.

Furthermore, the arc γ2 lies above the arc γ1, this implies that r1(0) < r2(0), γ1 and

γ2 do not intersect, γ2 is contained in Γ2,µ, either

Case 1. γ1 is contained in Γ2,µ, (see Figure 9)

or

Case 2. γ1 lies on {r = R,x > 1}, and then r1 = R, x1 ≥ 1. (see Figure 10)

Let the domain G ⊂ {ψλ,θ,µ > m2} be a neighborhood of γ1 and γ2, and ψλ,θ,µ < 0 in

G and for some c∗ > 0, we have

dist(G,A1A2) > c∗.

Lemma 3.8. (Non-oscillation lemma) Under the foregoing assumptions, there exists a

positive constant C depending only on λ, m2 and c∗ such that

h ≤ Cδ. (3.15)
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x
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Figure 9. Case 1

x

r

N1

N2

A1 A2

D

γ2

γ1

Γ2,µ

x1 x1 + h

Figure 10. Case 2

The proof is similar to Lemma 4.1 in [2] and Lemma 5.6 [4], we omit it here.

Finally, we give the uniform bound of the gradient to the minimizer, which is indepen-

dent of m1 and m2. Please see Lemma 8.1 in [4] and Lemma 5.2 in [2] for the proof.

Lemma 3.9. Let X0 = (x0, r0) be a free boundary point in Ωµ \Dµ and G be a bounded

domain with X0 ∈ G, G ⊂ Ωµ \Dµ. There exists a constant C > 0 depending only on λ,

G and Λ, such that
|∇ψλ,θ,µ|

r
≤ C in G. (3.16)

3.4.2. Some properties of the free boundaries. It follows from the monotonicity of ψλ,θ,µ
with respect to x that the free boundaries are r-graph, namely, the free boundaries Γi,µ
(i = 1, 2) intersect r = r0 either one single point or a segment for any r0 ∈ (R,+∞).

Thus, there exist four mappings g1,λ,θ,µ(r) with r > R, g2,λ,θ,µ(r) with r > R, gλ,θ,µ(r)

with r > 0 and g̃λ,θ,µ(r) with r > 0 such that

{0 < ψλ,θ,µ < m1} ∩ Ωµ = {g̃1,λ,θ,µ(r) < x < gλ,θ,µ(r)} ∩ Ωµ, (3.17)

and

{m2 < ψλ,θ,µ < 0} ∩ Ωµ = {g̃λ,θ,µ(r) < x < g̃2,λ,θ,µ(r)} ∩ Ωµ, (3.18)

where

g̃1,λ,θ,µ(r) =















f1(r) for 0 < r ≤ R,

g1,λ,θ,µ(r) for R < r < +∞,

and

g̃2,λ,θ,µ(r) =















f2(r) for 0 < r ≤ R,

g2,λ,θ,µ(r) for R < r < +∞.

Indeed, along similar arguments as in [2], we obtain that gi,λ,θ,µ(r) is indeed a general

continuous function in [R,+∞), and gi,λ,θ,µ(R) is defined as lim
r→R+

gi,λ,θ,µ(r) for i = 1, 2.

Furthermore, due to Lemma 3.3 in [7] and Proposition 4.1 in [31], the interface gλ,θ,µ(r) ≡
g̃λ,θ,µ(y) is indeed a continuous function in [0,+∞), and we omit the proof here.

Lemma 3.10. The free boundary Γi,µ : x = gi,λ,θ,µ(r) is a generalized continuous function

in R ≤ r < +∞ with values in [−∞,+∞] (i = 1, 2), respectively. Furthermore, the

interface Γµ: x = gλ,θ,µ(r) is bounded continuous functions in 0 < r < +∞, gλ,θ,µ(0+0) ,

lim
r→0+

gλ,θ,µ(r) exists and is finite.
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In order to study the limit behavior of the solution as r → +∞, we first establish the

decay estimate of the minimizer in far field as follows. This is one of the crucial parts in

this paper.

Lemma 3.11. For any θ ∈ (0, π) and r0 > 2R, there exists a constant C (independent of

r0) such that

ˆ

Ωµ∩{r>r0}
r

∣

∣

∣

∣

∇ψλ,θ,µ
r

−
(√

Λ + λχ{0<ψλ,µ,θ<m1} +
√
λχ{m2<ψλ,θ,µ≤0}

)

e

∣

∣

∣

∣

2

dX ≤ C

r30
.

(3.19)

Proof. Denote ψ(x, r) = ψλ,θ,µ(x, r), g(r) = gλ,θ,µ(r) and gi(r) = gi,λ,θ,µ(r) (i = 1, 2) for

simplicity.

For any r0 > 2R, define

S(r0) =

ˆ

Ωµ∩{ r0
2
<r<r0}

r

∣

∣

∣

∣

∇ψλ,θ,µ
r

−
(√

Λ + λχ{m2<ψλ,µ,θ<0} +
√
λχ{m2<ψλ,θ,µ≤0}

)

e

∣

∣

∣

∣

2

dX.

Taking advantage of the mean value theorem, there exists some r̃ ∈
(r0
2
, r0

)

such that

S(r0) =
r0
2r̃

{

ˆ g(r̃)

g1(r̃)

∣

∣

∣
∇ψ(x, r̃)−

√
Λ + λr̃e

∣

∣

∣

2
dx+

ˆ g2(r̃)

g(r̃)

∣

∣

∣
∇ψ(x, r̃)−

√
λr̃e
∣

∣

∣

2
dx

}

≥1

2

{

ˆ g(r̃)

g1(r̃)

∣

∣

∣
∇ψ(x, r̃)−

√
Λ+ λr̃e

∣

∣

∣

2
dx+

ˆ g2(r̃)

g(r̃)

∣

∣

∣
∇ψ(x, r̃)−

√
λr̃e
∣

∣

∣

2
dx

}

.

(3.20)

We choose a function w(x, r) as follows

w(x, r) =















ψ(x, r), in Ωµ ∩ {r ≤ r̃},

η(r)ψ̄(x, r) + (1− η(r))φ(x, r), in Ωµ ∩ {r ≥ r̃},
(3.21)

where η(r) = max

{

0,
r̄ − r

r̄ − r̃

}

with r̄ = r̃ +
1

r̃
,

ψ̄(x, r) = ψ(x− (r − r̃) cot θ, r̃),

and

φ(x, r) =min
{

max
{√

Λ+ λr ((r − r̃) cos θ − (x− g(r̃)) sin θ) , 0
}

,m1

}

+max
{

min
{√

λr ((r − r̃) cos θ − (x− g(r̃)) sin θ) , 0
}

,m2

}

.



IMPINGING OUTGOING JETS 20

It’s easy to check that w(x, r) ∈ Kµ, then Jλ,θ,µ(ψ) ≤ Jλ,θ,µ(w), which implies
ˆ

Ωµ∩{r>r̃}
r

∣

∣

∣

∣

∇ψλ,θ,µ
r

−
(√

Λ+ λχ{m2<ψλ,µ,θ<0} +
√
λχ{m2<ψλ,θ,µ≤0}

)

e

∣

∣

∣

∣

2

dX

≤
ˆ

Ωµ∩{r>r̃}
r

∣

∣

∣

∣

∇w
r

−
(√

Λ + λχ{m2<w<0} +
√
λχ{m2<w≤0}

)

e

∣

∣

∣

∣

2

dX

=

ˆ

Ωµ∩{r̃<r≤r̄}
r

∣

∣

∣

∣

∇w
r

−
(√

Λ+ λχ{m2<w<0} +
√
λχ{m2<w≤0}

)

e

∣

∣

∣

∣

2

dX

+

ˆ

Ωµ∩{r≥r̄}
r

∣

∣

∣

∣

∇w
r

−
(√

Λ + λχ{m2<w<0} +
√
λχ{m2<w≤0}

)

e

∣

∣

∣

∣

2

dX.

(3.22)

First, similar arguments as Lemma 3.10 in [10] and Lemma 4.1 in [11]. We obtain
ˆ

Ωµ∩{r>r̃}
r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ+ λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX ≤ C

r30
+
S(r0)

16
, (3.23)

where C is independent of r0.

Next, S(2r0) can be calculated as follows,

S(2r0) =

ˆ

Ωµ∩{r0<r<2r0}
r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ + λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX

≤
ˆ

Ωµ∩{r>r̃}
r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ+ λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX

≤C

r30
+
S(r0)

16
,

(3.24)

where we have used r̃ ∈
(r0
2
, r0

)

and (3.23).

Using mathematical induction for any n ∈ N and (3.24), one has

S(2n+1R) ≤ 2C

(2nR)3
, n = 0, 1.... (3.25)

Indeed, (3.25) holds for n = 0 when choose C large enough. If (3.25) holds for n, one

has

S(2n+2R) = S(2 · 2n+1R) ≤ C

(2n+1R)3
+
S(2n+1R)

16
≤ C

(2n+1R)3
+

1

16

2C

(2nR)3
=

2C

(2n+1R)3
,

which implies (3.25) holds for n+ 1.

