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Abstract. This paper studies a networked bivirus model, in which two competing viruses
spread across a network of interconnected populations; each node represents a population with a
large number of individuals. The viruses may spread through possibly different network structures,
and an individual cannot be simultaneously infected with both viruses. Focusing on convergence
and equilibria analysis, a number of new results are provided. First, we show that for networks with
generic system parameters, there exist a finite number of equilibria. Exploiting monotone systems
theory, we further prove that for bivirus networks with generic system parameters, then convergence
to an equilibrium occurs for all initial conditions, except possibly for a set of measure zero. Given
the network structure of one virus, a method is presented to construct an infinite family of network
structures for the other virus that results in an infinite number of equilibria in which both viruses
coexist. Necessary and sufficient conditions are derived for the local stability/instability of boundary
equilibria, in which one virus is present and the other is extinct. A sufficient condition for a boundary
equilibrium to be almost globally stable is presented. Then, we show how to use monotone systems
theory to generate conclusions on the ordering of stable and unstable equilibria, and in some instances
identify the number of equilibria via rapid simulation testing. Last, we provide an analytical method
for computing equilibria in networks with only two nodes, and show that it is possible for a bivirus
network to have an unstable coexistence equilibrium and two locally stable boundary equilibria.
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1. Introduction. Mathematical models of epidemic spreading processes have
been of interest to the broad scientific community for decades [23], and have recently
come into the limelight as a result of the ongoing COVID-19 pandemic [35]. In the
context of infectious diseases, such models are of interest to predict the dynamics
of the disease and the course of an outbreak. One may seek to draw conclusions on
whether the disease will eventually disappear or become endemic, examine the impact
of key characteristics such as infection and recovery rates in shaping the epidemic,
and design control strategies to reduce or stop the spread [21, 22, 23, 18, 39].

Among the different modeling frameworks, compartmental models have become
especially popular; different compartments indicate particular health states and each
individual in a large population may move between compartments due to the infectious
nature of the disease. A classical compartmental model is the Susceptible–Infected–
Susceptible (SIS) model, in which each individual is either healthy and susceptible (S)
to the disease, or infected (I) but can recover with no immunity [23]. If immunity is
permanently acquired after recovery, then the Susceptible–Infected–Removed (SIR)
framework is used [23]. For a particular compartmental framework, both stochastic
and deterministic models exist, and are often related by mean-field approximation [21].
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Although not as realistic in capturing the probabilistic nature of infectious disease
transmissions, deterministic models remain popular as they offer a balance in terms
of analytical tractability, simulation implementation and modeling accuracy.

More recently, attention has grown on models that study the spread of two or more
diseases/viruses within the same population (the literature most commonly refers to
these as bi- or multi-virus models). Depending on the application of interest, the
viruses may be assumed to compete against, reinforce, or weaken one another [26, 20,
6]. Competitive virus models assume that if an individual is infected by one virus,
then they cannot be infected by any other virus, and are especially popular. Different
variants of SIS- or SIR-like models also have broad applications beyond infectious
diseases, including competing ideas, decisions, and internet memes [26, 36, 13].

This paper focuses on the “bivirus model” in the SIS framework, which considers
two competing viruses, called virus 1 and virus 2, spreading across a network of
interconnected populations on possibly different network structures [17, 24, 26, 37, 28].
Such a scenario may reflect two strains of a disease spreading in a population, such
as gonorrhea and a strain of partially drug-resistant gonorrhea [2, 3]. To discuss
existing works, we first introduce the reproduction number of virus 1 and virus 2
as R1 and R2, respectively. In general, the infection and recovery rate parameters
are assumed to be heterogeneous among the nodes of the network, and then Ri for
i ∈ {1, 2} is a nontrivial but computable function of the recovery and infection rates.
For homogeneous parameters, Ri simplifies to the ratio of the infection and recovery
rate for virus i, multiplied by the spectral radius of the adjacency matrix of the virus
i spreading network. In the case that only virus i, for i ∈ {1, 2}, is present in the
population, Ri ≤ 1 or Ri > 1 determines if virus i asymptotically disappears from
or persists in the population, respectively. Much of the analysis in existing works
focuses on the assumption that Ri ≤ 1 for at least one of i = 1 or i = 2; in this case,
either one or both viruses will be eliminated asymptotically [17, 37, 28]. The works
of [26, 28, 29] consider Ri > 1 for both i = 1, 2. Assuming homogeneous infection
and recovery rates among individuals for each virus, but allowing generic network
structures, [26] deals only with local stability of equilibria. In contrast, [28, 29] assume
general infection rates but homogeneous recovery rates, and focus on global stability
of specific equilibria of interest.

This paper considers the deterministic bivirus model, with the two viruses spread-
ing on possibly different network structures across the same set of nodes (populations).
We allow heterogeneous infection and recovery parameters, which yields new dynam-
ical phenomena, such as the possibility of an unstable coexistence equilibrium, where
both viruses are present. We establish several novel results on the system dynamics
and associated equilibria.

1. We formally prove that a bivirus system with generic values of infection and
recovery parameters has a finite number of equilibria. Prior to our work, the
finiteness of equilibria has only been proved for special parameter values [17,
12], or assumed to be true with no rigorous arguments [26]. We also prove
that one can conduct equilibria analysis by assuming unity recovery rates
without loss of generality, thus reducing the parameter space dimension. The
work of [29, 28] made a similar assumption but without justification.

2. We use a coordinate transformation to demonstrate that the bivirus system
has monotone trajectories, simplifying the proof in [28]. Going beyond [28],
we explicitly connect the bivirus dynamics to the monotone systems litera-
ture [8, 31, 32]. We significantly extend the existing results by providing a
general conclusion on the limiting dynamical behaviour of the bivirus net-
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worked system: a generic bivirus system converges to an equilibrium among
the finite number of equilibria for all initial conditions except possibly a set
of measure zero. Thus, no chaos is possible, and limit cycles (if they exist)
are nonattractive. Our result differs from [28, 29, 17], which establish suffi-
cient conditions for a particular equilibrium to be (almost) globally attractive.
By further exploiting the literature, we establish several conclusions on the
ordering of stable and unstable equilibria.

3. We identify a class of system parameters that yields a connected set containing
an infinite number of equilibria, comprising an interval of a straight line, in
which both viruses coexist, covering a much broader set of parameters than
[17]. We term such a connected set a “line of equilibria” for brevity, and show
that this line of equilibria is locally exponentially attractive. Then, simple
necessary and sufficient conditions are given for checking whether boundary
equilibria, in which one virus is present and the other is absent, are locally
stable or unstable. A sufficient condition for one of the boundary equilibria
to be almost globally attractive is provided.

4. For networks with only two nodes, an analytic method to compute coexis-
tence equilibria. We then provide numerical examples showcasing the differ-
ent stability and instability configurations for the boundary and coexistence
equilibria. We report a system which has an unstable coexistence equilib-
rium, and two locally stable boundary equilibria with nontrivial regions of
attraction, highlighting the nontrivial equilibria and convergence properties
of networked bivirus systems.

The paper is organized as follows. Section 2 details the mathematical preliminar-
ies and presents the bivirus model. The main results are detailed in section 3, and
conclusions are presented in section 4.

