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WELL-POSEDNESS OF THE MHD BOUNDARY LAYER SYSTEM IN GEVREY

FUNCTION SPACE WITHOUT STRUCTURAL ASSUMPTION

Wei-Xi Li and Tong Yang

Abstract. We establish the well-posedness of the MHD boundary layer system in Gevrey function space
without any structural assumption. Compared to the classical Prandtl equation, the loss of tangential
derivative comes from both the velocity and magnetic fields that are coupled with each other. By observing
a new type of cancellation mechanism in the system for overcoming the loss derivative degeneracy, we show
that the MHD boundary layer system is well-posed with Gevrey index up to 3/2 in both two and three
dimensional spaces.

1. Introduction

Magnetohydrodynamic (MHD) is concerned with the motion of conducting fluid under the influence of the

self-induced magentic field. In the incompressible framework, the governing equations are






∂tu+ (u · ∇)u− (B · ∇)B +∇P − 1

Re
∆u = 0,

∂tB −∇× (u×B)− 1

Rm
∆B = 0,

∇ · u = ∇ ·B = 0,

u|t=0 = u0, B|t=0 = B0,

(1.1)

where Re and Rm stand for the hydrodynamic and magnetic Reynolds numbers, respectively. The MHD

system is well-explored when the fluid region is the whole space, seeing for instance the survey paper [25] and

the references therein. Here we assume that the fluid is in the half-space Rd
+ =

{
(x1, · · · , xd) ∈ R

d | xd > 0
}

with d = 2 or d = 3, and the system (1.1) is equipped with the no-slip boundary condition on the velocity

field and perfectly conducting boundary condition on the magnetic field, that is,

u|xd=0 = 0, (∂xd
Bh,Bxd

)|xd=0 = 0,

where Bh,Bxd
represent the tangential and normal components of B, respectively. In this work we will

investigate the well-posedness of the MHD boundary layer system derived from the high Reynolds numbers

limit of the MHD system (1.1). More precisely, when the hydrodynamic and magnetic Reynolds numbers

are of the same order, i.e., 1/Re = νε and 1/Rm = µε for ε≪ 1, the following MHD boundary layer system

was derived in [31] (cf. the work [6] for the derivation with the insulating boundary condition on magnetic

field):






(
∂t + ~u · ∇ − ν∂2z

)
uh − (~f · ∇)fh +∇hp = 0,

∂t ~f −∇× (~u× ~f )− µ∂2z
~f = 0,

div ~u = div ~f = 0,

~u|z=0 = (∂zfh, fz)|z=0 = 0, (uh, fh)|z→+∞ = (U ,F ),

uh|t=0 = uh,0, fh|t=0 = fh,0,

(1.2)
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where xh ∈ R
d−1 is the tangential component of (xh, z) ∈ R

d
+ and we use the notation ∇ = (∇h, ∂z) with

∇h = ∂xh
= (∂x1

, · · · , ∂xd−1
), and denote by ~u = (uh, uz) and ~f = (fh, fz) the velocity and magnetic fields

respectively, with the tangential components uh, fh and the normal components uz, fz. Here p, U and F

are given functions in (t, xh) variables satisfying the Bernoulli’s law
{
∂tU + (U · ∇h)U − (F · ∇h)F +∇hp = 0,

∂tF + (U · ∇h)F − (F · ∇h)U = 0.

In view of the divergence free and boundary conditions we can write the normal components uz and fz as

uz(t, xh, z) = −
∫ z

0

∇h · uh(t, xh, z̃)dz̃, fz(t, xh, z) = −
∫ z

0

∇h · fh(t, xh, z̃)dz̃.

Thus the MHD boundary layer system (1.2) is a degenerate system with the loss of tangential derivatives

in fz and uz as non-local terms. Note the equation for fz in (1.2) is just an immediate consequence of

those for fh, in view of the representation of fz given above. The degeneracy coupled with the non-local

property is the main difficulty in studying the well-posedness of this system.

In the absence of magnetic field, the MHD system is reduced to the classical incompressible Navier-

Stokes equations, and the corresponding boundary layer system (1.2) is the classical Prandtl equation

derived by Prandtl in 1904. The mathematical study on the Prandtl boundary layer has a long history,

and there have been extensive works concerning its well/ill-posedness theories. So far the two-dimensional

(2D) Prandtl equation is well-explored in various function spaces, see e.g. [1–4,7,13,15,18–20,22,32,42–44]

and the references therein. Among these works we can see that there are basically two main settings based

on whether or not the structural assumption is imposed. One refers to Oleinik’s monotonicity condition

and another one to the analytic or Gevrey class. Under Oleinik’s monotonicity, the well-posedness in

function space with finite order of regularity was firstly achieved by Oleinik (see e.g. [37]) by using the

Crocco transformation, and was recently proved by two research groups [1, 35] independently with new

understanding on cancellation mechanism through energy method. Hence, the loss of one order tangential

derivative can be overcome by using either Crocco transformation or cancellation mechanism with the

monotonicity condition.

Without any structural assumption, it is natural to introduce the analytic function space to overcome the

loss of one order derivative by shrinking the radius of analyticity in time, cf. [39] and the later improvement

in [19, 32] that hold in both 2D and 3D. Recently some new idea of cancellation was observed in [3] to

establish the well-posedness in Gevrey function space with index up to 2 rather than in analytic setting for

the 2D Prandtl equation. Compared to the 2D case, much less is known for 3D Prandtl equation outside the

analytic framework. Here, we refer to [28] for the existence of classical solutions based on some structural

assumption such that the secondary flow does not appear, and the work [33] about the wild solution to this

system. Recently, the well-posedness in Gevrey space with the Gevrey index up to 2 was obtained in [21]

for 3D Prandtl equations without any structural assumption, inspired by the work [3] for 2D. Note that

the Gevrey index 2 in [3, 21] is optimal in view of the ill-posedness theory in [7, 27].

Finally, let us also mention the work [42] on the global existence of weak solutions under an additional

favorable pressure condition and the work [38] on the existence of global solutions in analytic function

space for small initial data. All these results are in fact related to the high Reynolds number limit for the

purely hydrodynamic flow with physical boundary conditions, and to show that the Navier-Stokes equations

can be approximaged by the Euler equation away from boundary and by the Prandtl equation near the

boundary. The mathematically rigorous justification of the limit was obtained by [40, 41] in the analytic

function space without any structural assumption. And there is a significant improvement to the Gevrey

setting in [9, 10] with some kind of concave condition on the Prandtl boundary layer profile. If the initial

vorticity is supported away from the boundary then the limit in L∞ norm was established in [34] and [5]

respectively for 2D and 3D cases. The aforementioned works on the inviscid limit are concerned with the

time dependent problem. On the other hand, for steady flow we refer to [8,11,12,14,16,17] and references

therein for the study of the inviscid limit in Sobolev or L∞ setting.
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Back to MHD system, we have new difficulty caused by the additional loss of tangential derivative in

the magnetic field. With some structural condition, the stabilizing effect of magnetic field on the boundary

layer has been observed, see e.g. [6, 26, 30, 31]. Precisely, under the assumption on the non-degenerate

tangential magnetic field, the well-posedness of MHD boundary layer in Sobolev space together with the

justification of the high Reynolds numbers limit were obtained in [30, 31] without Oleinik’s monotonicity

condition on the velocity field. On the other hand, the magnetic field may act as a destabilizing factor

and lead to the boundary layer separation, cf. [36] . Inspired by the well-posedness theory established

in [3,21] for the Prandtl equation, this paper aims to investigate the well-posedness of the MHD boundary

layer without any structural assumption in the Gevrey function space. For this, we need to explore other

intrinsic cancellation mechanism to overcome the additional loss of tangential derivative in the magnetic

field coupled with the velocity field.

To simply the argument we will assume without loss of generality that (U ,F ) ≡ 0 in the system (1.2)

because the result holds in the general case if we use some kind of the non-trivial weighted functions similar

to those used in [3] for Prandtl equation. Hence, we consider






(
∂t + ~u · ∇ − ν∂2z

)
uh − (~f · ∇)fh = 0,

∂t ~f −∇× (~u× ~f )− µ∂2z
~f = 0,

div ~u = div ~f = 0,

~u|z=0 = (∂zfh, fz)|z=0 = 0, (uh, fh)|z→+∞ = 0,

uh|t=0 = uh,0, fh|t=0 = fh,0.

(1.3)

For clear presentation, let us first introduce the Gevrey function spaces used in this paper.

Definition 1.1. Let ℓ ≥ 1 be a given number. With a given integer N ≥ 0 and a pair (ρ, σ), ρ > 0 and

σ ≥ 1, a Banach spaceXρ,σ,N consists of all smooth vector-valued functions A = A(xh, z) with (xh, z) ∈ R
d
+

such that the Gevrey norm ‖A‖ρ,σ,N < +∞, where ‖ · ‖ρ,σ,N is defined below. Denote ∂αxh
= ∂α1

x1
· · ·∂αd−1

xd−1

and define

‖A‖ρ,σ,N = sup
0≤j≤N

|α|+j≥7

ρ|α|+j−7

[(|α|+ j − 7)!]σ

∥
∥ 〈z〉ℓ+j

∂αxh
∂jzA

∥
∥
L2(Rd

+
)
+ sup

0≤j≤N

|α|+j≤6

∥
∥ 〈z〉ℓ+j

∂αxh
∂jzA

∥
∥
L2(Rd

+
)
,

where 〈z〉 = (1 + |z|2)1/2 and

‖A‖L2(Rd
+
)
def
=

( ∑

1≤j≤k

‖Aj‖2L2(Rd
+
)

)1/2

for A = (A1, · · · , Ak). Here, σ is the Gevrey index.

And the main theorem in this paper can be stated as follows.

Theorem 1.2. Let the dimension d = 2 or 3. Suppose the initial data (uh,0, fh,0) in the system (1.3)

belong to X2ρ0,σ,8 for some 1 < σ ≤ 3/2 and some 0 < ρ0 ≤ 1, compatible with the boundary condition.

Then the system (1.3) admits a unique solution (uh, fh) ∈ L∞
(
[0, T ]; Xρ,σ,4

)
for some T > 0 and some

0 < ρ < 2ρ0.

Note that the instability result in [29] suggests σ = 2 may be the optimal Gevrey index for the well-

posedness theory of the MHD boundary layer without structural assumption similar to the classical Prandt

equation. Hence, it remains an interesting problem to establish a well-posedness theory in Gevrey function

space with optimal index.

The rest of the paper is organized as follows. For clear presentation, we will prove in Section 2 the

well-posedness of the 2D MHD boundary layer system. The discussion on 3D MHD will be given in Section

3 by pointing out the difference.
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2. 2D MHD boundary layer

For the 2D MHD boundary layer system, we will use (u,w) and (f, h) to denote the velocity and magnetic

fields respectively, and denote by (x, z) ∈ R
2
+ the spatial variable. Then the MHD boundary layer system

(1.3) is






(
∂t + u∂x + w∂z − ν∂2z

)
u− (f∂x + h∂z)f = 0,

∂tf + ∂z(wf − uh)− µ∂2zf = 0,

∂th− ∂x(wf − uh)− µ∂2zh = 0,

with the divergence free and initial-boundary conditions






∂xu+ ∂zw = ∂xf + ∂zh = 0,

(u,w)|z=0 = (∂zf, h)|z=0 = (0, 0), (u, f)|z→+∞ = (0, 0),

(u, f)|t=0 = (u0, f0).