Therefore, for any r0 > 2R, there exists a n0 such that 2n0R ≤ r0 ≤ 2n0+1R, this

together with (3.25) yields to
ˆ

Ωµ∩{r>r0}
r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ+ λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX

≤
ˆ

Ωµ∩{r>2n0R}
r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ + λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX

≤
+∞
∑

j=n0

S(2j+1R) ≤ C̃

R3r30
,
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where have used the following fact

+∞
∑

j=n0

S(2j+1R) ≤ 2C

+∞
∑

j=n0

1

(2jR)3
≤ 32C

(2n0+1R)3
≤ C̃

r30
.

This completes the proof of Lemma 3.11.

�

Firstly, we will show that some convergence of the minimizer in far field and the free

boundaries approach to the asymptotic direction θ ∈ (0, π) as r → +∞ in the far field.

Lemma 3.12. Let θ ∈ (0, π), ψn(x̃, r̃) = ψλ,θ,µ

(

xn +
x̃

rn
, rn +

r̃

rn

)

with Xn = (xn, rn) ∈

Γ1,µ and rn → +∞, X̃ = (x̃, r̃) ∈ R
2, then for a subsequence

ψn(x̃, r̃) → Θ(x̃, r̃) ,























































m1, if r̃ cos θ − x̃ sin θ ≥ 0,

m1 +
√
Λ+ λ(r̃ cos θ − x̃ sin θ), if − m1√

Λ + λ
≤ r̃ cos θ − x̃ sin θ ≤ 0,

m1

√
λ√

Λ + λ
+

√
λ(r̃ cos θ − x̃ sin θ), if

m2√
λ
− m1√

Λ+ λ
≤ r̃ cos θ − x̃ sin θ ≤ − m1√

Λ+ λ
,

m2, if r̃ cos θ − x̃ sin θ ≤ m2√
λ
− m1√

Λ+ λ
,

(3.26)

uniformly in any compact subset of R2. Furthermore,

g′1,λ,θ,µ(r) → cot θ as r → +∞.

The similar conclusion holds for Xn ∈ Γ2,µ.

Proof. Set ψ = ψλ,θ,µ, g(r) = gλ,θ,µ(r) and gi(r) = gi,λ,θ,µ(r) (i = 1, 2) for simplicity.

Define x = xn +
x̃

rn
and r = rn +

r̃

rn
.

For any R0 > 0, one has
ˆ

{|r−rn|<R0}
r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ+ λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX

=

ˆ

{|r̃|<R0rn}

(

1

rn
+

r̃

r3n

)

∣

∣

∣

∣

∣

∇̃ψn
1 + r̃

r2n

−
(√

Λ+ λχ{0<ψn<m1} +
√
λχ{m2<ψn≤0}

)

e

∣

∣

∣

∣

∣

2

dX̃,

(3.27)

where ∇̃ = (∂x̃, ∂r̃).

For large rn > R0 + 2R, in view of (3.19), we obtain
ˆ

{|r−rn|<R0}
r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ+ λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX ≤ C

(rn −R0)
3 ,

which together with (3.27) implies that

ˆ

Ωµ∩{|r̃|<R0rn}

(

1 +
r̃

r2n

)

∣

∣

∣

∣

∣

∇̃ψn
1 + r̃

r2n

−
(√

Λ + λχ{0<ψn<m1} +
√
λχ{m2<ψn≤0}

)

e

∣

∣

∣

∣

∣

2

dX̃ ≤ Crn

(rn −R0)
3 .

(3.28)
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Recalling Proposition 3.2 and Θ(x̃, r̃) ∈ H1
loc(R

2), then there exist a subsequence ψnk
and

two functions γ1, γ2 ∈ [0, 1] such that

ψnk
(x̃, r̃) → Θ(x̃, r̃) weakly in H1

loc(R
2),

ψnk
(x̃, r̃) → Θ(x̃, r̃) a.e. in R

2,

χ{0<ψnk
<m1} → γ1 weak-star in L∞

loc(R
2), γ1 = 1 a.e. on {0 < Θ(x̃, r̃) < m1},

and

χ{m2<ψnk
≤0} → γ2 weak-star in L∞

loc(R
2), γ2 = 1 a.e. on {m2 < Θ(x̃, r̃) ≤ 0},

as k → +∞. This together with (3.28) gives that

∇̃Θ =
√
Λ + λeχ{0<ψ0<m1} +

√
λeχ{m2<ψ0≤0} a.e., (3.29)

in any compact subset Ω′ of R2.

Lemma 3.9 implies that for sufficiently large n

|∇̃ψn(x̃, r̃)| =
∣

∣

∣

∣

1

rn
∇ψ

(

xn +
x̃

r̃n
, rn +

r̃

rn

)
∣

∣

∣

∣

≤ c0,

where the constant c0 is independent of R0. Hence, we conclude that there exists a

subsequence ψnk
→ Θ(x̃, r̃) uniformly in any compact subset of R2 and

m1 − ψn(x̃, r̃) = ψ(xn, rn)− ψ

(

xn +
x̃

r̃n
, rn +

r̃

rn

)

≤ |∇̃ψn||X̃ |, for |X̃| < m1

c0
,

which implies ψn(x̃, r̃) > 0.

The non-degeneracy lemma 3.6 implies that

1

r

 

∂Br(0)
(m1−ψn(x̃, r̃))dS̃ =

1

rn

1
r
rn

 

∂B r
rn

(Xn)
(m1 −ψ(x, r))dS ≥ c

√
Λ+ λ, for r <

m1

c0
,

taking n→ +∞, which implies that Θ 6≡ m1 in Br(0) and Θ(0) = m1.

Define

t = x̃ cos θ + r̃ sin θ and s = r̃ cos θ − x̃ sin θ, (3.30)

and w(t, s) = Θ(x̃, r̃), then (3.29) implies that

∂w

∂t
= 0,

∂w

∂s
=

√
Λ+ λeχ{0<w<m1} +

√
λeχ{m2<w≤0} a.e. in Ω′

µ and w(0) = m1.

A direction computation gives that

w(t, s) =























































m1 if s ≥ 0,

m1 +
√
Λ+ λs, if − m1√

Λ+ λ
≤ s ≤ 0,

m1

√
λ√

Λ+ λ
+

√
λs, if

m2√
λ
− m1√

Λ + λ
≤ s ≤ − m1√

Λ+ λ
,

m2, if s ≤ m2√
λ
− m1√

Λ+ λ
,

which yields (3.26).
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Next, let X0 = (t, s) with s > 0 or s <
m2√
λ
− m1√

Λ + λ
, for small r > 0, then

lim
n→+∞

1

r

 

∂Br(X0)
(m1 − ψn)dS = 0, or lim

n→+∞
1

r

 

∂Br(X0)
(ψn −m2)dS = 0,

respectively. Then, the non-degeneracy lemma implies that X0 is not a free boundary

point for sufficiently large n.

Similarly, for the case
m2√
λ
− m1√

Λ + λ
< s < 0, one gets

lim
n→+∞

1

r

 

∂Br(X0)
(m1−ψn)dS → +∞, or lim

n→+∞
1

r

 

∂Br(X0)
(ψn−m2)dS → +∞, as r → 0,

and then X0 is not a free boundary point for sufficiently large n.

Then, one has

∂{ψn > 0} →
{

s =
m2√
λ
− m1√

Λ + λ

}

and ∂{ψn < m1} → {s = 0} , (3.31)

locally in Hausdorff distance (see Definition 3.1 in [23]).

Noticing the flatness conditions in Section 7 in [1] for the free boundaries, there exists

a ξ1,n ∈
(

min

{

rn, rn +
r̃

rn

}

,max

{

rn, rn +
r̃

rn

})

such that

x̃ = rn

(

g1

(

rn +
r̃

rn

)

− xn

)

= rn

(

g1

(

rn +
r̃

rn

)

− g1(rn)

)

= g′1(ξ1,n)r̃,

thus, we obtain

g′1

(

rn +
r̃

rn

)

→ cot θ, as n→ +∞.

Therefore, we complete the proof of Lemma 3.12. �

Next, for the critical cases θ = 0 or θ = π, we have the following facts.

Proposition 3.13. Assume that there exist some free boundary points Xn = (xn, rn) ∈
Γ2,µ, such that rn → ξ > R and xn → +∞, where ξ is a finite positive number, then θ = 0.

Moreover, let ψn(X̃) = ψλ,θ,µ(xn + x̃, rn + r̃), then

ψn(X̃) → min

{

max

{√
λ

(

m2√
λ
+
r̃2

2
+ ξr̃

)

,m2

}

, 0

}

+max

{

min

{√
Λ+ λ

(

m2√
λ
+
r̃2

2
+ ξr̃

)

,m1

}

, 0

}

,

uniformly in any compact subset of {(x̃, r̃) | r̃ > R−ξ}. If rn → ξ >

√

R2 +
2m1√
Λ+ λ

− 2m2√
λ

and xn → −∞, ξ is a finite positive number, then θ = π and

ψn(X̃) → min

{

max

{√
λ

(

m2√
λ
− r̃2

2
− ξr̃

)

,m2

}

, 0

}

+max

{

min

{√
Λ+ λ

(

m2√
λ
− r̃2

2
− ξr̃

)

,m1

}

, 0

}

,

uniformly in any compact subset of {(x̃, r̃) | r̃ > R − ξ}. The similar assertion holds for

Xn = (xn, rn) ∈ Γ1,µ.