2. Preliminaries. In this section, we introduce notation, and specify the nature
of the system under consideration. The set-up is drawn from that in [17], and we also
review the key conclusions of [17, 26, 28, 29]. This section also includes a review of
some key results in monotone systems theory [32, 31], a tool we shall use in this paper.

2.1. Notation and related. Given a natural number n, define the index set
[n] = {1, 2, . . . , n}. For real vectors x, y ∈ Rn, with entries xi, yi, i ∈ [n], we write
x ≥ y iff xi ≥ yi ∀i, we write x > y iff xi ≥ yi ∀i and x 6= y, and we write x � y iff
xi > yi ∀i. For matrices A,B of the same dimension, the notation A ≥ B,A > B,A�
B mean the same thing as the corresponding inequalities relating vec(A), vec(B); we
say that A is nonnegative if A ≥ 0n×n. The n-vectors of all 1’s and 0’s are denoted
by 1n,0n respectively, and the n-dimensional identity matrix is denoted In. The sets
Rn≥0 and Rn>0 denote {x ∈ Rn : x ≥ 0n} and {x ∈ Rn : x� 0n} respectively. The set
{x ∈ Rn,0n ≤ x ≤ 1n} will be denoted by Ξn.

Suppose A is a square matrix. Then ρ(A) and s(A) will denote the spectral radius
of A and the greatest real part of any eigenvalue of A, respectively. It is Hurwitz if
s(A) < 0. We say that A is reducible iff there is a permutation matrix P such
that P>AP is block upper triangular; otherwise A is said to be irreducible. When a
nonnegative A is irreducible, and Ax = y for x > 0n, y > 0n, y cannot have a zero
entry in every position where x has a zero entry; equivalently, A is reducible if there
exist x > 0n, y > 0n with the same set of zero entries. A square matrix A is a Metzler
matrix if all off-diagonal entries are nonnegative. For an irreducible Metzler A, and by
an extension of the Perron-Frobenius theorem [9], s(A) is a simple eigenvalue and the
only eigenvalue with this real part, and the corresponding eigenvector can be taken
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to have all positive entries, while the eigenvectors corresponding to other eigenvalues
do not have this property. A square matrix A is an M -matrix if −A is Metzler and
all eigenvalues of A have positive real parts except for any at the origin; we say A
is a singular or nonsingular M -matrix if it has an eigenvalue at the origin or if its
eigenvalues have strictly positive real parts, respectively [9]. Further key properties,
detailed in [34, Theorem 2.1] and [1, Theorem 2.3 and Theorem 4.6], are:

1. For Metzler A, s(A) depends monotonically on any entry of A.
2. For a matrix F that is a (singular) M -matrix, and any positive diagonal D,
DF is also a (singular) M -matrix.

3. For an irreducible nonnegative matrix B and positive diagonal matrix D,
there holds i) s(−D + B) > 0 ⇔ ρ(D−1B) > 1, ii) s(−D + B) = 0 ⇔
ρ(D−1B) = 1 and iii) s(−D +B) < 0⇔ ρ(D−1B) < 1.

We shall work with weighted directed graphs G = (V, E , A), with V = {1, 2, . . . , n}
as the vertex set, E ⊆ V × V the edge set and A a nonnegative n× n square matrix.
Further, aij > 0 if and only if (j, i) ∈ E , which connotes the existence of a directed
edge from node j to node i. Strong connectivity of G is the property that there exists
a path connecting any two nodes, and is equivalent to A being irreducible [1].

2.2. The bivirus equations. To begin, we review the classical Susceptible–
Infected–Susceptible (SIS) network model [14]. We consider n > 1 populations of
individuals, with each population being of large and constant size. Each individual
has two possible health states, being healthy but susceptible (S), or infected (I) with
the virus. Individuals who recover are assumed to do so with no immunity, being im-
mediately susceptible again to infection. Defining the fraction xi ∈ [0, 1] of population
i ∈ [n] who are infected, the SIS model posits that

(2.1) ẋi(t) = −δixi(t) + (1− xi(t))
n∑
j=1

βijxj(t), i ∈ [n]

where δi > 0 is the recovery rate of population i and βij ≥ 0 is the transmission
rate of the virus from infected individuals in population j to susceptible individ-
uals in population i. With x = [x1, x2, . . . , xn]>, X = diag(x), B = (βij), and
D = diag(δ1, δ2, . . . , δn), the system equation becomes

(2.2) ẋ(t) = [−D + (In −X(t))B]x(t)

The forward invariance of the set Ξn for (2.2) is well known [14], and this guarantees
that xi, for all i ∈ [n], retains its physical meaning. The graph G = (V, E , B) captures
the network structure over which the virus spreads, and the standard assumption
that B is irreducible is equivalent to strong connectivity of G; the virus can reach any
population i from any other population j through a path on G.

Given the irreducibility of B, a complete convergence characteristic can be deter-
mined by the reproduction number R , ρ(D−1B). If R ≤ 1, which is equivalent to
s(−D + B) ≤ 0, the only equilibrium of (2.2) is the healthy equilibrium 0n and it is
globally asymptotically stable for x(0) ∈ Ξn (exponentially stable if s(−D+B) < 0).
If R > 1, i.e. s(−D+B) > 0, there is in addition to the healthy equilibrium (which is
unstable) a unique nonzero/endemic1 equilibrium x̄� 0n which is globally attractive
for x(0) ∈ Ξn \ 0n [14, 18]. The equation (2.2) is the mean-field approximation of a
stochastic discrete-time system with 2n states. Detailed discussion of the relationship

1We call such an equilibrium endemic because the virus is present in at least one node.
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between (2.2) and the stochastic model can be found in [21, 19, 33], and we do not
explore this aspect further.

This SIS framework can be extended to study the scenario in which there are
circulating two viruses, termed virus 1 and virus 2, as in [17, 26, 28]. They are
competing, in that an individual infected with one virus has immunity to an infection
from the other virus, but like the single virus framework, an infected individual can
recover with no immunity and immediately become susceptible again to infection from
either virus. Similar to (2.2), the bivirus dynamics presented below is a mean-field
approximation of a 3n-state Markov chain model. Due to space limitations, we do not
discuss the details of this approximation. The reader is referred to [17, Section II] and
also the comprehensive Chapter 5 in the PhD thesis [27] for two different treatments.

Neighbor relationships for each virus are modeled by a directed graph between the
populations (nodes), corresponding to the graph vertices, with an edge from node j to
node i denoting the direction in which virus transmission can occur; the nonnegative
infection rates β1

ij , β
2
ij for i, j ∈ [n] capture the transmission rates for virus 1 and

virus 2, respectively. Each group i ∈ [n] also has associated with it positive δ1i , δ
2
i

corresponding to the rate of recovery from virus 1 and virus 2, respectively.
With virus 1 and virus 2, we distinguish the vectors of fractions of infected in-

dividuals as x1(t) ∈ Rn and x2(t) ∈ Rn, respectively. The corresponding system
equations become

ẋ1(t) = [−D1 +
(
In −X1(t)−X2(t)

)
B1]x1(t),(2.3a)

ẋ2(t) = [−D2 +
(
In −X1(t)−X2(t)

)
B2]x2(t).(2.3b)

In order for x1, x2 to have physical meaning, observe that in addition to the
requirement that 0n ≤ xi(t) ≤ 1n for i = 1, 2, we require that x1(t) + x2(t) ≤ 1n, the
quantity on the left corresponding to the vector of fractions of individuals infected by
either virus. Following a similar proof to the single virus case, an invariant set for the
bivirus model can be identified which satisfies such requirements.

