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CONTINUUM MODEL AND NUMERICAL METHOD FOR
DISLOCATION STRUCTURE AND ENERGY OF GRAIN
BOUNDARIES*

XIAOXUE QINt, YEJUN GU¥, LUCHAN ZHANGS, AND YANG XIANGT

Abstract. We present a continuum model to determine the dislocation structure and energy of
low angle grain boundaries in three dimensions. The equilibrium dislocation structure is obtained by
minimizing the grain boundary energy that is associated with the constituent dislocations subject
to the constraint of Frank’s formula. The orientation-dependent continuous distributions of dislo-
cation lines on grain boundaries are described conveniently using the dislocation density potential
functions, whose contour lines on the grain boundaries represent the dislocations. The energy of a
grain boundary is the total energy of the constituent dislocations derived from discrete dislocation
dynamics model, incorporating both the dislocation line energy and reactions of dislocations. The
constrained energy minimization problem is solved by the augmented Lagrangian method and pro-
jection method. Comparisons with atomistic simulation results show that our continuum model is
able to give excellent predictions of the energy and dislocation densities of both planar and curved
low angle grain boundaries.

Key words. Low angle grain boundaries, Grain boundary energy, Constrained energy mini-
mization, Dislocations, Frank’s formula

1. Introduction. Grain boundaries (the interfaces between adjacent grains) are
important components in polycrystalline materials. The energy and dynamic of grain
boundaries play essential roles in the behaviors of polycrystalline materials such as
grain growth, recrystallization, plastic deformation, etc [35]. The classical grain
boundary dynamics models are based up the motion by mean curvature to reduce
the total energy of the grain boundaries [12, 25, 35]. The investigation on grain
boundaries have been an active research area of materials science and mathematics
for many decades, e.g. [5, 18, 16, 17, 9, 43, 10, 45] for dynamics simulation methods
and [4, 42, 23, 19, 43, 10] for static and dynamic properties of grain boundaries, most
of which are based on given grain boundary energies.

The energy and dynamics of grain boundaries crucially depend on their underlying
microstructure. Low angle grain boundaries can be modeled as arrays of dislocations
(line defects) [30, 35, 13]. Dislocations are characterized by Burgers vectors. The
Burgers vector of a dislocation describes the lattice distortion caused by its presence
and is invariant along the dislocation. There are finite number of possible Burgers
vectors in a crystal, e.g., six in an fcc (face centered cubic) crystal. The dislocation
structure of a grain boundary is associated with local dislocation line directions, inter-
dislocation distances, and Burgers vectors of the dislocations. Simulations of atomistic
and dislocation models have revealed many interesting properties of grain boundary
dislocation structure and the associated energy and dynamics of grain boundaries
[26, 14, 22, 21, 39, 15, 7, 8, 34, 41, 32, 31]. Although these microscopic models
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provide detailed information on the dislocation or atomistic structures of individual
grain boundaries, continuum model is desired for energetic and dynamics of grain
boundaries at larger length scales.

On the macroscopic scale, a grain boundary has five degrees of freedom (DOFSs),
namely the grain misorientation angle (one DOF), rotation axis (two DOFs) and
the boundary plane orientation (two DOFs) [35]; see Fig. 1 for an illustration. In the
classical theory of Read and Shockley [30], the grain boundary energy is E = Ey0(A —
In @), where € is the misorientation angle and parameters Fy and A depend on the
grain boundary orientation and rotation axis. Olmsted et al. and Holm et al. [26, 14]
calculated the energies of a set of 388 distinct grain boundaries by using atomistic
simulations. Saylor et al. [33] and Bulatov et al. [3] constructed grain boundary
energy based on all five DOFs using energy reconstruction or interpolation. These
models do not directly depend on the dislocation microstructure of grain boundaries
except for some special grain boundaries.

Fia. 1. Illustration of a grain boundary and five degrees of freedom. A and B are two grains
and S is the grain boundary. Five degrees of freedom include: grain boundary normal direction n,
misoreintation angle 0, and rotation axis a. This example is a tilt boundary.

Theoretically, the Frank’s formula [11, 2, 13, 35] provides a link between the five
macroscopic DOFs and the microscopic dislocation structure. However, this clas-
sical formula is only a necessary condition and in general is not able to uniquely
determine the dislocation structure. In the previously available discrete dislocation
dynamics based works on the dislocation structures of low angle grain boundaries
[22, 21, 15] or heterogeneous interfaces [29, 38, 36], two or three prescribed Burgers
vectors informed by experimental observations or atomistic simulations (instead of all
six possible Burgers vectors) were adopted so that the Frank’s formula was able to
give a unique solution of the dislocation structure. Zhang et al. [44] has developed a
continuum model to obtain dislocation structure on planar grain boundaries with all
possible Burgers vectors by minimizing the grain boundary energy associated with the
dislocation structure subject to the constraint of Frank’s formula. The constrained
minimization problem is solved by the penalty method by which it is turned into an
unconstrained minimization problem.

In this paper, we generalize the continuum model in Ref. [44] to dislocation struc-
ture and energy of low angle grain boundaries in three dimensions, in which both the
grain boundaries and their constituent dislocations are curved in general. Note that
in continuum grain boundary dynamics models [12, 25, 35], a grain boundary has
well-defined macroscopic quantities including misorientation angle, rotation axis, and
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grain boundary energy during the dynamics process. This is under the assumption
that the equilibrating process of the microstructure of the grain boundary is much
faster than the dynamics process and the grain boundary on the continuum level is
considered to be always in equilibrium in terms of its microscopic structure. There-
fore, understanding the equilibrium dislocation structure and energy of a fixed low
angle grain boundary provides a basis for the study of the dynamics problem.

In our continuum model, the distributions of the constituent dislocations on a gen-
eral grain boundary are represented by the scalar dislocation density potential func-
tions (DDPFs) [47] defined on the grain boundary, whose contour lines describe the
locations of dislocations on the grain boundary. This simple representation method
also guarantees continuity of the dislocation lines on the grain boundaries. The en-
ergy of a grain boundary is the total energy of the constituent dislocations derived
from discrete dislocation dynamics model [46, 47]. In this paper, an improved grain
boundary energy formula is proposed to further incorporate dislocation reactions in a
dislocation network. we also propose a method to identify the exact dislocation net-
work structures from the dislocation densities obtained using our continuum model.

As in the continuum model in two dimensions, the dislocation structure on a grain
boundary in three dimensions is obtained by solving a constraint energy minimization
problem, i.e., minimizing the grain boundary energy subject to the constraint of
the Frank’s formula. The constrained energy minimization problem is solved by the
augmented Lagrangian method combined with the projection method. Convergence
of this method is discussion. Compared with the penalty method used in Ref. [44],
the parameter of the penalty function in augmented Lagrangian method in general
does not need to go to infinity to achieve convergence, thus the time-consuming and
numerical ill-conditioning problems associated with the large parameter in the penalty
method are avoided, which is more important for calculations in three dimensions. A
numerical formulation that avoids ill-posedness is proposed for the nonconvex gradient
energy in the continuum model, and a numerical method based on projection method
is presented to ensure connectivity of the dislocations.

We perform simulations using our continuum model for the cylindrical and spher-
ical low angle grain boundaries. Comparisons with atomistic simulation results show
that our continuum model is able to give excellent predictions of the dislocation struc-
ture and energy of both planar and curved low angle grain boundaries.