(2.1)

By (2.1), we can rewrite (1.3) as






(
∂t + u∂x + w∂z − ν∂2z

)
u = ξ,

(
∂t + u∂x + w∂z − µ∂2z

)
f = η,

(
∂t + u∂x + w∂z − µ∂2z

)
h = f∂xw − h∂xu,

(2.2)

where

ξ = (f∂x + h∂z)f, η = (f∂x + h∂z)u. (2.3)

Note

w(t, x, z) = −
∫ z

0

∂xu(t, x, z̃)dz̃, h(t, x, z) = −
∫ z

0

∂xf(t, x, z̃)dz̃.

We remark that the equation for h in (2.2) can be derived from the one for f and the main difficulty in

analysis is the loss of x-derivatives in the two terms w and h.

The existence and uniqueness theory for (2.2) can be stated as follows.

Theorem 2.1. Suppose (u0, f0) ∈ X2ρ0,σ,8 for some 1 < σ ≤ 3/2 and 0 < ρ0 ≤ 1, compatible with the

boundary condition in (2.1). Then the system (2.2) with the condition (2.1), admits a unique solution

(u, f) ∈ L∞
(
[0, T ]; Xρ,σ,4

)
for some T > 0 and some 0 < ρ < 2ρ0.

The main part of the proof of Theorem 2.1 will be given in Subsections 2.2-2.7 for proving the a priori

estimate stated in Subsection 2.1.

Notations. Throughout this section we will use ‖ · ‖L2 and (·, ·)L2 to denote the norm and inner product

of L2 = L2(R2
+), and use the notations ‖ · ‖L2(Rx) and (·, ·)L2(Rx)

when the variable is specified. Similar

notations will be used for L∞. Moreover, we use Lp
x(L

q
z) = Lp (R;Lq(R+)) for the classical Sobolev space.

2.1. A priori estimate

Let (u, f) ∈ L∞ ([0, T ]; Xρ0,σ,4) be a solution to the boundary layer system (2.2) with initial datum

(u0, f0) ∈ X2ρ0,σ,8 for some 0 < ρ0 ≤ 1 and 1 < σ ≤ 3/2, recalling Xρ,σ,N is the Gevrey function

space given in Definition 1.1. Moreover, suppose (∂itu, ∂
i
tf) ∈ L∞ ([0, T ]; Xρ0,σ,4−i) for each i ≤ 4. This

subsection together with the following Subsections 2.2-2.7 aim to close the a priori estimate on u and f .

For this, we first introduce some auxiliary functions defined below. Some of these functions were given

in [21] for the study on Prandtl equation inspired by the work [3].



WELL-POSEDNESS OF MHD BOUNDARY LAYER 5

Let U be a solution to the linear initial-boundary problem






(
∂t + u∂x + w∂z − ν∂2z

)
∫ z

0

Udz̃ = −∂xw,

U|t=0 = 0, ∂zU|z=0 = U|z→+∞ = 0,

(2.4)

where
∫ z

0
Udz̃ =

∫ z

0
U(t, x, z̃)dz̃. In addition, we define

λ = ∂xu− (∂zu)

∫ z

0

Udz̃, δ = ∂xf − (∂zf)

∫ z

0

Udz̃. (2.5)

Note the existence of solution to the initial-boundary problem (2.4) follows from the standard parabolic

theory. With these functions and ξ, η defined in (2.3), set

~a = (u, f,U , λ, δ, ξ, η).
And then we define the following Gevrey norm on ~a.

Definition 2.2. Let ~a be given above, define

|~a|ρ,σ = sup
i+j≤4

m+i+j≥7

ρm+i+j−7

[(m+ i+ j − 7)!]σ
(
‖∂it∂mx ∂jzu‖L2 + ‖∂it∂mx ∂jzf‖L2

)
+ sup

i≤4

m+i≥6

ρm+i−6

[(m+ i− 6)!]σ
‖∂it∂mx U‖L2

+ sup
i≤4

m+i≥6

ρm+i−6

[(m+ i− 6)!]σ

(

m1/2‖∂it∂mx λ‖L2 +m1/2‖∂it∂mx δ‖L2

)

+ sup
i≤4

m+i≥6

ρm+i−6

[(m+ i− 6)!]σ

(

m‖ 〈z〉ℓ ∂it∂mx ξ‖L2 +m‖ 〈z〉ℓ ∂it∂mx η‖L2

)

+ sup
i+j≤4

m+i+j≤6

(
‖∂it∂mx ∂jzu‖L2 + ‖∂it∂mx ∂jzf‖L2

)
+ sup

i≤4

m+i≤5

‖∂it∂mx U‖L2

+ sup
i≤4

m+i≤5

(
‖∂it∂mx λ‖L2 + ‖∂it∂mx δ‖L2 + ‖ 〈z〉ℓ ∂it∂mx ξ‖L2 + ‖ 〈z〉ℓ ∂it∂mx η‖L2

)
,

(2.6)

where the number ℓ is given in Definition 1.1.

Remark 2.3. Note that we have different powers of m for the L2 norms of the mth order derivatives

∂mx U , ∂mx λ and ∂mx ξ. This is motivated by the following relations between these functions:
{(

∂t + u∂x + w∂z − ν∂2z
)
U = ∂xλ+ l.o.t.,

(
∂t + u∂x + w∂z − ν∂2z

)
λ = ∂xξ + l.o.t.,

(2.7)

where l.o.t. refers to lower order terms. Formally, there is one order derivative loss in both equations of

(2.7). However, if ξ can be estimated, then we lose only 2/3 order rather than one order derivative by

treating λ and ξ as −1/3 and −2/3 order derivatives of U . This corresponds to the different powers of m

before these auxiliary functions in the definition (2.6).

Remark 2.4. As in [21] the auxiliary function U is used to overcome the loss of derivatives in w. And to

overcome the loss of derivative in h, we observe a new cancellation mechanism for the magnetic convection

term ξ = (f∂x + h∂z)f and this enables us to close the a priori estimate.

Now we state the main result concerning the a priori estimate. Without loss of generality we only

consider the case when the Gevrey index σ = 3/2, and the argument works with slight modification for

1 < σ < 3/2 (see Subsection 2.8).

Assumption 2.5. Let Xρ,σ be the Gevrey function space given in Definition 1.1. Suppose (u, f) ∈
L∞ ([0, T ]; Xρ0,σ,4) with some 0 < ρ0 ≤ 1 and σ = 3/2 is a solution to the boundary layer system (2.2)

equipped with the condition (2.1), where the initial datum (u0, f0) ∈ X2ρ0,σ,8. Without loss of generality
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we may assume T ≤ 1. Moreover, we suppose (∂itu, ∂
i
tf) ∈ L∞ ([0, T ]; Xρ0,σ,4−i) for 1 ≤ i ≤ 4 and there

exists a constant C∗ such that, for any t ∈ [0, T ],

sup
i+j≤4

k+i+j≤10

(∥
∥ 〈z〉ℓ+j

∂it∂
k
x∂

j
zu(t)

∥
∥
L2 +

∥
∥ 〈z〉ℓ+j

∂it∂
k
x∂

j
zf(t)

∥
∥
L2

)

≤ C∗, (2.8)

where the constant C∗ ≥ 1 depends only on ‖(u0, f0)‖2ρ0,σ,8, the Sobolev embedding constants and the

numbers ρ0, σ, ℓ that are given in Definition 1.1.

Theorem 2.6. Let |~a|ρ,σ be given in (2.6). Under Assumption 2.5, there exist two constants C1, C2 ≥ 1,

such that for any pair (ρ, ρ̃) with 0 < ρ < ρ̃ < ρ0, the following estimate

|~a(t)|2ρ,σ ≤C1

(
‖(u0, f0)‖22ρ0,σ,8 + ‖(u0, f0)‖42ρ0,σ,8

)

+ eC2C
2
∗

(∫ t

0

(

|~a(s)|2ρ,σ + |~a(s)|4ρ,σ
)

ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

) (2.9)

holds for any t ∈ [0, T ], where the constants C1 and C2 depend only on the Sobolev embedding constants

and the numbers ρ0, σ, ℓ given in Definition 1.1. Both C1 and C2 are independent of the constant C∗ given

in (2.8).

The rest of this section devotes to the proof of this a priori estimate. We will proceed in the following

Subsections 2.2-2.7 to derive the estimates on the terms involved in the definition (2.6) of |~a|ρ,σ .
To simplify the notation, from now on the capital letter C denotes some generic constant that may vary

from line to line that depends only on the Sobolev embedding constants and the numbers ρ0, σ, ℓ given in

Definition 1.1 but is independent of the constant C∗ in (2.8) and the order of differentiation denoted by m.

2.2. Tangential derivatives of U

For the tangential derivatives of U defined in (2.4), we have the following estimate.

Proposition 2.7. Under Assumption 2.5 we have, for any t ∈ [0, T ] and for any pair (ρ, ρ̃) with 0 < ρ <

ρ̃ < ρ0 ≤ 1,

sup
m≥6

ρ2(m−6)

[(m− 6)!]2σ
‖∂mx U(t)‖2L2+sup

m≤5
‖∂mx U(t)‖2L2 ≤ CC∗

(∫ t

0

(
|~a(s)|2ρ,σ+|~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

,

where C∗ ≥ 1 is the constant given in (2.8).

Proof. We apply ∂z to (2.4) and then use the representation (2.5) of λ to get

(
∂t + u∂x + w∂z − ν∂2z

)
U = ∂xλ+ (∂x∂zu)

∫ z

0

Udz̃ + (∂xu)U .

Then applying ∂mx to the above equation yields

(
∂t + u∂x + w∂z − ν∂2z

)
∂mx U = ∂m+1

x λ−
m∑

j=1

(
m

j

)[

(∂jxu)∂
m−j+1
x U + (∂jxw)∂

m−j
x ∂zU

]

+∂mx

[

(∂x∂zu)

∫ z

0

Udz̃ + (∂xu)U
]

.
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We take the scalar product with ∂mx U on the both sides of this equation. Since U|t=0 = ∂zU|z=0 = 0, it

holds

1

2
‖∂mx U(t)‖2L2 + ν

∫ t

0

‖∂z∂mx U(s)‖2L2ds =

∫ t

0

(

∂m+1
x λ, ∂mx U

)

L2
ds

−
∫ t

0

( m∑

j=1

(
m

j

)[

(∂jxu)∂
m−j+1
x U + (∂jxw)∂

m−j
x ∂zU

]

, ∂mx U
)

L2
ds

+

∫ t

0

(

∂mx

[

(∂x∂zu)

∫ z

0

Udz̃ + (∂xu)U
]

, ∂mx U
)

L2
ds.

