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A CUCKER-SMALE INSPIRED

DETERMINISTIC MEAN FIELD GAME

WITH VELOCITY INTERACTIONS

FILIPPO SANTAMBROGIO AND WOOJOO SHIM

Abstract. We introduce a mean field game model for pedestrians moving in a given domain
and choosing their trajectories so as to minimize a cost including a penalization on the differ-
ence between their own velocity and that of the other agents they meet. We prove existence
of an equilibrium in a Lagrangian setting by using its variational structure, and then study
its properties and regularity.

1. Introduction

This paper aims at proposing a simple model which is a bridge between some collective
motion models such as the well-studied Cucker-Smale model [15], mainly applied to flock
behavior, and the theory of Mean Field Games (MFG for short), introduced in [25–27] and
independently in [19], for economical and engineering applications.

The simplest Cucker-Smale model describes the evolution of a family (xi)i=1,...,N of particles,
which are typically meant to represent a bunch of birds. It is important to underline this bird
interpretation since it is emblematic of the spirit of the model, in comparison with MFG: each
particle is indeed socially influenced by the behavior of the others, but is not rational and does
not really choose how to move but just “follows the others”. The evolution followed by each
xi is typically described by a Cauchy problem with initial datum on xi(0) and x′i(0) = vi(0),
and the equation has the form

x′i = vi, v′i = − 1

N

∑

j

η(xi − xj)(vi − vj),

where η(x) is an interaction kernel which is typically chosen as a decreasing function of |x|.
This models the fact that each particle tends to align their velocity to that of the other
particles, with a weight depending on their distance. It has been widely studied after [15], see
for instance [20].

On the other hand, MFG theory (see [10] for the first set of lecture notes on the topic) is
more concerned with the behavior of a family of rational agents. Hence, particles represent
humans rather than animals, whose rationality is limited. A Mean Field Game consists in the
following principle: a family of agents should choose (or control) their trajectory in a state
space, optimizing a cost which involves the position of the other players. This gives rise to a
non-cooperative game, for which we look for a Nash equilibrium (see [34]). This game is what
is usually called a differential game, which underlines its dynamic nature. The main difference
between differential games and static games is that agents could deviate from a given strategy
along time, and the other agents could react to this change. In a static game where every agent
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should choose a trajectory, he/she writes down the desired trajectory on a piece of paper, puts
it in a sealed envelop, and gives it to a notary, who will announce the cost to every player after
opening all the envelops. In a differential game, the strategy which is written on the same piece
of paper is of algorithmic nature: after saying how he/she will move first, a rule on how to move
from his/her current location is given depending on the observation of what the others have
done. This means that, when considering whether to deviate from a given strategy, each player
should consider that if he/she changes his trajectory the other players will see it and adapt
their own trajectories to his/her change. Yet, MFG focus on a case which simplifies a lot the
study: the continuous case, where agents are supposed to be indistinguishable and negligible.
Indeed, in this case, only the distribution of mass on the set of trajectories plays a role, and if a
single agent decides to deviate, he/she does not affect this distribution, which means that the
other agents will not react to his/her change. This boils down to a game where, indeed, each
player just chooses a trajectory, writes it in a sealed envelop, and waits for knowing his/her
output. In this way, a configuration in MFG can be described by a measure on the set of
possible curves (giving rise to the so-called Lagrangian equilibria, see for instance [8, 33] but
also [13] in a different framework), and each player tries to choose the best curve, minimizing
a certain cost.

Typically, the optimization problem considered by each agent is of the form

min

{∫ T

0
L(t, γ(t), γ′(t), Q)dt+Ψ(γ(T )) : γ(0) = x0

}
,

where Q ∈ P(Γ) is the distribution of mass of the players on the space Γ of possible paths
(other possibilities, involving the final cost Ψ also depending on Q, or the minimization of the
time horizon T needed to reach a given target, as in [33], are also considered).

In most of these models, the above cost takes into account the interactions between agents
in such a way so as to penalize passing through regions with high concentration of players. In
some widely-studied models (which have a variational structure, see for instance [4, 28, 38] as
well as many lectures in [29]), we have L(t, x, v,Q) = 1

2 |v|2 + g(ρt(x)) where ρt is the density
of the distribution (et)#Q of players at time t, and g is an increasing function. In other

models, called MFG of congestion, we have costs of the form L(t, x, v,Q) = ρt(x)
α|v|β , for

some exponents α, β > 0. In some cases [11,37] the interaction takes the form of a constraint
on the density, such as ρ ≤ 1, which is meant to represent the fact that a crowd of agents
cannot fit in a too small area, as a property inherited from a particular appraoch, where each
agent is a rigid sphere, and spheres cannot overlap (this is the spirit of [30, 39], whose goal is
to give a continuous formulation to the ideas of [31,32]).

A natural question would be to consider a more refined version of this granular model: if
the spheres are so dense that they touch each other, then they are stuck into a crystalline
configuration where their velocity is also constrained. One could think at a model where ρ > 1
is impossible, ρ = 1 implies that locally the velocity should be constant, and ρ ≈ 1 should
impose that the velocity is almost constant. A description of this model could be done in terms
of a kinetic representation, where the unknown f(t, x, v) stands for the distribution of mass on
the phase space and the above considerations would mean f(t, x, ·) = δv(t,x) when ρ(t, x) :=∫
f(t, x, v)dv saturates the constraint. Of course, different models where the constraints are

replaced by penalizations would also be possible. Yet, the kinetic description in terms of
the local distribution of the velocity features a serious drawback: from the point of view of
weak convergence, alternating the regions (in the spirit of homogenization) where the velocity is
constant and equal to a certain vector v and regions where it is equal to the opposite vector −v
is very close to having f(t, x, ·) = 1

2δv(t,x) +
1
2δ−v(t,x), while their effects on the above scenarios

are completely different: in one case each agent only meets agents with the same velocity, in
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the other at each location there is a struggle between agents with opposite velocity. This lack
of weak stability prevents any sort of local model from being well-posed. In particular, it will
be impossible to prove any kind of existence result, either by variational methods or by fixed-
point methods. This suggests to consider a model where the velocity of each agent interacts
with that of other agents nearby, up to a certain positive distance, or with that of all agents,
but weighting the interaction through a decreasing funtion of the distance. This reminds a lot
of the interaction among agents in the Cucker-Smale model, though it is more like a modeling
issue rather than the well-posedness of the aforementioned Cauchy problem. Forgetting about
the constrained model and the explicit role played by the density that was presented above
just as an example, a very simple MFG model could be built upon the assumption that the
cost for the agent i following the trajectory xi(t) should include a term of the form

(1.1)

∫ T

0

∑

j

1

2
η(xi(t)− xj(t))|x′i(t)− x′j(t)|2dt,

where η(z) is a decreasing function of |z|. It is important to observe that this cost includes,
even if in a very mild and implicit form, a penalization for overcrowding. Indeed, a useful way
of rewriting it is as follows: set

a(t, x) =
∑

j

η(x− xj(t)), u(t, x) =

∑
j x

′
j(t)η(x− xj(t))

a(t, x)
,

σ(t, x) =
∑

j

η(x− xj(t))|x′j(t)− u(t, x)|2,

and then observe that the above cost can be re-written as
∫ T

0

1

2

[
a(t, xi(t))|x′i(t)− u(t, xi(t))|2 + σ(t, xi(t))

]
dt.

The coefficient a in front of the term penalizing the difference between the velocity of the agent
i and the local average velocity is indeed a coefficient taking into account how many agents
are present nearby (it is in some sense a regularized version of the density ρ(t, x)). Of course
one could imagine a more refined model where different terms depending on a or on ρ appear,
but this is the simplest one that we can consider.

Let us make two observations about this model. The first is of modeling nature: the presence
of non-local interactions, ruled by an interaction kernel η which can be taken, for instance,

of the form η(z) = e−
|z|
ε for some ε > 0 which determines the length scale of the interaction,

suggests that this could be a reasonable model reproducing the well-known phenomenon of lane
formation. Indeed, many studies, starting from experimental ones, about pedestrian motion
show that agents tend in some situations to spontaneously form lanes walking in opposite
directions (the reader can look, among many publications on this topic, at [7, 21, 40], for
instance). This can be observed for instance in underground corridors, where agents going in
opposite directions (those going to the train and those going out from a previous one) meet,
and they spontaneously create a number of lanes where individuals go in a same direction. One
of the explications for this phenomenon could of course be the fact that pedestrian try to avoid
crossing individuals moving in opposite direction, since contact with them would slow down
their motion more than contact with agents moving in the same direction, which is exactly
what is penalized in our model. The width of each lane is influenced by many factors, and is
usually of the order of few people size. It is a huge simplification to say this, but one could
think that it should be related to the distance at which interactions are significant, i.e. to
the charasteric size of the kernel η (to ε in our example above). This explains why we believe
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that the model we present in this paper could be a good and simple choice to reproduce lane
formation phenomena. This will be briefly addressed in the last section of the paper, devoted
to the multipopulation case (of course, lane formation cannot occur if all players have the very
same goal, and we need to observe a situation where two different groups meet), but the answer
could only come through a deeper study or numerical simulations.