The paper is organized as follows. We first review the dislocation model of low
angle grain boundaries and the Frank’s formula in Sec. 2. In Sec. 3, we present our
continuum model. In Sec. 4, details of incorporation of dislocation reaction in the
continuum are presented. A method to identify the exact dislocation network struc-
tures from the dislocation densities obtained using our model is proposed in Sec. 5. In
Sec. 6, a numerical formulation that avoid ill-posedness is proposed and numerical al-
gorithm based on augmented Lagrangian method and projection method is developed.
In Sec. 7, we perform simulations using our continuum model for the dislocation struc-
ture and energy of cylindrical and spherical low angle grain boundaries and compare
the results with those of atomistic simulations.

2. Review of the Frank’s formula. The Frank’s formula (or the Frank-Bilby
equation) [11, 2, 13, 35] is a condition that governs the dislocation structure of an
equilibrium grain boundary. It provides a link between the five macroscopic DOFs and
the microscopic dislocation structure. This condition is equivalent to the cancelation
of the long-range elastic field associated with the grain boundary. The classical Frank’s
formula was obtained based on planar grain boundaries. It has been shown in Ref. [47]
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that for curved grain boundaries, the Frank’s formula is equivalent to the cancelation
of the continuum long-range elastic fields (i.e. calculated from continuous distributions
of the constituent dislocations of the grain boundaries).

Given a planar grain boundary S with normal direction n, rotation axis a and
misorientation angle @ (for a low angle grain boundary, § < 15°), the Frank’s formula
is [11, 2, 13, 35]

J
(2.1) O(V xa)=> bU(NU.V),
j=1
where V is any vector in the grain boundary, b, j = 1,2,---,J, are the Burgers

vectors of the dislocations, and NU) is a vector that describes the distribution of the
dislocations with Burgers vector b() and is defined as

) 1 )
(2.2) N = e €W,

with £€) and D; respectively being the direction and inter-dislocation distance of the
dislocations with Burgers vector b(). Here we follow the definition of vector N) in
Ref. [35]. (The definition of NU) in Ref. [13] also includes the misorientation angle
6.)

First consider a case in which all the dislocations have the same Burgers vector b.
Assume that the grain boundary is the zy plane, i.e. n = (0,0, 1), the Burgers vector
is in the z direction, i.e., b = (0,0, —1) with b being the length of the Burgers vector,
and the rotation axis is in the z direction, i.e. a = (1,0,0). This is a symmetric tilt
boundary. In this case, the Frank’s formula in Eq. (2.1) gives bN; = 0, bNy = @ for the
N-vector N = (N1, N2, 0). This gives a unique solution N = (0, %, 0). Using Eq. (2.2),
this solution means that the dislocations are in the direction £ = ﬁ xn = (1,0,0)

and the inter-dislocation distance is D = ﬁ = g. The dislocation structure of this

tilt boundary is shown in Fig. 2(a).

Next, we consider a case in which dislocations with three Burgers vectors are
present. Assume that the grain boundary is the zy plane, ie. n = (0,0,1), and
the rotation axis is also in the z direction, i.e. a = (0,0,1). Dislocations with the

following three Burgers vectors are present: b(*) = b(1,0,0), b(?) = b(%, @,O)7 and

b = b(%7 —@, 0), which are all in the grain boundary plane. This is a pure twist
boundary in an fcc crystal. In this case, the Frank’s formula in Eq. (2.1) gives the
following linear system for the three N-vectors NU) = (Nl(J), NQ(]),O), j=1,2,3, for
the arrangement of the three sets of dislocations:
) + N ( ) :
T2

0\ _ v, 1 @)

s (2} (1)
0 1

(2.4) ( ) = N2<1>b< ) +N2(2)b< ) +N2(3)b< ) .
0 0 Y

This linear system has infinitely many solutions. That is, there are infinitely many
dislocation structures that can satisfy the Frank’s formula for this twist boundary.
Two solutions are shown in Fig. 2(b) and (¢). The solution in Fig. 2(b) has two sets of

dislocations with Burgers vectors b(!) and b(3): N(1) = (—ﬁ, 9,0), N® =0, NG =

V) N—= N N
[S v vy
‘ N|—= ‘ N[
= B
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Fic. 2. Ezamples of dislocation structures that satisfy the Frank’s formula (2.1). The grain
boundary is the xy plane with normal direction n = (0,0,1). The misorientation angle 6 = 2°.
(a) Dislocation structure on a symmetric tilt boundary, which is the unique solution of the Frank’s
formula when all the dislocations have the same Burgers vector b = b(0,0,—1). (b)-(d) Different
dislocation structures on a pure twist boundary, with three possible Burgers vectors b(1) = b(1,0,0),
b2 = b(%, @,0), and b®) = b(%, —?,0) that are in the grain boundary plane. (b) Dislocation
structure on this twist boundary that consists of two sets of dislocations with Burgers vectors b(1)
and b3, (¢) Dislocation structure on this twist boundary that consists of three sets of dislocations
with Burgers vectors b)), b(2) and b3, (d) Dislocation structure on this twist boundary after
dislocation reaction from the structure in (b). Two intersecting dislocation segments with Burgers
vectors b(Y) (in blue) and b3 (in red) react to form a dislocation segment with Burgers vector b(2)
(in black), see for example, at the intersection point in the middle of this image. This is the actual
dislocation structure on this twist boundary.

(%}b, 0,0); the solution in Fig. 2(c) has three sets of dislocations with Burgers vectors
b™), b®), and b®: N = (0,2 0), N@ = (-2 0 ) NG = (3¢ & 0). The

Frank’s formula is not able to uniquely determine a dislocation structure in this case.

Note that the dislocations in the structure in Fig. 2(b) can react to form a new
structure, see Fig. 2(d). (Recall that two intersecting dislocations with Burgers vectors
b®) and b® may react to form a dislocation with Burgers vector b = b(!) 4+ b(® if
the latter has lower energy.) In fact, this dislocation structure has lower energy and
is the actual dislocation structure of the pure twist boundary in an fcc crystal. Since
the dislocations are no longer straight lines in this structure, the Frank’s formula
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in Eq. (2.1) is not able to predict this dislocation structure directly. However, this
dislocation structure still satisfies the Frank’s formula in the averaged sense, i.e.,
0(V x a) = B(V), where B(V) is the net Burgers vector of all the dislocations cut
by vector V and is calculated by averaging the contributions within one period of the
dislocation structure.

[001]

[010]

F1G. 3. There are 6 Burgers vectors (neglecting the sign) in an fcc crystal: bW b®@ ... b)),
They are of the < 110 > type and have the same length b = a/\/2, where a is the lattice constant.
These Burgers vectors form a Thompson tetrahedron.

There are finite number of possible Burgers vectors in a crystal. For example, in
an fcc (face-centered cubic) crystal [13], there are J = 6 Burgers vectors (neglecting
the sign), which are of the < 110 > type and have the same length b = a/v/2 (where
a is the lattice constant of the crystal); and these Burgers vectors form a Thompson
tetrahedron, as shown in Fig. 3.