Lemma 2.1 ([17, Lemma 8]). With the above notation, suppose that the initial
conditions for (2.3) satisfy 0n ≤ xi(0) ≤ 1n for i = 1, 2, and x1(0) + x2(0) ≤ 1n.
Then for all t > 0, there holds 0n ≤ xi(t) ≤ 1n for i = 1, 2 and x1(t) + x2(t) ≤ 1n.

In order to discuss existing results in the literature such as [17, 26, 37, 28], and
gain an appreciation of some open questions that remain unanswered, we introduce a
key assumption to hold in the rest of the paper that parallels one typically imposed
when analyzing the single virus case2.

Standing Assumption. The matrices B1, B2 are nonnegative and irreducible.
The matrices D1, D2 are positive diagonal.

Positive diagonal D1, D2 implies that for any population (node) i ∈ V, the recov-
ery rate against each of the two viruses is strictly positive, but may differ between the
viruses and between populations. By associating Bi with the graph Gi = (V, E i, Bi),
for i = 1, 2, one can view G1 and G2 as the graphs capturing the network over which
virus 1 and virus 2 spread, respectively. The assumption on irreducibility is equivalent
to both G1 and G2 being strongly connected, but we allow the edges and associated
infection rates to differ between the two graphs.

We first explain some reasoning behind several existing results of [17, 28, 37],
as opposed to reproducing the proofs. Consider action of a single virus, say virus

2Relaxation of this assumption can of course be considered separately.
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1, and the effect on x1 in two cases: when virus 2 is not present, and when virus
2 is present. First, let us define the reproduction numbers of virus 1 and virus 2
as R1 , ρ((D1)−1B1) and R2 , ρ((D2)−1B2), respectively. Examination of (2.1)
and (2.3a) shows that the presence of x2 ≥ 0n serves to slow down the increase in
x1 due to infection, because there necessarily holds (In − X1(t) − X2(t))B1x1(t) ≤
(In −X1(t))B1x1(t). This means that if in the absence of virus 2, the healthy state
x1 = 0n is an attractive equilibrium state for virus 1, i.e. any nonzero x1(0) yields
x1(t) → 0n, then x1 = 0n must a fortiori remain an attractive equilibrium in the
presence of virus 2. This implies then that if R1 ≤ 1, any equilibrium (x̄1, x̄2) of the
bivirus system (2.3) will necessarily be of the form (0n, x̄

2), and consequently in this
case x̄2 is necessarily an equilibrium of the single virus system applicable to virus 2
alone due to (2.3b). And then, there will further hold x̄2 = 0n if and only if R2 ≤ 1.
(Of course, one can interchange the roles of the two viruses). These observations
effectively cover [17, Theorems 1 to 3], [37], and part of [28]. The remaining theorems
in [17] focus on equilibria analysis of systems (2.3) with nongeneric parameter matrices
Di, Bi, i = 1, 2. As identified in [17] and as we will further explore in the sequel,
stability and equilibria of nongeneric parameters are not always indicative of what
happens for generic parameters.

The astute reader will recognize that the observations above also clarify that the
condition R1 > 1 and R2 > 1 remains one of great interest, since this is not covered
by a collapse to two single virus problems. Note that when both these conditions hold,
there will still necessarily be three equilibria (0n,0n), (x̄1,0n) and (0n, x̄

2); we term
the first the healthy equilibrium and the latter two boundary equilibria of the bivirus
system. We remark that x̄1 � 0n and x̄2 � 0n are separately the unique endemic
equilibria for each of the two single virus systems. This is evident since for x2(0) = 0n,
the underlying equations (2.3) imply x2(t) = 0n for all t, and the evolution of x1(t)
from some x1(0) is the same as what would occur with the corresponding single virus
system in (2.1). This also implies that (x̄1,0n) is the only equilibrium where virus 1
is present and virus 2 is not present. The same holds correspondingly with virus 1
and 2 interchanged.

The works [26, 28, 29] consider R1 > 1 and R2 > 1, and allow G1 and G2 to differ.
In [26], infection and recovery parameters are assumed homogeneous among the nodes
for any one virus, but can be different between the two viruses. The existence and
local stability of equilibria is studied using linearization and perturbation methods,
coupled with extensive numerical simulations [26]. In [28] and [29], differing sufficient
conditions on infection parameters but with homogeneous recovery parameters are
presented which guarantee the boundary equilibrium (0n, x̄

2) is attractive for all initial
conditions satisfying x2(0) > 0n (and thus a similar condition exists for (0n, x̄

2) to
be attractive). However, a number of important open questions remain for generic
bivirus systems. For instance, i) are there a finite number of equilibria? and ii) can a
dichotomy be established for the typical limiting behaviour? In this paper, we answer
these questions and more, extensively and rigorously expanding on existing results.

2.3. Monotone systems theory. As background for the results in later sec-
tions, we outline the concept of monotone systems [31, 32] and recall some key results.
Indeed, in the sequel, we use a standard method to demonstrate that the bivirus sys-
tem is a monotone system, offering an alternative and simpler proof than the approach
in [28]. The discussion in this subsection however is in terms of a general system

(2.4) ẋ = F (x), x ∈ Rn
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on a convex, open set U ⊂ Rn. We assume henceforth that conditions on F exist
which guarantee existence and uniqueness of solutions for all time, and indeed the
Jacobian dFx exists at every point on allowed trajectories. Let φt(x0) denote the
solution x(t) of (2.4) at time t when x(0) = x0 ∈ U . There is special interest in
the behavior of the difference between trajectory pairs when confined to particular
orthants of Rn, and we begin with the central definition.

Let m = (m1,m2, . . . ,mn), with mi ∈ {0, 1} for all i ∈ [n], be a prescribed
sequence, and associate with it an orthant

(2.5) Km = {x ∈ Rn : (−1)mixi ≥ 0,∀i ∈ [n]}.

We say x ≤Km
y and x�Km

y if y−x ∈ Km and y−x ∈ int(Km) respectively. Here,
int(·) denotes the interior of a set.

Then, (2.4) is termed a Type Km monotone system if whenever x0, y0 ∈ U
satisfy x0 ≤Km

y0, there holds φt(x0) ≤Km
φt(yo). That is, φt preserves the partial

ordering ≤Km for t ≥ 0.
There is a straightforward condition for the monotone property, in terms of dFx,

see [31, Lemma 2.1] and [8, p. 424]:

Lemma 2.2. [Kamke–Müller Condition] With the above notation including con-
ditions on F and U , φt(x0) preserves the partial ordering ≤Km

for t ≥ 0 if and only
if, with definition Pm = diag ((−1)m1 , (−1)m2 , . . . , (−1)mn), the matrix PmdFxPm is
a Metzler matrix for all x ∈ U . If in addition PmdFxPm is irreducible for all x ∈ U ,
then x0 ≤Km

y0 implies φt(x0)�Km
φt(y0) for all t > 0.