The second observation concerns a refinement of the model and some mathematical prop-
erties. Indeed, the cost above is that it is invariant under translation of all the trajectories by
a common time-dependent vector, i.e. if we replace each xj(t) with xj(t) + v(t) the condition
for each xi to be optimal given the other trajectories does not change. This also applies in
presence of a final cost Ψ(xi(T )), at least if Ψ is an affine function. This invariance implies
lack of compactness which could be fatal when proving the existence of an equilibrium. For
this reason and also for modeling reasons it is a good choice to also add a cost on the kinetic
energy of each player, which means that each agent tries to adapt its velocity to that of the
others but at the same time to push so that the velocity is not too large as this requires an
effort for everybody. The global cost to be considered can therefore be of the form

∫ T

0


δ

2
|x′i(t)|2 + λ

∑

j

1

2
η(xi(t)− xj(t))|x′i(t)− x′j(t)|2


 dt+Ψ(xi(T )),

for some parameters δ, λ > 0. The same can be reformulated in a continuous setting using a
probability measure Q ∈ P(Γ) where Γ is the set of all possible paths:

∫ T

0

(
δ

2
|γ′(t)|2 + λ

∫

Γ

1

2
η(γ(t) − ω(t))|γ′(t)− ω′(t)|2dQ(ω)

)
dt+Ψ(γ(T )),

and also re-written in terms of a, u and σ.
Finding an equilibrium amounts then at solving a fixed point problem: using the same

strategy as in [8] and [33], one defines a multi-valued operator O associating with every measure
Q ∈ P(Γ) the set of all probabilities on Γ with (e0)#Q = m0 which are concentrated on optimal
curves for F (·, Q), and loof for a fixed point Q ∈ O(Q) using Kakutani’s Theorem (see [22]). In
order to prove existence of a fixed point, compactness properties of this operator are needed,
which are unfortunately difficult to prove. Indeed, even under the addition of the kinetic term
δ
∫
|γ′|2, it has not been possible to find a quantity that could be used to prove compactness

on Q (for instance, the average kinetic energy
∫ ∫

|γ′|2dtdQ(γ)) and which decreased when

passing from a measure Q to a measure Q̃ ∈ O(Q).
Instead, existence of an equilibrium will be proven in this paper via a variational method,

specific to this very setting. Indeed, it is possible to prove that minimizers of a suitable
functional J (Q) are necessarily equilibria, and it will be exploited in the sequel.

This variational framework makes a big difference between our work and some other recent
works on MFG with velocity interactions. This is indeed not at all the first paper connecting
Cucker-Smale models to MFG, and the very first one is probably [35]. In such a paper, agents
solve a stochastic control problem: they control their own acceleration, which also includes
a brownian part (i.e. they follow dx = vdt, dv = udt + dBt, x being their position, v their
velocity, and u the control), and the cost they minimize include a term of the form (1.1).
Note that standard MFG consider interactions between agents based on their position in the
state space, which does not allow velocity interactions unless the velocity itself is considered
as a state. This explains why a natural choice is to consider (x, v) as the state, and allow
agents to control their acceleration, a topic which has been recently investigated, for instance
in [1] and [9]. Moreover, we mention the second part of [3] which specifically addresses the
Cucker-Smale setting as a limit of MFG problems with control on the accelleration.
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Mean-Field Games where the state is the position, and the velocity (or the control) of all
agents enters into the computation of the cost are usually called MFG of controls (or extended
MFG, see [17,18]). This is a less studied and more involved class of MFG, where the interaction
between an agent and the rest of the population depends on the distribution or the controls
chosen by the population, or on the joint distribution of states and controls. One of the first
paper on MFG of controls was [12], for financial applications, where the agents control their
portfolio by deciding how much to sell or to buy of a stock. For a very good introduction to
the topic of MFG of controls, a good choice will be the PhD thesis [24], which will be available
soon. The author of such a thesis considers indeed (see also [2] and [23]) MFG of controls
which are really inspired by the Cucker-Smale model for collective motion. The cost is not
exactly the same which is considered in the present paper, and diffusion is considered, but the
qualitative features of the model are the same, despite some technical difference. In particular,
in order to develop a general existence theory for MFG of controls in a non-monotone setting
(in many cases in MFG the monotonicity properties of the cost imply that agents prefer
choosing locations which are not the same as the other players; when applying this to velocity
interactions, this would mean that agents prefer to choose velocities which are not the same,
differently from what Cucker-Smale based models consider), a certain contractivity property
is required in [23] and in Chapter 2 of [24], which means that the term |x′(t) − u(t, x(t))|2 in
the cost is replaced by |x′(t)− λu(t, x(t))|2, for λ < 1.

Due to the analogies with some models presented in [24], the reader could conclude that the
model presented in our paper is also an example of MFG of controls. This is reasonable, but
could be debated, even if classifying it or not as a MFG of controls is a matter of taste. Indeed,
we believe that one of the key features of MFG of controls is that there is an interaction between
players which is not only based on where they are, but also on their intentions (their control,
the effort that they put in the motion, etc...). If their movement is completely and bijectively
determined by their control, then the distinction between the position and the control become
less clear. Indeed, for deterministic MFG (without Brownian diffusion), the distinction about
what is the state of the system is quite subtle and debatable when players are negligible since,
as we said, the game is finally statical and the choice of a strategy consists indeed in choosing
a trajectory, which includes both the information about position and velocity. As a result, the
name “MFG of controls” seems more adapted to the cases when the control of each player does
not give a full information on the evolution of his/her position, as it happens in the presence
of diffusion.

As the reader can see, we insist on the difference between models with diffusion and deter-
ministic models. Indeed, all the models considered so far in MFG with similar features as ours
include diffusion, and it seems, to the best of our knowledge, this is the first paper with an
existence result for a deterministic MFG of this type (we could also say, if we accept this termi-
nology, for a deterministic MFG of control, even if Chapter 4 in [24] suggests that existence for
monotone MFG of controls can also be proven with degenerate or no diffusion). Note that, in
the framework of crowd motion and in connection with [30], [37] also introduced a model which
later turned out to fit the framework of deterministic MFG of controls. More precisely, [37] is
an example of a MFG where the control of each agent does not give full information on his po-
sition, since the velocity of the agents is a function of their own control and of a global pressure
effect which depends on all the controls and the positions. However, the same paper did not
include a general existence result, which is out of reach because of mathematical difficulties.
Indeed, the main reason why the model presented in this paper can be analyzed is the choice
of a very precise algebraic form for the cost which allows for a variational forumaltion, in the
sense that minimizers of a (non-convex) global energy can be proven to be equilibria, which
allows for an existence result based on semicontinuity and not on fixed point theorems.
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The present paper is hence organized as follows: after this long introduction, Section 2 gives
a precise description of the model we consider and provides the definition of the equilibrium we
seek, together with few preliminary results; Section 3 is devoted to the variational formulation:
we introduce a certain global energy, prove that its minimizers are equilibria in the desired
sense, and prove existence of minimizers; Section 4 is the most technical one, and analyzes the
equilibria: in 4.1 we define the relevant quantities (a, u and σ, already introduced in these
pages) for the interaction, in 4.2 we formally derive the MFG system, coupling a Hamilton-
Jacobi equation and a continuity equation, describing the equilibrium, in 4.3 we prove C1,1

regularity of the trajectories followed by the agents, in 4.4 we apply this regularity to proving
monokineticity (all agents passing through a same point a same time share the same velocity)
and in 4.5 we prove that, for short time (T small) only one curve is followed starting from
each point, which can be interpreted as a pure-strategy equilibrium; finally, Section 5 briefly
explains how to extend the model to the multipopulation case and its applications.

2. The model: a Mean-Field Game with velocity interactions

Even if in the introduction, in order to present the main ideas, we described the model as
if a finite number of agents were involved, the rigorous description in this section will be done
using the language of measures on curves, in order to include the continuous case where every
agent can be negligible. The case of agents with positive mass can also fit this framework using
measures with atoms, yet it is important to notice that

• when agents have positive mass there is a difference between dynamic games and static
games, and ignoring this difference means that we do not consider the dynamic aspect
of the game;

• as we consider arbitrary measures on the space of curves and we do not impose the
possible mass of their atoms, an agent with positive mass can split its mass into several
curves, which corresponds in Nash’s language to mixed strategies.

In order to define our game and our notion of equilibrium, let us fix a space domain Ω which
can be Rd, a compact subset of Rd, or the d-dimensional torus, and a time T > 0. We call Γ
the space of all continuous curves defined on the interval [0, T ] and valued in Ω, endowed with
topology of uniform convergence. We denote by et : Γ → Ω for t ∈ [0, T ] the evaluation map
et(γ) = γ(t). For curves γ ∈ Γ, we define their kinetic energy K(γ) as

K(γ) :=





1

2

∫ T

0
|γ′(t)|2dt if γ ∈ H1

+∞ if γ /∈ H1
.

Then, given a function Ψ : Ω → R and a number δ > 0, we define a cost function on Γ
including the kinetic energy and Ψ as a final cost:

Kδ,Ψ(γ) := δK(γ) + Ψ(γ(T )).

Given an interaction kernel η : Rd → R, we also define a cost function on Γ× Γ via

V (γ, γ̃) :=





1

2

∫ T

0
|γ′(t)− γ̃′(t)|2η(γ(t) − γ̃(t))dt if γ − γ̃ ∈ H1

+∞ if γ − γ̃ /∈ H1
.

Given a probability measure Q ∈ P(Γ) and a parameter λ > 0, we define VQ : Γ → R as

VQ(·) =
∫

Γ
V (·, γ̃)dQ(γ̃),
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and then

(2.2) F (γ,Q) := Kδ,Ψ(γ) + λVQ(γ),

a quantity which can take +∞ as a value.
An important observation about the function Kδ,Ψ is the following.