(2.10)

It remains to derive the upper bound for the terms on the right side in the above equation. From definition

(2.6) of |~a|ρ,σ, it follows that, for any 0 < r ≤ ρ0 and any j ≥ 6,

‖∂jxU‖L2 + j1/2
(
‖∂jxλ‖L2 + ‖∂jxδ‖L2

)
≤ [(j − 6)!]σ

r(j−6)
|~a|r,σ . (2.11)

When σ = 3/2, we have

∫ t

0

(
∂m+1
x λ, ∂mx U

)

L2ds ≤
∫ t

0

m−1/2 [(m− 5)!]σ

ρ̃(m−5)

[(m− 6)!]σ

ρ̃(m−6)
|~a(s)|2ρ̃,σ ds

≤ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

mσ−1/2

ρ̃

(ρ

ρ̃

)2(m−6)

|~a(s)|2ρ̃,σ ds

≤ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds,

where in the last inequality we have used the fact that for any integer k ≥ 1 and for any pair (ρ, ρ̃) with

0 < ρ < ρ̃ ≤ 1,

k

(
ρ

ρ̃

)k

≤ k

ρ̃

(
ρ

ρ̃

)k

≤ 1

ρ̃− ρ
. (2.12)

On the other hand, the following two estimates are proved respectively in Lemma 3.3 and Lemma 3.4

in [21]:

−
∫ t

0

( m∑

j=1

(
m

j

)[

(∂jxu)∂
m−j+1
x U + (∂jxw)∂

m−j
x ∂zU

]

, ∂mx U
)

L2
ds

≤ ν

2

∫ t

0

‖∂z∂mx U‖2L2ds+ C
[(m− 6)!]2σ

ρ2(m−6)

(∫ t

0

(
|~a(s)|3ρ,σ + |~a(s)|4ρ,σ

)
ds

)

+CC∗
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds,

and
∫ t

0

(

∂mx

[

(∂x∂zu)

∫ z

0

Udz̃ + (∂xu)U
]

, ∂mx U
)

L2
ds

≤ ν

2

∫ t

0

‖∂z∂mx U‖2L2ds+ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

(
|~a(s)|3ρ,σ + |~a(s)|4ρ,σ

)
ds,

with C∗ ≥ 1 the constant in (2.8). Then we combine the above inequalities with (2.10) to obtain, for any

m ≥ 6

ρ2(m−6)

[(m− 6)!]2σ
‖∂mx U(t)‖2L2 ≤ C

∫ t

0

(|~a(s)|2ρ,σ + |~a(s)|4ρ,σ) ds+ CC∗

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds.

The estimate for m ≤ 5 is straightforward. Thus the proof of Proposition 2.7 is completed. �
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2.3. Tangential derivatives of u and f

For the tangential derivatives of u, f , we have the following estimate.

Proposition 2.8. Under Assumption 2.5, for any t ∈ [0, T ] and any pair (ρ, ρ̃) with 0 < ρ < ρ̃ < ρ0 ≤ 1,

we have

sup
m≥7

ρ2(m−7)

[(m− 7)!]2σ
‖ 〈z〉ℓ ∂mx u(t)‖2L2 + sup

m≤6
‖ 〈z〉ℓ ∂mx u(t)‖2L2

+ sup
m≥7

ρ2(m−7)

[(m− 7)!]2σ

∫ t

0

‖ 〈z〉ℓ ∂z∂mx u(s)‖2L2ds+ sup
m≤6

∫ t

0

‖ 〈z〉ℓ ∂z∂mx u(s)‖2L2ds

≤ C‖(u0, f0)‖22ρ0,σ,8 + CC3
∗

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

,

where C∗ ≥ 1 is the constant given in (2.8). Similarly, the same upper bound holds when ∂mx u is replaced

by ∂mx f .

Proof. Applying ∂mx to the first equation in (2.2) gives
(
∂t + u∂x + w∂z − ν∂2z

)
∂mx u = −(∂mx w)∂zu+ ∂mx ξ + Fm (2.13)

with

Fm = −
m∑

j=1

(
m

j

)

(∂jxu)∂
m−j+1
x u−

m−1∑

j=1

(
m

j

)

(∂jxw)∂
m−j
x ∂zu.

On the other hand, applying (∂zu)∂
m−1
x to (2.4) yields

(
∂t + u∂x + w∂z − ν∂2z

)
(∂zu)

∫ z

0

∂m−1
x Udz̃ = −(∂mx w)∂zu+ Lm + (∂zξ)

∫ z

0

∂m−1
x Udz̃ (2.14)

with

Lm = −(∂zu)
m−1∑

j=1

(
m− 1

j

)[

(∂jxu)

∫ z

0

∂m−j
x Udz̃ + (∂jxw)∂

m−1−j
x U

]

− 2ν(∂2zu)∂
m−1
x U .

Subtract the equation (2.14) by (2.13) to eliminate the highest order term (∂mx w)∂zu and this gives the

equation for

ψm
def
= ∂mx u− (∂zu)

∫ z

0

∂m−1
x Udz̃. (2.15)

That is,
(
∂t + u∂x + w∂z − ν∂2z

)
ψm = ∂mx ξ + Fm − Lm − (∂zξ)

∫ z

0

∂m−1
x Udz̃,

and thus

(
∂t + u∂x + w∂z − ν∂2z

)
〈z〉ℓ ψm = 〈z〉ℓ ∂mx ξ − 〈z〉ℓ (∂zξ)

∫ z

0

∂m−1
x Udz̃

+ 〈z〉ℓ Fm − 〈z〉ℓ Lm + w(∂z 〈z〉ℓ)ψm − ν(∂2z 〈z〉ℓ)ψm − 2ν(∂z 〈z〉ℓ)∂zψm.

Then we take the scalar product with 〈z〉ℓ ψm on both sides of the above equation and observe 〈z〉ℓ ψm|z=0 =

0, to obtain

1

2
‖ 〈z〉ℓ ψm(t)‖2L2 + ν

∫ t

0

∥
∥∂z

(
〈z〉ℓ ψm

)∥
∥
2

L2ds =
1

2
‖ 〈z〉ℓ ψm(0)‖2L2 +

∫ t

0

(
〈z〉ℓ ∂mx ξ, 〈z〉ℓ ψm

)

L2ds

−
∫ t

0

(

〈z〉ℓ (∂zξ)
∫ z

0

∂m−1
x Udz̃, 〈z〉ℓ ψm

)

L2
ds+

∫ t

0

(

〈z〉ℓ Fm − 〈z〉ℓ Lm, 〈z〉ℓ ψm

)

L2
ds

+

∫ t

0

(

w(∂z 〈z〉ℓ)ψm − ν(∂2z 〈z〉
ℓ
)ψm − 2ν(∂z 〈z〉ℓ)∂zψm, 〈z〉ℓ ψm

)

L2
ds.

(2.16)
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As for the first term on the right side, since 〈z〉ℓ ψm|t=0 = 〈z〉ℓ ∂mx u0, we have

‖ 〈z〉ℓ ψm(0)‖2L2 ≤ [(m− 7)!]2σ

(2ρ0)2(m−7)
‖(u0, f0)‖22ρ0,σ ≤ [(m− 7)!]2σ

ρ2(m−7)
‖(u0, f0)‖22ρ0,σ.

The upper bound for the last three terms on the right side of (2.16) was obtained in [21] (see the proof

of [21, Lemma 4.2]); that is,

∫ t

0

(

〈z〉ℓ Fm − 〈z〉ℓ Lm, 〈z〉ℓ ψm

)

L2
ds

+

∫ t

0

(

w(∂z 〈z〉ℓ)ψm − ν(∂2z 〈z〉ℓ)ψm − 2ν(∂z 〈z〉ℓ)∂zψm, 〈z〉ℓ ψm

)

L2
ds

≤ CC3
∗

[(m− 7)!]2σ

ρ2(m−7)

(∫ t

0

(

|~a(s)|2ρ,σ + |~a(s)|4ρ,σ
)

ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

.

We omit the detail and refer to the argument in [21, Lemma 4.2]. It remains to estimate the second and

third terms on the right of (2.16). From the definition of |~a|r,σ it follows that, for any 0 < r ≤ ρ0 and any

j ≥ 7,

‖ 〈z〉ℓ ∂jxu‖L2 + ‖ 〈z〉ℓ ∂jxf‖L2 ≤ [(j − 7)!]σ

r(j−7)
|~a|r,σ , (2.17)

and
∥
∥ 〈z〉−1

∫ z

0

∂jxUdz̃
∥
∥
L2

x(L
∞
z )

≤ C‖∂jxU‖L2 ≤ C[(j − 6)!]σ

rj−6
|~a|r,σ . (2.18)

Then we use the definition (2.15) of ψm and the condition (2.8) to obtain, for any 0 < r ≤ ρ0 and any

m ≥ 7,

‖ 〈z〉ℓ ψm‖L2 ≤ ‖ 〈z〉ℓ ∂mx u‖L2 + CC∗‖∂m−1
x U‖L2 ≤ CC∗

[(m− 7)!]σ

rm−7
|~a|r,σ . (2.19)

Moreover, note that

∀ 0 < r ≤ ρ0, ∀ j ≥ 6, j‖ 〈z〉ℓ ∂jxξ‖L2 + j‖ 〈z〉ℓ ∂jxη‖L2 ≤ [(j − 6)!]σ

r(j−6)
|~a|r,σ , (2.20)

from the definition of |~a|r,σ. The above two inequalities give

∫ t

0

(

〈z〉ℓ ∂mx ξ, 〈z〉
ℓ
ψm

)

L2
ds ≤ CC∗

∫ t

0

1

m

[(m− 6)!]σ

ρ̃m−6

[(m− 7)!]σ

ρ̃m−7
|~a(s)|2ρ̃,σ ds

≤ CC∗
[(m− 7)!]2σ

ρ2(m−7)

∫ t

0

|~a(s)|2ρ,σ
ρ̃− ρ

ds,

where in the last inequality we have used (2.12) and σ = 3/2. Finally, using (2.18) and the condition (2.8)

we have by recalling ξ = (f∂x + h∂z)f that

∥
∥ 〈z〉ℓ (∂zξ)

∫ z

0

∂m−1
x Udz̃

∥
∥
L2

≤ ‖ 〈z〉ℓ+1
∂z(f∂x + h∂z)f‖L∞

x (L2
z)

∥
∥ 〈z〉−1

∫ z

0

∂m−1
x Udz̃

∥
∥
L2

x(L
∞
z )

≤ CC2
∗

[(m− 7)!]σ

ρm−7
|~a|ρ,σ .

This with (2.19) yields

−
∫ t

0

(

〈z〉ℓ (∂zξ)
∫ z

0

∂m−1
x Udz̃, 〈z〉ℓ ψm

)

L2
ds ≤ CC3

∗

[(m− 7)!]2σ

ρ2(m−7)

∫ t

0

|~a|2ρ,σ ds.
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Putting the above inequalities into (2.16) gives

‖ 〈z〉ℓ ψm(t)‖2L2 + ν

∫ t

0

‖∂z
(
〈z〉ℓ ψm

)
‖2L2dt ≤ [(m− 7)!]2σ

ρ2(m−7)
‖(u0, f0)‖22ρ0,σ

+ CC3
∗

[(m− 7)!]2σ

ρ2(m−7)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

. (2.21)

Note that

‖ 〈z〉ℓ ∂mx u‖2L2 ≤ 2
∥
∥ 〈z〉ℓ ψm

∥
∥
2

L2 + 2
∥
∥ 〈z〉ℓ (∂zu)

∫ z

0

∂m−1
x Udz̃

∥
∥
2

L2 ≤ 2‖ 〈z〉ℓ ψm‖2L2 + CC2
∗‖∂m−1

x U‖2L2

due to the definition (2.15) of ψm. Hence, the two above estimates together with Proposition 2.7 give

‖ 〈z〉ℓ ∂mx u(t)‖2L2 ≤ 2
[(m− 7)!]2σ

ρ2(m−7)
‖(u0, f0)‖22ρ0,σ

+CC3
∗

[(m− 7)!]2σ

ρ2(m−7)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

.