Given this matrix characterization, it makes sense to define an irreducible
monotone system as one for which PmdFxPm is irreducible for all x ∈ U .

One of the most important results concerning irreducible monotone systems is
that only certain forms of limiting behavior are permitted, provided that there are
known to be only a finite number of equilibria, see [31, Theorems 2.5 and 2.6]:

Lemma 2.3. Suppose ẋ = F (x) is an irreducible type Km monotone system with
M an open, bounded and positively invariant set. Suppose the closure of M, denoted
M, contains a finite number of equilibria xi, with basins of attraction B(xi). Let
the set of all equilibria in M by denoted by E. Then the set Y ∈ M of points x
for which φt(x) does not converge to an equilibrium is of Lebesgue measure zero, and
∪xi∈E int(B(xi)) ∩M is open and dense in M.

The above result establishes that the monotone system cannot exhibit chaos, and
any limit cycles in M must be nonattractive. In other words, convergence to an
equilibrium occurs for all initial conditions in M except possibly a set Y of measure
zero. Note that if xi is unstable, then int(B(xi)) = ∅. This implies that convergence
will occur to a stable equilibrium, except possibly for a set Z of initial conditions of
measure zero which would yield convergence to an unstable equilibrium if one exists
(a saddle point or a source). Clearly Z ⊂ Y, if in fact the two subsets are not empty.

3. Main results. In this section, we will present a series of new findings on the
bivirus system. In order to keep the focus on the new results and to aid exposition and
discussion, all proofs are presented in the Appendix. Moreover, and unless explicitly
stated otherwise, the Standing Assumption is assumed to hold throughout.

In much of this section we will appeal to the equilibrium equations associated
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with (2.3). With an overbar denoting an equilibrium, these equations are

[−D1 + (In − X̄1 − X̄2)B1]x̄1 = 0,(3.1a)

[−D2 + (In − X̄1 − X̄2)B2]x̄2 = 0.(3.1b)

Since the outcomes when xi(0) = 0n for some i are fully understood from the single
virus dynamics, we focus on initial conditions in the set

∆ = {(x1, x2) | 0n < xi < 1n for i = 1, 2, and x1 + x2 ≤ 1n}.

Thus, when we refer to a globally attractive equilibrium, it is with respect to ini-
tial conditions in ∆, and an almost globally attractive equilibrium excludes initial
conditions in a set of measure zero that is a subset of ∆.

3.1. General result on equilibria and convergence. In this subsection, we
establish general properties of the equilibria of (2.3), and provide a general conver-
gence result. First, (3.1) can be used to establish the following.

Lemma 3.1. Any solution (x̄1, x̄2) of the equilibrium equations (3.1) with x̄i ≥ 0n
is such that for each i = 1, 2, either x̄i = 0n or x̄i � 0n. Moreover, x̄1 + x̄2 � 1n.
Suppose (x̄1, x̄2) and (x̄1, x̃2) are two equilibria. If x̄1 � 0n, then x̄2 = x̃2. If x̄1 = 0n,
and x̄2 � 0n and x̃2 � 0n, then x̄2 = x̃2.

We term any equilibrium (x̄1, x̄2) with x̄1 � 0n and x̄2 � 0n a coexistence
equilibrium. This lemma, whose proof is given in Appendix A.1, restricts substantially
the equilibria which can lie on the boundary of the set {x1, x2 ∈ Rn≥0|x1 + x2 ≤ 1n}.
There are corresponding restrictions on the trajectories, as expressed in the following,
which strengthens Lemma 2.1, and is essentially obtained as a result of taking into
account the Standing Assumption (see Appendix A.2 for the proof).

Lemma 3.2. Suppose that the bivirus equation set (2.3) has initial conditions sat-
isfying (x1(0), x2(0)) ∈ ∆. Then for all finite3 t > 0, there holds 0n � xi(t) � 1n
for i = 1, 2 and x1(t) + x2(t)� 1n.

It is well known that if x̄ is an equilibrium of (2.4), then the (local) stability of
x̄ can often be determined through examination of the eigenvalues of the Jacobian
dFx(x̄). If the linear system ż = dFx(x̄)z is (exponentially) asymptotically stable or
is unstable, the same is true of (2.4), at least locally around x̄ [30, Section 5.8].

In the case of the bivirus system, the Jacobian provides information not only con-
cerning equilibria. Denoting by J the Jacobian of the bivirus system, it is straight-
forward to verify that, with B̃i(x̄i) = diag(Bix̄i),

J(x̄1, x̄2) =

[
−D1 + (In − X̄1 − X̄2)B1 − B̃1(x̄1) −B̃1(x̄1)

−B̃2(x̄2) −D2 + (In − X̄1 − X̄2)B2 − B̃2(x̄2)

](3.2)

The Jacobian at a general point on a trajectory is the same as that in (3.2), save
that x̄i, X̄i are replaced by xi, Xi. Let P , diag(In,−In). Then observe (now with
B̃i = diag(Bixi)) that

3The results of Lemmas 3.1 and 3.2 do not preclude the possibility of limt→∞ xi(t) = 0n. Thus,
it is possible to converge to an equilibrium in which one or both viruses are not present, but at any
finite time t > 0, either the virus is present in all nodes, or present in none. Such observations are
consistent with those of the single virus SIS model [14].
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(3.3)

PJ(x1, x2)P =

[
−D1 + (In −X1 −X2)B1 0

0 −D2 + (In −X1 −X2)B2

]
+

[
−B̃1 B̃1

B̃2 −B̃2

]
It is immediately clear that this matrix is a Metzler matrix. However, more is true,
as the following result illustrates (the proof is given in Appendix A.3):

Lemma 3.3. Suppose (x1(0), x2(0)) ∈ ∆. Then the matrix PJ(x1(t), x2(t))P
evaluated at an arbitrary point along the trajectories of (2.3) with t < ∞, and the
matrix PJ(x̄1, x̄2)P for an equilibrium satisfying x̄1 � 0n, x̄2 � 0n, are irreducible.

Thus the bivirus system given the Standing Assumption is an irreducible mono-
tone system of type Km where m = (0>n ,1

>
n ). While monotonicity of the bivirus

trajectories with homogeneous recovery rates was established in [28, Theorem 18],
the proof via Lemma 3.3 is significantly more direct. We also explicitly make a con-
nection to the monotone systems literature4 and competitive species models [11, 15, 3].
Indeed, the bivirus system is a cooperative system in the terminology of [31, 8] (not
to be confused with competitive species models). A key contribution of this paper is
to show how to leverage the monotone systems literature, including the seminal con-
tributions by Morris M. Hirsh in the 1980s, to establish a number of new results for
networked bivirus systems. Our results also extend the work of [3], which examined
a three-node bivirus network with a specific tree structure.