IMPINGING OUTGOING JETS 24

Proof. If Xn = (xn, rn) ∈ Γ2,µ with rn → ξ (ξ is a finite positive number) and xn → +∞.

Set x = xn + x̃ and r = rn + r̃. For any large R0 > 0, the boundedness of Jλ,θ,µ(ψλ,θ,µ)

gives that
ˆ

Ωµ∩{|x−xn|<R0}∩{R−ξ<r−rn<R0}
r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ + λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX

=

ˆ

Ω̃µ∩{|x̃|<R0}∩{R−ξ<r̃<R0}
(rn + r̃)

∣

∣

∣

∣

∣

∇̃ψn
rn + r̃

−
(√

Λ + λχ{0<ψn<m1} +
√
λχ{m2<ψn≤0}

)

e

∣

∣

∣

∣

∣

2

dX̃ → 0,

as n→ +∞.

Along the similar arguments in Lemma 3.12, then there exists a subsequence ψnk
such

that

ψnk
→ ψ0 weakly in Hloc(Ω

′
µ),

and

ψnk
→ ψ0 a.e. in Ω′

µ,

as k → +∞, and

∇ψ0 = (r̃ + ξ)
(√

Λ+ λχ{0<ψ0<m1} +
√
λχ{m2<ψ0≤0}

)

(− sin θ, cos θ) a.e.,

in any compact subset Ω′ of {(x̃, r̃) | r̃ > R − ξ}. Furthermore, it’s easy to see that

ψ0(0, 0) = m2, ψ0 6≡ m2 in any neighborhood of (0, 0) and

ψ(xn + x̃, R − ξ + rn) → ψ0(x̃, R − ξ) = m2 if xn → +∞. (3.32)

Next, we claim θ = 0. Suppose not, if θ = π, indeed, similar arguments as Lemma

3.12, we obtain

ψ0(x̃, r̃) = min

{

max

{√
λ

(

m2√
λ
− r̃2

2
− ξr̃

)

,m2

}

, 0

}

+max

{

min

{√
Λ + λ

(

m2√
λ
− r̃2

2
− ξr̃

)

,m1

}

, 0

}

,

which contradicts with (3.32).

If θ ∈ (0, π), since ψ0 is smooth in any compact subset of G ⊂ {m2 < ψ0 < 0} ∩ {r̃ ≥
R− ξ}, one has

∂2ψ0

∂x̃∂r̃
= −

√
λ sin θ,

∂2ψ0

∂r̃∂x̃
= 0,

which derives a contradiction with θ ∈ (0, π).

Therefore, we obtain θ = 0. Along the similar arguments in Lemma 3.12, one has

ψn(X̃) → min

{

max

{√
λ

(

m2√
λ
+
r̃2

2
+ ξr̃

)

,m2

}

, 0

}

+max

{

min

{√
Λ+ λ

(

m2√
λ
+
r̃2

2
+ ξr̃

)

,m1

}

, 0

}

,

uniformly in any compact subset of {(x̃, r̃) | r̃ > R − ξ}. The similar conclusion holds if

Xn = (xn, rn) ∈ Γ1,µ with rn → ξ > R and xn → −∞.

Similarly, we can obtain the conclusion for θ = π. Thus, we complete the proof of

Proposition 3.13.

�

Now, we can obtain the convergence rate of distance of the two free boundaries and

the minimizer as follows.
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Lemma 3.14. For any θ ∈ (0, π) and α ∈ (0, 2), the free boundaries x = g1,λ,θ,µ(r),

x = g2,λ,θ,µ(r), the interface x = gλ,θ,µ(r) and the minimizer ψλ,θ,µ satisfy

r(gλ,θ,µ(r)− g1,λ,θ,µ(r)) →
m1√

Λ + λ sin θ
, (3.33)

r(gλ,θ,µ(r)− g2,λ,θ,µ(r)) →
m2√
λ sin θ

, (3.34)

and

rα
(∇ψλ,θ,µ

r
−
(√

Λ+ λχ{0<ψλ,θ,µ<m1} +
√
λχ{m2<ψλ,θ,µ≤0}

)

e

)

→ 0, (3.35)

as r → +∞.

Proof. Define ψn(x̃, r̃) = ψλ,θ,µ

(

xn +
x̃

rn
, rn +

r̃

rn

)

with (xn, rn) ∈ Γ1,λ,θ,µ, rn → +∞.

Set x = xn +
x̃

rn
and r = rn +

r̃

rn
. The free boundaries and interface of ψn(x̃, r̃) are given

by
{

(x̃, r̃) | xn +
x̃

rn
= gi,λ,θ,µ

(

rn +
r̃

rn

)

, i = 1, 2

}

and

{

(x̃, r̃) | xn +
x̃

rn
= gλ,θ,µ

(

rn +
r̃

rn

)}

.

(3.36)

Thanks to Lemma 3.12, we have

∂{0 < ψn < m1} converges to ∂{0 < Θ < m1} locally in Hausdorff distance.

This together with (3.36) and (3.26), taking r̃ = 0, yields that

x̃ sin θ = rn (gλ,θ,µ(rn)− xn) sin θ = rn (gλ,θ,µ(rn)− g1,λ,θ,µ(rn)) sin θ →
m1√
Λ+ λ

.

Furthermore, set ψn(x̃, r̃) = ψλ,θ,µ (xn + x̃, rn + r̃) with (xn, rn) ∈ Γ1,λ,θ,µ, rn → +∞, for

any R̃ > 0, and large rn > R̃+ 2R, similarly in Lemma 3.11, one has
ˆ

Ωµ∩{|r−rn|<R̃}
r2α
∣

∣

∣

∣

∇ψλ,θ,µ
r

−
(√

Λ+ λχ{0<ψλ,θ,µ<m1} +
√
λχ{m2<ψλ,θ,µ≤0}

)

e

∣

∣

∣

∣

2

dX

=

ˆ

{|r̃|<R̃}
(r̃ + rn)

2α

∣

∣

∣

∣

∣

∇̃ψn
r̃ + rn

−
(√

Λ + λχ{0<ψn<m1} +
√
λχ{m2<ψn≤0}

)

e

∣

∣

∣

∣

∣

2

dX̃

≤C(rn + R̃)2α−1

(

rn − R̃
)3 .

Hence for any α ∈ (0, 2) and (x̃, r̃) ∈ R
2, one has

(r̃ + rn)
α

∣

∣

∣

∣

∣

∇̃ψn
r̃ + rn

−
(√

Λ + λχ{0<ψn<m1} +
√
λχ{m2<ψn≤0}

)

e

∣

∣

∣

∣

∣

→ 0 as n→ +∞,

taking r̃ = 0, x = xn + x̃ and r = rn yields to the desired estimate (3.35).

Therefore, we complete the proof of Lemma 3.14. �

Next, we will prove that one of free boundaries will vanish, provided that the asymp-

totic direction of the outgoing jet is horizontal. We call that Γ1,µ vanishes in Ωµ∩{r > R},
means ψλ,θ,µ < m1 in Ωµ ∩ {r > R}, and similarly, we call that the free boundary Γ2,µ

vanishes in Ωµ ∩ {r > R} means that ψλ,θ,µ > m2 in Ωµ ∩ {r > R}.
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Proposition 3.15. (1). If θ = π, then the left free boundary Γ1,µ vanishes in Ωµ∩{r > R};
(2). If θ = 0, then the right free boundary Γ2,µ vanishes in Ωµ ∩ {r > R}.

Proof. Denote ψ = ψλ,θ,µ for simplicity.

For θ = π, then e = (0,−1), for (x, r) ∈ Ωµ, set

ψ0(x, r) = max

{

min

{

m1 −
√
Λ + λ(r2 −R2)

2
,m1

}

, 0

}

+min

{

max

{

√
λ(R2 + 2m1√

Λ+λ
− r2)

2
,m2

}

, 0

}

.

Next, we claim that

ψ(x, r) ≤ ψ0(x, r) in Ωµ. (3.37)

Suppose that the assertion (3.37) is not true, recalling that min{ψ,ψ0} ∈ Kµ and the

uniqueness of minimizer, we obtain

Jλ,θ,µ(ψ) < Jλ,θ,µ(min{ψ,ψ0}).