Lemma 2.1. Suppose that Ψ is either bounded or Lipschitz continuous. Then there exists a
constant C, depending on Ψ, δ and T , such that we have

Kδ,Ψ(γ) ≥
δ

2
K(γ) + Ψ(γ(0)) − C

for every curve γ ∈ Γ.

Proof. The estimate is straightforward if Ψ is bounded, since we of course have Ψ(γ(T )) ≥
Ψ(γ(0)) − C. For Ψ Lipschitz continuous, we use

Ψ(γ(T )) ≥ Ψ(γ(0)) − Lip(Ψ)

∫ T

0
|γ′(t)|dt ≥ Ψ(γ(0)) −

(
δ

4

∫ T

0
|γ′(t)|2dt+ Lip(Ψ)2

δ
T

)
. �

In the model we consider, the initial distribution of the agents is fixed, and identified by
a probability measure m0 ∈ P(Ω). We will hence consider the behavior of a population of
agents, initially distributed according to m0, and trying to minimize the function γ 7→ F (γ,Q)
according to their trajectory distribution Q ∈ P(Γ). Their interaction gives rise to a game
that we will call MFG(Ω,Ψ, δ, η, λ,m0). The ingredient of this game are indeed

• A d-dimensional domain Ω which could be either Rd, a compact subset of Rd, or the
d-dimensional torus, where the movement takes place;

• A probability measure m0 ∈ P(Ω) on Ω, standing for the initial distribution of players;
• Two parameters δ, λ > 0 fixing the relative weight of the cost for the velocity of each
player (δ) and of the interaction cost (λ);

• A cost function Ψ : Ω → R which stand for the final cost and is supposed to be
continuous, and either bounded or Lipschitz continuous.

• An interaction kernel η : Rd → R, which weights the interaction between the velocities
of the agents in terms of their distances, which is supposed to be continuous, positive,
and bounded.

All the above assumptions on the data will not be repeated throughout the paper and just
referred to as “standing assumptions”. Only possible extra requirements for some precise parts
of the paper will be precised.

Once all the ingredients are set, we look for a Nash equilibrium, which is defined as follows.

Definition 2.1. A measure Q ∈ P(Γ) is said to be an equilibrium of MFG(Ω,Ψ, δ, η, λ,m0)
if e0#Q = m0 ∈ P(Ω) and

(2.3)

∫

Γ
F (γ,Q)dQ(γ) < ∞, F (γ,Q) = inf

w∈Γ
ω(0)=γ(0)

F (ω,Q), ∀ γ ∈ spt(Q).

In order to deal with the constraint on the initial distribution we define the set Qm0
, the

subset of P(Γ) where the initial distribution is m0:

Qm0
:= {Q ∈ P(Γ) : e0#Q = m0} .

We here present several topological properties of the set Qm0
for later use. The topology we

use for probability measures, which we call weak convergence, consists in the convergence in
duality with continuous and bounded functions.
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Proposition 2.1. For every t ∈ [0, T ], the push-foward mapping P(Γ) ∋ Q 7→ et#Q ∈ P(Ω)
is continuous for the weak convergence of probability measures.

Proof. Let (Qn)n≥1 be a sequence of probability measures in P(Γ) that converges to Q. Then,
for every bounded continuous function f ∈ Cb(Ω), we have

lim
n→∞

∫
fd(et#Qn) = lim

n→∞

∫
(f ◦ et)dQn =

∫
(f ◦ et)dQ =

∫
fd(et#Q),

since f ◦et ∈ Cb(Γ). Therefore, we have et#Qn
∗
⇀ et#Q and conclude the continuity of et#. �

Proposition 2.2. For every probability measure m0 ∈ P(Ω), the set Qm0
is non-empty, convex

and closed in P(Γ).

Proof. The convexity of Qm0
immediately follows from the linearity of e0# : Q → e0#Q. To

prove Qm0
is non-empty, we consider the trivial mapping Still : Ω → Γ where Still(x) is the

constant curve staying still at x for each x ∈ Ω, which is of course contained in Γ. Then, we
can find an element Still#m0 of Qm0

since

Still#m0 ∈ P(Γ), e0#(Still#m0) = m0.

Finally, one has the closedness of Qm0
as a consequence of the continuity of e0# : P(Γ) → P(Ω)

in Proposition 2.1. �

3. Variational Framework

In this section we will see how equilibria for our MFG can be obtained by minimizing an
energy among measures Q on curves. This kind of variational problems are nowadays stan-
dard in calculus of variations, starting from Brenier’s formulation for the incompressible Euler
equation (see [6]), before being popularized in optimal transport in particular for branched
transport and congested traffic (see Chapter 4 in [36]). Applications of variational principle
on measures to equilibria involving interaction costs are also not new, but usually performed
in statical settings, as one can see from [5].

Lemma 3.1. Under the standing assumptions on the model, the extended real-valued functional

J : Γ× Γ → R ∪ {+∞}, J(γ, γ̃) = Kδ,Ψ(γ) +Kδ,Ψ(γ̃) + λV (γ, γ̃)

is lower semicontinuous.

Proof. Let {(γn, γ̃n)}n≥1 be any converging sequence in Γ × Γ to the limit (γ, γ̃). Then, the
lower semicontinuity of J is provided once we show

lim inf
n→∞

J(γn, γ̃n) ≥ J(γ, γ̃).

Here, we assume that the left-hand side of (3) is smaller than ∞, since otherwise the above
inequality clearly holds. Then, by taking a subsequence if necessary, we further assume
{J(γn, γ̃n)}n≥1 is a converging sequence, i.e.,

lim
k→∞

J(γk, γ̃k) = lim inf
n→∞

J(γn, γ̃n).

Using the positivity of V , the fact that γn(0) and γ̃n(0) converge, and Lemma 2.1, one can
see that the H1-norm of (γn, γ̃n)n≥1 is bounded. As a consequence, the uniform limit (γ, γ̃)
is in H1([0, T ]; Ω × Ω) and (γ′n, γ̃

′
n) converges to (γ′, γ̃′) weakly in L2([0, T ]; Ω × Ω). Since

the functional J(γ, γ̃) is an integral functional involving continuous functions of (γ(t), γ̃(t))
and convex (quadratic) functions of (γ′(t), γ̃′(t)), standard semicontinuity results (see [16], for
instance) apply.

�
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Remark 3.1. From Fatou’s Lemma, we also obtain

γn → γ ⇒ lim inf
n→∞

∫

Γ
J(γn, γ̃)dQ(γ̃) ≥

∫

Γ
J(γ, γ̃)dQ(γ̃).

From now on, we define, for every Q ∈ P(Γ)

Kδ,Ψ(Q) :=

∫

Γ
Kδ,Ψ(γ)dQ(γ),

V(Q) :=

∫

Γ×Γ
V (γ, γ̃)d(Q⊗Q)(γ, γ̃),

J (Q) :=

∫

Γ×Γ
J(γ, γ̃)d(Q⊗Q)(γ, γ̃) = 2Kδ,Ψ(γ̃)(Q) + λV(Q).

(3.4)

Note that all the above functionals can take the value +∞. Yet, we observe the following
implication, valid under the assumption of Lemma 2.1:

(3.5) Kδ,Ψ(γ̃)(Q) < +∞ ⇒ V(Q) < +∞.

Indeed, the inequality proven in Lemma 2.1 allows to deduce from Kδ,Ψ(γ̃)(Q) < +∞ the
finiteness of the average kinetic energy

∫
ΓK(γ)dQ(γ), and we can estimate V thanks to

2V(Q) = 2

∫

Γ×Γ
V (γ, γ̃)dQ(γ)dQ(γ̃)

=

∫

Γ×Γ

∫ T

0
|γ′ − γ̃′|2η(γ − γ̃)dtdQ(γ)dQ(γ̃)

≤ 2(sup η)

∫

Γ×Γ

∫ T

0

(
|γ′|2 + |γ̃′|2

)
dtdQ(γ)dQ(γ̃)

= 4(sup η)

∫

Γ
K(γ)dQ(γ) < ∞,

Lemma 3.2. Suppose, besides the standing assumptions on the model, that η is even function,
i.e., η(y) = η(−y) for all y ∈ Rd, then any (local) minimizer Q0 of J in Qm0

satisfies

(3.6)

∫

Γ
F (γ,Q0)dQ(γ) ≥

∫

Γ
F (γ,Q0)dQ0(γ), ∀ Q ∈ Qm0

.

Proof. First, from the definition of Q0, the functional J has a finite evaluation at Q0, i.e.,
J (Q0) < ∞. Suppose that there exists a probability measure Q ∈ Qm0

satisfying

∫

Γ
F (γ,Q0)dQ(γ) <

∫

Γ
F (γ,Q0)dQ0(γ) = Kδ,Ψ(γ̃)(Q0) + λV(Q0).

Then, since J (Q0) = 2Kδ,Ψ(γ̃)(Q0) + λV(Q0) is finite, the above integrals are all finite. Now,
as Qm0

is convex, we set Qε := (1− ε)Q0 + εQ and employ the minimizing condition

(3.7) J (Q0) ≤ J (Qε), ∀ε ∈ (0, 1).
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We can further split the J -value at Qε by the order of ε as below:

1

2
J (Qε) = Kδ,Ψ(γ̃)(Qε) +

λ

2
V(Qε)

= (1− ε)Kδ,Ψ(γ̃)(Q0) + εKδ,Ψ(γ̃)(Q) +
λ(1− ε)2

2
V(Q0) +

λε2

2
V(Q)

+ λε(1− ε)

∫

Γ×Γ
V (γ, γ̃)d(Q0 ⊗Q)(γ, γ̃)

=: I0 + εI1 + ε2I2.