Similarly,
∫ t

0

‖ 〈z〉ℓ ∂z∂mx u‖2L2ds ≤
∫ t

0

‖∂z
(
〈z〉ℓ ∂mx u

)
‖2L2ds+ C

∫ t

0

‖ 〈z〉ℓ ∂mx u‖2L2ds

≤ 2

∫ t

0

‖∂z
(
〈z〉ℓ ψm

)
‖2L2ds+ CC2

∗

∫ t

0

(

‖∂m−1
x U‖2L2 + ‖ 〈z〉ℓ ∂mx u‖2L2

)

ds

≤ 2
[(m− 7)!]2σ

ρ2(m−7)
‖(u0, f0)‖22ρ0,σ + CC3

∗

[(m− 7)!]2σ

ρ2(m−7)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

,

where in the last inequality we have used (2.21) and the estimates (2.17)-(2.18). Then we obtain the

estimate on ∂mx u when m ≥ 7, and the estimate for m ≤ 6 is straightforward. It remains to estimate ∂mx f .

For this, consider

ϕm = ∂mx f − (∂zf)

∫ z

0

∂m−1
x Udz̃,

which satisfies ∂zϕm|z=0 = 0 and solves
(
∂t + u∂x + w∂z − µ∂2z

)
ϕm = (µ− ν)(∂zf)∂z∂

m−1
x U + ∂mx η + F̃m − L̃m

−
[
∂zη − (∂zu)∂xf + (∂zf)∂xu

]
∫ z

0

∂m−1
x Udz̃, (2.22)

where

F̃m = −
m∑

j=1

(
m

j

)

(∂jxu)∂
m−j+1
x f −

m−1∑

j=1

(
m

j

)

(∂jxw)∂
m−j
x ∂zf,

and

L̃m = −(∂zf)
m−1∑

j=1

(
m− 1

j

)[

(∂jxu)

∫ z

0

∂m−j
x Udz̃ + (∂jxw)∂

m−1−j
x U

]

− 2µ(∂2zf)∂
m−1
x U .

Observe

(

(µ − ν) 〈z〉ℓ (∂zf)∂z∂m−1
x U , 〈z〉ℓ ϕm

)

L2
≤ 1

2

∥
∥∂z

(
〈z〉ℓ ϕm

)∥
∥
2

L2 + CC2
∗

(

‖∂m−1
x U‖2L2 + ‖ 〈z〉ℓ ϕm‖2L2

)

,

and the other terms on the right side of (2.22) can be treated similarly as for ∂mx u. Then the estimate

(2.21) also holds with ψm replaced by ϕm. The proof of the proposition is completed. �
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2.4. Tangential derivatives of ξ and η

We now turn to estimate the tangential derivatives of ξ and η which are defined in (2.3), that is, ξ =

f∂xf + h∂zf and η = f∂xu+ h∂zu.

Proposition 2.9. Under Assumption 2.5 we have, for any t ∈ [0, T ] and for any pair (ρ, ρ̃) with 0 < ρ <

ρ̃ < ρ0 ≤ 1,

sup
m≥6

ρ2(m−6)

[(m− 6)!]2σ
m2

(
‖∂mx ξ(t)‖2L2 + ‖∂mx η(t)‖2L2

)
+ sup

m≤5

(
‖∂mx ξ(t)‖2L2 + ‖∂mx η(t)‖2L2

)

≤ C
(
‖(u0, f0)‖22ρ0,σ,8 + ‖(u0, f0)‖42ρ0,σ,8

)
+ eCC2

∗

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

,

where C∗ ≥ 1 is the constant given in (2.8).

The proof relies on a newly observed cancellation property of ξ and η. Precisely, we use the equations

in (2.2) for u, f and h, to derive the equations for η and ξ:
(
∂t + u∂x + w∂z − ν∂2z

)
η = (f∂x + h∂z)ξ + 2ν

[
(∂xf)∂

2
zu− (∂zf)∂x∂zu

]

+(µ− ν)
[
(∂xu)∂

2
zf − (∂zu)∂x∂zf

]
,

and
(
∂t + u∂x + w∂z − µ∂2z

)
ξ = (f∂x + h∂z)η + 2µ

[
(∂xf)∂

2
zf − (∂zf)∂x∂zf

]
,

where the loss of tangential derivative term ∂xw is cancelled. Now we apply 〈z〉ℓ ∂mx to the above equations

for ξ and η to get
{(

∂t + u∂x + w∂z − ν∂2z
)
〈z〉ℓ ∂mx η = (f∂x + h∂z) 〈z〉ℓ ∂mx ξ + Pm,

(
∂t + u∂x + w∂z − µ∂2z

)
〈z〉ℓ ∂mx ξ = (f∂x + h∂z) 〈z〉ℓ ∂mx η +Qm,

(2.23)

where

Pm = 〈z〉ℓ
m∑

j=1

(
m

j

)
[
(∂jxf)∂

m−j+1
x ξ + (∂jxh)∂

m−j
x ∂zξ

]
− 〈z〉ℓ

m∑

j=1

(
m

j

)
[
(∂jxu)∂

m−j+1
x η + (∂jxw)∂

m−j
x ∂zη

]

+ 2ν 〈z〉ℓ ∂mx
[
(∂xf)∂

2
zu− (∂zf)∂x∂zu

]
+ (µ− ν) 〈z〉ℓ ∂mx

[
(∂xu)∂

2
zf − (∂zu)∂x∂zf

]

+ w(∂z 〈z〉ℓ)∂mx η − 2ν(∂z 〈z〉ℓ)∂z∂mx η − ν(∂2z 〈z〉ℓ)∂mx η − h(∂z 〈z〉ℓ)∂mx ξ,
and

Qm = 〈z〉ℓ
m∑

j=1

(
m

j

)
[
(∂jxf)∂

m−j+1
x η + (∂jxh)∂

m−j
x ∂zη

]
− 〈z〉ℓ

m∑

j=1

(
m

j

)
[
(∂jxu)∂

m−j+1
x ξ + (∂jxw)∂

m−j
x ∂zξ

]

+ 2µ 〈z〉ℓ ∂mx
[
(∂xf)∂

2
zf − (∂zf)∂x∂zf

]
+ w(∂z 〈z〉ℓ)∂mx ξ

− 2µ(∂z 〈z〉ℓ)∂z∂mx ξ − µ(∂2z 〈z〉
ℓ
)∂mx ξ − h(∂z 〈z〉ℓ)∂mx η.

Now we take the inner product with m2 〈z〉ℓ ∂mx η for the first equation in (2.23) and with m2 〈z〉ℓ ∂mx ξ for

the second one, and then take summation. Since ∂zξ|z=0 = η|z=0 = 0 and the first terms on the right side

of (2.23) are cancelled by symmetry as well as divergence free condition, we have

m2

2

(

‖ 〈z〉ℓ ∂mx η(t)‖2L2 + ‖ 〈z〉ℓ ∂mx ξ(t)‖2L2

)

+ νm2

∫ t

0

‖∂z
(
〈z〉ℓ ∂mx η

)
‖2L2ds+ µm2

∫ t

0

‖∂z
(
〈z〉ℓ ∂mx ξ

)
‖2L2ds

=
m2

2

(

‖ 〈z〉ℓ ∂mx η(0)‖2L2 + ‖ 〈z〉ℓ ∂mx ξ(0)‖2L2

)

+m2

∫ t

0

(
Pm, 〈z〉ℓ ∂mx η

)

L2ds+m2

∫ t

0

(
Qm, 〈z〉ℓ ∂mx ξ

)

L2ds.

(2.24)

The following lemmas are about the estimation on the terms in above equality.
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Lemma 2.10. Under Assumption 2.5 we have, for any t ∈ [0, T ] and for any pair (ρ, ρ̃) with 0 < ρ < ρ̃ <

ρ0 ≤ 1,

m2

∫ t

0

(

〈z〉ℓ
∑

1≤j≤m

(
m

j

)

(∂jxf)∂
m−j+1
x ξ, 〈z〉ℓ ∂mx η

)

L2
ds

≤ C
[(m− 6)!]2σ

ρ2(m−6)

(∫ t

0

|~a(s)|3ρ,σ ds+ C2
∗

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

.

Proof. Firstly, note that

m
m∑

j=1

(
m

j

)

‖ 〈z〉ℓ (∂jxf)∂m−j+1
x ξ‖L2

≤ m

[m/2]
∑

j=1

(
m

j

)

‖∂jxf‖L∞‖ 〈z〉ℓ ∂m−j+1
x ξ‖L2 +m

m∑

j=[m/2]+1

(
m

j

)

‖∂jxf‖L2
x(L

∞
z )‖ 〈z〉ℓ ∂m−j+1

x ξ‖L∞
x (L2

z)
,

(2.25)

where [p] denotes the largest integer less than or equal to p. By the following Sobolev embedding inequalities






‖F‖L∞(Rx) ≤
√
2
(

‖F‖L2
x
+ ‖∂xF‖L2

x

)

,

‖F‖L∞ ≤ 2
(

‖F‖L2 + ‖∂xF‖L2 + ‖∂zF‖L2 + ‖∂x∂zF‖L2

)

,

and the estimates (2.17)-(2.20) as well as (2.8), we have

m

[m/2]
∑

j=1

(
m

j

)

‖∂jxf‖L∞‖ 〈z〉ℓ ∂m−j+1
x ξ‖L2

≤ Cm

[m/2]
∑

j=5

m!

j!(m− j)!

[(j − 5)!]σ

ρj−5

1

m− j

[(m− j − 5)!]σ

ρm−j−5
|~a|2ρ,σ

+CC∗m
∑

1≤j≤4

m!

j!(m− j)!

1

m− j

[(m− j − 5)!]σ

ρ̃m−j−5
|~a|ρ̃,σ . (2.26)

Direct calculation shows

m
∑

1≤j≤4

m!

j!(m− j)!

1

m− j

[(m− j − 5)!]σ

ρ̃m−j−5
|~a|ρ̃,σ ≤ Cm

[(m− 6)!]σ

ρ̃m−6
|~a|ρ̃,σ .

Moreover, by using m/(m− j) ≤ C for j ≤ [m/2], we have

m

[m/2]
∑

j=5

m!

j!(m− j)!