This implies that there exists some sufficiently large R0 > max

{
√

2m1√
Λ+ λ

− 2m2√
λ

+R2, 1

}

,

and

0 >

ˆ

Ωµ,R0

r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ+ λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX

−
ˆ

Ωµ,R0

r

∣

∣

∣

∣

∇min{ψ,ψ0}
r

−
(√

Λ+ λχ{0<min{ψ,ψ0}<m1} +
√
λχ{m2<min{ψ,ψ0}≤0}

)

e

∣

∣

∣

∣

2

dX

=

ˆ

Ωµ,R0

∇max{ψ − ψ0, 0} · ∇(ψ + ψ0)

r
dX

− 2
√
Λ + λ

ˆ

Ωµ,R0

∇ψ · eχ{0<ψ<m1} −∇min {ψ,ψ0} · eχ{0<min{ψ,ψ0}<m1}dX

− 2
√
λ

ˆ

Ωµ,R0

∇ψ · eχ{m2<ψ≤0} −∇min {ψ,ψ0} · eχ{m2<min{ψ,ψ0}≤0}dX

+

ˆ

Ωµ,R0

(Λ + λ)r
(

χ{0<ψ<m1} − χ{0<min{ψ,ψ0}<m1}
)

+ λr
(

χ{m2<ψ≤0} − χ{m2<min{ψ,ψ0}≤0}
)

dX

=I1 + I2 + I3 + I4,

(3.38)

where Ωµ,R0
is bounded by Ni,µ, N0,µ, Li, Hi,µ,

{

((−1)i, r) | R ≤ r ≤ R0

}

and {(x,R0) |
−R0 ≤ x ≤ R0} for i = 1, 2.

The first term I1 can be estimated as follows,

I1 =

ˆ

Ωµ,R0

|∇max{ψ − ψ0, 0}|2
r

dX + 2

ˆ

Ωµ,R0

∇max{ψ − ψ0, 0} · ∇ψ0

r
dX

=

ˆ

Ωµ,R0

|∇max{ψ − ψ0, 0}|2
r

dX − 2
√
Λ+ λ

ˆ

Ω̄µ,R0
∩{ψ0=0}

max{ψ − ψ0, 0}dx

+ 2
√
λ

ˆ

Ω̄µ,R0
∩{ψ0=0}

max{ψ − ψ0, 0}dx − 2
√
λ

ˆ

Ω̄µ,R0
∩{ψ0<0}∩{r=R0}

max{ψ − ψ0, 0}dx.

(3.39)
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Furthermore, for the second term I2, one has

I2 =− 2
√
Λ+ λ

{

ˆ

Ωµ,R0
∩{0<ψ0<m1}∩{0<ψ<m1}

∇max {ψ − ψ0, 0} · edX

+

ˆ

Ωµ,R0
∩{ψ0<0}∩{0<ψ<m1}

∇(ψ − ψ0) · edX −
ˆ

Ωµ,R0
∩{0<ψ0<m1}∩{ψ=m1}

∇(m1 − ψ0) · edX
}

=2
√
Λ+ λ

ˆ

Ω̄µ,R0
∩{ψ0=0}

max{ψ − ψ0, 0}dx.

(3.40)

Similarly, we obtain

I3 = −2
√
λ

ˆ

Ω̄µ,R0
∩{ψ0=0}

max{ψ−ψ0, 0}dx+2
√
λ

ˆ

Ω̄µ,R0
∩{ψ0<0}∩{r=R0}

max{ψ−ψ0, 0}dx.

(3.41)

Finally, we have

I4 ≥(Λ + λ)

ˆ

Ωµ,R0

r
(

χ{0<ψ<m1}∩{ψ0≤0} − χ{0<ψ0<m1}∩{ψ=m1}
)

dX − λ

ˆ

Ωµ,R0

rχ{m2<ψ0≤0}∩{ψ>0}dX

≥− (Λ + λ)

ˆ

Ωµ,R0

rχ{0<ψ0<m1}∩{ψ=m1}dX − λ

ˆ

Ωµ,R0
∩{m2<ψ0≤0}

r
(

χ{ψ>0} − χ{0<ψ<m1}
)

dX

≥− (Λ + λ)

ˆ

Ωµ,R0

rχ{0<ψ0<m1}∩{ψ=m1}dX − λ

ˆ

Ωµ,R0

rχ{m2<ψ0≤0}∩{ψ=m1}dX.

(3.42)

Inserting (3.39)-(3.42) into (3.38) yields

0 >

ˆ

Ωµ,R0

|∇max{ψ − ψ0, 0}|2
r

dX − (Λ + λ)

ˆ

Ωµ,R0

rχ{0<ψ0<m1}∩{ψ=m1}dX

− λ

ˆ

Ωµ,R0

rχ{m2<ψ0≤0}∩{ψ=m1}dX

=

ˆ

Ωµ,R0
∩{0<ψ0<m1}∩{ψ=m1}

( |∇ψ0|2
r

− (Λ + λ)r

)

dX +

ˆ

Ωµ,R0
∩{0<ψ0<ψ<m1}

|∇(ψ − ψ0)|2
r

dX

+

ˆ

Ωµ,R0
∩{m2<ψ0≤0}∩{ψ=m1}

( |∇ψ0|2
r

− λr

)

dX +

ˆ

Ωµ,R0
∩{m2<ψ0≤0}∩{ψ0<ψ<m1}

|∇(ψ − ψ0)|2
r

dX

=

ˆ

Ωµ,R0
∩{m2<ψ0<ψ<m1}

|∇(ψ − ψ0)|2
r

dX,

which derives a contradiction. Hence, (3.37) holds, it implies that

ψ(x, r) < m1 in Ωµ ∩ {r > R},

and thus, this gives that the free boundaries Γ1,µ vanishes.

For θ = 0, taking

ψ0 = min

{

max

{√
λ(r2 −R2)

2
+m2,m2

}

, 0

}

+max

{

min

{
√
Λ+ λ(r2 −R2 + 2m2√

λ
)

2
,m1

}

, 0

}

.
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Similar arguments as before, yield that

ψ(x, r) ≥ ψ0(x, r) in Ωµ ∩ {r > R},
which implies that the free boundary Γ2,µ is empty.

Therefore, we complete the proof of Proposition 3.15. �

Remark 3.1. Furthermore, we define g1,λ,θ,µ(R) = −∞ for θ = π, g2,λ,θ,µ(R) = +∞ for

θ = 0, respectively.

Proposition 3.15 implies that the one of free boundaries vanishes for horizontal asymp-

totic direction, and on another side, we will show that the both of two free boundaries are

non-empty, for non-horizontal asymptotic direction.

Lemma 3.16. If θ ∈ (0, π), then Γi,µ is non-empty and a connected curve, x = gi,λ,θ,µ(r)

is continuous in (R,+∞). And lim
r→R+

gi,λ,θ,µ(r) exists and denoted as gi,λ,θ,µ(R + 0) for

i = 1, 2.

Proof. Step 1. We will show that Γi,µ is non-empty for i = 1, 2.

Firstly, we claim that there exists a constant R0 > 0, such that

BR0
(X0) ⊂ Ωµ ∩ {r > R0}

contains a free boundary point X0 = (x0, R+R0) ∈ Ωµ for any 0 < ψλ,θ,µ(X0) < m1.

Indeed, suppose not, we have BR0
(X0) ∩ Γ1,µ = ∅. Similar arguments as Lemma 3.7,

one gets

sup
∂BR0

(X0)
(m1 − ψλ,θ,µ) ≥ c

√
Λ+ λR(R+R0),

which implies R0 ≤ m1

c
√
Λ+ λR

. This is impossible for sufficiently large R0. Hence, the

claim holds.

Without loss of generality, we assume that Γ1,µ is empty, then we obtain ψλ,θ,µ < m1

in Ωµ ∩ {r > R}.
In view of the claim, there is a sequence Xn = (xn, rn) ∈ Γ2,µ such that R < rn ≤ c

and xn → −∞. Hence, there exists a subsequence Xnk
= (xnk

, rnk
) ∈ Γ2,µ and rnk

→ ξ,

xnk
→ −∞ as k → +∞. Due to Proposition 3.13, we can prove that ψλ,θ,µ(X +Xnk

) →
ψ0(X) uniformly in any compact subset of {(x, r)|r > R − ξ} as k → +∞, where ψ0 is a

constant flow with deflection angle θ = π. This contradicts with θ ∈ (0, π). Thus, the free

boundaries Γ1,µ and Γ2,µ are non-empty.

Step 2. We will verify that Γi,µ is a connected curve and x = gi,λ,θ,µ(r) is a continuous

function in [R,+∞), i = 1, 2.

Without loss of generality, we consider the left free boundary. Let (α, β) be the maxi-

mal interval such that x = g1,λ,θ,µ(r) is finite-valued for all [R,+∞).

Similar arguments as Section 5 in [2], we obtain α = R, and the limit lim
r→R

g1,λ,θ,µ(r)

exists.

If β < +∞, one has

x = g1,λ,θ,µ(r) → +∞ or x = g1,λ,θ,µ(r) → −∞ as r → β,

which together with Proposition 3.13 implies θ = 0 or θ = π. This leads a contradiction

to the assumption θ ∈ (0, π).