(3.8)

Here, the zeroth order term I0 coincides with J (Q0)
2 , and the first order term is

I1 = −Kδ,Ψ(γ̃)(Q0) +Kδ,Ψ(γ̃)(Q)− λV(Q0) + λ

∫

Γ×Γ
V (γ, γ̃)d(Q0 ⊗Q)(γ, γ̃)

= −
∫

Γ
F (γ,Q0)dQ0(γ) +

∫

Γ
F (γ,Q0)dQ(γ),

(3.9)

which is finite and negative. Moreover, the second order term I2 = λ
2 (V(Q0) + V(Q)) is finite

(since V(Q0) is finite and
∫
Γ F (γ,Q0)dQ(γ) is finite, which implies Kδ,Ψ(γ̃)(Q) < +∞ and

hence V(Q) < +∞). This makes a contradiction for small ε > 0. �

Now, we show that a measure Q0 satisfying J (Q0) < ∞ and (3.6) is indeed satisfying (2.3).
First, we prove the following.

Lemma 3.3. Under the standing assumptions on the model, if Q0 ∈ Qm0
and

(3.10) J (Q0) < ∞,

∫

Γ
F (γ,Q0)dQ0(γ) ≤

∫

Γ
F (γ,Q0)dQ(γ), ∀ Q ∈ Qm0

,

then Q0 satisfies

(3.11) F (γ,Q) = inf
w∈Γ

ω(0)=γ(0)

F (ω,Q), Q0 − almost every γ.

Proof. For any real number p, define Ap as

Ap := {γ ∈ Γ : F (γ,Q0) ≤ p} ,
which is clearly a σ-compact subset of Γ. Now, for any positive rational number q, define a
multifunction Sq as

Sq : Γ → 2Γ, Sq(γ) =

{
∅ γ /∈ H1

{ω ∈ Aq : ω(0) = γ(0)} γ ∈ H1.

Then, for any closed ball BR(x) in Γ, the lower inverse of Sq is Borel measurable, since
{
γ ∈ Γ : Sq(γ) ∩BR(x) 6= ∅

}

=
{
γ ∈ H1 : Sq(γ) ∩BR(x) 6= ∅

}

= Π1

{
(γ, ω) ∈ H1 ×Aq : γ(0) = ω(0), ‖ω − x‖sup ≤ R

}

=
⋃

p∈Q∩(0,∞)

Π1

{
(γ, ω) ∈ Ap ×Aq : γ(0) = ω(0), ‖ω − x‖sup ≤ R

}
,

(3.12)

and
{
(γ, ω) ∈ Ap×Aq : γ(0) = ω(0), ‖ω−x‖sup ≤ R

}
is compact in Γ×Γ, as H1 is compactly

embedded into Γ. Here, we used the lower semicontinuity of F (·, Q0) for the closedness of the
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above set. Therefore, the multifunction Sq is measurable. In particular, the set of points where
its value is non-empty is also measurable.

Now, assume that the set
{
γ ∈ H : ∃ ω ∈ H, F (ω,Q0) < F (γ,Q0), ω(0) = γ(0)

}

is not Q0-negligible. This set is the union, among pairs of positive rational numbers (q, r)
satisfying r > q of the sets

{
γ ∈ H : F (γ,Q0) > r, {ω : ω(0) = γ(0), F (ω,Q0) ≤ q} 6= ∅

}
,

hence at least one of them has positive Q0-measure. In other words, one can find a pair of
positive rational number (q, r) satisfying

Q0(A
q
r) > 0, where Aq

r := {γ ∈ Γ : F (γ,Q0) > r}
⋂

{γ ∈ Γ : Sq(γ) 6= ∅} .
Then, by using the Kuratowski-Ryll-Nardzewski Selection Theorem (see, for instance, [14] for
all the theory about measurable multifunctions), there exists a measurable selector f : Aq

r → Γ
of the multifunction Sq : Aq

r → 2Γ, i.e., f is a measurable function satisfying

f(a) ∈ Sq(a), ∀ a ∈ Aq
r.

However, one can easily check that a measure Q̃ := f#(Q0|Aq
r
) +Q0|Γ\Aq

r
is in Qm0

and
∫

Γ
F (γ,Q0)dQ0(γ) >

∫

Γ
F (γ,Q0)dQ̃(γ),

which contradicts (3.10). �

The only difference between (2.3) and (3.11) is that (2.3) guarantees the minimality of
F (γ,Q) for all γ in a support of Q, which is a more concrete and useful notion than only
having it for Q-a.e. curve, as in (3.11) .

Lemma 3.4. Condition (3.11) is equivalent to
∫

Γ
F (γ,Q)dQ(γ) < ∞, F (γ,Q) = inf

w∈Γ
ω(0)=γ(0)

F (ω,Q), ∀ γ ∈ spt(Q).

Proof. For simplicity, we first give a proof in the case where Ω has no boundary (i.e. if it is
the whole space Rd or Td. Let (γn)n≥1 be a uniformly converging sequence of curves satisfying

γn → γ, F (γn, Q) = inf
w∈Γ

ω(0)=γn(0)

F (ω,Q) < ∞.

Then, for any other curve γ̃ ∈ Γ with γ̃(0) = γ(0), we have

F (γ̃n, Q) ≥ F (γn, Q), ∀n ≥ 1,

where γ̃n is a translation of γ̃ and γn(0) = γ̃n(0). Moreover, since each γ̃n is a translation of γ̃,
the time derivatives γ̃′n and γ̃′ are equal for all n. Therefore, all derivative terms in F (γ̃n, Q)
are fixed and we can apply the dominated convergence theorem:

lim
n→∞

F (γ̃n, Q) = F (γ̃, Q).

For the upper bound of F (γ,Q), we recall Remark 3.1 that the function F (·, Q) is lower
semicontinuous in Γ:

lim inf
n→∞

F (γn, Q) ≥ F (γ,Q).
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Hence, combining these two estimates, we can conclude that γ is also a minimizer of F (·, Q)
among all curves with same initial position.

This construction cannot be applied as it is in the case of a bounded domain with boundary,
as γ̃n could get out of the domain. In this case we propose a different construction, which
could also be applied to the case without boundary but is slightly more involved. The starting
point is the following: for every two points x0, x1 ∈ Ω there exists a constant-speed geodesic

σ : [0, 1] → Ω with σ(0) = x0, σ(1) = x1 and
∫ 1
0 |σ′(t)|2dt = dgeod(x0, x1)

2. Moreover, the
geodesic distance is equivalent, in smooth domains, to the Euclidean one, so that, if we fix a
point x0 and we replace x1 by a sequence xn → x0, we obtain a sequence of curves σn with∫ 1
0 |σ′

n(t)|2dt → 0. We apply this to the points x0 = γ(0) and xn = γn(0) above and set

δn :=
∫ 1
0 |σ′

n(t)|2dt. Then, we choose a sequence εn → 0, and we define

γ̃n(t) :=





σn(1− t/εn) if t ≤ εn

γ̃(2(t − εn)) if εn ≤ t ≤ 2εn

γ̃(t) if t ≥ 2εn

.

We can see that γ̃n is a curve starting from xn = γn(0) and is hence a competitor for γn. We
only need to prove that we have limn F (γ̃n, Q) ≤ F (γ̃, Q). Since γ̃n and γ̃ coincide on [2εn, T ],
this only amounts to show that the integral terms on [0, εn] and on [εn, 2εn] in the energy of
γ̃n tend to 0. Using

∫ εn

0
|γ̃′n(t)|2dt = ε−1

n

∫ 1

0
|σ′

n(t)|2dt,
∫ 2εn

εn

|γ̃′n(t)|2dt = 2

∫ 2εn

0
|γ̃′(t)|2dt,

we see that we only need to choose εn → 0 such that δn/εn → 0, which can be obtained by
choosing εn =

√
δn. �

To sum up, we obtain the following:

Proposition 3.1. Under the standing assumptions of the model, and supposing that η is an
even function, then any (local) minimizer Q0 of J in Qm0

is an equilibrium for the mean-field
game MFG(Ω,Ψ, δ, η, λ,m0).

Proof. This is a consequence of Lemmas 3.2, 3.3 and 3.4. �

We now prove the existence of such minimizer of J . This can be done by considering a
J -minimizing sequence of measures (Qn)n≥1 and showing its tightness. Then, the following
lemma is necessary to complete this minimizing sequence argument.

Lemma 3.5. Let X be any Polish space and (Qn)n≥1 be a sequence of P(X) converges to Q∞.
Then, (Qn ⊗Qn)n≥1 weakly converges to Q∞ ⊗Q∞ ∈ P(X ×X) up to subsequence.

We provide a proof of this result, which is quite classical, as the easiest proof which are
available in the literature (by density of suitably separable functions) are only adapted to the
case of a compact space X.

Proof. Since X and X ×X are Polish spaces, the sequential compactness is equivalent to the
tightness and closedness, as a consequence of Prokhorov theorem. Thus, for every ε > 0 there
exists a compact set Kε ⊂ X such that

Qn(X \Kε) < ε, ∀ n ≥ 1.

This allows to deduce tightness for the sequence (Qn ⊗Qn)n, since

(Qn ⊗Qn)(X ×X \Kε ×Kε) < 2ε, ∀Qn ≥ 1.
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Therefore, by using Prokhorov theorem and taking a subsequence if necessary, a limit µ of
(Qn ⊗Qn)n≥1 exists in P(X ×X), and we claim that Q∞ ⊗Q∞ is equal to µ, i.e.,

(3.13)

∫

X×X
φ dµ =

∫

X×X
φ d(Q∞ ⊗Q∞), ∀ φ ∈ Cb(X ×X).