[(j − 5)!]σ

ρj−5

1

m− j

[(m− j − 5)!]σ

ρm−j−5
|~a|2ρ,σ

≤ C
|~a|2ρ,σ
ρm−6

[m/2]
∑

j=5

m![(j − 5)!]σ−1[(m− j − 5)!]σ−1

j5(m− j)5

≤ C
|~a|2ρ,σ
ρm−6

[m/2]
∑

j=5

(m− 6)!m6

j5m5

[(m− 6)!]σ−1

m4(σ−1)
≤ C

[(m− 6)!]σ

ρm−6
|~a|2ρ,σ ,

where in the last inequality we have used σ = 3/2. Combining the above inequalities with (2.26) gives

m

[m/2]
∑

j=1

(
m

j

)

‖∂jxf‖L∞‖ 〈z〉ℓ ∂m−j+1
x ξ‖L2 ≤ C

[(m− 6)!]σ

ρm−6
|~a|2ρ,σ + CC∗m

[(m− 6)!]σ

ρ̃m−6
|~a|ρ̃,σ .
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Similarly, recalling ξ = f∂xf + h∂zf, we have

m

m∑

j=[m/2]+1

(
m

j

)

‖∂jxf‖L2
x(L

∞
z )‖ 〈z〉ℓ ∂m−j+1

x ξ‖L∞
x (L2

z)

≤ Cm

m−4∑

j=[m/2]+1

m!

j!(m− j)!

[(j − 6)!]σ

ρj−6

1

m− j

[(m− j − 4)!]σ

ρm−j−4
|~a|2ρ,σ

+ CC2
∗m

m∑

j=m−3

m!

j!(m− j)!

[(j − 6)!]σ

ρ̃j−6
|~a|ρ,σ

≤ C
[(m− 6)!]σ

ρm−6
|~a|2ρ,σ + CC2

∗m
[(m− 6)!]σ

ρ̃m−6
|~a|ρ̃,σ .

Putting these inequalities into (2.25) gives

m

m∑

j=1

(
m

j

)

‖ 〈z〉ℓ (∂jxf)∂m−j+1
x ξ‖L2 ≤ C

[(m− 6)!]σ

ρm−6
|~a|2ρ,σ + CC2

∗m
[(m− 6)!]σ

ρ̃m−6
|~a|ρ̃,σ . (2.27)

This with (2.20) gives

m2

∫ t

0

(

〈z〉ℓ
∑

1≤j≤m

(
m

j

)

(∂jxf)∂
m−j+1
x ξ, 〈z〉ℓ ∂mx η

)

L2
ds

≤
∫ t

0

m

m∑

j=1

(
m

j

)

‖ 〈z〉ℓ (∂jxf)∂m−j+1
x ξ‖L2 ×

(

m‖ 〈z〉ℓ ∂mx η‖L2

)

ds

≤ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|3ρ,σ ds+ CC2
∗

[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

m
ρ2(m−6)

ρ̃2(m−6)
|~a(s)|2ρ̃,σ ds

≤ C
[(m− 6)!]2σ

ρ2(m−6)

(∫ t

0

|~a(s)|3ρ,σ ds+ C2
∗

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

,

where in the last inequality we have used (2.12). The proof of the lemma is completed. �

Lemma 2.11. Under Assumption 2.5 we have, for any t ∈ [0, T ] and for any pair (ρ, ρ̃) with 0 < ρ < ρ̃ <

ρ0 ≤ 1,

m2

∫ t

0

(

〈z〉ℓ
∑

1≤j≤m

(
m

j

)

(∂jxh)∂
m−j
x ∂zξ, 〈z〉ℓ ∂mx η

)

L2
ds

≤ ν

6
m2

∫ t

0

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
2

L2ds+ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

(

|~a(s)|3ρ,σ + |~a(s)|4ρ,σ
)

ds

+CC2
∗

[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds.

Proof. It follows from integration by parts that

m2

∫ t

0

(

〈z〉ℓ
∑

1≤j≤m

(
m

j

)

(∂jxh)∂
m−j
x ∂zξ, 〈z〉ℓ ∂mx η

)

L2
ds ≤

4∑

k=1

Jk, (2.28)
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with

J1 = m

∫ t

0

m∑

j=m−1

(
m

j

)

‖ 〈z〉ℓ
(
∂jxh

)
∂m−j
x ∂zξ‖L2 ×

(

m‖ 〈z〉ℓ ∂mx η‖L2

)

ds,

J2 = m

∫ t

0

m−2∑

j=1

(
m

j

)

‖ 〈z〉ℓ
(
∂jxh

)
∂m−j
x ξ‖L2 ×

(

m
∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
L2

)

ds,

J3 = m

∫ t

0

m−2∑

j=1

(
m

j

)

‖ 〈z〉ℓ (∂j+1
x f)∂m−j

x ξ‖L2 ×
(

m‖ 〈z〉ℓ ∂mx η‖L2

)

ds,

J4 = 2m

∫ t

0

m−2∑

j=1

(
m

j

)

‖(∂z 〈z〉ℓ)(∂jxh)∂m−j
x ξ‖L2 ×

(

m‖ 〈z〉ℓ ∂mx η‖L2

)

ds.

Note that ‖∂jxw‖L∞
z

≤ C‖ 〈z〉ℓ ∂j+1
x u‖L2

z
for ℓ > 1/2, and similar estimate holds for ∂jxh. Then it follows

from (2.17) and (2.8) that, for any 0 < r ≤ ρ0,

‖∂jxw‖L2
x(L

∞
z ) + ‖∂jxh‖L2

x(L
∞
z ) ≤







C
[(j − 6)!]σ

r(j−6)
|~a|r,σ , if j ≥ 6,

C |~a|r,σ , if j ≤ 5.

Thus as for the proof of (2.27), when σ = 3/2, we have

m
m−2∑

j=1

(
m

j

)

‖ 〈z〉ℓ
(
∂jxh

)
∂m−j
x ξ‖L2 +m

m−2∑

j=1

(
m

j

)

‖ 〈z〉ℓ (∂j+1
x f)∂m−j

x ξ‖L2 ≤ C
[(m− 6)!]σ

ρm−6
|~a|2ρ,σ .

Thus, by (2.20), we have

J2 + J3 + J4 ≤ ν

6
m2

∫ t

0

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
2

L2ds+ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

(

|~a(s)|3ρ,σ + |~a(s)|4ρ,σ
)

ds.

Finally, by (2.8) and (2.20), direct calculation gives

J1 ≤ CC2
∗

[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds.

Combining the above estimates with (2.28) completes the proof of the lemma. �

Lemma 2.12. Under Assumption 2.5 we have, for any t ∈ [0, T ] and for any pair (ρ, ρ̃) with 0 < ρ < ρ̃ <

ρ0 ≤ 1,

−m2

∫ t

0

(

〈z〉ℓ
∑

1≤j≤m

(
m

j

)
[
(∂jxu)∂

m−j+1
x η + (∂jxw)∂

m−j
x ∂zη

]
, 〈z〉ℓ ∂mx η

)

L2
ds

≤ ν

6
m2

∫ t

0

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
2

L2ds+ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

(

|~a(s)|3ρ,σ + |~a(s)|4ρ,σ
)

ds

+ CC2
∗

[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds.

We omit the proof of this lemma because it is almost the same as those for Lemmas 2.10 and 2.11.
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Lemma 2.13. Under Assumption 2.5 we have, for any t ∈ [0, T ] and for any pair (ρ, ρ̃) with 0 < ρ < ρ̃ <

ρ0 ≤ 1,

2νm2

∫ t

0

(

〈z〉ℓ ∂mx
[
(∂xf)∂

2
zu− (∂zf)∂x∂zu

]
, 〈z〉ℓ ∂mx η

)

L2
ds

+ (µ− ν)m2

∫ t

0

(

〈z〉ℓ ∂mx
[
(∂xu)∂

2
zf − (∂zu)∂x∂zf

]
, 〈z〉ℓ ∂mx η

)

L2
ds

≤ ν

6
m2

∫ t

0

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
2

L2ds+ C
[(m− 6)!]2σ

ρ2(m−6)
‖(u0, f0)‖22ρ0,σ,8

+ eCC2
∗
[(m− 6)!]2σ

ρ2(m−6)

(∫ t

0

(

|~a(s)|2ρ,σ + |~a(s)|4ρ,σ
)

ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

.

Proof. By the definition (2.5) of λ and δ, we can derive

(∂xf)∂
2
zu− (∂zf)∂x∂zu =

(

δ + (∂zf)

∫ z

0

Udz̃
)

∂2zu− (∂zf)∂z

(

λ+ (∂zu)

∫ z

0

Udz̃
)

= δ∂2zu− (∂zf)∂zλ− (∂zf)(∂zu)U .

Thus

2νm2

∫ t

0

(

〈z〉ℓ ∂mx
[
(∂xf)∂

2
zu− (∂zf)∂x∂zu

]
, 〈z〉ℓ ∂mx η

)

L2
ds ≤

4∑

j=1

Kj (2.29)

with






K1 = 2νm2

∫ t

0

∑

0≤j≤4

(
m

j

)(

〈z〉ℓ (∂jxδ)∂m−j
x ∂2zu, 〈z〉ℓ ∂mx η

)

L2
ds,

K2 = 2νm2

∫ t

0

m∑

j=5

(
m

j

)

‖ 〈z〉ℓ (∂jxδ)∂m−j
x ∂2zu‖L2‖ 〈z〉ℓ ∂mx η‖L2ds,

K3 = −2νm2

∫ t

0

(

〈z〉ℓ ∂mx
[
(∂zf)∂zλ

]
, 〈z〉ℓ ∂mx η

)

L2
ds,

K4 = 2νm2

∫ t

0

∥
∥ 〈z〉ℓ ∂mx

[
(∂zf)(∂zu)U

]∥
∥
L2‖ 〈z〉ℓ ∂mx η‖L2ds.

To estimate Kj, 1 ≤ j ≤ 4, we need the following estimates from [21, Lemma 5.2]:

∀ t ∈ [0, T ],
∑

k≤9

∥
∥ 〈z〉−ℓ

∫ z

0

∂kxU(t)dz
∥
∥
L2 +

∑

k+j≤8

0≤j≤2

∥
∥∂kx∂

j
zU(t)

∥
∥
L2 ≤ eCC2

∗ , (2.30)

and

∀ t ∈ [0, T ],
∑

k+j≤8

0≤j≤2

‖∂kx∂jzλ(t)‖L2 ≤ eCC2
∗ , (2.31)

where C∗ ≥ 1 is the constant in (2.8). Then by (2.30), (2.11), (2.17) and (2.20) as well as (2.8), following

the proof for Lemma 2.10, we obtain

K2 +K4 ≤ eCC2
∗
[(m− 6)!]2σ

ρ2(m−6)

( ∫ t

0

(|~a(s)|3ρ,σ + |~a(s)|4ρ,σ)ds+
∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds
)

. (2.32)
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As for K3, we first write it as

K3 ≤ 2νm2

∫ t

0

∑

0≤j≤m−5

(
m

j

)

‖ 〈z〉ℓ (∂jx∂zf)∂m−j
x λ‖L2

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
L2ds

+ 2νm2

∫ t

0

∑

0≤j≤m−5

(
m

j

)

‖ 〈z〉ℓ (∂jx∂2zf)∂m−j
x λ‖L2‖ 〈z〉ℓ ∂mx η‖L2ds

+ 2νm2

∫ t

0

∑

0≤j≤m−5

(
m

j

)

‖(∂z 〈z〉ℓ)(∂jx∂zf)∂m−j
x λ‖L2‖ 〈z〉ℓ ∂mx η‖L2ds

+ 2νm2

∫ t

0

∑

m−4≤j≤m

(
m

j

)

‖ 〈z〉ℓ (∂jx∂zf)∂m−j
x ∂zλ‖L2‖ 〈z〉ℓ ∂mx η‖L2ds.