Therefore, we complete the proof of Lemma 3.16. �
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3.5. Monotonicity with respect to the parameter θ. Next, we will establish a fact

that the minimizer ψλ,θ,µ and free boundary x = gi,λ,θ,µ(r) (i = 1, 2) are monotonic with

respect to the asymptotic deflection angle θ.

Proposition 3.17. Suppose that θ1, θ2 ∈ [0, π] with θ1 < θ2, ψλ,θ1,µ and ψλ,θ2,µ are

minimizers to the truncated variational problem (Pλ,θ1,µ) and (Pλ,θ2,µ), and x = gi,λ,θ1,µ(r)

and x = gi,λ,θ2,µ(r) be the free boundary of ψλ,θ1,µ and ψλ,θ2,µ, respectively, then

ψλ,θ1,µ ≥ ψλ,θ2,µ for (x, r) ∈ Ωµ, (3.43)

and

gi,λ,θ1,µ(r) > gi,λ,θ2,µ(r) for r ≥ R, i = 1, 2. (3.44)

Proof. Denote ψ1 = ψλ,θ1,µ and ψ2 = ψλ,θ2,µ for simplicity, and set v1 = max {ψ1, ψ2} and

v2 = min {ψ1, ψ2}.
For θ1 < θ2, as is customary Lemma 8.1 in [2], we obtain

Jλ,θ1,µ(ψ1) = Jλ,θ1,µ(v1) and Jλ,θ2,µ(ψ2) = Jλ,θ2,µ(v2).

Since ψ1 and ψ2 are the minimizers to the functionals Jλ,θ1,µ and Jλ,θ2,µ, respectively,

we can now proceed as in Theorem 7.1 in [4] to obtain that

either ψ1 ≥ ψ2 or ψ1 ≤ ψ2 in Ωµ.

However, noticing that ψ1 ≥ ψ2 in Ωµ ∩ {r > R0} for some sufficiently large R0 > R,

we conclude that the case ψ1 ≥ ψ2 in Ωµ.

Next, without loss of generality, we prove that (3.44) holds for i = 1, namely

g1,λ,θ1,µ(r) > g1,λ,θ2,µ(r) for r ≥ R. (3.45)

Indeed, in view of (3.43), one has

g1,λ,θ1,µ(r) ≥ g1,λ,θ2,µ(r) for r ≥ R. (3.46)

For any r > R, suppose not, there exists a point X0 = (x0, r0) with r0 > R such that

x0 = g1,λ,θ1,µ(r0) = g1,λ,θ2,µ(r0).

Since the free boundary x = g1,λ,θ1,µ(r) is analytic in r > R, and applying Hopf’s lemma

yields that
∂

∂ν
(ψλ,θ1,µ − ψλ,θ2,µ) < 0 at X0,

where ν is the unit outward normal vector of x = g1,λ,θ1,µ(r) at X0. This contradicts to

the free boundary conditions
√
λ+ Λ =

1

r

∂ψλ,θ1,µ
∂ν

<
1

r

∂ψλ,θ2,µ
∂ν

=
√
λ+ Λ at X0.

On another side, for r = R, suppose that g1,λ,θ1,µ(R) = g1,λ,θ2,µ(R) and X0 =

(g1,λ,θ1,µ(R), R). If g1,λ,θ1,µ(R) ≤ −1, let Gδ be a domain bounded by N1, L1, Γ1,λ,θ1,µ

and ∂Bδ(X0), and Gδ ⊂ {0 < ψλ,θ1,µ < m1}. If g1,λµ,θ1,µ(R) > −1, set Gδ be a do-

main bounded by N1, {(x,R) | −1 ≤ x ≤ g1,λµ,θ1,µ(R)}, Γ1,λ,θ1,µ and ∂Bδ(X0), and

Gδ ⊂ {0 < ψλ,θ1,µ < m1}.
Set

ψ̃ε = (1 + ε)(m1 − ψλ,θ1,µ)− (m1 − ψλ,θ2,µ) for some ε > 0.
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Recalling the fact ψ1 ≥ ψ2 in Ωµ, we can choose δ > 0 sufficiently small such that

Gδ ⊂ {0 < ψλ,θ1,µ < m1} ∩ {0 < ψλ,θ2,µ < m1}.

It follows from the similar arguments as in Corollary 11.5 [23] that there exists a small

ε > 0 such that

ψ̃ε < 0 in Gδ . (3.47)

Hence, we obtain

1

R

∂ψ̃ε (g1,λ,θ1,µ(R), R)

∂ν
≥ 0,

where ν is the unit normal vector of the left free boundary Γ1,λ,θ1,µ at (g1,λ,θ1,µ(R), R),

then

(1 + ε)
√
λ+ Λ ≤

√
λ+ Λ.

This leads a contradiction and then the inequality (3.45) holds for r = R.

Therefore, we finish the proof of the Proposition 3.17. �

3.6. Continuous dependence to the parameters λ and θ. In this subsection, a

convergence result to the parameters λ and θ will be stated as follows.

Proposition 3.18. For any λ > 0 and θ ∈ [0, π], and sequences λn → λ, θn → θ with θn ∈
[0, π], let ψλn,θn,µ be the minimizer to the variational problem (Pλn,θn,µ), x = gi,λn,θn,µ(r)

and x = gλn,θn,µ(r) be the free boundary of ψλn,θn,µ and interface, respectively. Then there

exist three subsequences still labeled as ψλn,θn,µ, gi,λn,θn,µ(r) and gλn,θn,µ(r) such that

ψλn,θn,µ → ψλ,θ,µ weakly in H1
loc(Ωµ) and pointwise in Ωµ, (3.48)

gi,λn,θn,µ(r) → gi,λ,θ,µ(r) uniformly for r ≥ R, (3.49)

and

gλn,θn,µ(r) → gλ,θ,µ(r) uniformly for r ≥ 0. (3.50)

Here, ψλ,θ,µ is the minimizer to the variational problem (Pλ,θ,µ) and x = gi,λ,θ,µ(r) and

x = gλ,θ,µ(r) are the free boundary and interface of ψλ,θ,µ for i = 1, 2, respectively.

Proof. Firstly, recalling the following facts

ψλn,θn,µ ∈ H1
loc(Ωµ), |∇ψλn,θn,µ| ≤ C,

and using diagonal procedure gives that there exists a subsequence {ψλn,θn,µ}∞n=1 and a

function ω ∈ H1
loc(Ωµ) for some 0 < α < 1 such that

ψλn,θn,µ → ω weakly in H1
loc(Ωµ), C

α
loc(Ωµ) and pointwise in Ωµ.

Along the similar arguments as Lemma 9.2 in [2], we obtain that ω is indeed a minimizer

to the truncated variational problem (Pλ,θ,µ). Due to the uniqueness of minimizer to the

truncated variational problem (Pλ,θ,µ), we have ω = ψλ,θ,µ. Therefore, we obtain the

convergence of (3.48).

Secondly, we will show the statement (3.49) for Γ1,λn,θn,µ. Indeed, for any rn > R, let

Xn = (g1,λn,θn,µ(rn), rn) ∈ Γ1,λn,θn,µ, and Xn → X0 = (x0, r0), as n→ +∞.
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Then, for any small r > 0, the non-degeneracy lemma implies that there exist two positive

constants C1 and C2, such that

C1λnrn ≤ 1

r

 

∂Br(Xn)
(m1 − ψλn,θn,µ) dS ≤ C2λnrn.

Letting n→ +∞ gives

C1λr0 ≤
1

r

 

∂Br(X0)
(m1 − ψλ,θ,µ) dS ≤ C2λr0.

Moreover, recalling the non-degeneracy Lemma 3.5 and Lemma 3.6 yields that X0 ∈ Γ1,µ.

Hence, we obtain the assertion (3.49) for r ∈ (R,+∞).

Using Lemma 10.4 in [23], we can obtain the result for r = R, namely,

g1,λn,θn,µ(R) → g1,λ,θ,µ(R) as n→ +∞.

Similarly, (3.49) holds for the right free boundary Γ2,λn,θn,µ.

Finally, similar arguments as Theorem 7.1 in [6], we can obtain (3.50). �

3.7. Continuous and smooth fit conditions of the free boundaries. In this subsec-

tion, we will verify that there exist two parameters λ and θ, such that the free boundaries

Γi,µ connect smoothly at the end points Ai of the nozzles Ni (i = 1, 2), respectively.

Namely, for any µ > 0, there exists a pair of parameters (λµ, θµ) with λµ > 0, θµ ∈ (0, π),

such that

g1,λµ,θµ,µ(R) = −1 and g2,λµ,θµ,µ(R) = 1.

As already mentioned before, this is the main difference to the impinging free jet

without rigid nozzle walls.

To see this, we first define a set Σµ as

Σµ = {λ | λ ≥ 0, there exists a θ ∈ (0, π), such that g1,λ,θ,µ(R) < −1 and g2,λ,θ,µ(R) > 1}.
(3.51)

The following lemma implies that Σµ is non-empty.