First, note that we may assume φ ≥ 0 in (3.13), since φ is assumed to be bounded and both
µ and Q∞ ⊗ Q∞ are probability measures. Then for any ε > 0, we consider a compact set
K = Kε and an approximation φ of φ|K×K satisfying

‖φ− φ‖L∞(K×K) < ε, φ =

m∑

i=1

figi, fi, gi continuous functions on K.

This is possible thanks to a standard use of the Stone-Weierstrass theorem, but requires com-
pactness. Then, we have

∫

X×X
φ d(Qn ⊗Qn) ≤ 2ε‖φ‖L∞ +

∫

K×K
φ d(Qn ⊗Qn)

≤ 2ε‖φ‖L∞ + ε+

∫

K×K
φ d(Qn ⊗Qn)

= 2ε‖φ‖L∞ + ε+

m∑

i=1

(∫

K
fi dQn

)(∫

K
gi dQn

)
,

(3.14)

and as (Qn|K)n≥1 is obviously a tight sequence of measures, it converges (up to subsequences)
to a measure νK , supported on K, and satisfying νK ≤ Q∞. Thus, we take the limit n → ∞
in (3.14) to deduce

∫

X×X
φ dµ ≤ 2ε‖φ‖L∞ + ε+

∫

K×K
φd(νK ⊗ νK)

≤ 2ε‖φ‖L∞ + 2ε+

∫

K×K
φd(νK ⊗ νK)

≤ 2ε‖φ‖L∞ + 2ε+

∫

X×X
φd(Q∞ ⊗Q∞),

for every nonnegative bounded continuous function φ and ε > 0. Sending ε → 0 and using the
arbitrariness of φ we deduce

µ ≤ Q∞ ⊗Q∞.

Finally, since µ and Q∞ ⊗ Q∞ are probability measures in X × X, we conclude µ = Q∞ ⊗
Q∞. �

Theorem 3.1. Under the standing assumptions of the model, and supposing that η is even
function, then there exists a equilibrium probability measure on curves Q∞ in Qm0

of the
mean-field game MFG(Ω,Ψ, δ, η, λ,m0).

Proof. It suffices to show that the functional J restricted to Qm0
has a minimizer.

Let us take a minimizing sequence (Qn)n≥1 ⊂ Qm0
of J , i.e.,

J (Q1) ≥ J (Q2) ≥ · · · , lim
n→∞

J (Qn) = inf
Q∈P(Γ)

J (Q) < ∞.

The fact that the infimum is finite comes from J (Still#m0) = 2
∫
ΩΨ(x)dm0(x) < ∞. Now,

we claim that the collection {Qn : n ≥ 1} is tight. To verify this, we define the set ΓM as

ΓM := {γ ∈ Γ : W (γ(0)) ≤ M, Kδ,Ψ(γ) ≤ M} ,
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where W : Rd → (0,∞) is a continuous function satisfying
∫

Ω
W (x)dm0(x) =: CW < ∞, {x : W (x) ≤ b} is compact ∀ b > 0.

Then, ΓM is a bounded subset of H1 for H1-norm (since the bound on W provides a bound
on γ(0) and the bound on Kδ,Ψ on the kinetic energy) and therefore ΓM is compact in Γ.

Now, we have

Q({γ : W (γ(0)) > M}) = m0({W > M}) ≤ CW

M
and

Q({γ : Kδ,Ψ(γ) > M}) ≤ 1

M

∫
Kδ,ΨdQ ≤ 1

2M
J (Q).

Therefore, from Prokhorov theorem, the sequence (Qn)n≥1 has a converging subsequence
(Qni

)i≥1 to some probability measure Q∞ ∈ P(Γ), and this is indeed contained in Qm0
by

the closedness in Proposition 2.2. Moreover, by using Lemma 3.5, the corresponding sequence
of product measures (Qni

⊗Qni
) converges to Q∞ ⊗Q∞. Hence, we have

J (Q∞) =

∫

Γ×Γ
Jd(Q∞ ⊗Q∞) ≤ lim inf

n→∞

∫

Γ×Γ
Jd(Qn ⊗Qn) = inf

Q∈P(Γ)
J (Q),

and conclude that Q∞ is the desired minimizer, which is an equilirbium thanks to Proposition
3.1. �

4. Analysis of optimal curves and equilibria

Throughout the section, we will occasionally need to add some assumptions to the standing
ones, either on the kernel η or on the domain Ω. In part of the analysis we will indeed need to
add the simplifying assumption that Ω has no boundary (i.e., either we are on the torus or on
the whole space Rd; of course other Riemannian manifold settings could be considered but we
will stick to the Euclidean case) and/or that the communication weight η is strictly positive
and smooth, satisfying |∇η| ≤ Cη for a finite constant C. This last assumption is of course
satisfied in the compact case of the torus as soon as η > 0 and η is Lipschitz continuous. The
final cost Ψ can also be supposed to be Lipschitz continuous (instead of Lipschitz or bounded).
On the other hand, it is not necessary for our analysis to suppose that η is even, which is
crucial for existence purposes but not for regularity.

It is important to underline now that any equilibrium Q that we analyze in this section is
concentrated on H1 curves, which will be useful in particular to obtain a.e. differentiability.

4.1. Relevant macroscopic quantities. For a better understanding of the problem we define
the following quantities.

M1(t) :=

∫

Γ
|ω′(t)|dQ(ω),

M2(t) :=

∫

Γ
|ω′(t)|2dQ(ω),

a(t, x) :=

∫

Γ
η(x− ω(t))dQ(ω),

u(t, x) :=
1

a(t, x)

∫

Γ
ω′(t)η(x− ω(t))dQ(ω),

σ(t, x) :=

∫

Γ
|ω′(t)− u(t, x)|2η(x− ω(t))dQ(ω).
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The quantities M1 and M2 represent the first and second moment of the velocity at time t,
respectively, according to the distribution Q. It is important to note that we have M2

1 ≤ M2

and
∫ T
0 M2(t)dt < ∞.

As far as a, u and σ are concerned, we note that a(t, x) represent a local amount of mass
around x, u(t, x) the average velocity in the same neighborhood, and σ(t, x) is a measure of
how much the velocity is disordered around the same point. We will see the role that these
quantities play in the minimization problem minγ F (γ,Q). It is important to note that u and
σ are only defined for those times t such that Q−a.e. curve is differentiable at time t, which is
true for a.e. t, since Q is concentrated on curves which are almost a.e. differentiable. This is
an easy consequence of the fact that the set of pairs (t, γ) such that γ is not differentiable at
time t is a Borel set in [0, T ]× Γ and of a Fubini theorem.

We start writing some simple inequalities about these functions, that we summarize in the
following lemma.

Lemma 4.1. We have the following inequalities on the values of a, u, σ, where C denotes a
universal constant, only depending on η.

a ≤ C, a|u| ≤ CM1, a|u|2 ≤ CM2, σ ≤ CM2.

Proof. The first inequality is trivial since η is bounded, and the second comes is a similar way
from the fact that we have (au)(t, x) =

∫
Γ ω

′(t)η(x−ω(t))dQ(ω). The inequality involving |u|2
is less trivial, and we can proceed in the following way

a|u|2(t, x) = |(au)(t, x)|2
a(t, x)

=

∣∣∫
Γ ω

′(t)η(x − ω(t))dQ(ω)
∣∣2

∫
Γ η(x− ω(t))dQ(ω)

.

Applying on the numerator the Cauchy-Schwartz inequality w.r.t. to the measure η(x −
ω(t))dQ(ω) to the functions ω 7→ ω′(t) and ω 7→ 1 we get
∣∣∫

Γ ω
′(t)η(x− ω(t))dQ(ω)

∣∣2
∫
Γ η(x− ω(t))dQ(ω)

≤
∫
Γ |ω′(t)|2η(x− ω(t))dQ(ω) ·

∫
Γ η(x− ω(t))dQ(ω)∫

Γ η(x− ω(t))dQ(ω)
≤ CM2(t),

where we finally use the boundedness of η.
The inequality concerning σ can be established using that

min
v

∫

Γ
|ω′(t)− v|2η(x− ω(t))dQ(ω)

is realized for v = u(t, x), which is the average value of ω′ for the measure η(x− ω(t))dQ(ω).
Hence we have, taking v = 0

σ(t, x) =

∫

Γ
|ω′(t)− u(t, x)|2η(x− ω(t))dQ(ω) ≤

∫

Γ
|ω′(t)|2η(x− ω(t))dQ(ω) ≤ CM2,

using once more the boundedness of η. �

Similar inequalities can also be established for the gradients of these functions, which share
the same regularity as η at least for those instants t such that M1(t) and/or M2(t) are finite.
For this result we will use the assumption on ∇η.

Lemma 4.2. Suppose that η is strictly positive and Lipschitz continuous, and that there is a
constant C such that the inequality |∇η(y)| ≤ Cη(y) holds for every y ∈ Rd. Then, we have
the following inequalities on the values of the gradients of a, u, σ, where C denotes a universal
constant, only depending on η.

|∇xa| ≤ Ca ≤ C, |∇x(au)| ≤ Ca|u| ≤ CM1,

a|∇xu| ≤ Ca|u| ≤ CM1, a|∇xu|2 ≤ CM2, |∇xσ| ≤ CM2.
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Proof. The first inequalities are trivial because of the bound |∇η| ≤ Cη. The second come in
a similar way using the fact that we have ∇x(au)(t, x) =

∫
Γ ω

′(t)∇η(x− ω(t))dQ(ω). In order
to estimate a|∇xu| we write a|∇xu| ≤ |∇x(au)|+ |u||∇xa| and we use the previous estimates.
This allows also to estimate a|∇xu|2 using

a|∇xu|2 =
(a|∇xu|)2

a
≤ C

(a|u|)2
a

= Ca|u|2 ≤ CM2(t).