Then by (2.31), it holds that

K3 ≤ ν

24
m2

∫ t

0

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
2

L2ds

+ eCC2
∗
[(m− 6)!]2σ

ρ2(m−6)

(∫ t

0

(
|~a(s)|3ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

. (2.33)

It remains to estimate K1. Again, note that

K1 ≤ 2νm2

∫ t

0

∑

0≤j≤4

(
m

j

)

‖ 〈z〉ℓ (∂jxδ)∂m−j
x ∂zu‖L2

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
L2ds

+ 2νm2

∫ t

0

∑

0≤j≤4

(
m

j

)

‖ 〈z〉ℓ (∂jx∂zδ)∂m−j
x ∂zu‖L2‖ 〈z〉ℓ ∂mx η‖L2ds

+ 2νm2

∫ t

0

∑

0≤j≤4

(
m

j

)

‖(∂z 〈z〉ℓ)(∂jxδ)∂m−j
x ∂zu‖L2‖ 〈z〉ℓ ∂mx η‖L2ds.

Observe that the estimate (2.31) holds when λ is replaced by δ. Thus direct calculation shows that

K1 ≤ ν

24
m2

∫ t

0

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
2

L2ds

+eCC2
∗m2

∑

0≤j≤4

( m!

j!(m− j)!

)2
∫ t

0

‖ 〈z〉ℓ ∂m−j
x ∂zu‖2L2ds+ eCC2

∗
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds.

As for the second term on the right side, we have

‖ 〈z〉ℓ ∂m−j
x ∂zu‖2L2 ≤ ‖ 〈z〉ℓ ∂m−j−1

x ∂zu‖L2‖ 〈z〉ℓ ∂m−j+1
x ∂zu‖L2.

Hence

eCC2
∗m2

∑

0≤j≤4

( m!

j!(m− j)!

)2
∫ t

0

‖ 〈z〉ℓ (∂jxδ)∂m−j
x ∂zu‖2L2ds

≤ eCC2
∗m4

∑

0≤j≤4

( m!

j!(m− j)!

)2
∫ t

0

‖ 〈z〉ℓ ∂m−j−1
x ∂zu‖2L2ds

+
∑

0≤j≤4

( m!

j!(m− j)!

)2
∫ t

0

‖ 〈z〉ℓ ∂m−j+1
x ∂zu‖2L2ds

≤ eCC2
∗
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds+ C
[(m− 6)!]2σ

ρ2(m−6)
‖(u0, f0)‖22ρ0,σ,8

+ CC3
∗

[(m− 6)!]2σ

ρ2(m−6)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

,
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where we have used Proposition 2.8 to control the second term in the first inequality. Thus, we can conclude

that

K1 ≤ ν

24
m2

∫ t

0

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
2

L2ds+ C
[(m− 6)!]2σ

ρ2(m−6)
‖(u0, f0)‖22ρ0,σ

+eCC2
∗
[(m− 6)!]2σ

ρ2(m−6)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

.

Putting the above inequality and the estimates (2.32)-(2.33) into (2.29) gives the upper bound for the first

term on the left side in Lemma 2.13. The second term can be estimated similarly and we omit the detail.

Then the proof of the lemma is completed. �

Lemma 2.14. Under Assumption 2.5 we have, for any t ∈ [0, T ] and for any pair (ρ, ρ̃) with 0 < ρ < ρ̃ <

ρ0 ≤ 1,

m2

∫ t

0

(

w(∂z 〈z〉ℓ)∂mx η − 2ν(∂z 〈z〉ℓ)∂z∂mx η, 〈z〉ℓ ∂mx η
)

L2
ds

+m2

∫ t

0

(

− ν(∂2z 〈z〉ℓ)∂mx η − h(∂z 〈z〉ℓ)∂mx ξ, 〈z〉ℓ ∂mx η
)

L2
ds

≤ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

(

|~a(s)|2ρ,σ + |~a(s)|3ρ,σ
)

ds.

Since the proof of this lemma follows from direct calculation and (2.20), we omit it for brevity. And now

we are ready to prove Proposition 2.9.

Proof of Proposition 2.9. In view of the representation of Pm given in (2.23), we combine the estimates in

Lemmas 2.10-2.14 to conclude

m2

∫ t

0

(

Pm, 〈z〉ℓ ∂mx η
)

L2
ds ≤ ν

2
m2

∫ t

0

∥
∥∂z

(
〈z〉ℓ ∂mx η

)∥
∥
2

L2ds+ C
[(m− 6)!]2σ

ρ2(m−6)
‖(u0, f0)‖22ρ0,σ,8

+ eCC2
∗
[(m− 6)!]2σ

ρ2(m−6)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

.

Similar upper bound holds for

m2

∫ t

0

(

Qm, 〈z〉ℓ ∂mx ξ
)

L2
ds.

Then by (2.24), we have

m2
(

‖ 〈z〉ℓ ∂mx η(t)‖2L2 + ‖ 〈z〉ℓ ∂mx ξ(t)‖2L2

)

≤ m2
(

‖ 〈z〉ℓ ∂mx η(0)‖2L2 + ‖ 〈z〉ℓ ∂mx ξ(0)‖2L2

)

+ C
[(m− 6)!]2σ

ρ2(m−6)
‖(u0, f0)‖22ρ0,σ,8

+ eCC2
∗
[(m− 6)!]2σ

ρ2(m−6)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

.

Moreover, following the argument for proving Lemma 2.10 we can derive

m‖ 〈z〉ℓ ∂mx ξ(0)‖L2 ≤ m
∑

j≤m

(
m

j

)(

‖ 〈z〉ℓ (∂jxf0)∂m−j+1
x f0‖L2 + ‖ 〈z〉ℓ (∂jxh(0))∂m−j

x ∂zf0‖L2

)

≤ Cm
[(m− 6)!]σ

(2ρ0)m−6
‖(u0, f0)‖22ρ0,σ,8 ≤ C1

[(m− 6)!]σ

ρm−6
‖(u0, f0)‖22ρ0,σ,8,

where in the last inequality we have used the fact that ρ ≤ ρ0 as well as h|t=0 = −
∫ z

0 ∂xf0dz̃. Similar upper

bound holds for m‖ 〈z〉ℓ ∂mx η(0)‖L2 . Thus combining the above inequalities yields the desired estimate in
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Proposition 2.9 for m ≥ 6. The estimate for m ≤ 5 is straightforward so that the proof of the proposition

is completed. �

2.5. Tangential derivatives of λ and δ

The estimate on the tangential derivatives of λ and δ defined in (2.5) is given in the following proposition.

Proposition 2.15. Under Assumption 2.5 we have, for any t ∈ [0, T ] and for any pair (ρ, ρ̃) with 0 < ρ <

ρ̃ < ρ0 ≤ 1,

sup
m≥6

ρ2(m−6)

[(m− 6)!]2σ
m‖∂mx λ‖2L2 + sup

m≤5
‖∂mx λ‖2L2

≤ C‖(u0, f0)‖22ρ0,σ,8 + C

∫ t

0

(

|~a(s)|3ρ,σ + |~a(s)|4ρ,σ
)

ds+ eCC2
∗

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds.

The above estimate also holds when λ is replaced by δ.

Proof. We apply ∂x to the equation for u in (2.2) and multiply the equation (2.4) by ∂zu, and then the

subtraction of these two equations gives the equation for λ:

(
∂t + u∂x + w∂z − ν∂2z

)
λ = ∂xξ − (∂xu)∂xu− (∂zξ)

∫ z

0

Udz̃ + 2ν(∂2zu)U .

Thus

(
∂t + u∂x + w∂z − ν∂2z

)
∂mx λ = ∂m+1

x ξ − ∂mx

[

(∂xu)∂xu+ (∂zξ)

∫ z

0

Udz̃ − 2ν(∂2zu)U
]

−
m∑

j=1

(
m

j

)[

(∂jxu)∂
m−j+1
x λ+ (∂jxw)∂

m−j
x ∂zλ

]

.

Taking inner product with m∂mx λ and observing λ|z=0 = 0, we obtain

m

2
‖∂mx λ(t)‖2L2 +mν

∫ t

0

‖∂z∂mx λ(s)‖2L2ds

≤ m

2
‖∂mx λ(0)‖2L2 +m

∫ t

0

(
∂m+1
x ξ, ∂mx λ

)

L2ds

−m

∫ t

0

(

∂mx

[

(∂xu)∂xu+ (∂zξ)

∫ z

0

Udz̃ − 2ν(∂2zu)U
]

, ∂mx λ
)

L2
ds

−m

∫ t

0

( m∑

j=1

(
m

j

)[

(∂jxu)∂
m−j+1
x λ+ (∂jxw)∂

m−j
x ∂zλ

]

, ∂mx λ
)

L2
ds.

(2.34)

By (2.11) and (2.20), when σ = 3/2 we have

m

∫ t

0

(
∂m+1
x ξ, ∂mx λ

)

L2ds ≤
∫ t

0

m−1/2 [(m− 5)!]σ

ρ̃m−5

[(m− 6)!]σ

ρ̃m−6
|~a(s)|2ρ̃,σ ds

≤ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

mσ− 1
2

ρ̃

ρ2(m−6)

ρ̃2(m−6)
|~a(s)|2ρ̃,σ ds ≤ C

[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds,
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where in the last inequality we have used (2.12). Moreover, similar to the proofs of Lemmas 2.10 and 2.11,

we obtain

−m

∫ t

0

(

∂mx

[

(∂xu)∂xu+ (∂zξ)

∫ z

0

Udz̃ − 2ν(∂2zu)U
]

, ∂mx λ
)

L2
ds

−m

∫ t

0

( m∑

j=1

(
m

j

)[

(∂jxu)∂
m−j+1
x λ+ (∂jxw)∂

m−j
x ∂zλ

]

, ∂mx λ
)

L2
ds

≤ ν

2
m

∫ t

0

‖∂z∂mx λ‖2L2ds+ C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

(

|~a(s)|3ρ,σ + |~a(s)|4ρ,σ
)

ds+ eCC2
∗
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds.

Combining the above inequalities with (2.34) gives

m‖∂mx λ‖2L2 ≤ m‖∂mx λ(0)‖2L2 + C
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

(

|~a(s)|3ρ,σ + |~a(s)|4ρ,σ
)

ds

+eCC2
∗
[(m− 6)!]2σ

ρ2(m−6)

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds.