3. Continuum model. In this section, we present our continuum model for
dislocation structure and energy of low angle grain boundaries in three dimensions.
The equilibrium dislocation structure is obtained by minimizing the grain boundary
energy that is associated with the constituent dislocations subject to the constraint
of Frank’s formula.

We employ the dislocation density potential functions proposed in Ref. [47] to
describe the orientation-dependent dislocation densities on the grain boundaries in
three dimensions. Assume that the grain boundary is a surface S in three dimensional
space. A dislocation density potential function (DDPF) 7 is a scalar function defined
on S such that the constituent dislocations of the same Burgers vector b are given
by the integer-valued contour lines of n: {n(z,y) = i, where 4 is an integer}. The
dislocation structure can be described in terms of surface gradient of 7:

(3.1) Vi = [V —n(n- V),

where n is the unit normal vector of the grain boundary S. Given the surface gradient
V7, microscopic quantities including the local dislocation line direction & and the
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Fic. 4. An example of dislocation structure on a spherical grain boundary and dislocation den-
sity potential functions (DDPFs) defined on it. (a) Dislocation structure on the grain boundary.
These dislocations have three Burgers vectors b(1) | b and b(3) (shown by different colors) rep-
resented by contour lines of three DDPFs n1, n2 and n3. (b) DDPF 1 for the dislocations with
Burgers vector b(1) (color-red dislocations in (a)).

inter-dislocation distance D can be calculated by

Vs
(3.2) E=-——xn and D=
IVl

and the local dislocation density is

(3.3) p =V

In fact, V7 is a generalization of the N-vector for a planar grain boundary as reviewed
in the previous section, i.e. Vgyn = Vn = N for a planar grain boundary. See Fig. 4
for an example of dislocation structure on a spherical grain boundary and DDPFs
defined on it.

Assume that on the grain boundary S, there are J dislocation arrays repre-
sented by n;, j = 1,2,---,J, corresponding to J different Burgers vectors b)),
7 =1,2,---,J, respectively. Given the rotation axis a and misorientation angle 6,
we solve the following constrained minimization problem for the dislocation structure
and energy of the grain boundary:

Constrained Minimization Problem

(3.4) minimize E = / YepdS, forallm;, j=1,2,---,J,
s

J . .
| p(b9)? [ (Funyxn b2 D,
(3.5) with g, = — |1 —v———— | [|Vsn;||log—=,
& ; 4(1 —v) (bD)2(|V4n;1? / Ty
J .
(3.6) subject to h=6(V x a) — Zb(J)(Vsnj -V)=0,
j=1

for any vector V in the tangent plane of S.

In Egs. (3.4) and (3.5), Ygp is the grain boundary energy density, where p is the
shear modulus, v is the Poisson’s ratio, b) is the length of Burgers vector b, Tgisa
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parameter associated with the dislocation core width, and D; is an approximation of
the inter-dislocation distance of b(/)-dislocations. In the continuum model for planar
grain boundaries presented in Ref. [44], the inter-dislocation distance D; in 7, in
Eq. (3.5) is given by

1
IVsmill”

This energy formula was derived in Refs. [46, 47] from discrete dislocation dynamics
model.

Here we present an improved formula of D; to further incorporate reactions of
dislocations in a dislocation network. The new estimate of inter-dislocation distance

is
p) 1 }
minq —, —— », if (R) holds,
{9 [Vsm;l

(3.7) D; =

(3.8) Dj = X

IVsmsll”

Here (R) collects the conditions for dislocation reactions:

(R): b =bEi) £ bt2) Vg |, | Ven,ll > [IVen;ll, and gFan) - gka2) 2 0,

for some kj1, kj2.
Here the dislocation line direction & can be calculated by Eq. (3.2). These conditions
mean that a b()-dislocation can be generated by reaction of a b(*1)-dislocation and
a b*i2)_dislocation when these two types of dislocations are present with smaller
inter-dislocation distances (||Vsnw,, [, [IVsnr;. |l > [[Vsn;ll) and they are not parallel
to each other (£(ki1) . £(k52) £ (). More details of the derivation and validation of this
improved formulation by comparisons with atomistic simulation results will be given
in Sec. 4.

Note that we also propose a more accurate formula to calculate the inter-dislocation]j
distance D; from dislocation densities taking into account dislocation reactions in a
dislocation network; see Eq. (5.7). This alternative formulation is more complicated,
although it is in principle able to lead more accurate results when replacing Eq. (3.7)
or (3.8) for D; in Eq. (3.5). We develop a method to use this alternative formula of D;
in Eq. (5.7) for the identification of dislocation network structure from the obtained
dislocation densities; see Sec. 5.

The constraint in Eq. (3.6) is the classical Frank’s formula in Eq. (2.1) generalized
to a curved grain boundary using DDPFs n;’s. As we discussed above, V7 in this
equation is a generalization of the N-vector for a planar grain boundary.

Recall that for a planar grain boundary, V,n = Vi = N. With the approximation
of straight dislocations, the grain boundary energy .1, and all the vectors NG)’s are
constant/constant vectors, and the continuum model in Egs. (3.4)—(3.8) for planar
grain boundaries can also be written in the alternative form using NU)’s as

otherwise.

J (7))2 N xn.b@))2 , D
(3.9)  minimize g = Z D) 1- y% NG| log =2
wT-n) [ 0PN "y

for all N<J> (N(” NOY =12,

. subject to = X a)
3.10) sub h=0(V b(] (NG .

for any vector V in the grain boundary.
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Here D; = 1/||NU)|| following Eq. (3.7) which was adopted in the study of planar low
angle grain boundaries in Ref. [44], or when the improved formulation in Eq. (3.8) is
used: D; = bl /@ if the reaction conditions in (R) hold and 1/||N)|| otherwise.

For general, curved grain boundaries, as can be seen from the above formulation,
the major advantage of the representation using DDPFs {n;} is that simple, scalar
functions are employed to describe distributions of orientation dependent dislocation
lines on these grain boundaries. This representation also ensures the connectivity
of dislocations. It is a generalization of the N-vector representation of structures
of straight dislocations on a planar grain boundary in the classical Frank’s formula
[11, 2, 13, 35].

In summary, in our proposed formulation, the equilibrium dislocation structure
is obtained by minimizing the grain boundary energy associated with the constituent
dislocations given in Egs. (3.4) and (3.5), subject to the constraint of Frank’s formula
in Eq. (3.6). Note that this formulation is based on dislocation densities, which
are described by DDPFs {n;}. Identification of the equilibrium dislocation network
structure from dislocation densities will be discussed in Sec. 5.

4. Incorporation of dislocation reaction in the continuum model. In
this section, we present details of the derivation of the improved energy formulation
in Egs. (3.5) and Eq. (3.8) that incorporates dislocation reaction.

The grain boundary energy density formula used in the continuum model in
Ref. [44] that was derived in Refs. [46, 47], is given by Eq. (3.5) and Eq. (3.7), i.e

J .
p(b))? (Von; xn-bl))2
4.1 —y—3 Vn;ll1
(4.1) 4w 1-v) ”(bun2nvsnﬂf [Vanjlitog

rgll Vel

This is the energy density of all the constituent dislocations of the grain boundary.
Recall that the energy per unit length of a single dislocation in an array of parallel

dislocations with inter-dislocation distance D is m(l —vcos? \) log =, where A
is the angle between the dislocation and its Burgers vector [30, 13]. ThlS suggests
that we should have inter-dislocation distance inside the logarithm in the continuum
energy formula. Since the inter-dislocation distance on the grain boundary is D; =
1/|IVsn;|| for parallel connected straight dislocations (e.g. those in Fig. 2(a)), the
energy formula in Eq. (4.1) recovers the above classical formula. The ||V4n;]|| factor
before the logarithm in the continuum formula in Eq. (4.1) accounts for the dislocation
density (per unit area) on the grain boundary.