Lemma 3.19. There exists θ0 ∈ (0, π) such that

g1,λ,θ0,µ(R) < −1 and g2,λ,θ0,µ(R) > 1, (3.52)

for sufficiently small λ > 0.

Proof. For any Ω0 ⊂⊂ Ωµ ∩ {r < R} ∩ {m2 < ψλ,θ,µ < 0}, firstly, it follows from Lemma

5.2 in [2] that there exists a positive constant C (depending only on Ω0), such that

|∇ψλ,θ,µ| ≤ Cλ in Ω0, (3.53)

provided that Ω0 contains a free boundary point.

For θ ∈ (0, π), suppose not, without loss of generality, suppose g2,λ,θ,µ(R) ≤ 1.

Indeed, it follows from the monotonicity of ψλ,θ,µ(x, r) with respect to x, that there

exists a point X1 ∈ Ωµ, such that

ψλ,θ,µ(X1) =
m2

2
, with X1 = (x1, R), and gλ,θ,µ(R) < x1 < 1.

Denote X2 = (x2, R) as the initial point of the right free boundary x = g2,λ,θ,µ(r),

due to the monotonicity of ψλ,θ,µ with respect to x, one has x2 > x1. Taking X3 =
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(

3x2 − x1
2

, R

)

, an arc γ ∈ Ωµ ∩ {r > R} connecting X1 to X3 and |γ| ≤ C|X2 −X1| =
C|x2 − x1|, which intersects Γ2,µ at X4, γ0 denotes the arc part γ from X1 to X4.

Let Ω0 be bounded by γ0, r = R and Γ2,µ, it follows from (3.53) that

|∇ψλ,θ,µ| ≤ Cλ in Ω0 \Bδ(A2), for sufficiently small δ > 0. (3.54)

Hence, it follows from (3.54) that

−m2

2
= ψλ,θ,µ(X1)− ψλ,θ,µ(X4) ≤

ˆ

γ0

|∇ψλ,θ,µ|dl ≤ Cλ|X1 −X2| ≤ Cλ (1− gλ,θ,µ(R)) ,

which is impossible with sufficiently small λ. Therefore, for some sufficiently small λ > 0,

one has g2,λ,θ,µ(R) > 1.

Indeed, due to Proposition 3.18 and Remark 3.1, we obtain that there exists an θ0
(π − θ0 ≪ 1) such that (3.52) holds.

Hence, we complete the proof of this lemma. �

Next, the following lemma implies that the set Σµ has a uniform positive lower bound.

Lemma 3.20. If θ ∈ (0, π), we have

min {−g1,λ,θ,µ(R), g2,λ,θ,µ(R)} < 1, (3.55)

for sufficiently large λ.

Proof. Indeed, it suffices to prove that the free boundaries Γ1,µ : x = g1,λ,θ,µ(r) and

Γ2,µ : x = g2,λ,θ,µ(r) with R ≤ r ≤ 2R are contained in a neighborhood of Γµ : x = gλ,θ,µ(r)

for sufficiently large λ.

Firstly, we prove that the free boundary Γ1,µ with R ≤ r ≤ 2R is contained in a

neighborhood of Γµ for sufficiently large λ.

Suppose not, then there exists a small and fixed r0 > 0 and X̃ = (x̃, r̃) ∈ Γ1,µ ∩
{R ≤ r ≤ 2R}, and Br0(X̃) ⊂ Ωµ ∩{r > R}∩ {0 < ψλ,θ,µ < m1}, such that for any λ > 0,

Br0(X̃) ∩ Γµ = ∅.

Thus, the non-degeneracy Lemma 3.6 implies that

√
λ+ ΛCr̃ ≤ 1

r0

 

∂Br0
(X̃)

(m1 − ψλ,θ,µ) dS ≤ m1

r0
,

which yields √
λ+Λ ≤ m1

Cr0R
.

This leads to a contradiction for sufficiently large λ > 0.

Similarly, we can prove that the free boundaries Γ2,µ with R ≤ r ≤ 2R is contained in

a neighborhood of Γµ for sufficiently large λ.

Therefore, we finish the proof of Lemma 3.20. �

Define

λµ = sup {λ | λ ∈ Σµ} , (3.56)

Lemma 3.20 implies that there exists a positive constant C independent of µ, such that

λµ ≤ C.



IMPINGING OUTGOING JETS 33

Finally, we will check that there exists a θµ ∈ (0, π) such that

g1,λµ,θµ,µ(R) = −1 and g2,λµ,θµ,µ(R) = 1. (3.57)

Proposition 3.21. There exists a θµ ∈ (0, π) such that (3.57) holds. Furthermore, Ni ∪
Γi,λµ,θµ,µ is C1-smooth in a neighborhood of Ai, for i = 1, 2.

Proof. Taking a sequence (λn, θn) such that

g1,λn,θn,µ(R) < −1, g2,λn,θn,µ(R) > 1,

and

λn → λµ > 0, θn → θµ ∈ [0, π].

Noticing the fact that x = gi,λ,θ,µ(r) (i = 1, 2) is continuous with respect to the

parameters λ and θ, then we have

g1,λµ,θµ,µ(R) ≤ −1 and g2,λµ,θµ,µ(R) ≥ 1. (3.58)

Firstly, we claim that

0 < θµ < π. (3.59)

Without loss of generality, we suppose θµ = 0, then for any θ̃ > 0, the monotonicity in

Proposition 3.17 gives that

ψ
λµ,θ̃,µ

≤ ψλµ,0,µ, (3.60)

and

g1,λµ,θ̃,µ(r) < g1,λµ,0,µ(r) for r ≥ R. (3.61)

It follows from θµ = 0 that g2,λµ,0,µ(R) = +∞, choosing θ̃ > 0 be sufficiently small,

due to the convergence of the free boundaries (3.49), one gets

g2,λµ,θ̃,µ(R) ≥ 2.

Furthermore, (3.61) implies that

g1,λµ,θ̃,µ(R) < −1.

Then, we can choose a λ0 > λµ and λ0 − λµ suitably small such that

g1,λ0,θ̃,µ(R) < −1 and g2,λ0,θ̃,µ(R) > 1,

which implies λ0 ∈ Σµ. This contradicts with the definition of λµ.

Consequently, we obtain θµ > 0. Similarly, we can prove θµ < π. Hence, the claim

(3.59) holds.

Moreover, we will verify the continuous fit conditions (3.57). Indeed, suppose not,

without loss of generality, we assume that

g1,λµ,θµ,µ(R) < −1.

Taking θ̃ ∈ (0, θµ) with θµ − θ̃ being suitably small, then the continuity of g1,λµ,θµ,µ(R)

with respect to θ gives

g1,λµ,θ̃,µ(R) < −1.

Similar to (3.61), we have

1 ≤ g2,λµ,θµ,µ(R) < g2,λµ,θ̃,µ(R).
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Hence,

g1,λµ,θ̃,µ(R) < −1 and g2,λµ,θ̃,µ(R) > 1.

Therefore, similar to the above arguments for θ = θ̃, we can choose a λ0 > λµ and

λ0 − λµ being sufficiently small, and λ0 ∈ Σµ, it leads a contradiction to the definition of

λµ.

Thus, we obtain the continuous fit conditions (3.57).

Furthermore, the similar proof to the jet flow problem in [4] implies that the free

boundaries are C1-smooth at the end points of the nozzles Ai (i = 1, 2), we omit it

here. �

3.8. Existence of the impinging outgoing jet. In order to obtain the existence of

the impinging outgoing jet, we take a sequence µ = µn → +∞, and the corresponding

(λµn , θµn) with λµn > 0 and θµn ∈ (0, π),

g1,λµn,θµn ,µn
(R) = −1, and g2,λµn,θµn ,µn

(R) = 1,

then there exist a λ ≥ 0 and θ ∈ [0, π] and a subsequence µn, such that λµn → λ, θµn → θ

and

ψλµn ,θµn ,µn → ψλ,θ weakly in H1
loc(Ω) and a.e in Ω.

The similar arguments as in Proposition 3.18 imply that ψλ,θ is a local minimizer to

the variational problem Jλ,θ, namely,

JΩ0
(ψλ,θ) ≤ JΩ0

(v) for any Ω0 ⊂⊂ Ω and v − ψλ,θ ∈ H1
0 (Ω0),

where JΩ0
(v) =

ˆ

Ω0

r

∣

∣

∣

∣

∇ψ
r

−
(√

Λ + λχ{0<ψ<m1} +
√
λχ{m2<ψ≤0}

)

e

∣

∣

∣

∣

2

dX.

Furthermore, along the similar arguments in Proposition 6.1, we can check that ψλ,θ
is a weak solution to the boundary value problem (2.4).