Note that λ|t=0 = ∂xu0. Hence

m‖∂mx λ(0)‖2L2 ≤ m
[(m− 6)!]2σ

(2ρ0)2(m−6)
‖(u0, f0)‖22ρ0,σ,8 ≤ C

[(m− 6)!]2σ

ρ2(m−6)
‖(u0, f0)‖22ρ0,σ,8

because ρ ≤ ρ0. Thus we obtain the desired estimate on λ for m ≥ 6. Again, the estimate for m ≤ 5 is

straightforward. Note that the upper bound for δ can be derived similarly because there is no non-zero

boundary terms in the integration by parts due to the fact that ∂zδ|z=0 = 0. The proof of the proposition

is completed. �

2.6. Time derivatives

The estimate involving t-derivatives is stated as follows. Note it is only in this estimate that we need the

normal derivatives of the initial data u0 and f0 up to the 8th order.
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Proposition 2.16. Under Assumption 2.5 we have, for any t ∈ [0, T ] and any pair (ρ, ρ̃) with 0 < ρ <

ρ̃ < ρ0 ≤ 1,

sup
1≤i≤4

m+i≥7

ρ2(m+i−7)

[(m+ i− 7)!]2σ

(

‖ 〈z〉ℓ ∂it∂mx u(t)‖2L2 + ‖ 〈z〉ℓ ∂it∂mx f(t)‖2L2

)

+ sup
1≤i≤4

m+i≥7

ρ2(m+i−7)

[(m+ i− 7)!]2σ

∫ t

0

(

‖ 〈z〉ℓ ∂z∂it∂mx u‖2L2 + ‖ 〈z〉ℓ ∂z∂it∂mx f‖2L2

)

ds

+ sup
1≤i≤4

m+i≥6

ρm+i−6

[(m+ i− 6)!]σ
‖∂it∂mx U(t)‖L2

+ sup
1≤i≤4

m+i≥6

ρm+i−6

[(m+ i− 6)!]σ

(

m1/2‖∂it∂mx λ(t)‖L2 +m1/2‖∂it∂mx δ(t)‖L2

)

+ sup
1≤i≤4

m+i≥6

ρm+i−6

[(m+ i− 6)!]σ

(

m‖ 〈z〉ℓ ∂it∂mx ξ(t)‖L2 +m‖ 〈z〉ℓ ∂it∂mx η(t)‖L2

)

+ sup
1≤i≤4

m+i≤6

(
‖∂it∂mx u(t)‖L2 + ‖∂it∂mx f(t)‖L2

)
+ sup

1≤i≤4

m+i≤5

‖∂it∂mx U(t)‖L2

+ sup
1≤i≤4

m+i≤5

(
‖∂it∂mx λ‖L2 + ‖∂it∂mx δ‖L2 + ‖ 〈z〉ℓ ∂it∂mx ξ‖L2 + ‖ 〈z〉ℓ ∂it∂mx η‖L2

)

≤ C
(
‖(u0, f0)‖22ρ0,σ,8 + ‖(u0, f0)‖42ρ0,σ,8

)
+ eCC2

∗

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

.

Proof. The proof is similar as those in the previous Subsections 2.2-2.5, with the tangential derivatives ∂mx
replaced by ∂it∂

m
x . The main difference arises from the initial data. Note that

∂tu|t=0 = ν∂2zu0 − u0∂xu0 − w0∂zu0 + f0∂xf0 + h0∂zf0

with w0 = −
∫ z

0 ∂xu0dz̃ and h0 = −
∫ z

0 ∂xf0dz̃. Similar expressions hold for ∂itu|t=0, 2 ≤ i ≤ 4 in terms of

u0 and f0. Thus we can control the terms ∂itu|t=0, 1 ≤ i ≤ 4, by the initial data u0 and f0 if the normal

derivatives of u0 and f0 are up to the 8th order rather than 4-th. Other than the difference in the order

of differentiation on the initial data, there is no essential difference from the argument in the previous

subsections on tangential detivatives. Hence, we omit the detail of the proof. �

2.7. Normal derivatives of u and f

It remains to estimate the normal derivatives of u and f in the a priori estimate and it is given in the

following proposition.

Proposition 2.17. Under Assumption 2.5 we have, for any t ∈ [0, T ] and any pair (ρ, ρ̃) with 0 < ρ <

ρ̃ < ρ0 ≤ 1,

sup
1≤i+j≤4

m+i+j≥7

ρ2(m+i+j−7)

[(m+ i+ j − 7)!]2σ
‖ 〈z〉ℓ+j

∂it∂
m
x ∂

j
zu(t)‖2L2

+ sup
1≤i+j≤4

m+i+j≥7

ρ2(m+i+j−7)

[(m+ i+ j − 7)!]2σ

∫ t

0

‖ 〈z〉ℓ+j
∂it∂

m
x ∂

j+1
z u(s)‖2L2ds+ sup

1≤i+j≤4

m+i+j≤6

‖ 〈z〉ℓ+j
∂it∂

m
x ∂

j
zu(t)‖2L2

≤ C
(
‖(u0, f0)‖22ρ0,σ,8 + ‖(u0, f0)‖42ρ0,σ,8

)
+ eCC2

∗

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

,
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where C∗ ≥ 1 is the constant given in (2.8). The above estimate also holds when 〈z〉ℓ+j
∂it∂

m
x ∂

j
zu is replaced

by 〈z〉ℓ+j
∂it∂

m
x ∂

j
zf .

Proof. We apply induction on j, the order of normal derivatives. The validity for j = 0 follows from

Proposition 2.16. Now for given j ≥ 1 and for any i and m, suppose the estimate

‖ 〈z〉ℓ+k ∂it∂
m
x ∂

k
zu(t)‖2L2 + ‖ 〈z〉ℓ+k ∂it∂

m
x ∂

k
z f(t)‖2L2

+

∫ t

0

(

‖ 〈z〉ℓ+k
∂it∂

m
x ∂

k+1
z u(s)‖2L2 + ‖ 〈z〉ℓ+k

∂it∂
m
x ∂

k+1
z f(s)‖2L2

)

ds

≤ C
[(m+ i+ k − 7)!]2σ

ρ2(m+i+k−7)

(
‖(u0, f0)‖22ρ0,σ,8 + ‖(u0, f0)‖42ρ0,σ,8

)

+ eCC2
∗
[(m+ i+ k − 7)!]2σ

ρ2(m+i+k−7)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

(2.35)

holds for any k ≤ j − 1 with i+ k ≤ 4 and m+ i+ k ≥ 7, we will show the above estimate holds for k = j.

To do so, applying 〈z〉ℓ+j
∂it∂

j
z , i+ j ≤ 4, to equation (2.13) and observing

∂mx ξ = (f∂x + h∂z)∂
m
x f +

∑

1≤k≤m

(
m

k

)[

(∂kxf)∂
m−k+1
x f + (∂kxh)∂

m−k
x ∂zf

]

︸ ︷︷ ︸

def
=Hm

,

we obtain, with Hm defined above,

(
∂t + u∂x + w∂z − ν∂2z

)
〈z〉ℓ+j

∂it∂
m
x ∂

j
zu = (f∂x + h∂z) 〈z〉ℓ+j

∂it∂
j
z∂

m
x f + 〈z〉ℓ+j

∂it∂
j
zHm

+
[
〈z〉ℓ+j

∂it∂
j
z , f∂x + h∂z

]
∂mx f − 〈z〉ℓ+j

∂it∂
j
z

[
(∂mx w)∂zu

]

+ 〈z〉ℓ+j
∂it∂

j
zFm +

[
u∂x + w∂z − ν∂2z , 〈z〉ℓ+j

∂it∂
j
z

]
∂mx u,

where Fm is defined in (2.13) and [T1, T2] = T1T2−T2T1 stands for the commutator of two operators T1, T2.

Following the argument used in the proof of Lemma 2.10 (see also the proof of [21, Lemma 4.3]), we have

(

− 〈z〉ℓ+j
∂it∂

j
z

[
(∂mx w)∂zu

]
+ 〈z〉ℓ+j

∂it∂
j
zFm, 〈z〉ℓ+j

∂it∂
m
x ∂

j
zu

)

L2

+
([
u∂x + w∂z − ν∂2z , 〈z〉ℓ+j

∂it∂
j
z

]
∂mx u, 〈z〉ℓ+j

∂it∂
m
x ∂

j
zu

)

L2

≤ ν

4

∥
∥∂z

(
〈z〉ℓ+j

∂it∂
m
x ∂

j
zu

)∥
∥
2

L2 + C
[(m+ i+ j − 7)!]2σ

ρ2(m+i+j−7)

(
|~a|2ρ,σ + |~a|4ρ,σ

)
,

and

(

〈z〉ℓ+j ∂it∂
j
zHm, 〈z〉ℓ+j ∂it∂

m
x ∂

j
zu

)

L2
+
([
f∂x + h∂z , 〈z〉ℓ+j ∂it∂

j
z

]
∂mx f, 〈z〉ℓ+j ∂it∂

m
x ∂

j
zu

)

L2

≤ ν

4

∥
∥∂z

(
〈z〉ℓ+j

∂it∂
m
x ∂

j
zu

)∥
∥
2

L2 + C
[(m+ i+ j − 7)!]2σ

ρ2(m+i+j−7)

(
|~a|2ρ,σ + |~a|4ρ,σ

)
.

Hence, combining the above inequalities gives

1

2

d

dt
‖ 〈z〉ℓ+j ∂it∂

m
x ∂

j
zu‖2L2 +

ν

2

∥
∥∂z

(
〈z〉ℓ+j ∂it∂

m
x ∂

j
zu

)∥
∥
2

L2

≤
∣
∣
∣ν

∫

R

(
∂it∂

m
x ∂

j
zu

)(
∂it∂

m
x ∂

j+1
z u

)∣
∣
z=0

dx
∣
∣
∣+ C

[(m+ i+ j − 7)!]2σ

ρ2(m+i+j−7)
(|~a|2ρ,σ + |~a|4ρ,σ)

+
(

(f∂x + h∂z) 〈z〉ℓ+j
∂it∂

m
x ∂

j
zf, 〈z〉ℓ+j

∂it∂
m
x ∂

j
zu

)

L2
.

(2.36)
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For the boundary term, since ‖ω‖2L∞(R+) ≤ 2‖∂zω‖L2(R+)‖ω‖L2(R+) if ω → 0 as z → +∞ and

ν∂it∂
m
x ∂

j+1
z u|z=0 = ∂i+1

t ∂mx ∂
j−1
z u|z=0 + ∂it∂

m
x ∂

j−1
z

(
u∂xu+ w∂zu− f∂xf − h∂zf

)∣
∣
z=0

= ∂i+1
t ∂mx ∂

j−1
z u|z=0 + ∂it∂

m
x ∂

j−1
z

(
u∂xu− f∂xf

)∣
∣
z=0

+

j−1
∑

k=1

(
j − 1

k

)

∂it∂
m
x

(

(∂kzw)∂
j−k
z u− (∂kzh)∂

j−k
z f

)∣
∣
∣
z=0

,

we have

ν2
ρ

mσ
‖
(
∂it∂

m
x ∂

j+1
z u

)
|z=0‖2L2

x
≤ C

ρ

mσ
‖∂i+1

t ∂mx ∂
j−1
z u‖L2‖∂i+1

t ∂mx ∂
j
zu‖L2

+ C
ρ

mσ
‖∂it∂mx ∂j−1

z

(
u∂xu− f∂xf

)
‖L2‖∂it∂mx ∂jz

(
u∂xu− f∂xf

)
‖L2

+ C

j−1
∑

k=1

ρ

mσ
‖∂it∂mx

(
(∂kzw)∂

j−k
z u− (∂kzh)∂

j−k
z f

)
‖L2 × ‖∂z∂it∂mx

(
(∂kzw)∂

j−k
z u− (∂kzh)∂

j−k
z f

)
‖L2

≤ ‖∂i+1
t ∂mx ∂

j
zu‖2L2 + C

[(m+ i+ j − 7)!]2σ

ρ2(m+i+j−7)

(

|~a|2ρ,σ + |~a|4ρ,σ
)

,

where we have used again the argument similar to the proof of Lemma 2.10, and the estimate for p+ q ≤ 4,

‖ 〈z〉ℓ+q
∂pt ∂

m
x ∂

q
zu‖L2 + ‖ 〈z〉ℓ+q

∂pt ∂
m
x ∂

q
zf‖L2 ≤ [(m+ p+ q − 7)!]σ

ρ(m+p+q−7)
|~a|ρ,σ .