Note that the purpose of the continuum model is to provide accurate formulations
for dislocation density and grain boundary energy that are suitable for simulations
on the continuum level. As shown by the extensive comparisons with atomistic sim-
ulations, the continuum formula in Eq. (4.1) works well for most of the planar grain
boundaries. However, for some planar grain boundaries, there are noticeable dif-
ferences between the dislocation densities calculated using Eq. (4.1) and atomistic
simulations [44] (See also Fig. 6(a) below). We find that these differences are caused
by the fact that reactions of intersecting dislocations are not accurately included in
the continuum formula in Eq. (4.1) as explained below.

Recall that in the dislocation reaction [13], two intersecting dislocations with
Burgers vectors b(") and b may react to form a dislocation with Burgers vector
b® = bM + b®@ if the latter has lower energy, see Fig. 5(a). This reaction can
also be written as b®) = b)) — b if the b -dislocation changes into its opposite
direction. In a dislocation network, the length of the dislocation segment formed by
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b® =p @ 4p @

(a) (b)

FI1G. 5. (a) Dislocation reaction: Two intersecting dislocations with Burgers vectors b and
b2 may react to form a dislocation with Burgers vector b®) = b1 4 p@), (b) Dislocation reaction
in a network: Two intersecting dislocations with Burgers vectors b() and b(2) (dashed lines) may
react to form a mew dislocation segment with Burgers vector b3 = b)) + b(2). Solid lines show
the dislocation structure after reaction.

reaction is also limited by the increase of the dislocation line energy, leading to a new
stable dislocation network, see Fig. 5(b) and the hexagonal dislocation network on
a twist boundary shown in Fig. 2(d). In fact, dislocation reaction is included in an
approximate way by the energy minimization process in the continuum formulation in
Eq. (3.4), and when the total energy is given by Eq. (4.1), reactions of parallel straight
dislocations are perfectly accounted for. In the continuum energy in Eq. (4.1), the
inter-dislocation distance in the logarithm is always 1/||Vsn||, which is the inverse
of the density of the dislocations. When the density of dislocation segments formed
by reaction of intersecting dislocation arrays is small, the inter-dislocation distance
calculated using 1/||V4n||, i.e., inverse of the dislocation density, is large. As a result,
the variational force with respect to V¢n (to be used in the numerical algorithm
presented in Sec. 6), which is proportional to log ||Vsnl|, diverges as ||Vsn|| goes to
0. Whereas in the actual reaction, the inter-dislocation distance of the segments
formed by reaction (which are not necessarily connected) is no longer 1/||V4nl|: the
inter-dislocation distance in this case is determined by the two arrays of dislocations
before the reaction (see, e.g. Fig. 2(d)), and is not necessarily large even when the
density of dislocation segments formed by reaction is small. That is, the divergence
in variational force as ||V s7]|| goes to 0 is not physical for a hexagonal network formed
by dislocation reaction. In this case, the energy in Eq. (4.1) is not that accurate and
may not be able to identify the small amount of segments formed by reaction; see the
examples in Fig. 6(a), (c) and (d) (i.e., densities of the b(?) dislocations when ¢ > 45°
in (a) and the dislocation structure of ¢ = 59° in (c¢) and (d)).

Here we propose an improved grain boundary energy formula as given in Egs. (3.5)
and (3.8) to account for such dislocation reactions in the dislocation network on a
low angle grain boundary. The unphysical divergence in the variational force for
small ||[V¢n|| is fixed by a physically meaningful cutoff value given as follows. Recall
that the logarithm factor log D; in the grain boundary energy in Eq. (3.5) comes
from the logarithm factor in dislocation energy, which is known not sensitive to the
quantity D; inside the logarithm [13]. Especially, for dislocation reaction in discrete
dislocation model, as shown in Fig. 5, the logarithm factors for the energies of different
dislocations are commonly approximated by a constant when determining whether
the reaction is energetically favorable or not (Frank’s rule, [13]). For this reason, it is
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expected that in the small || V47| limit of Eq. (3.7) where the variational force diverges
unphysically for a hexagonal network, a constant cutoff by the length scale of the inter-
dislocation distances in a hexagonal network will provide a good approximation for
the quantity D; inside the logarithm in the energy formulation.

Now we look for an approximation of the length scale of the inter-dislocation dis-
tances in a hexagonal network. Recall that log @ term is included in the classical grain
boundary energy formula E' = Ey0(A—1n @) [30, 13], which was derived rigorously for
pure tilt boundaries and was generalized to all grain boundaries with fitting parame-
ters. This can be considered as an approximation of D;/r, = 1/6 in the more accurate
grain boundary energy formula in Eq. (3.5), where 7, is a dislocation core parameter
of the order of the Burgers vectors. In particular, D = b/ for the tilt boundary shown
in Fig. 2(a). When dislocation reaction happens, the length scale of inter-dislocation
distance of the newly formed disconnected dislocation segments are set by the inter-
dislocation distances of the two reacted dislocation arrays; see Fig. 2(b) and (d) for
an example (in which b()-dislocation segments are generated by reaction of b(\)- and
b®)-dislocations with the reaction b = b1 — b)) where the inter-dislocation
distances of the reacted b(")- and b(®-dislocations are both v/3b/(26). These suggest
that D; = O(b) /6), and we choose b/) /0 as the length scale to approximate D; in-
side the logarithm factor in the small |V¢n|| limit when dislocation reaction happens.
This leads to the formulation in Eq. (3.8) for the inter-dislocation distances.

We examine this new formulation of grain boundary energy in Egs. (3.5) and (3.8)
by comparisons with results of molecular static (MS) simulation and the continuum
model used previously in Ref. [44], for a series of low angle grain boundaries in fcc
Al The results are shown in Fig. 6. For parameters in the continuum models, see the
beginning of Sec. 7. These grain boundaries have rotation axis [111] and are parallel
to the [110] direction. The misorientation angle is § = 1.95°. The inclination angle
¢, which is the angle between grain boundary normal direction and the rotation axis
[111], varies from 0° to 90°. Dislocations with Burgers vectors b(!), b and b(®)
(see Fig. 3) appear in the dislocation network on the grain boundary.

Comparisons show significant improvement of the new continuum formulation
(Fig. 6(b)) over the old one (Fig. 6(a)). Dislocations of Burgers vector b() with
small density (e.g., the small horizontal dislocation segments in the MS results in
Fig. 6(c)) can be captured by the new continuum formulation (shown in Fig. 6(e))
for a much larger range of inclination angles compared with the results using the old
model (shown in Fig. 6(d)). Note that the small difference for ¢ > 72°, where the
b(M-dislocations vanish using the new continuum model whereas the density of these
dislocations decreases gradually in the MS simulations, is not due to the continuum
approximation of the Frank’s formula, because such critical inclination angle also exits
(about 76°) when using the Frank’s formula in the discrete dislocation model (using
the method in Sec. 19-4 of [13] and Appendix B of [37]). More accurate continuum
results may need incorporation of more atomistic mechanisms beyond dislocation
reactions, e.g. dislocation jogs [44], however, such improvement will lead to more
complexity in the continuum model.