To begin, a general convergence result can be established using Lemma 2.3 if the
bivirus system can be shown to have a finite number of equilibria. As we will shortly
prove, given generic parameter matrices Di, Bi, i = 1, 2, the bivirus system in (2.3)
has a finite number of equilibria. We first define what we mean by “‘free parameters”
and “generic”.

Definition 3.4. Free parameters in Bi, Di are those which are not a priori con-
strained to assume fixed values for all systems of interest.

Off-diagonal entries of Di are not free parameters, being always zero. If Di is
constrained to be the identity matrix (as occurs later), the diagonal entries are also
not free parameters. All entries of Bi are free parameters. The free parameters of Di

and Bi take values from the nonnegative real interval, with those of Di required to
be strictly positive while those of Bi are only assumed to be nonnegative.

Definition 3.5. Generic values of the free parameters of Bi, Di are those not
lying on a certain algebraic set of measure zero.

At the very least, the existence of such a set would need to be demonstrated to
conclude that generic values exist. Often, such a set can be characterized. For the
bivirus system, the particular algebraic set is identified as part of the proof of the
following result, and is presented in Appendix B.2.

Theorem 3.6. For generic parameter matrices Di, Bi, i = 1, 2, the bivirus equa-
tion set (2.3) has a finite number of equilibria. If Di = In, i = 1, 2, then for generic
parameter matrices Bi, i = 1, 2 the same conclusion holds. Moreover, for all initial
conditions (x1(0), x2(0)) ∈ ∆, except possibly for a set of measure zero, the system
(2.3) will converge to an equilibrium. If the system does not converge to an equilib-
rium, then it is on a nonattractive limit cycle.

This thoroughly answers the two questions posed at the end of subsection 2.2.

4Monotonicity of the single virus system (2.1) was identified several decades ago, see [7, 31].
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Concerning the first, and as detailed at the end of subsection 2.2, when Ri ≤ 1 for
some i = 1, 2, there are at most 3 equilibria; these 3 equilibria remain present when
Ri > 1 for i = 1, 2. Sahneh and Scoglio [26] showed then that for some parameter
choices, there exist coexistence equilibria, in which both virus are present. However,
[26] never proves (or even discusses) if the coexistence equilibrium is unique or indeed
whether there are a finite number of them. Simulations suggest that one typically
expects a finite number of equilibria, but a special scenario that yields a connected
set containing an infinite number of equilibria was identified in [17].

To keep the exposition clear, the precise algebraic set mentioned above is given
in Appendix B.2, and we remark that for any n nodes, the algebraic set is always
easily identified. The important point to notice is that the existence of such a set
with measure zero (understood in the usual sense for real numbers) establishes the
notion of “generic” parameter matrices Di and Bi.

Concerning the second, previous works such as [17, 37, 28, 29, 3] establish sufficient
conditions on the Di, Bi parameter matrices to ensure a specific equilibrium among
the healthy and two boundary equilibria is globally attractive for all initial conditions
in ∆. In contrast, Theorem 3.6 establishes that the dynamical system itself is “almost
globally stable”, in the sense that the typical outcome is convergence to an equilibrium,
not necessarily the healthy and two boundary ones as illustrated in subsection 3.4.
This provides a general conclusion on the limiting behaviour of the dynamical system,
as opposed to a general condition for a particular equilibrium to be globally attractive.

Our result does not specify which equilibrium the system converges to and this
is deliberate. Identifying conditions on Di, Bi that yield precise conclusions on the
number of equilibria and associated regions of attraction is often difficult [12, 28,
29]. Indeed, there are instances of the bivirus dynamics with no global attractor
equilibrium [3]. In the sequel, we provide an explicit example of such a network,
whereby the two boundary equilibria each have a region of attraction with nonzero
measure and the boundary between the two regions of attraction forms the stable
manifold of an unstable coexistence equilibrium.

The remainder of this paper seeks to explore the properties of the equilibria, and
we establish a number of different conclusions i) based on conditions for the Di and
Bi parameter matrices, and ii) exploiting the monotonicity of the bivirus trajectories.

3.2. Properties of the Equilibria. Because the Jacobian under transforma-
tion in (3.3) is a Metzler matrix, we can identify different collections of differential
equations that give rise to the same equilibria that have the same local stability
properties. We start with the following result.

Lemma 3.7. Consider two bivirus network systems S and Ŝ, defined by quadru-
ples B1, D1, B2, D2 and B̂1 = (D1)−1B1, D̂1 = In, B̂

2 = (D2)−1B2, D̂2 = In, respec-
tively. Then, the two systems have the same equilibrium sets and the (local) stability
properties of each equilibrium are the same.

This proposition, with proof given in Appendix A.4, provides an important con-
clusion: for many theoretical investigations, there will be no loss of generality in
assuming D1 = D2 = In, which can simplify computations and reduce parametriza-
tion of the system to just the two matrices B1, B2 defining the infection rates between
nodes. To this end, note that the existence of (Di)−1 ensures that (Di)−1Bi is irre-
ducible if and only if Bi is irreducible. So the Standing Assumption ‘flows through’
if the simplification is undertaken. We further remark that the lemma makes no as-
sertion that global stability (should it be present) in one system implies the same
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property for the other. Nonetheless, this property is indeed true, as we demonstrate
with a simple extension of the lemma in the sequel.

Remark 3.8. This result allows us to examine scenarios in which the two viruses
have different time-scales, by associating S and Ŝ in Lemma 3.7 with the quadruples
B1, D1, εB2, εD2 and B̂1 = (D1)−1B1, D̂1 = In, B̂2 = (εD2)−1B2, D̂2 = In, respec-
tively, for a positive ε that captures the relative rate of evolution of the two viruses.
The location and the stability of equilibria remain invariant as ε varies in magnitude.
While the invariance of the equilibria locations may seem intuitive, it is certainly not
a trivial conclusion that the stability property of each equilibrium is preserved when
the relative time-scale of a coupled nonlinear system is changed [30]. On the other
hand, varying ε can certainly change the region of attraction of equilibria.

3.2.1. Nongeneric networks with an infinite number of equilibria. We
will now show that with a generic B1, there are an infinite number of B2, satisfying a
specific functional form, which yield a connected set containing an infinite number of
equilibria, and this set comprises an interval of a straight line. We term this “a line
of equilibria” for convenience.

For convenience, but with no loss of generality as demonstrated by Lemma 3.7,
take D1 = D2 = In and B1 an arbitrary irreducible matrix. We require that s(−In +
B1) > 0, thereby ruling out the possibility of the healthy equilibrium (x̄1, x̄2) =
(0n,0n) being attracting for the bivirus system for any B2 when (x1(0), x2(0)) ∈ ∆.
Let 1n � z � 0n with Z = diag(z), satisfy

(3.4) [−In + (In − Z)B1]z = 0n.

That is, z is the unique endemic equilibrium of the single virus system (2.2) with
D = In. Now let C be any other nonnegative irreducible matrix for which z is also
an eigenvector with unity eigenvalue. Obviously it is straightforward to find such a
matrix, and there is an infinite number. The Perron–Frobenius Theorem [10] implies
ρ(C) = 1 and z is the only positive eigenvector of C (up to a scaling). Define

(3.5) B2 = (In − Z)−1C.