Since

m2 ≤ ψλ,θ ≤ m1 in Ω,

and

ψλ,θ(x, r) ≥ ψλ,θ(x̃, r) for any x < x̃, (3.62)

using the same arguments as before, there exist two C1-smooth functions x = g1,λ,θ(r)

and x = g2,λ,θ(r) such that

g1,λµn ,θµn ,µn(r) → g1,λ,θ(r) for any r ∈ [R,+∞), (3.63)

and

g2,λµn ,θµn ,µn(r) → g2,λ,θ(r) for any r ∈ [R,+∞). (3.64)

g1,λ,θ(R) = −1, and g2,λ,θ(R) = 1. (3.65)

Furthermore, along the similar arguments as Lemma 3.19 and 3.20, we assert that

λ > 0 and 0 < θ < π, (3.66)

and the smooth fit condition of x = gi,λ,θ(r) at Ai follows immediately from the arguments

in Proposition 3.21 for i = 1, 2.

Using the standard elliptic estimates yields that ψλ,θ ∈ C2,σ(Ω1 ∪ Ω2) ∩ C0(Ω1 ∪Ω2)

for some σ ∈ (0, 1) and it solves the boundary value problem (2.4).
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Hence, the existence of the impinging outgoing jets in Theorem 1.1 has been estab-

lished.

Next, we will show the positivity of radial velocity to the axially symmetric impinging

outgoing jets.

Proposition 3.22. Let ψλ,θ be the solution to the boundary value problem (2.4), then

m2 < ψλ,θ < m1 in G, (3.67)

and

V = −1

r

∂ψλ,θ
∂x

> 0 in G \ (N0 ∪ Γ) , (3.68)

where G is bounded by Ni, Γi and N0 for i = 1, 2.

Proof. Noting that

∆ψλ,θ −
1

r

∂ψλ,θ
∂r

= 0 in any bounded connected smooth open subdomain G0 ⊂ G \ Γ,
and m2 ≤ ψλ,θ ≤ m1 on ∂G0, then, the strong maximum principle implies that

m2 < ψλ,θ < m1 in G0.

The arbitrariness of domain G0 ⊂ G yields to (3.67).

Next, since N1 ∪ Γ1 ∈ C1, there exists a bounded smooth subdomain G0 ⊂ {0 <

ψλ,θ < m1} with G0 ∩ N1 = X0 (or G0 ⊂ {m2 < ψλ,θ < 0} with G0 ∩ N2 = X0). Then,

w = −∂ψλ,θ
∂x

satisfies

∆w − 1

r

∂w

∂r
= 0 in G0.

Since ψλ,θ = m1 on N1, the slip boundary condition (1.10) implies that

∂xψλ,θ(f1(r), r)f
′
1(r) + ∂rψλ,θ(f1(r), r) = 0.

This implies that the unit outward normal derivative satisfies

∂ψλ,θ
∂ν

(f1(r), r)) = −∂xψλ,θ (f1(r), r))
√

1 + f ′1(r)
2.

On another hand, ψλ,θ attains its maximum on N1, and Hopf’s lemma gives that

w = −∂xψλ,θ > 0, on N1.

Similarly, one gets

w = −∂xψλ,θ > 0, on N2.

Then, in view of (3.62), one has

w ≥ 0 on ∂G0, and w(X0) > 0,

and applying the maximum principle to w = −∂ψλ,θ
∂x

yields that

w > 0 in any subdomain G0 ⊂ G.

Finally, we claim that (3.68) holds on Γ1 ∪ Γ2.

Recalling the fact

w =

√
λ+ Λr

√

1 + (g′1,λ,θ(r))
2
≥ 0 on Γ1, and w =

√
λr

√

1 + (g′2,λ,θ(r))
2
≥ 0 on Γ2,
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Suppose that the claim can not hold, then, without loss of generality, there exists a

r0 ≥ R such that g′1,λ,θ(r0) = +∞ or −∞, ∂xψλ,θ(g1,λ,θ(r0), r0) = 0 and w(g1,λ,θ(r0), r0) =

0.

Thanks to the fact that
|∇ψλ,θ|

r
=

√
λ+ Λ on Γ1 (or

|∇ψλ,θ|
r

=
√
λ on Γ2), then

∂

∂s

( |∇ψλ,θ|2
r2

)

= 0 on Γ1 ∪ Γ2,

where s = (1, 0) is the tangential vector of Γ1 ∪ Γ2. This implies that
(

∂

∂x

( |∇ψλ,θ|2
r2

)

,
∂

∂r

( |∇ψλ,θ|2
r2

))

· (1, 0) = 0 on Γ1 ∪ Γ2.

Then, one has

∂xrψλ,θ(g1,λ,θ(r0), r0) = ∂rw(g1,λ,θ(r0), r0) = 0. (3.69)

However, the Hopf’s Lemma gives that
∣

∣

∣

∣

∂w

∂ν

∣

∣

∣

∣

=

∣

∣

∣

∣

∂w

∂r

∣

∣

∣

∣

> 0 at (g1,λ,θ(r0), r0),

which contradicts with (3.69). Then, we prove that (3.68) holds on Γ1 ∪ Γ2.

Therefore, we obtain the positivity of the vertical velocity and complete the proof of

Proposition 3.22. �

3.9. The properties of the interface. In this subsection, we will show that there exists

a C1-smooth curve Γ : {ψλ,θ = 0} ∩ {r > 0} separating the two fluids, and the axially

symmetric impinging outgoing jet established here possesses a unique branching point on

the symmetric axis N0. For Λ = 0, the proof is similar to Section 4.10 in [17], we omit it

here.

Next, it suffices to prove that the results hold for Λ > 0.

Indeed, taking subsequence µn → +∞, one has

gλµn ,θµn ,µn(r) → gλ,θ(r) for any r > 0.

Then, the similar arguments as Lemma 3.10 implies that x = gλ,θ(r) ∈ [−∞,+∞] is

generalized continuous function in [0,+∞), we need to prove that x = gλ,θ(r) is finite

valued for any r ∈ [0,+∞).

gλµn ,θµn ,µn(r) → gλ,θ(r) for any r ∈ (0,+∞). (3.70)

Since gλ,θ(r) < g2,λ,θ(r) for any r > R and gλ,θ(r) > g1,λ,θ(r) for any r > R, then it

suffices to prove that gλ,θ(r) is finite valued for 0 ≤ r ≤M0, where max{r1, r2} ≤M0 ≤ R.

Denote by (αi, βi) ⊂ [0,M0] (i = 1, 2, ..., αi < βi and βi ≤ αi+1) the maximum intervals

where x = gλ,θ(r) is finite valued.

Similar arguments as Proposition 5.1 in [31], we can prove that the number of intervals

(αi, βi) is one, denote (α,+∞) for simplicity.

Next, we will prove that α = 0.

Suppose α > 0 and lim
r→α

gλ,θ(r) = −∞. For some sufficiently large M > 0, Set

R0 = max{x | x = gλ,θ(r), α < r < r1}, r3 = min{r | gλ,θ(r) = R0 −M},
r4 = max{r | gλ,θ(r) = R0, α < r < r1}, such that R0 −M ≤ gλ,θ(r) ≤ R0 with r3 ≤ r ≤ r4.
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It follows from Lemma 6.1 in [6] that

M ≤ C(r4 − r3) ≤ Cr1,

and this is impossible when M sufficiently large.

Furthermore, the case α > 0 and lim
r→α

gλ,θ(r) = +∞, there exists a sufficiently large

R0 > 0 and for any M > 0, define

HR0
= min{r | gλ,θ(r) = R0}, lR0

= {(R0, r) | 0 ≤ r ≤ HR0
} ,

HR0+M = min{r | gλ,θ(r) = R0 +M}, and lR0+M = {(R0, r) | 0 ≤ r ≤ HR0+M} .
We define a domain GR0,M , which is bounded by lR0

, lR0+M , Γ and x-axis.

Applying Green’s formula in GR0,M and |ψλ,θ| ≤ Cr2 in Ω ∩ {r < min{r1, r2}} (using

the fact (3.8)), we find that

−
ˆ

∂GR0,M

x−R0

r

∂ψλ,θ
∂ν

dS = −
ˆ

∂GR0,M

∂(x−R0)

∂ν

ψλ,θ
r
dS

=

ˆ

∂GR0,M
∩{x=R0}

ψλ,θ
r
dS −

ˆ

∂GR0,M
∩{x=R0+M}

ψλ,θ
r
dS

≤ CH2
R0
,

(3.71)

where ν is the unit normal vector.

Indeed, in view of
|∇ψ+

λ,θ|
r

≥
√
Λ on Γ∩{R0 ≤ x ≤ R0+M}, and ∂ψλ,θ

∂r
≥ 0 on x-axis

with x ≥ R0, the left hand side of (3.71) is estimated as

−
ˆ

∂GR0,M

x−R0

r

∂ψλ,θ
∂ν

dS = −
ˆ

∂GR0,M
∩(Γ∪{r=0}∪{x=R0+M})

x−R0

r

∂ψλ,θ
∂ν

dS

≥
√
Λ

ˆ

∂GR0,M
∩Γ

(x−R0)dS −M

ˆ

∂GR0,M
∩{x=R0+M}

1

r

∂ψλ,θ
∂ν

dS

≥ c
√
ΛM2 − CMHR0

,

due to (3.16). Here ν is parallel to ∇ψλ,θ on free streamlines, the positive constants c, C

are independent of M and HR0
.