An identification method to draw the exact dislocation network based on the
dislocation densities obtained by using our continuum model will be presented in the
next section. Fig. 6(f) shows that the resulting dislocation networks are in excellent
agreement with the MS results in Fig. 6(c); see next section for details.

5. Identification of dislocation structure from dislocation densities. Notell
that our continuum model gives approximations of the densities and orientations of



12 X. X. QIN, Y. J. GU, L. C. ZHANG, AND Y. XIANG

. —b™® continuum . —b® continuum
H'_Q 0.2 —b®&b® continuum ﬁ'_g 0.2 —b@&b® continuum
= * b® ms S * b® ms
g * b@eb® ms g * b@eb® ms
(=) a)
s 5
g 8
[2] (2]
* .
0
0 15 30 45 60 75 90 0 15 30 45 60 75 90
Inclination Angle ¢(°) Inclination Angle ¢(°)
(a) (b)
BO g F'f:OH v -80 =4 -80 ¢-53 -80 -0
-40 "HHHH HHF’ -40 -40 -40
CHHH
D000, 0 0 0
<HHMHHHH>
40 <NHHNHHH> 40 40 40
80 80 80 80
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100
(c)
80 \70\/ \/ 80 ¢=40 80y ¢=59 . 80 $=90
40 40 40 40
0 0 0 0
-40 -40 -40 -40
s/ \N/\/\/\ &0 sk )
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100
(d)
=0° =40° =59° =90°
80 \/\;0\/ 80 =30 80 9=59 80 9=30
0 0 0 0
P/AVAVAY SYYY
-80 -80 -80 -80
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100
(e)
80 $=59 80 $=90
40 40
0 0
-40 -40
-80 B — -80 -80
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100
®)

Fi1c. 6. (a) For some planar grain boundaries, there are noticeable differences between the dis-
location densities calculated using Eq. (4.1) (the continuum model in Ref. [44]) and molecular static
(MS) simulations. (b) Dislocation densities calculated using the new continuum model incorporating
dislocation reaction in Egs. (3.4)—(3.6) and (3.8) show significant improvement. These grain bound-
aries have rotation azis [111] and are parallel to the [110] direction, in fec Al. The misorientation
angle is 0 = 1.95°. The horizontal axis is the inclination angle ¢, which is the angle between grain
boundary normal direction and the rotation awzis [111]. (c)—(f) Dislocation networks for different
inclination angle ¢ obtained by (c) MS simulations, (d) the continuum model in Ref. [/4], (e) the
new continuum model, and (f) the new continuum model using the proposed identification method.
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the constituent dislocations of low angle grain boundaries. Recall that the constituent
dislocations are the integer-valued contour lines of the DDPFs n;’s by their defini-
tions in Sec. 3. When all the constituent dislocations are continuous straight lines, our
continuum model is able to give the grain boundary dislocation structure accurately
(see the examples in Ref. [44]). Whereas if we interpreted a dislocation network with
disconnected dislocation segments also by straight lines, the obtained structure will
no longer be the exact dislocation structure (i.e., the dislocation structure from the
atomistic model). See comparisons in Fig. 6 (c) and (d) (and that with improved
energy density in (e)).

Now we present a method that recovers the exact dislocation structure as given
in the atomistic model based on the densities and orientations of the constituent
dislocations obtained in our continuum model. As explained in Sec. 4 and illustrated
in Fig. 5, in the microscopic dislocation structure, due to dislocation reactions, the
dislocations may not be continuous straight lines, instead, they form hexagons (not
necessarily regular) with disconnected dislocation segments [13], see also examples
in Fig. 6(c). The identification method is based on calculation of the exact length
and orientation of each dislocation segment in the network based on the dislocation
densities and orientations in the continuum model.

FIG. 7. A hezagonal dislocation structure formed by dislocations with Burgers vectors b(1), b(2)
and b®) | whose line directions are 5(1), 5(2), and 5(3), respectively. Vectors a; and a2 are the two
sides of the periodic parallelogram unit cell. The area of a unit cell is A = ||a; X az||.

Consider a hexagonal network formed by dislocation reaction b(!) = b(?) 4+ b(3);
see Fig. 7. As we discussed before, the direction of dislocation generated by b is

£0) = H&Z;H x n, and the dislocation density is ||[V4n;||. This means that the length

of a b-dislocation segment in a periodic parallelogram cell with area A is [|Vsn;llA.
From Fig. 7, the b-, b®) and b®)-dislocation segments in the parallelogram,
written in the vector form, are

(51) 11 = AVSm X n, 12 = Avs’ﬂg X n, 13 = AVSng X 1n,
respectively, and the area of the periodic parallelogram cell

(52) A= ||11 X 12” + HIQ X 13” + ||13 X 11”
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Since
(5.3) 1; x 1; = A*(Ven; x n) x (Ve x n) = A%(n- (Ve x Ven;))n,

it can be solved that

1

54 A= .
(5:4) Vo < Vo Vot x Vo] ot X Vo]

Thus we have the following identification method.

Method to identify dislocation structure from dislocation densities:

The length of each dislocation segment is

IVsn;l

5.5 I = ,
G5 = R X Vo F Vo x Vil [V x Vo]

j:132337

and its direction is

i Vsn
(5.6) €W = =1 _wq
[Vsnj

Using the formula of length of each dislocation segment given in Eq. (5.5) and its
direction in Eq. (5.6), we can draw the exact periodic dislocation network structure
based on the dislocation densities and orientations in the continuum model represented
by DDPF's {n;}. Fig. 5(b) gives an illustration of this improved identification method:
Whenever dislocation reaction (b(?’) =b® + b(2)) by a pair of crossing dislocations
(dashed segments) is identified, the crossing segments are replaced by the reacted
dislocation segments (solid segments) with lengths and directions given by Egs. (5.5)
and (5.6). Using this identification method, we plot dislocation structures for the
results obtained by the new continuum energy formulation shown in Fig. 6(e), and
the generated dislocation networks are shown in Fig. 6(f). It can be seen that the
generated dislocation networks are in excellent agreement with the MS simulation
results in Fig. 6(c).

It is interesting to also have the formulas for the exact distances between parallel
dislocation segments based on the dislocation densities and orientations in the con-
tinuum model. From Fig. 7, we have the distance between b(!)-dislocation segments
can be written as D1 = (|11 x Lo|| + ||Is x 11]|)/l1, and similar for Dy and Ds. Thus
using Egs. (5.3) and (5.5), we have

Vs X V|l + [[Vsniz X V|

P = I % Vol + [Vt % Vol + [Voris X Vo)’
(5.7) Dy = [Vsm X Vsna|| + [[Vsnz X Vans|| ’
[Vsnall (IVsny x Vena|| + [[Vsnz x Vansll 4 [[Vsns x Veml|)

Ds IVsnz X Vol + [|[Vsna x Vns||

Vsl (IVam x Vana|| + Va2 x Vans|l + [[Vans x Ve ))’

Note that this formula provides a more accurate inter-dislocation distance D; in the
grain boundary energy vy, in Eq. (3.5), as an alternative to the formulas of D; in
Egs. (3.7) and (3.8).
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For a planar grain boundary, if the formulation in Egs. (3.9) and (3.10) based on
the alternative notation {INNU)} is used, the identification method can be written as

INO| |
' = =1,2
(5 8) / HN(l) X N(2)|| + ||N(2) X N(3)H + ||N(3) X N(l)H? J 5 733
) N
G) — Y
69 €9 = g <

and similar for D; in Eq. (5.7) with V,n; replaced by NG,
6. Numerical Algorithm.