Proposition 3.9. With D1 = D2 = In, with B1 an arbitrary nonnegative ir-
reducible matrix and with z and B2 defined using (3.4) and (3.5), a set of equilib-
rium points of the bivirus equilibrium equations (3.1) is given by (αz, (1− α)z), with
α ∈ [0, 1]. This equilibrium set is locally exponentially attractive, i.e., for all allowed
initial conditions of the bivirus system sufficiently close to the set, the trajectory will
approach the set exponentially fast.

The proof is given in Appendix A.5.
In [17], a line of equilibria was shown to exist if D1 = kD2, B1 = kB2 for some

positive scalar k (and at one point even more specialized conditions). Here, we have
relaxed this condition by identifying that a line of equilibria can exist under a broader
type of nongenericity; the result in [17] is covered by Proposition 3.9 after applying
Lemma 3.7. Whether it is possible to obtain an infinite number of equilibria not lying
on a straight line is at the moment an open question.

It is often appealing to consider special examples of systems where the choice of
parameters makes the derivation of analytic results possible. There is a risk however
that nongenericity of the examples leads to nongeneric conclusions. The existence of
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nongeneric values of matrices defining a bivirus problem which simplify computations
but give rise to an infinite number of equilibrium points is an illustration of the
possibility.

In the situation described above, the connected set of equilibria forms an interval
of a straight line, and each end of the interval corresponds to each of the single virus
equilibria associated with the two viruses being active one at a time. In effect, a
bifurcation produces this result. Suppose that B2 above were replaced by µ(In −
Z)−1C where µ is a scalar positive parameter. If µ < 1, one can verify that (x̄1, x̄2) =
(z,0n) is a locally exponentially stable equilibrium, while when µ > 1, one can check
that it is a saddle point equilibrium, with divergent trajectories. When µ = 1, the
Jacobian acquires a zero eigenvalue and the bifurcation occurs. A similar sort of
analysis applies if B2 is as above, but B1, after determination of z, is then replaced
by µB1 and one considers then the equilibrium at (x̄1, x̄2) = (0n, z) with µ varying
from less than to greater than one. This aspect will now be further explored.

3.2.2. Stability of boundary equilibria. We now explore the stability prop-
erties of the boundary equilibria (x̄1,0n) and (0n, x̄

2) where x̄1 � 0n and x̄2 � 0n
are separately the unique endemic equilibria for each of the two single virus systems.
While x̄1 and x̄2 are almost globally stable in the single virus systems, the stability
of (x̄1,0n) and (0n, x̄

2), local or global, in the bivirus case are not guaranteed.

Theorem 3.10. Consider a generic bivirus system with parameter matrices D1 =
D2 = In and B1, B2, and suppose that ρ(B1) > 1 and ρ(B2) > 1. Let x̄1 � 0n and
x̄2 � 0n denote the equilibria of the two separate single virus systems. Then,

1. The boundary equilibrium (x̄1,0n) is locally exponentially stable if and only
if ρ
(
(In − X̄1)B2

)
< 1, and unstable if ρ

(
(In − X̄1)B2

)
> 1.

2. The boundary equilibrium (0n, x̄
2) is locally exponentially stable if and only

if ρ
(
(In − X̄2)B1

)
< 1, and unstable if ρ

(
(In − X̄2)B1

)
> 1.

The above result, with proof appearing in Appendix A.6, provides necessary and
sufficient conditions for local stability of the boundary equilibria, which can be de-
termined by examining two separate single virus systems, with iterative algorithms
available for computing x̄1 and x̄2, e.g. [19, Theorem 5] and [18, Theorem 4.3]. Some
insightful sufficient conditions can be obtained as follows (see Appendix A.7).

Corollary 3.11. With notation as above, the following statements hold:
1. If B2 > B1, (x̄1,0n) is unstable, and (0n, x̄

2) is locally stable, and there is
no coexistence equilibrium (x̃1, x̃2) ∈ ∆.

2. If b2 , mini
∑n
j=1 β

2
ij > b̄1 , maxk

∑n
j=1 β

1
kj, then (x̄1,0n) is unstable, and

(0n, x̄
2) is locally stable, and there is no coexistence equilibrium (x̃1, x̃2) ∈ ∆.

3. If x̄2 > x̄1 then (x̄1,0n) is unstable, and (0n, x̄
2) is locally stable.

Item 1 and Item 2 of the corollary give different sufficient conditions on (x̄1,0n)
and (0n, x̄

2) to be unstable and locally stable, respectively. Since there are no co-
existence equilibria (x̃1, x̃2), the only other equilibrium is the healthy equilibrium.
Later, we present Corollary 3.16: when there is no coexistence equilibria, one of the
two boundary equilibria is in fact stable for all initial conditions in ∆ (and in this
instance, it would be (0n, x̄

2)). Notice that Item 1 conditions are entry-wise on the
B1 and B2, while Item 2 concerns row sums. Neither subsumes the other, and it is
possible to find examples of Bi that satisfy one condition but not the other. Item 2
first appeared in [29, Corollary 4] (which refines [28, Theorem 20]), and here we give
an alternative and short proof. The sufficient condition in Item 3 of the corollary is
implied by the condition in Item 1, but the converse is not necessarily true. That is,
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B2 > B1 ⇒ x̄2 � x̄1, as detailed in [17, Proposition 4].
All three configurations of boundary equilibria stability properties can occur: i)

both boundary equilibria are locally exponentially stable, ii) both boundary equilibria
are unstable, and iii) one boundary equilibria is locally stable and the other unstable.
In subsection 3.4 below, we give examples of each configuration for an n = 2 network.

Knowing the stability configuration of the two boundary equilibria, one can ex-
ploit the properties of monotone systems to obtain simple counting results that lower
bound the number of interior equilibria, see [31, Theorem 2.8]. When there are no
interior equilibria, a global stability result for one of the boundary equilibria follows.
We explore this in further detail in the next subsection.

3.3. Properties of trajectories and implications for equilibria. In this
subsection, we argue that for a given system, all trajectories with xi(0)� 0n, i = 1, 2
are bounded by two special trajectories, starting from special corners of the allowed
set of initial conditions. Other trajectory bounding results have appeared in [28, 29],
but by using two special trajectories, we are able to go further by demonstrating that
from this result flows several important conclusions on equilibria properties. For in-
stance, the results provide a simulation tool involving construction of two trajectories
which on occasions can be expected to exclude the possibility of any other stable
equilibria than those associated with the two trajectories, and on other occasions, to
flag the presence of an unstable equilibrium. We draw on the conclusion, recorded
after Lemma 3.3, that the bivirus system is type Km monotone with m = (0>n ,1

>
n ).

Theorem 3.12. Consider the equation set (2.3), and in particular consider the
trajectories xA(t), xB(t) defined for arbitrarily small but positive η by the initial con-
ditions x1A(0) = 1

2η1, x
2
A(0) = (1− η)1 and x1B(0) = (1− η)1, x2B(0) = 1

2η1. Suppose
xC(t) is a trajectory beginning at any initial condition satisfying x1B(0) > x1C(0) >
x1A(0), and x2A(0) > x2C(0) > x2B(0), and x1C(0) + x2C(0) < 1n. Then the following
inequalities hold for all t > 0

x1B(t)� x1C(t)� x1A(t) , x2A(t)� x2C(t)� x2B(t) , x1C(t) + x2C(t)� 1n.(3.6)

Appendix A.8 provides a very short proof based on known properties from the
monotone systems literature, while [28] obtains a similar result using computations
tailored to the bivirus dynamics.