Moreover,

mσ

ρ
‖
(
∂it∂

m
x ∂

j
zu

)
|z=0‖2L2

x
≤ C

mσ

ρ
‖∂it∂mx ∂jzu‖L2‖∂it∂mx ∂j+1

z u‖L2

≤ ν

4
‖∂it∂mx ∂j+1

z u‖2L2 + C
m2σ

ρ2
‖∂it∂mx ∂jzu‖2L2.

Hence,

∣
∣
∣ν

∫

R

(
∂it∂

m
x ∂

j
zu

)(
∂it∂

m
x ∂

j+1
z u

)∣
∣
z=0

dx
∣
∣
∣ ≤ ν

4
‖∂it∂mx ∂j+1

z u‖2L2 + ‖∂i+1
t ∂mx ∂

j
zu‖2L2

+ C
m2σ

ρ2
‖∂it∂mx ∂jzu‖2L2 + C

[(m+ i+ j − 7)!]2σ

ρ2(m+i+j−7)

(

|~a|2ρ,σ + |~a|4ρ,σ
)

,

which together with (2.36) implies

‖ 〈z〉ℓ+j ∂it∂
m
x ∂

j
zu(t)‖2L2 +

ν

2

∫ t

0

‖ 〈z〉ℓ+j ∂it∂
m
x ∂

j+1
z u(s)‖2L2ds

≤ ‖ 〈z〉ℓ+j
∂it∂

m
x ∂

j
zu(0)‖2L2 + C

m2σ

ρ2

∫ t

0

‖∂it∂mx ∂jzu(s)‖2L2ds+

∫ t

0

‖∂i+1
t ∂mx ∂

j
zu(s)‖2L2ds

+ C
[(m+ i+ j − 7)!]2σ

ρ2(m+i+j−7)

∫ t

0

(|~a(s)|2ρ,σ + |~a(s)|4ρ,σ)ds+
(

(f∂x + h∂z) 〈z〉ℓ+j
∂it∂

m
x ∂

j
zf, 〈z〉ℓ+j

∂it∂
m
x ∂

j
zu

)

L2

≤ C
[(m+ i + j − 7)!]2σ

ρ2(m+i+j−7)

(
‖(u0, f0)‖22ρ0,σ,8 + ‖(u0, f0)‖42ρ0,σ,8

)

+ eCC2
∗
[(m+ i+ j − 7)!]2σ

ρ2(m+i+j−7)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

+
(

(f∂x + h∂z) 〈z〉ℓ+j
∂it∂

m
x ∂

j
zf, 〈z〉ℓ+j

∂it∂
m
x ∂

j
zu

)

L2
,
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where in the last inequality we have used the induction assumption (2.35). Similarly,

‖ 〈z〉ℓ+j ∂it∂
m
x ∂

j
zf(t)‖2L2 +

µ

2

∫ t

0

‖ 〈z〉ℓ+j ∂it∂
m
x ∂

j+1
z f(s)‖2L2ds

≤ C
[(m+ i+ j − 7)!]2σ

ρ2(m+i+j−7)

(
‖(u0, f0)‖22ρ0,σ,8 + ‖(u0, f0)‖42ρ0,σ,8

)

+ eCC2
∗
[(m+ i+ j − 7)!]2σ

ρ2(m+i+j−7)

(∫ t

0

(
|~a(s)|2ρ,σ + |~a(s)|4ρ,σ

)
ds+

∫ t

0

|~a(s)|2ρ̃,σ
ρ̃− ρ

ds

)

+
(

(f∂x + h∂z) 〈z〉ℓ+j ∂it∂
m
x ∂

j
zu, 〈z〉ℓ+j ∂it∂

m
x ∂

j
zf

)

L2
.

Taking the summation of the above two estimates and noticing

(

(f∂x+h∂z) 〈z〉ℓ+j
∂it∂

m
x ∂

j
zf, 〈z〉ℓ+j

∂it∂
m
x ∂

j
zu

)

L2
+
(

(f∂x+h∂z) 〈z〉ℓ+j
∂it∂

m
x ∂

j
zu, 〈z〉ℓ+j

∂it∂
m
x ∂

j
zf

)

L2
= 0,

we show (2.35) holds for k = j. Thus the proof of the proposition is completed. �

2.8. 2D MHD boundary layer

By combining the estimates in Propositions 2.7-2.9 and 2.15-2.17, we obtain the a priori estimate (2.9)

in Theorem 2.6 that enables us to prove the well-posedness of the MHD boundary layer system (2.2).

Precisely, for given intial datum (u0, f0) ∈ X2ρ0,σ,8, as in [24, Section 7], we first construct the approximate

solutions (uε, fε) ∈ L∞
(
[0, Tε];X3ρ0/2,σ,8

)
to the regularized MHD boundary layer system







(
∂t + uε∂x + wε∂z − ε∂2x − ν∂2z

)
uε = ξε,

(
∂t + uε∂x + wε∂z − ε∂2x − µ∂2z

)
fε = ηε,

(
∂t + uε∂x + wε∂z − ε∂2x − µ∂2z

)
hε = fε∂xwε − hε∂xuε,

∂xuε + ∂zwε = ∂xfε + ∂zhε = 0,

(uε, wε)|z=0 = (∂zfε, hε)|z=0 = (0, 0), (uε, fε)|z→+∞ = (0, 0),

(uε, fε)|t=0 = (u0, f0),

(2.37)

with ξε = (fε∂x+hε∂z)fε and ηε = (fε∂x+hε∂z)uε. Then we derive a uniform estimate on the approximate

solutions (uε, fε) so that we can take the ε→ 0 to have existence of solution in a time interval independent

of ε. For this, we define ~aε in the same way as ~a given in Definition 2.2, with the functions replaced

accordingly by those derived from (2.37). Then the a priori estimate (2.9) in Theorem 2.6 holds with ~a

replaced by ~aε. Hence, we can derive, repeating the argument in [21, Section 6], the uniform upper bound

with respect to ε of the approximate solutions (uε, fε) in L
∞ ([0, T ];Xρ,σ,4) for some 0 < ρ < ρ0 and some T

independent of ε. By taking ε→ 0, we conclude, by compactness argument that the limit (u, f) solves (2.2).

The uniqueness of solution follows from a similar argument used in [24, Subsection 8.2]. Therefore, We

complete the proof of Theorem 2.1 for σ = 3/2. We remark that as in [23, Section 8], it is straightforward

to modify the proof for 1 < σ < 3/2.

3. 3D MHD boundary layer

Now we consider the 3D MHD boundary layer and use (u, v, w) and (f, g, h) to denote velocity and magnetic

fields respectively, and denote by (x, y, z) the spatial variables in R
3
+. Then the MHD boundary layer system
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(1.3) in three-dimensional space is






(
∂t + u∂x + v∂y + w∂z − ν∂2z

)
u−

(
f∂x + g∂y + h∂z)f = 0,

(
∂t + u∂x + v∂y + w∂z − ν∂2z

)
v −

(
f∂x + g∂y + h∂z)g = 0,

(
∂t + u∂x + v∂y + w∂z − µ∂2z

)
f −

(
f∂x + g∂y + h∂z)u = 0,

(
∂t + u∂x + v∂y + w∂z − µ∂2z

)
g −

(
f∂x + g∂y + h∂z)v = 0,

(
∂t + u∂x + v∂y + w∂z − µ∂2z

)
h = f∂xw + g∂yw − h∂xu− h∂yv,

(3.1)

with the divergence free and initial-boundary conditions






∂xu+ ∂yv + ∂zw = ∂xf + ∂yg + ∂zh = 0,

(u, v, w)|z=0 = (∂zf, ∂zg, h)z=0 = (0, 0, 0), (u, v, f, g)|z→+∞ = (0, 0, 0, 0),

(u, v)|t=0 = (u0, v0), (f, g)|t=0 = (f0, g0).

The proof of well-posedness of this system in Gevrey function space with index 3/2 is similar to the proof for

2D case with slight modification. Precisely, instead of the scalar auxiliary functions U , λ and δ in (2.4) and

(2.5) we introduce here the vector-valued functions U = (U1,U2), λ = (λ1, λ2, λ̃1, λ̃2) and δ = (δ1, δ2, δ̃1, δ̃2),

where






(
∂t + u∂x + v∂y + w∂z − ν∂2z

)
∫ z

0

U1(t, x, y, z̃)dz̃ = −∂xw(t, x, y, z),

(
∂t + u∂x + v∂y + w∂z − ν∂2z

)
∫ z

0

U2(t, x, y, z̃)dz̃ = −∂yw(t, x, y, z),

Uj|t=0 = 0, ∂zUj |z=0 = Uj |z→+∞ = 0, j = 1, 2,

and






λ1 = ∂xu− (∂zu)

∫ z

0

U1dz̃, λ2 = ∂yu− (∂zu)

∫ z

0

U2dz̃,

λ̃1 = ∂xv − (∂zv)

∫ z

0

U1dz̃, λ̃2 = ∂yv − (∂zv)

∫ z

0

U2dz̃,

δ1 = ∂xf − (∂zf)

∫ z

0

U1dz̃, δ2 = ∂yf − (∂zf)

∫ z

0

U2dz̃,

δ̃1 = ∂xg − (∂zg)

∫ z

0

U1dz̃, δ̃2 = ∂yg − (∂zg)

∫ z

0

U2dz̃.

Moreover, corresponding to (2.3), set ξ = (ξ1, ξ2) and η = (η1, η2) by
{
ξ1 = (f∂x + g∂y + h∂z)f, ξ2 = (f∂x + g∂y + h∂z)g,

η1 = (f∂x + g∂y + h∂z)u, η2 = (f∂x + g∂y + h∂z)v.

We remark that as in the 2D case, here we can also apply the cancellation mechanism so that the highest

order term ∂xw does not appear in the evolution equations solved by ξj , ηj , j = 1, 2. With the above

functions, we set accordingly ~a = (u, v, f, g,U ,λ, δ, ξ,η) and define |~a|ρ,σ in the same way as in Definition

2.2 with the tangential derivative ∂mx replaced by ∂α1
x ∂α2

y . Then the a priori estimate stated in Theorem

2.6 also holds for the new function ~a. For example, we can repeat the argument used in Subsections 2.2 to

get the desired estimate on the L2 norm of ∂mx U and ∂my U , and the estimate for ∂α1
x ∂α2

y U will follow from

the inequality

‖∂α1

x ∂α2

y U‖L2(R3
+
) ≤ C

(

‖∂α1+α2

x U‖L2(R3
+
) + ‖∂α1+α2

y U‖L2(R3
+
)

)

.

Similar argument holds for the estimates on the other functions λ, δ, · · · . Again from the a priori estimate

we can derive the existence and uniqueness of solution to the 3D MHD boundary layer system (3.1) with

corresponding initial and boundary conditions. Since there is no extra difficulty in the proof for the 3D

case, we omit the detail for brevity.
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