6.1. Gradient flow formulation for energy minimum state. The contin-
uum minimization problem in Egs. (3.4), (3.5), (3.6), and (3.7) or (3.8) is solved by
gradient flow of the total energy to equilibrium state. The major challenge in this
formulation is that the energy density - is not convex as a function of |Vn;|.
This nonconvexity will lead to an ill-posed formulation when using gradient flow of
the total energy to find the solution of the minimization problem. In fact, neglecting
constants and adjustments due to dislocation direction and reaction, the contribu-
tion of b()-dislocations in the energy density g, is essentially —||V ;| log ||Vsn;l,
which is a concave function of ||V,n;|| and the gradient flow will give a backward-
diffusion-like ill-posed equation of 7;. For example, when 7 depends only on the single
variable z, the total energy with energy density —|n,|log |n.| leads to the gradient
flow n; = —ﬁnm, which is ill-posed.

Note that since in general it is not easy to guess the solution of this energy
minimization problem except for some well-known cases, a gradient flow based solution
method is preferred than Newton’s methods because the latter rely on good initial
guesses.

In order to obtain a gradient flow formulation that avoids this ill-posedness, we
use the components of V,n; as independent variables, instead of n; itself. By doing
so, gradient flow of the total energy will lead to ODE systems instead of backward-
diffusion-like equations. For the simplified example considered above, when 7 depends
only on the single variable x and the energy density is —|n,|log [7.|, if we use { = n,
as the unknown function, i.e., the energy density is —|(|log ||, the gradient flow of
the total energy with respect to ¢ is ¢ = (log|[¢| + 1)%, which is an ODE and has
no such ill-posedness. However, the components of V7, are not independent. Thus,
we include these relationships of the components of these surface gradients as further
constraints in the energy minimization problem. The detailed formulation is given as
follows.

Consider a grain boundary surface S in three dimensions with parameterization
(u,v), i.e. apoint on the grain boundary can be written as r(u,v) = (z(u, v), y(u, v), z(u,v)) Jj
The surface gradient of a DDPF 7; defined on the grain boundary can be expressed
in terms of 7;, and 7, (which are partial derivatives of 7; with respect to u and v)
as
(6.1)

N 11 S T T Y A |71 S A SRR
N N T N T N I T N by

where r,, and r, are partial derivatives of r with respect to u and v. When the
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parameterization (u,v) is orthogonal, i.e., r, - r, = 0, we have

1 1
(6.2) Vn; = Wﬁjuru + W%‘vru.

We use 7;, and n;,, j = 1,2,---,J, as independent variables in the constrained
energy minimization problem in Egs. (3.4)—(3.7)/(3.8). When the grain boundary is
smooth, we have % - % = 0. Including these relations as further constraints, the

energy minimization problem in Eqgs. (3.4)—(3.7)/(3.8) can be written as:

Formulation Using Gradient Components

(63) minimize FE = / ’ngd& for all Nju and Nju,s j=1,2--- ,J,
s
; OMju _ Onju _ .
(6.4) subject to ZH* — Zlv =0 =12 ]
J
(6.5) h=0(Vxa)—> b9 (V.- V) =0,
j=1

where vector V = r, and r,, vgp is given by Egs. (3.5) and (3.7)/(3.8), and Vn; is
expressed in terms of 7;, and n;, by Eq. (6.1).

6.2. Numerical Algorithm. In the formulation of the constrained energy min-
imization problem using gradient components of 7; given in Egs. (6.3)-(6.5), (3.5),
(3.7) or (3.8), there are two groups of constraints due to the Frank’s formula (Eq. (6.5))
and the relationship between components of V,n; (Eq. (6.4)). Numerically, we use
the augmented Lagrangian method and the projection method to handle them, re-
spectively.

For the constraints due to the Frank’s formula given Eq. (6.5), we use the aug-
mented Lagrangian method (e.g., Sec. 4.2 of [1]) in the numerical implementation.
The augmented Lagrangian function is:

1
(6.6) La(Dn, A ) = / (fygb +A-h+ 2oz||h||2> ds,
s

where DN = (D14, M1vs s NJus 7w ), A € RO is the Lagrange multiplier vector, and o
is a positive scalar.
Numerical implementation using the augmented Lagrangian method is

(6.7
(68) )\k+1 = Ap + aih,
(6.9

We choose constant oy for all points on the grain boundary S. When the numer-
ical solution using an augmented Lagrangian method converges, it has been shown
(e.g., Proposition 4.2.1 of [1]) that the converged solution is a (local) minimizer of
the original constrained minimization problem when {A;} is bounded and oy — oo
as k — oo. With further the second order sufficient condition of the augmented
Lagrangian function, it has been proved that the augmented Lagrangian method con-
verges when «y’s are greater than some threshold value, not necessarily going to oo
(e.g., Proposition 4.2.3 of [1]). Analysis of the augmented Lagrangian method for this
constrained minimization problem will be presented elsewhere.

) Dnj41 = argming,, La(Dn, Ag, o), for Dn satisfying Eq. (6.4),

) update apt1 > k.
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For the numerical implementation of the constraints in Eq. (6.4), we use the

projection method, which is similar to that for solving
We introduce a new Lagrangian function:

fluid dynamics problems [6].

J on; on;
6.10 Lp=1L ; Je Y
(6.10) ; A+;w<8v ).
where pj, 7 =1,2,---,J, are Lagrange multipliers associated with the constraints in
Eq. (6.4).

The Lagrangian Lp is minimized with respect to 74, 0, j = 1,2,---,J, by

gradient flow:

OMju 0Lp 0Lan  Ou;
11 Ju — _ = _ el
(6.11) ot Mju onju v’
Snw  OLp  SLa O
12 JU — _ = _ _ 1
(6.12) S e on  Ou

subject to the constraints in Eq. (6.4), where ¢ is some artificial time. During each
time step of the evolution, we separate the contributions from La and p; into two

steps:
0L
ni1
(6.14) n?jl =, + 50 ot, njnv+1 =0, -
. _omrEL annit
In order to satisfy the constraint 7755 — ’752

formula for updating f;:

1

ot

on;,
ov

on;,
ou

ntl —

A p

(6.15)

where A is the Laplace operator.

In summary, the constrained minimization problem
the augmented Lagrangian algorithm can be solved by
the steps in Egs. (6.13), (6.15), and (6.14).

0L

0njuv tn
a’uT}Jd

J

ou

-0t

3

ot.

= 0, using Eq. (6.14), we have the

).

in Eq. (6.7) for each step in
projection method following

The complete numerical algorithm for solving the constrained energy minimiza-

tion problem in Egs. (6.3)-(6.5) is summarized below.