The theorem also allows us to directly extend Lemma 3.7 to deal with bivirus
systems with a globally stable equilibrium, as stated in the following result (with
proof in Appendix A.9).

Lemma 3.13. Assume the same hypotheses as Lemma 3.7, with the two systems
S and Ŝ. If one system has an equilibrium which is globally stable for all initial
conditions in ∆, then the global stability property holds for the second system.

We further expand the theorem via a second corollary dealing with the limit
points of the trajectories xA(t), xB(t), xC(t). Before stating it, we make an important
observation, based on Lemma 2.3 and the discussions below it. Specifically, we know
that if convergence to a stable equilibrium point does not occur for one of the initial
conditions used in Theorem 3.12, then convergence will occur to a stable equilibrium
for a perturbation of that initial condition within a ball of arbitrarily small radius.
We abbreviate this idea below with the words ‘perturbed if necessary’.

Corollary 3.14. With the same hypothesis as Theorem 3.12, with values for the
matrices Di, Bi assuring the number of equilibria is finite, and with initial conditions
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x2i

x1i

(0, 1)

(1, 0)

(x1i,A(0), x2i,A(0))

(x1i,B(0), x2i,B(0))

(x1i,C(0), x2i,C(0))

R

Fig. 1: Illustration of Corollary 3.14. The triangles indicate initial conditions, with
the system trajectory shown converging to the circles, which indicate the equilibria.
The dotted rectangle shows the intersection of the hyperrectangle W with the plane
defined by the ith coordinates of x1 and x2.

perturbed if necessary, assume that the trajectories xA(t), xB(t) approach limits x̄A, x̄B
respectively. If x̄A 6= x̄B, let W = {x : xA ≤Km

x ≤Km
xB}, with m = (0>n ,1

>
n ) as

above, denote the closed hyperrectangle5 whose edges are axis-parallel and which has
a principal diagonal joining the points x̄A and x̄B. Then

1. If xC(0) lies outside W, the associated trajectory converges to a limit x̄C
within W, obeying the constraints implied by Theorem 3.12.

2. If xC(0) lies within W, the associated trajectory either converges to a limit
x̄C again obeying the constraints implied by Theorem 3.12 or lies on a nonat-
tractive limit cycle, which requires that W has dimension at least 2.

3. If x̄A and x̄B coincide, then x̄C = x̄A = x̄B.

The above corollary is illustrated in Figure 1, and proved in Appendix A.10. The
corollary effectively offers a simulation-type test for establishing whether there is a
single equilibrium for which x̄i � 0n, i = 1, 2: one simply computes two trajectories,
xA(t) and xB(t), from initial conditions as close as possible to opposite corners of the
region of interest, and checks that they approach a common limit. What happens if
the two trajectories do not approach a common limit? The answer, again appealing
to monotone systems theory, is that an unstable equilibrium must lie in W. The
following is an amalgam of Theorem 2.8 and Proposition 2.9 in [31], and thus no
proof is presented.

Corollary 3.15. For bivirus system (2.3) and with generic parameter matrices,
suppose there are two attractive equilibria x̄A and x̄B with x̄A �Km

x̄B. Then there
exists an unstable equilibrium x̄C obeying

(3.7) x̄A �Km
x̄C �Km

x̄B ,

and conversely, if an unstable equilibrium x̄C exists with x̄C �Km 02n, there exist two
attractive equilibria x̄A and x̄B satisfying (3.7). Further, if there is no other stable
equilibrium x̄D satisfying x̄A � x̄D � x̄B, then there are two unstable trajectories
emanating from the equilibrium x̄C that are tangent to the eigenvector associated

5In some cases, one or more coordinates of x̄A and x̄B may assume the same value, (though if
x̄A 6= x̄B neither x̄1

A = x̄1
B nor x̄2

A = x̄2
B is possible by Lemma 3.1), and W is then degenerate.
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with the unstable eigenvalue of the associated Jacobian matrix J(x̄C), satisfying the
following properties. The first trajectory satisfies ẋ1 � 0n and −ẋ2 � 0n along its
entirety and its limiting point is x̄B. The second trajectory satisfies −ẋ1 � 0n and
ẋ2 � 0n along its entirety and its limiting point is x̄A.

Finally, if the particular system has no coexistence equilibria, then, as recorded
in the next corollary the properties established above imply that one of the boundary
equilibria is globally stable, being attractive for all initial conditions in ∆. Sufficient
conditions on Di, Bi for there to be no coexistence equilibria include Corollary 3.11
and [12, Theorem 6]. The proof is in Appendix A.11.

Corollary 3.16. For the bivirus system in (2.3) with generic parameter matri-
ces, suppose there are no coexistence equilibria. Then precisely one of the boundary
equilibria is an attractive equilibrium, and the set ∆ is in its region of attraction.

3.4. Equilibria for a low order system. We first explain how, for generic
values of system parameters and with n = 2, one can compute using nothing more
than a single quadratic equation solution followed by linear equation solutions, any
equilibrium for which x̄1 � 0n, x̄

2 � 0n. Then we illustrate a series of possible
outcomes which provides a comprehensive account of the possible limiting behaviours
for the bivirus system.

The solution procedure is straightforward. Without loss of generality, assume
D1 = D2 = I2. Setting α = (x̄12/x̄

1
1) and γ = (x̄22/x̄

2
1), the equilibrium equations in

(3.1) yields after some manipulation

β1
11 + β1

12α = β2
11 + β2

12γ , and β1
21α
−1 + β1

22 = β2
21γ
−1 + b222

One can eliminate γ and obtain a quadratic equation for α. For each solution of the
quadratic equation, it is then possible using only linear equations to obtain values for
the x̄ij . Note that these have no constraints on the signs of their entries. The fact that
a quadratic equation underpins the algortihm means that there can be at most two
interior equilibria. Exploiting properties of monotone systems, an argument centred
around [31, Proposition 2.9] will lead to the conclusion that if there are two interior
equilibria, one must be stable and the other unstable. In the examples below, we
report either no interior equilibria, or the interior equilibrium is unique.

With D1 = D2 = I2, we fix

B1 =

[
1.6 1
1 1.6

]
and vary the B2 matrix according to Table 1. The equilibria (x1, x2), with x1 =
[x11, x

1
2]> and x2 = [x21, x

2
2]>, for each case as computed using the above solution

procedure are reported, excluding the healthy equilibrium (02,02).
Case 1: A line of coexistence equilibria (which is locally exponentially attrac-

tive by Proposition 3.9) joins the boundary equilibrium (0.615 · 12,02) to the other
boundary equilibrium (02, 0.615 · 12). There are no other coexistence equilibria other
than those in the line, and extensive simulations suggest the line of equilibria is in
fact globally attractive for ∆.