This together with (3.71) gives that

M ≤ CHR0
,

then we derives a contradiction for sufficiently large M .

Hence, we obtain α = 0.

Finally, it suffices to prove that |gλ,θ(0 + 0)| < +∞.

Suppose not, without loss of generality, we assume gλ,θ(0 + 0) = +∞. Similar to the

above arguments, we only need to construct domain G bounded by x = R0 with some

R0 > 0 sufficiently large, x = R0, x = R0 +M , r = 0 and interface Γ, then

M ≤ C,

which derives a contradiction for sufficiently large M .

Similarly, we can exclude that gλ,θ(0) = −∞. Therefore, we conclude that x = gλ,θ(r)

is finite for any r ∈ [0,+∞).

Now, collecting all results obtained above, we complete the proof of Theorem 1.1.
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4. Uniqueness of the impinging outgoing jet

In this section, we will investigate the uniqueness of the impinging outgoing jet and

the parameters when Λ = 0.

Proof of Theorem 1.2. Let ψλ,θ and ψ̃λ,θ be two solutions to the boundary value

problem (2.4), and Γi,λ,θ : x = gi,λ,θ(r) and Γ̃i,λ,θ : x = g̃i,λ,θ(r) be the corresponding free

boundaries for i = 1, 2. Due to the continuous fit conditions, one has

f1(R) = g1,λ,θ(R) = g̃1,λ,θ(R) and f2(R) = g2,λ,θ(R) = g̃2,λ,θ(R).

Without loss of generality, we assume

lim
r→+∞

(g1,λ,θ(r)− g̃1,λ,θ(r)) ≥ 0.

Set ψε = ψλ,θ(x+ ε, r) for some ε ≥ 0 and choose a smallest ε0 ≥ 0 such that

ψε0 ≤ ψ̃λ,θ in Ω and ψε0(X0) = ψ̃λ,θ(X0),

for some X0 ∈ {m2 < ψ̃λ,θ < m1}.
We claim that

X0 /∈ {m2 < ψε0 < m1} ∩ {m2 < ψ̃λ,θ < m1}.
Suppose not and there exists a point X0 ∈ {m2 < ψε0 < m1} ∩ {m2 < ψ̃λ,θ < m1}, such
that

m2 < ψε0(X0) = ψ̃λ,θ(X0) < m1.

The continuity of ψλ,θ in Ω implies that there exists a ball Br(X0) ⊂ {m2 < ψε0 <

m1} ∩ {m2 < ψ̃λ,θ < m1} such that














∆ψ̃λ,θ −
1

r

∂ψ̃λ,θ
∂r

= 0, ∆ψε0 − 1

r

∂ψε0

∂r
= 0 in Br(X0),

ψε0(X) ≤ ψ̃λ,θ(X) on ∂Br(X0).

(4.1)

Therefore, it follows from the strong maximum principle that

ψε0(X) = ψ̃λ,θ(X) in Br(X0).

Applying the strong maximum principle in Ω again, we obtain a contradiction to the

boundary condition of ψ̃λ,θ.

Then, one has

ψε0(X0) = ψ̃λ,θ(X0) = m1, or ψε0(X0) = ψ̃λ,θ(X0) = m2.

Hence, the following two cases may occur.

Case 1. ε0 > 0, then X0 ∈ Γ1,λ,θ ∩ Γ̃1,λ,θ or X0 ∈ Γ2,λ,θ ∩ Γ̃2,λ,θ and X0 6= A1, A2.

Then,

∆ψε0 − 1

r

∂ψε0

∂r
= ∆ψ̃λ,θ −

1

r

∂ψ̃λ,θ
∂r

= 0 in Ω ∩ {m2 < ψε0 < m1} ∩ {m2 < ψ̃λ,θ < m1}.

The C1-smoothness of the free boundaries implies that Γ1,λ,θ (or Γ2,λ,θ) is tangent to Γ̃1,λ,θ

(or Γ̃2,λ,θ) at the point X0. Then, it follows from the maximum principle that

√
λ =

1

r

∂ψε0

∂ν
>

1

r

∂ψ̃λ,θ
∂ν

=
√
λ or

√
λ =

1

r

∂ψε0

∂ν
<

1

r

∂ψ̃λ,θ
∂ν

=
√
λ at X0,
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where ν is outer normal vector, we derive a contradiction.

Case 2. ε0 = 0, then X0 = A1 or A2. Without loss of generality, suppose X0 = A1,

similar to the proof of Proposition 3.21, construct a domain Gδ with δ > 0 and ψ̄ =

(1 + ζ)(m1 − ψ̃λ,θ) − (m1 − ψε0) as (3.47), then for some sufficiently small ζ > 0, which

gives

ψ̄ < 0 in Gδ,

we have

(1 + ζ)
√
λ =

1 + ζ

r

∣

∣

∣

∣

∣

∂ψ̃λ,θ
∂ν

∣

∣

∣

∣

∣

≤ 1

r

∣

∣

∣

∣

∂ψε0

∂ν

∣

∣

∣

∣

=
√
λ at A1, for small ζ > 0,

a contradiction. Similarly, we obtain X0 6= A2.

Hence, we obtain the uniqueness of the minimizer ψλ,θ for given λ and θ.

Next, we will prove θ = θ̃ for given λ.

Suppose not, without loss of generality, we assume θ < θ̃.

Let ψλ,θ and ψ
λ,θ̃

be the two solutions to the boundary value problem (2.4) corre-

sponding to the pairs of the parameters (λ, θ) and (λ, θ̃), respectively. Due to Proposition

3.17, one has

ψλ,θ(X) ≥ ψ
λ,θ̃

(X) in Ω.

Similar arguments as above, we take X0 = A1 and derive a contradiction.

Hence, we obtain θ = θ̃ as desired.

5. Asymptotic behavior of impinging outgoing jet

In this section, we will establish the asymptotic behaviors of axially symmetric im-

pinging outgoing jets in far fields which are stated in Theorem 1.3.

Proof of Theorem 1.3. Due to the standard elliptic estimates, there exists a constant

C depending only on m1, m2 and λ such that

‖∇ψλ,θ‖C1,σ(G) ≤ C, for some 0 < σ < 1, (5.1)

where G ⊂⊂ {0 < ψλ,θ < m1} ∪ {m2 < ψλ,θ < 0}.
Set ψn(x, r) = ψλ,θ(x− n, r) and a strip E = {−∞ < x < +∞}× {0 < r < r1}, there

exists a subsequence still labeled as ψn(x, r) such that

ψn(x, r) → ψ0(x, r), uniformly in C2,σ0(S), 0 < σ0 < σ,

for any compact set S ⊂⊂ E and ψ0(x, r) solves the following boundary value problem in

the strip E,


































∆ψ0(x, r)−
1

r

∂ψ0

∂r
= 0, in E,

ψ0 (x, 0) = 0, ψ0 (x, r1) = m1, for −∞ < x < +∞,

max

{

m2

r22
r2,m2

}

≤ ψ0(x, r) ≤
m1

r21
r2, in E,

(5.2)
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where we have used the Lemma 3.3. Obviously, the problem (5.2) has a unique solution

as

ψ0(x, r) =
m1

r21
r2, r ∈ [0, r1]. (5.3)

Hence, we obtain

∇ψλ,θ(x, r) →
(

0,
2m1r

r21

)

in C1,σ0(S) as x→ −∞.

Using the Bernoulli’s law yields the asymptotic behavior (1.17) and (1.18) of flow field

in the upstream.

Along the similar arguments as before, we obtain the asymptotic behavior in the

upstream

∇ψλ,θ(x, r) →
(

0,
2m2r

r22

)

in C1,σ0(S′) as x→ +∞,

where S′ ⊂⊂ E′ = {−∞ < x < +∞}× {0 < r < r2}.
Finally, it follows from Lemma 3.14, we obtain (1.16), (1.24) and (1.25). Hence, the

proof of Theorem 1.3 is done.

6. Appendix

The minimizer ψλ,θ,µ satisfies the following elliptic equation in a weak sense. The

similar proofs of these results can be found in Theorem 2.2-2.3 in [5], we omit here.

Proposition 6.1. Let ψλ,θ,µ be a minimizer to the truncated variational problem (Pλ,θ,µ),

and L
2 ({ψλ,θ,µ = 0}) = 0 (L2 is the two dimensional Lebesgue measure), then

∆ψλ,θ,µ −
1

r

∂ψλ,θ,µ
∂r

= 0, in Ωµ ∩ {m2 < ψλ,θ,µ < m1} ∩ {ψλ,θ,µ 6= 0}, (6.1)

and

∆ψλ,θ,µ −
1

r

∂ψλ,θ,µ
∂r

≥ 0, in Dµ = Ωµ ∩ {r < R}, (6.2)

in a weak sense.
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