Numerical Algorithm

1. Solve the constrained minimization problem Dng1 = argminDn LA (Dn, A, ak)l
subject to the constraints in Eq. (6.4) by the following iteration of projection method

to equilibrium:

0L
n;u - n;lu - 677_]14 . ! 5t3 ;v = 77?1; -
p e L (O
J ot \ Ju v )’
n+1
n;Lqul = n;u + (;’U 6t7 77;?1 = 77;1; -

0L

. 6t
677jv

tn

opntt

J

9 ot.
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2. Update Ap+1 = Ax + agh.
3. Update a1 > ag.
4. Repeat the above steps until convergence.

7. Numerical results. In this section, we present some numerical simulation
results using our continuum model and compare them with those of molecular static
(MS) simulations.

We focus on low angle grain boundaries in fcc Al. The six possible Burgers
vectors are shown in Fig. 3, and their length is b = 0.286nm. The Poisson ratio is
v = 0.347. Following Ref. [44], we choose 7, = 3.5¢~ 5" ?} in the formula of 74, in
Eq. (3.5), where ¢ is the angle between rotation axis a and the out normal vector
n of the grain boundary. The improved formula in Eq. (3.8) is used. In numerical
simulations, ||V4n;| in Egs. (3.8) and is regularized as \/[|V4n;||? + ¢, and we chose
the regularization parameter ¢ to be 8 x 1077b72.

We use the central difference schemes to calculate the partial derivatives in
Egs. (6.14) and (6.15). The Laplace equation in Eq. (6.15) is solved by Gauss-Jordan
elimination in which the inverse of the coefficient matrix after discretization is calcu-
lated only once during the energy minimization process.

We use the EAM potential for Al developed by Mishin et al. [24] and the LAMMPS
code [27] in the MS simulations. Periodic boundary conditions are applied in all three
dimensions in the MS simulations. The simulation volume consists of two grains.
The inner grain is rotated with a misorientation angle about a given rotation axis.
Accordingly, the interface between the inner and outer grains forms a grain boundary
with the desired misorientation angle and rotation axis. The constituent dislocations
of the grain boundary are identified and visualized by using the software AtomEye [20]
(which is based on the atom energy). The simulation volume size is chosen to be large
enough (about three times of the largest dimension of the cylindrical or spherical
grain boundary) to eliminate the size effect. As a result, the number of atoms in
the simulation volume varies from 4 million to 11 million. The MS simulations were
running on 8 processors, and the wall-clock time varied from 10 minutes to one hour
for the presented examples. Note that in the continuum simulations, a grain boundary
was discretized into a mesh of size 40 x 20 in the domain of parametrization (u, v), and
the calculation of each presented example took about 30 minutes on a single i7-6500u
processor. The continuum simulations took much less memory and computational
time compared to the MS simulations.

7.1. Boundary of a finite cylindrical grain. We first consider the grain
boundary when a finite cylindrical grain is embedded in an infinite matrix. The grain
boundary S is the surface of the finite cylindrical grain. We choose the directions [110],
[112] and [111] to be the x, y and z directions, respectively. The six burgers vectors

in this coordinate system are b() = (1,0,0)b, b(? = (1 ﬁ, 0)b, b3 = (L, —@, 0)b,

2172 2
b = (0,3, - Lo)p b®) = (L B By and b = (—1,¥3 )y The axis of
the cylindrical grain is the z direction (i.e. along the [111] direction). The radius of
the cylindrical grain is R = 300 and its height is H = 50b. The rotation axis of S is
a = (001) (i.e. in the [111] direction). The misorientation angle of S is § = 3°.

For the cylindrical surface of the inner grain, we the parametrization (u,v) =
(Ra, z), where « is the polar angle in the zy plane. The cylindrical surface is r(u,v) =
(Rcos %, Rsin %,v). With this parametrization, we have r, = (—sin %, cos %,0) and
r, = (0,0,1). This parametrization is orthogonal, and ||r,|| = ||ry|| = 1. The outer

normal vector n on the cylindrical surface is n = (cos %,sin %,0). For the top and
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Fic. 8. Dislocation structure of the boundary of a cylindrical grain with rotation axis a along
its azis (in the +z meaning the [111] direction) and misorientation angle @ = 3°. The right panel
shows the numerical result obtained using our continuum model, and the left panel shows the result
of MS simulation. The length unit in the images of continuum model result is b. (a) and (b) Three-
dimensional view. The dislocation structure on this grain boundary consists of dislocations with
Burgers vectors b1, b2 and b®) | all of which are in the xy plane (the (111) plane). Dislocations
with these three Burgers vectors are shown by blue, black, and red lines, respectively, in the images
of result of the continuum model. (c¢) and (d) Top view. There are partial separations in the MS
simulation result in (c), in which the colored lines indicate the locations of dislocation segments with
different Burgers vectors without partial separation. (e) and (f) View from the +y direction (the
[112] direction). (g) and (h) View from the +z direction (the [110] direction). Note that the results
of the continuum model have translation invariance, and here we plot those with good agreement
with MS results under this translation invariance in these images.
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bottom disks of the cylindrical grain, we use the polar coordinates (u,v) = (r, @),
0 <r < R. Thus we have r(u,v) = (ucosv,usinv, C), where C' = H on the top and
C = 0 on the bottom, r,, = (cosv,sinv,0), r, = (—usinv,ucosv,0), and the outer
normal vector of the grain boundary is n = (0,0, +1). With these parametrizations,
the surface gradients of n; on these surfaces are given by Eq. (6.2). The sharp corners
of this cylinder are regularized by connecting the top/bottom surface with the side
surface smoothly by a quarter circle with radius 3b for each polar angle a.

The dislocation structure on the surface of this cylindrical grain obtained using
our method and comparison with the MS result are shown in Fig. 8. These dislocations
have Burgers vectors b)), b®) and b®). It is pure tilt on the side, cylindrical grain
boundary, and the obtained dislocations on this boundary are straight lines, which
agrees excellently with the MS simulation result. This result is also consistent with
the results of planar low angle grain boundaries calculated in Ref. [44] (Fig. 11 there)
if we consider the dislocation structure on this cylindrical boundary pointwise.

The planar top and bottom boundaries are pure twist, and the dislocation struc-
ture obtained using our method is shown in Fig. 8(d) and the MS simulation result
in Fig. 8(c). Considering the densities of dislocations on the top boundary, the total
length of dislocations with Burgers vector b®) in the result of the continuum model,
i.e., the two red lines in Fig. 8(d), is about 3764 (approximated by straight lines),
and this agrees excellently with the total length of b(®)-dislocations in the MS result
in Fig. 8(c) marked by red segments, which is 350A4. The orientations of the dislo-
cations in the continuum model result in Fig. 8(d) are also the same as those of the
corresponding dislocations in the MS result in Fig. 8(c).

From the result of the continuum model, we generate the exact dislocation network
structure on the top boundary using the identification method presented in Sec. 5, and
the result is shown in Fig. 9(a), which excellently recovers the hexagonal dislocation
network in the MS result in Fig. 8(c).

(a) (b)

Fic. 9. The exact dislocation network structures on grain boundaries generated using the iden-
tification method presented in Sec. 5 from the results of the continuum model. (a) Top boundary of
the cylindrical grain in Fig. 8. (b) Planar dislocation network at the pure twist point x = R on the
spherical grain boundary in Fig. 11.