The inequality concerning ∇xσ can be established using

∇xσ(t, x) =

∫

Γ
|ω′(t)− u(t, x)|2∇xη(x− ω(t))dQ(ω)

+ 2∇xu(t, x) ·
∫

Γ
(u(t, x)− ω′(t))η(x − ω(t))dQ(ω).

The first term in the right hand side can be estimated by boundedness of ∇xη in terms of
CM2(t), while for the second we use

|∇xu| ≤
√

CM2(t)

a(t, x)
,

∫

Γ
|u(t, x)− ω′(t)|η(x − ω(t))dQ(ω) ≤

√
σ(t, x)a(t, x),

together with the estimate σ ≤ CM2(t) that we already proved. �

We finish this section by underlining the following computation, valid for any vector v:
∫

Γ
|v − ω′(t)|2η(x− ω(t))dQ(ω) =

∫

Γ
|v − u(t, x) + u(t, x)− ω′(t)|2η(x− ω(t))dQ(ω)

=

∫

Γ
|v − u(t, x)|2η(x− ω(t))dQ(ω) +

∫

Γ
|ω′(t)− u(t, x)|2η(x− ω(t))dQ(ω),

where the mixed term
∫
Γ(v − u(t, x)) · (u(t, x) − ω′(t))η(x − ω(t))dQ(ω) vanishes since u(t, x)

is the average value of ω′ for the measure η(x− ω(t))dQ(ω). We then get
∫

Γ
|v − ω′(t)|2η(x− ω(t))dQ(ω) = a(t, x)|v − u(t, x)|2 + σ(t, x).

This allows to re-write the optimization problem for γ using

(4.15) F (γ,Q) = Kδ,Ψ(γ) +
λ

2

∫ T

0

(
a(t, γ(t))|γ′(t)− u(t, γ(t))|2 + σ(t, γ(t))

)
dt.

4.2. A formal coupled system of PDEs. From the previous formulation in (4.15), the
optimization problem for γ can be written as

min

∫ T

0
L(t, γ(t), γ′(t);Q)dt +Ψ(γ(T )),

where the dependence on Q only happens through a, u and σ. More precisely, we have

L(t, x, v;Q) =
δ

2
|v|2 + λ

2

(
a(t, x)|v − u(t, x)|2 + σ(t, x)

)
.

The Hamiltonian corresponding to L is given by

H(t, x, p;Q) := sup
v

p · v − L(t, x, v;Q) =
|p+ λau|2
2(δ + λa)

− λ

2
(a|u|2 + σ),

where we omitted the dependence of a, u and σ on (t, x). In the above maximization, the
optimal v for given p is

v =
p+ λau

δ + λa
.
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Then, if we define the value function

ϕ(t0, x0) := min

{∫ T

t0

L(t, γ(t), γ′(t);Q)dt+Ψ(γ(T )) : γ(t0) = x0

}
,

it is well known from classical dynamic programming arguments that ϕ solves a Hamilton-
Jacobi equation

−∂tϕ+
|−∇ϕ+ λau|2

2(δ + λa)
=

λ

2
(a|u|2 + σ),

ϕ(x, T ) = Ψ(x),

and the optimal trajectory γ solve

γ′(t) = v(γ(t), t), v(x, t) =
−∇ϕ(x, t) + λ(au)(x, t)

δ + λa(x, t)
.

On the other hand, if we know the velocity field vt of agents for given agent density ρt, we can
obtain the continuity equation:

∂tρ+∇ · (ρv) = 0.

Therefore, once we assume that Q is an equilibrium, the corresponding ρ at time t satisfies

ρt(x)dx = d(et#Q)(x),

and

a(x, t) =

∫

Γ
η(x− ω(t))dQ(ω) = (ρ ∗ η)(x, t),

(au)(x, t) =

∫

Γ
v(ω(t), t)η(x − ω(t))dQ(ω) = ((ρv) ∗ η) (x, t),

(a|u|2 + σ)(x, t) =

∫

Γ
|v(ω(t), t)|2 η(x− ω(t))dQ(ω) =

(
(ρ|v|2) ∗ η

)
(x, t).

Combining all these equations, we can formally derive the following HJ-CE coupled PDE
system for equilibrium of MFG(Ω,Ψ, δ, η, λ,m0):





−∂tϕ+
| − ∇ϕ+ λau|2

2(δ + λa)
=

λ

2

(
a|u|2 + σ

)
,

∂tρ+∇ · (ρv) = 0, v =
−∇ϕ+ λau

δ + λa
,

a = ρ ∗ η, au = (ρv) ∗ η, a|u|2 + σ = (ρ|v|2) ∗ η,
ϕ(x, T ) = Ψ(x), ρ0 = m0.

This system perfectly fits the framework described, for instance, in Section 1.1 of [24], of
course in the case with no diffusion (ν = 0). Indeed, we have an HJ equation on ϕ which
involves the three quantities a, u and σ depending on the joint distribution of positions and
velocities of the players, and a continuity equation where the velocity field depends on ∇ϕ
and on the same quantities. Then, we see that a, u and σ are defined via an implicit equation
involving them as well as ρ and ∇ϕ.

4.3. Some regularity results. We start from writing the Euler-Lagrange equation for the
minimization of F (γ,Q). In all this sub-section we will make the following assumptions:

(Hη): η is strictly positive and Lipschitz continuous, and there is a constant C such that
the inequality |∇η(y)| ≤ Cη(y) holds for every y ∈ Rd;

(HΩ): Ω has no boundary (i.e. it is either the torus or the whole space Rd) ;
(HΨ): Ψ is Lipschitz continuous.
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Using the expression (4.15) we have the following equation

(4.16)

(
δγ′ + λa(t, γ)(γ′ − u(t, γ))

)′

=
1

2

[
∇xa(t, γ)|γ′ − u(t, γ)|2 + 2a(t, γ)(u(t, γ) − γ′)∇xu(t, γ) +∇xσ(t, γ)

]
,

coupled with the transversality condition

δγ′(T ) + λa(T, γ(T ))(γ′(T )− u(T, γ(T ))) = −∇Ψ(γ(T )).

Note that we can write these equations exploiting the fact that Ω has no boundary, otherwise
some Lagrange multipliers would appear, making the estimates more complicated.

This has to be interpreted in a proper sense (in the spirit of the DuBois-Reymond Lemma):
there exists an absolutely continuous function zγ , such that

• z′γ equals the right hand side of (4.16) a.e.:

z′γ =
1

2

[
∇xa(t, γ)|γ′ − u(t, γ)|2 + 2a(t, γ)(u(t, γ) − γ′)∇xu(t, γ) +∇xσ(t, γ)

]
;

• the final condition zγ(T ) = −∇Ψ(γ(T )) is satisfied;
• zγ coincides a.e. with δγ′(t) + λa(t, γ(t))(γ′(t)− u(t, γ(t))), which is indeed a function
defined only for a.e. t.

Note that this requires that the right hand side of (4.16) should be an integrable function,
and its integrability is proven in Lemma 4.3 below.

For the sequel, we will fix a negligible set N ⊂ [0, T ] such that, for t /∈ N we have the
following three properties

• Q-a.e. curve is differentiable at t, which makes u well-defined at such a time;
• M1(t) < +∞;
• at time t, the equality zγ(t) = δγ′(t)+λa(t, γ(t))(γ′(t)−u(t, γ(t))) is satisfied for Q-a.e.
curve γ.

For t /∈ N , we will also denote by G(t) ⊂ H1([0, T ]) ⊂ Γ the set of “good” curves γ at time
t:

G(t) = {γ ∈ H1([0, T ]) : At time t, γ is differentiable and zγ = δγ′ + λa(γ′ − u)},
where we omitted the dependence of a and u on (t, γ(t)). By definition of N , we have Q(G(t)) =
1 for all t /∈ N .

Lemma 4.3. Suppose, besides the standing assumptions on the model, that (Hη), (HΩ) and
(HΨ) hold. Then, if Q is an equilibrium, for every curve γ which is optimal for F (·, Q),
the vector zγ is uniformly bounded by a common constant, only depending on Q and on the
parameters of the problem.

Proof. The first point that we need to prove is a uniform bound on the energy F (γ,Q) for
optimal curves γ. To do this, we compare a curve γ to the constant curve γ̃ = Still(x0). We
obtain then, ignoring a term with σ(t, γ(t)) ≥ 0,

δ

2

∫ T

0
|γ′(t)|2dt+ λ

2

∫ T

0
a(t, γ(t))|γ′(t)− u(t, γ(t))|2dt

≤ λ

2

∫ T

0

(
a(t, x0)|u(t, x0)|2 + σ(t, x0)

)
dt+ (Ψ(x0)−Ψ(γ(T ))) .

We then use

Ψ(x0)−Ψ(γ(T )) ≤ Lip(Ψ)|γ(T ) − γ(0)| ≤ Lip(Ψ)

∫ T

0
|γ′(t)|dt ≤ δ

4

∫ T

0
|γ′(t)|2dt+ C(δ,Ψ),
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which allows to write

δ

4

∫ T

0
|γ′(t)|2dt+λ

2

∫ T

0
a(t, γ(t))|γ′(t)−u(t, γ(t))|2dt ≤ λ

2

∫ T

0

(
a(t, x0)|u(t, x0)|2 + σ(t, x0)

)
dt+C.

Finally, we use the bound a|u|2 + σ ≤ CM2 and the integrability of M2 to obtain

(4.17)
δ

4

∫ T

0
|γ′(t)|2dt+ λ

2

∫ T

0
a(t, γ(t))|γ′(t)− u(t, γ(t))|2dt ≤ C.

This implies that all curves which are optimal for F (·, Q) satisfy a uniform bound on both the

kinetic energy and the term
∫ T
0 a(t, γ(t))|γ′(t) − u(t, γ(t))|2dt. We now proceed to estimating

the integral in time of the right-hand side of (4.16), which would give boundedness of zγ . The
first term, using |∇xa| ≤ Ca is easily seen to be integrable, and its integral is bounded by a
universal constant, thanks to (4.17). For the second term, we estimate

a|u− γ′||∇xu| ≤
1

2
a|u− γ′|2 + 1

2
a|∇xu|2,

and both terms are integrable here because of (4.17) and of the inequality a|∇xu|2 ≤ CM2.
For the third term, we just need to use |∇xσ| ≤ M2.

This proves that zγ is bounded by a uniform constant. �

For the sake of Section 4.5, we also need to observe the following.

Remark 4.1. We obtained a bound for zγ when γ is an optimal curve. We insisted that
this bound is a universal constant, in the sense that it does not depend on the curve γ. We
will denote this universal bound by ||z||∞. This value could depend on Q and on all the
parameters of the problem (δ, λ,Ψ, η, as well as T ). Yet, it is easy to see, tracking all the
possible dependencies on T of the previous computations, that if the other parameters are fixed
(in particular, δ, λ,Ψ, η), then ||z||∞ stays bounded as soon as T is bounded (in particular, it
does not degenerate if T → 0).

Lemma 4.4. Suppose, besides the standing assumptions on the model, that (Hη), (HΩ) and
(HΨ) hold. Then, if Q is an equilibrium, every curve γ ∈ spt(Q) is Lipschitz continuous with
a Lipschitz constant at most ||z||∞/δ.

Proof. Consider an instant of time t /∈ N . From the finiteness of M1(t) we deduce a bound
on (au)(t, x). This bound is uniform in x but a priori not in t. From the boundedness of zγ
(which is indeed also uniform in t) and of au we deduce boundedness of (δ + λa(t, γ(t)))γ′(t),
i.e. of γ′, at least for those curves γ ∈ G(t). We now set L := sup |γ′(t)| < ∞, the sup being
taken among curves γ ∈ spt(Q) ∩G(t). We will prove L ≤ ||z||∞/δ.

It is clear that we have |u(t, x)| ≤ L for every x, since the bound |γ′(t)| ≤ L is true for
Q−a.e. curve γ. Then, from

(δ + λa(t, γ(t)))|γ′(t)| ≤ ||z||∞ + λa(t, γ(t))|u(t, γ(t))| ≤ ||z||∞ + λa(t, γ(t))L,

we deduce

|γ′(t)| ≤ ||z||∞
δ + λa(t, γ(t))

+
λa(t, γ(t))

δ + λa(t, γ(t))
L.

Suppose now L > ||z||∞/δ, in which case we can find ε > 0 such that ||z||∞ ≤ δL(1−ε). Using
the bound a ≤ C, we then have

|γ′(t)| ≤ L
(1− ε)δ + λa(t, γ(t))

δ + λa(t, γ(t))
= L

(
1− δε

δ + λa(t, γ(t))

)
≤ L

(
1− δε

δ + λC

)
.

Taking the supremum over γ we obtain a contradiction L < L.
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This shows L ≤ ||z||∞/δ and hence every curve in spt(Q) satisfies a uniform bound on γ′(t)
for every t such that γ ∈ G(t) and t /∈ N . This happens for almost every instant of time and
it is enough, together with its absolute continuity, to state that γ is Lipschitz continuous and
its Lipschitz constant is at most ||z||∞/δ. �

Lemma 4.5. Suppose, besides the standing assumptions on the model, that (Hη), (HΩ) and
(HΨ) hold. Then, if Q is an equilibrium, every curve γ ∈ spt(Q) is C1,1 with a uniform
Lipschitz constant for γ′ only depending on Q and on the parameters of the problem.

Proof. We take two instants of time t, s /∈ N and we set L := sup |γ′(t)− γ′(s)| < ∞, the sup
being taken among curves γ ∈ spt(Q) ∩ G(t) ∩ G(s). We want to prove a bound of the form
L ≤ C|t− s|. First we note that, from the previous Lipschitz uniform bound, we also deduce
uniform bounds for the vector field u and for the derivative of all functions zγ . Hence we can
write, for γ ∈ spt(Q) ∩G(t) ∩G(s),

|(δ + λa(s, γ(s)))γ′(s)− λ(au)(s, γ(s))) − (δ + λa(t, γ(t)))γ′(t)+λ(au)(t, γ(t)))|
= |zγ(s)− zγ(t)| ≤ C|t− s|.

We now use the uniform Lipschitz bound of a(t, x) and (au)(t, x) w.r.t. x, together with the
Lipschitz bound on γ to deduce from the above inequality the following one

|(δ + λa(s, γ(t)))γ′(s)− λ(au)(s, γ(t))) − (δ + a(t, γ(t)))γ′(t) + λ(au)(t, γ(t)))| ≤ C|t− s|.
We then note that a(t, x) is also Lipschitz in time, now that we know that all curves in spt(Q)
are uniformly Lipschitz, since |a(t, x) − a(s, x)| ≤ Lip(η)

∫
|ω(s) − ω(t)|dQ(ω). This allows to

obtain

|(δ + λa(t, γ(t)))(γ′(s)− γ′(t))− λ(au)(s, γ(t))) + λ(au)(t, γ(t)))| ≤ C|t− s|.
We look now at the behavior in time of (au)(t, x). We have

|(au)(s, x)− (au)(t, x)| ≤ Lip(η)

∫
|ω(t)− ω(s)|dQ(ω) +

∫
η(x− ω(t))|ω′(s)− ω′(t)|dQ(ω)

≤ C|t− s|+ a(t, x)L,

where we used the fact that Q-a.e. curve ω satisfies |ω′(s)− ω′(t)| ≤ L. We then obtain

(δ + λa(t, γ(t)))|γ′(s)− γ′(t)| ≤ C|t− s|+ λa(t, γ(t))L.

We now take a number ε > 0 and choose a curve γ ∈ spt(Q) ∩G(t) ∩ G(s) such that |γ′(s)−
γ′(t)| ≥ (1− ε)L, thus obtaining

(δ − ε(δ + C))L ≤ (δ(1 − ε)− ελa(t, γ(t)))L ≤ C|t− s|,
which gives the desired bound as soon as one takes ε → 0.

With this bound in mind, we know that every curve γ ∈ spt(Q) is Lipschitz continuous,
and its derivative, which is a priori only defined a.e., is Lipschitz continuous on a set of full
measure. This is enough to conclude γ ∈ C1,1. �

The above statement concerns the curves γ ∈ spt(Q). Hence, it does not necessarily apply
to all optimal curves for F (·, Q). Indeed, it would be possible that some optimal curves do not
belong to the support of Q, and the use of the set G(t) and N in the proof is suited for a proof
targeting measures in spt(Q). Anyway, we can easily establish the following result.

Corollary 4.1. Suppose, besides the standing assumptions on the model, that (Hη), (HΩ) and
(HΨ) hold. Then, if Q is an equilibrium, every curve γ which is optimal for F (·, Q) for fixed
initial point is C1,1 and satisfies |γ′| ≤ ||z||∞/δ.
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Proof. Once we know that all curves in spt(Q) are C1,1, we obtain the Lipschitz continuity
(and boundedness, of course) in time and space of the functions a(t, x) and (au)(t, x), σ(t, x)
(for au we saw in the proof of Lemma 4.5 that the Lipschitz constant in time is the same
as that of the velocities ω′ for ω ∈ spt(Q)). We also remark that |u| is bounded by a very
explicit constant, i.e. |u| ≤ ||z||∞/δ since all curves in spt(Q) are Lipschitz continuous with this
Lipschitz constant. Take now an optimal curve γ: from the fact that zγ is bounded (Lemma
4.3), we deduce boundedness of (δ+λa(t, γ(t))γ′(t)−λ(au)(t, γ(t)). More precisely, also using
the bound on |u|, we obtain

(δ + λa(t, γ(t)))|γ′(t)| ≤ ||z||∞ + λa(t, γ(t))|u(t, γ(t))| ≤ ||z||∞
(
1 +

λa(t, γ(t))

δ

)
,

which implies |γ′(t)| ≤ ||z||∞/δ.
We then use again the properties of zγ , together with the boundedness of γ′, to obtain that

zγ is Lipschitz in time. Yet, since we know that γ itself is Lipschitz in time, and that the
functions a and au are Lipschitz in time and space, this provides γ′ ∈ Lip and proves the
claim. �

4.4. Monokineticity. It is useful to note that the C1,1 result of Corollary 4.1 implies monoki-
neticity in the following sense: if we take two curves γ1, γ2 ∈ spt(Q), a time t ∈ (0, T ], and we
suppose γ1(t) = γ2(t), then we also have γ′1(t) = γ′2(t). Hence, for each time t which is not
the initial time t = 0, the velocity of all particles at a same point is the same, thus defining a
velocity field v(t, x) such that the curves γ ∈ spt(Q) follow γ′(t) = v(t, γ(t)) (without stating
anything about the regularity of this velocity field v). For t = T this is a consequence of the
final condition in the Euler-Lagrnage equation zγ(T ) = −∇Ψ(γ(T )) and of the fact that zγ
allows to identify γ′, once we know a and u, which only depend on time and position. For
t < T this comes from regularity: should we have γ1(t) = γ2(t) but γ′1(t) 6= γ′2(t), then we
could build a curve γ̃ which is also optimal for F (·, Q), and coincides with γ1 before time t,
and with γ2 after time t. This curve would not be C1, and would hence violate Corollary 4.1.