Note that there are partial separations in the MS simulation results in Fig. 8(c),
which is neglected in the continuum model. The transition of dislocation structures
from twist to tilt in the smooth transition region between the top/bottom boundary
and the side boundary of this cylindrical grain is consistent with the results in Fig. 6
(and those in Sec. 4.2 in Ref. [44]).

For quantitative comparisons, we compare the densities of dislocations and energy
density along the line with height H/2 on this cylindrical boundary, obtained using
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Fic. 10. Comparisons of (a) dislocation densities and (b) energy density at every point along the
line with height H/2 on the cylindrical boundary (the dashed line in (c)) of the finite cylindrical grain
I calculated using our continuum model, with the MS results for planar low angle grain boundaries
calculated in Ref. [{4] The misorientation angle is § = 1.95°. (c) Dislocation structure on the
cylindrical boundary. The unit of the horizontal axis is the polar angle and that of the vertical axis
is b.

our method and MS simulation. The results are shown in Fig. 10. Note that accurate
dislocation and energy densities using MS simulation can only be obtained for planar
low angle grain boundaries. We compare the pointwise results on the cylindrical
boundary obtained using our method with the MS results for planar low angle grain
boundaries calculated in Ref. [44] (Fig. 10 there), where the misorientation angle
0 = 1.95°. Excellent agreement between the results using these two methods can be
seen. Note the dislocation structure of this grain boundary with 6 = 1.95° is similar
to that shown in Fig. 8 with 6 = 3°.

7.2. Spherical grain boundary. We consider a spherical grain boundary in
this subsection. We choose the directions [111], [110], [112] and to be the z, y and z
directions, respectively. The six burgers vectors in this coordinate system are b(t) =

(0,1,0)5, b = (0, 3, 5*)b, b® = (0, 3, = 4)b, bW = (=37,0, )b, b® = (. 3.

%)b7 b(®) = (@, -3, %)b. The rotation axis a = (1,0,0), i.e., in the [111] direction,
and the rotation angle 8 = 3°.

The spherical grain boundary is parametrized using spherical coordinates (R, 3, «),}j
with R = 60b, 0 < 8 < m, and 0 < «a < 27. The unit outer normal vector is
n = (sin 5 cos o, sin B sin ¢, cos ), and the surface gradient of n; is
(7.1)

On;  sina On;

1 peaa® Sy
R\ CObaaﬁ sin 3 O’

on; cosa 0n; . 0On;
Vs = L bt —smﬁnj).

cos Bsina—= a3

98  sinf da’
We choose the vector V in Frank’s formula (Eq. (6.5)) to be the two unit tangent
vectors t1 = (cos B cos «, cos Ssina, — sin §) and to = (— sina, cos «, 0).
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Fic. 11. Dislocation structure of the boundary of a spherical grain with rotation azis a in the
x axis direction (meaning the [111] direction) and misorientation angle 6 = 3°. The right panel
shows the numerical result obtained using our continuum model, and the left panel shows the result
of MS simulation. The length unit in the images of continuum model result is b. (a) and (b) Three-
dimensional view. The dislocation structure on this grain boundary consists of dislocations with
Burgers vectors b, @, and b®). Dislocations with these three Burgers vectors are shown by
blue, black, and red lines, respectively, in the images of result of the continuum model. (c) and (d)
View from the +x direction (the [111] direction). (e) and (f) View from the +y direction (the [110]
direction). (g) and (h) View from the +z direction (the [112] direction).
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The dislocation structure on this spherical grain boundary obtained using our
method and comparison with the MS result are shown in Fig. 11. These dislocations
also have Burgers vectors b(), b and b®). The grain boundary is pure twist at
r = +R, and pure tilt at y = £R and z = £R. It can be seen that the dislocation
structures at these extreme points are consistent with the results of planar low angle
grain boundaries calculated in Ref. [44]. These results obtained using our continuum
model agree excellently with the MS simulation results. At the pure twist point of
x = R, using the identification method presented in Sec. 5, we generate the exact
dislocation network structure of the planar pure twist boundary with the dislocation
densities and orientations at this point obtained using the continuum model, and the
result is shown in Fig. 9(b). It can be seen that the planar network structure in
Fig. 9(b) indeed recovers the dislocation network structure near the point z = R on
the spherical grain boundary as shown in the MS simulation result in Fig. 11(c) (where
x = R is the center point). Notice that the hexagons on the spherical grain boundary
in the MS simulation result in Fig. 11(c) are slightly greater than those in the planar
network structure in Fig. 9(b). This is believed to be due to the discreteness of the
number of hexagons in the MS result.

For quantitative comparisons, we compare the densities of dislocations and energy
density along the three lines x = 0, y = 0 and z = 0 on this spherical grain boundary,
obtained using our method and MS simulation. The results for # = 1.95° are shown
in Fig. 12. As we have done in cylinder, we compare the pointwise results on the
spherical boundary obtained using our method with the MS results for planar low
angle grain boundaries calculated in Ref. [44] (Figs. 6, 8, 10 there). Again excellent
agreement between the results using these two methods can be seen.

8. Conclusions. We have presented a continuum model to determine the dislo-
cation structure and energy of low angle grain boundaries in three dimensions. The
equilibrium dislocation structure is obtained by minimizing the grain boundary energy
that is associated with the constituent dislocations subject to the constraint of Frank’s
formula. The orientation-dependent continuous distributions of dislocation lines on
grain boundaries are described conveniently using the dislocation density potential
functions, whose contour lines on the grain boundaries represent the dislocations.
The energy of a grain boundary is the total energy of the constituent dislocations
derived from discrete dislocation dynamics model, incorporating both the dislocation
line energy and reactions of dislocations. We have also proposed a method to identify
the exact dislocation network structures from the dislocation densities obtained using
the continuum model.

The constrained energy minimization problem is solved by the augmented La-
grangian method. A numerical formulation that avoids ill-posedness is proposed for
the nonconvex gradient energy in the continuum model, and a numerical method
based on projection method is presented to ensure connectivity of the dislocations.
Comparisons with atomistic simulation results show that our continuum model is able
to give excellent predictions of the dislocation structure and energy of both planar
and curved low angle grain boundaries.

The presented continuum model for the dislocation structure and energy of static
low angle grain boundaries in three dimensions provides a basis for the dynamics
model, which will be presented elsewhere [28]. Future work may also include gen-
eralization of the continuum model to the dislocation structures of heterogeneous
interfaces [29, 38, 36]. In this paper, we focus on the equilibrium dislocation structure
and energy of low angle grain boundaries. Such an equilibrium state is stable under
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Fic. 12. Comparisons of the dislocation density and energy between the results of our continuum
model and those MS simulations. The misorientation angle is 0 = 1.95°. (a) and (b) are the
dislocation density and energy density along z = 0 on the spherical grain boundary. (c) and (d) are
the dislocation density and energy density along x = 0. (e) and (f) are the dislocation density and
energy density along y = 0.

the strong long-range elastic interaction generated by the constituent dislocations of
the grain boundary (described by the Frank’s formula which is equivalent to the can-
cellation of the long-range elastic field) [11, 2, 13, 35, 47, 40]. Influences of the external
stress fields and other defects such as external dislocations are in general considered
in the dynamic processes of grain boundaries, which will also be considered in the
future work.
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