The above monokineticity allows to re-write our optimization problem using an Eulerian
formulation in terms ρ and v. Indeed, the problem of minimizing J becomes the minimization
of

δ

2

∫ T

0

∫

Ω
|vt|2dρt(x)dt+

λ

2

∫ T

0

∫

Ω

∫

Ω
η(x− x′)|vt(x)− vt(x

′)|2dρt(x)dρt(x′)dt

among all (ρ, v) satisfying

∂tρ+∇ · (ρv) = 0, ρ0 = m0.

As anyway our smoothness result is only valid when no boundary is present, we can ignore
the boundary and re-write this in terms of convolutions, also setting, as it is usual in the
Benamou-Brenier formulation of optimal transport, w = ρv : we get

min

{∫ T

0

∫

Ω

(
δ

2

|wt|2
ρt

+ λ
|wt|2
ρt

(η ∗ ρt)− λwt · (η ∗ wt)

)
dxdt : ∂tρ+∇ · w = 0, ρ0 = m0

}
.

The reader can see that, thanks to the presence of the regularizing convolutional terms and
of the initial term with the total kinetic energy, it would be possible to prove existence of a
minimizer for the above problem by standard direct methods.

4.5. Uniqueness of optimal curves and equilibria in pure strategies. The goal of this
section is to show that, for small T , the functional F (γ,Q) is strictly convex in γ when restricted
to the set of curves with a given Lipschitz constant and given initial point. We will see that
this implies uniqueness of the minimizers and the existence of equilibria in pure strategies. To
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obtain this result, we need to assume lower bounds on D2Ψ and D2η (i.e., we suppose that Ψ
and η are semi-convex, i.e. they become convex if we add to them a suitably large quadratic
function)..

Lemma 4.6. Suppose that Ψ and η are C1, Lipschitz continuous, and semi-convex, and that
Q is concentrated on curves which are all C0-Lipschitz continuous. Then, for every L > 0,
every curve γ with |γ′| ≤ L, and every h ∈ H1([0, T ]), we have
(4.18)

F (γ + h,Q) ≥ F (γ,Q) +A[γ](h) +
δ

2

∫ T

0
|h′(t)|2dt

−C(L+ C)

∫ T

0
|h(t)||h′(t)|dt− C(L+ C)2

∫ T

0
|h(t)|2dt− C|h(T )|2,

where A[γ](h) is a linear form in h given by

A[γ](h) = δ

∫ T

0
γ′(t) · h′(t)dt+ λ

∫ T

0

∫
(γ′(t)− ω′(t)) · h′(t)η(γ(t) − ω(t))dQ(ω)dt

+
λ

2

∫ T

0

∫
|γ′(t)− ω′(t)|2∇η(γ(t)− ω(t)) · h(t)dQ(ω)dt +∇Ψ(γ(T )) · h(T ),

and the constant C depends on C0 and on η.

Proof. We start from the following equalities or inequalities

1

2

∫ T

0
|γ′ + h′|2dt = 1

2

∫ T

0
|γ′|2dt+

∫ T

0
γ′ · h′dt+ 1

2

∫ T

0
|h′|2dt,

Ψ(γ(T ) + h(T )) ≥ Ψ(γ(T )) +∇Ψ(γ(T )) · h(T )− C|h(T )|2,
The part of F which requires more attention is the following

∫ T

0

∫
|(γ′ + h′)− ω′|2η(γ + h− ω)dQ(ω)dt

≥
∫ T

0

∫
|γ′ − ω′|2η(γ + h− ω)dQ(ω)dt + 2

∫ T

0

∫
(γ′ − ω′) · h′η(γ + h− ω)dQ(ω)dt

≥
∫ T

0

∫
|γ′ − ω′|2η(γ − ω)dQ(ω)dt+

∫ T

0

∫
|γ′ − ω′|2∇η(γ − ω) · hdQ(ω)dt

− C

∫
|γ′ − ω′|2dQ(ω)|h|2dt+ 2

∫ T

0

∫
(γ′ − ω′) · h′η(γ − ω)dQ(ω)dt

− 2

∫ T

0

∫
|(γ′ − ω′)| · |h′|Lip(η)|h|dQ(ω)dt.

Putting together these inequalities and using |γ′| ≤ L and |ω′| ≤ C0 we obtain the desired
result. �

Proposition 4.1. Suppose, besides the standing assumptions on the model, that (Hη), (HΩ)
and (HΨ) hold and that Ψ and η are C1, Lipschitz continuous, and semi-convex. Then, if T is
smaller than a constant depending only on δ, λ, ||z||∞, η and on the lower bounds of D2Ψ and
D2η and if Q is an equilibrium, for every initial point x0 the problem

min{F (γ,Q) : γ(0) = x0}
has a unique solution.
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Proof. We know from Corollary 4.1 that any optimal curve is necessarily L−Lipschitz con-
tinuous with L = ||z||∞, so the result is proven if we prove, for instance, that γ 7→ F (γ,Q)
is strictly convex on the set of L−Lipschitz continuous curves. For this, we use Lemma 4.6
since Q is also concentrated on L-Lipschitz curves. In order to prove convexity it is enough to
give conditions so that the second-order term appearing in (4.18) is strictly positive for any
function h with h(0) = 0 which is not identically 0. We use the following standard inequality
which is valid for h ∈ H1 with h(0) = 0:

|h(t)|2 ≤
(∫ T

0
|h′(t)|dt

)2

≤ T

∫ T

0
|h′(t)|2dt.

We will use it for t = T but also integrate, thus obtaining
∫ T

0
|h(t)|2dt ≤ T 2

∫ T

0
|h′(t)|2dt

and ∫ T

0
|h(t)||h′(t)|dt ≤

(∫ T

0
|h(t)|2dt

)1/2 (∫ T

0
|h′(t)|2dt

)1/2

≤ T

∫ T

0
|h′(t)|2dt.

These inequalities allow to show the strict convexity of F (·, Q) if T and T (L + C) are small
compared to δ. �

5. Mean Field Game for multipopulations

All the analysis in the previous sections has been developed in the simplified case where
only one population of indistuingishable agents was moving. The only feature distinguishing
the agents was their initial point. Yet, in applications the most interesting case is the one
with several populations. Each population will be represented by a measure Qi ∈ M+(Γ)
where M+ stands for the space of finite positive measures (indeed, there is no reason for the
different populations to have the same mass, and it is hence not possible to normalize them to
probability measures). Each population i = 1, · · · , N will have its own target function Ψi and
its own mobility coefficient δi > 0 (if a population has smaller δi, this means that its agents are
less subject to effort costs for moving at high speed). On the other hand, the interaction cost
(i.e. the cost due to the difference of the velocity of an agents w.r.t. that of the other agents)
will be supposed to be the same for everybody, and will involve the interaction between each
agent and every other agent, from the same population and from the others. In particular, we
set Q =

∑
iQi and all the agents of the population i will try to minimize

Fi(γ,Q) := Kδi,Ψi
(γ) + VQ(γ).

Given for each population an initial measure m0,i, a target function Ψi, and a mobility parame-
ter δi > 0, and given a common interaction weighting function η and a parameter λ > 0, we call
the corresponding game multiMFG(Ω, (δi)i, (Ψi)i, λ, η, (m0,i)i) and define a multipopulation
equilibrium as follows:

Definition 5.1. A family of measures Qi ∈ M+(Γ) is said to be an equilibrium of the game
multiMFG(Ω, (δi)i, (Ψi)i, λ, (m0,i)i) if e0#Qi = m0,i ∈ M+(Ω) and

(5.19)

∫

Γ
Fi(γ,Q)dQ(γ) < ∞ ∀i, Fi(γ,Q) = inf

w∈Γ
ω(0)=γ(0)

Fi(ω,Q), ∀ γ ∈ spt(Qi).

The same analysis, with easy variants, as performed in the previous sections allows to prove
the following facts
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• If we define

J (Q1, . . . , QN ) := 2
∑

i

∫
Kδi,Ψi

(γ)dQi(γ) + λV(
∑

i

Qi)

and η is even, then every local minimizer of J in the set

{(Q1, . . . , QN ) ∈ M+(Γ)
N : (e0)#Qi = m0,i}

is an equilibrium;
• for every equilibrium, Q =

∑
iQi is concentrated on C1,1 curves;

• for each i there exists a velocity field vi : [0, T ]×Ω → Rd such that all curves γ ∈ spt(Qi)
satisfy γ′(t) = vi(t, γ(t) and we have monokineticity for each separate population.

It is in the framework of multipopulation equilibria that one can consider the question
about lane formation that we mentioned in the introduction. For instance, one can take
Ω = [−L,L] × [0, 1] ⊂ R2 a long corridor, N = 2 and Ψ1(x) = x1,Ψ2(x) = −x1, so that the
agents of the two populations spontaneously move in opposite directions of the corridor. If
η(z) = e−|z|/ε, one would expect the formation of lanes with (approximate) segregation of the
two populations, the width of these lanes being of order ε.
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