Case 2: This example yields two stable boundary equilibria at (x̄1,02) and
(02, x̄2) with x̄1 = [0.615 0.615]> and x̄2 = [0.565 0.715]>. There is a unique coexis-
tence equilibrium (x̃1, x̃2), and it is unstable: x̃1 = [0.344 0.263]>, x̃2 = [0.233 0.393]>.
In fact, (x̃1, x̃2) is hyperbolic, and by combining properties of attractive manifolds for
unstable hyperbolic equilibria of monotone systems, [31, Theorem 2.10], and standard
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Table 1: The B2 matrices corresponding to different cases in the n = 2 example.

Case 1 Case 2 Case 3 Case 4

B2 =

[
2.1 0.5
1.5 1.1

]
B2 =

[
2.1 0.156

3.0659 1.1

]
B2 =

[
2.1 1.143

0.745 1.1

]
B2 =

[
2.1 0.885

1.885 1.1

]

0 0.2 0.4 0.6 0.8 1

x1
1

0

0.2

0.4

0.6

0.8

1

(a) Node 1

0 0.2 0.4 0.6 0.8 1

x1
2

0

0.2

0.4

0.6

0.8

1

(b) Node 2

Fig. 2: Simulation of the bivirus system for Case 2 identified in subsection 3.4. Dif-
ferent colored lines represent the trajectories for eight different initial conditions for
(a) Node 1 states x11(t) and x21(t) and (b) Node 2 states x12(t) and x22(t). The solid
ball denotes the initial condition, and the cross denotes the equilibrium reached as
t→∞. The black circle identifies the unstable coexistence equilibrium (x̃1, x̃2).

results on regions of attraction for stable equilibria [4], it follows that the regions of at-
traction for (x̄1,02) and (02, x̄2) encompass all of ∆ except for a set of measure zero,
being the attractive manifold of (x̃1, x̃2) on which there are no two distinct points
y, z with y <Km z. In fact, this manifold is part of the boundary of the regions of
attraction for (x̄1,02) and (02, x̄2). Fig. 2 demonstrates this via sample trajectories.

Case 3: There are two unstable boundary equilibria (x̄1,02) and (02, x̄2) with
x̄1 = [0.615 0.615]> and x̄2 = [0.665 0.515]>. There is a unique coexistence equilib-
rium (x̃1, x̃2), and it is locally stable: x̃1 = [0.462 0.512]> and x̃2 = [0.168 0.089]>.
[39, Proposition 4] establishes global convergence to (x̃1, x̃2) for all (x1(0), x2(0)) ∈ ∆.

Case 4: The boundary equilibria (x̄1,02) and (02, x̄2) are unstable and locally
stable, respectively: x̄1 = [0.615 0.615]> and x̄2 = [0.665 0.655]>. There are no
coexistence equilibrium, and Corollary 3.16 thus establishes that (02, x̄2) is attractive
for all initial conditions in ∆.

Remark 3.17. Case 2 has a particularly notable outcome, because in the context
of a “survival-of-the-fittest” battle between the two viruses, different initial condi-
tions in ∆ can result in either virus surviving. A similar outcome was presented in
[3], but for a three-node network with specific tree structure. Our recent work has
proposed a method to systematically construct bivirus networks, with an arbitrary
number of nodes and arbitrary topology, where either virus can win the battle [38].
Such outcomes are distinct from existing results such as [16, 26, 28, 29], which iden-
tify parameter regimes for a specific virus to win the battle independent of initial
conditions.
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4. Conclusions. In this paper, we have analyzed a deterministic networked
bivirus model. We have proved the bivirus system with generic parameters has a
finite number of equilibria. Using monotone systems theory, and assuming generic
parameters, we established convergence to an equilibrium for (almost) all initial con-
ditions. The properties of equilibria have been further explored, using a mixture of
monotone systems theory, matrix theory, and algebraic analysis. Future work will
focus on the implications of stable/unstable boundary equilibria on the number and
stability of interior equilibria, and control strategies that leverage one virus to elimi-
nate the other, perhaps by optimal design of parameters to ensure a specific boundary
equilibrium is globally stable.

Appendix A. Proofs of main results.

A.1. Proof of Lemma 3.1. As we know, there are equilibria (0n,0n), (x̄1,0n)
and (0n, x̄

2) for vectors x̄1, x̄2 which are separately equilibria of single virus systems.
Because x̄1 � 0n is the unique endemic equilibrium associated with the dynamics
(2.2) if only virus 1 is considered, it is clear that there cannot exist an equilibrium
(x̂1,0n) with 0n ≤ x̂1 6= x̄1. By the same reasoning, there cannot exist an equilibrium
(0n, x̂

2) with 0n ≤ x̂2 6= x̄2.
If and only if Ri > 1, or s(−Di + Bi) > 0 for i = 1, 2, it becomes possible for

further equilibria to exist with x̄i > 0n. To complete the first part of the proof, we
show that there can be no equilibrium (x̄1, x̄2) in which x̄i 6= 0n, but x̄i � 0n fails.

Observe first that there exists no j for which 1−x1j−x2j = 0. For if there were such

a j, the j-th row of the two equilibrium equations (3.1) would imply x1j = x2j = 0, a

contradiction. Hence x̄1+x̄2 � 1n and In−X̄1−X̄2 is a nonsingular positive diagonal
matrix, so that (In− X̄1− X̄2)Bi and indeed (Di)−1(In− X̄1− X̄2)Bi for i = 1, 2 are
then both irreducible and nonnegative. This means that for any y > 0n, there is at
least one positive entry of the vector (Di)−1(In− X̄1− X̄2)Biy in those rows where y
has a zero entry (see subsection 2.1). Since however x̄i = (Di)−1(In− X̄1− X̄2)Bix̄i,
identifying y with x̄i would yield a contradiction, unless x̄i � 0n.

Lastly, observe that

x̄1 = (D1)−1(In − X̄1 − X̄2)B1x̄1 = (D1)−1(In − X̄1 − X̃2)B1x̄1,

and because x̄1 � 0n and B1x̄1 � 0n it follows that X̄2 = X̃2 or x̄2 = x̃2 as required.

A.2. Proof of Lemma 3.2. Set z = 1n − x1 − x2 and B̃i(xi) = diag(Bixi).
Observe then that (In −X1(t)−X2(t))Bixi(t) = B̃i(xi(t))z.

It is straightforward to derive that

ẋi = −Dixi(t) + B̃i(xi(t))z(t) , i = 1, 2(A.1)

ż = D1x1(t) +D2x2(t)− [B̃1(x1(t)) + B̃2(x2(t))]z(t)

Consider the second equation. If zi(t) = 0 for some i, 1 − x1i (t) − x2i (t) = 0, so that
one at least of x1i (t) and x2i (t) is nonzero, i.e. żi is positive. In fact, there exists ε,
such that if zi(t) ∈ [0, ε], then żi(t) > 0; this implies that zi(t) can never be zero for
t > 0, i.e. z(t)� 0n ∀t > 0. Obviously this also establishes that xi(t)� 1n for t > 0.

Next, suppose that at some time T , k entries of x1(t) in positions, i1, i2, . . . ik say,
are zero, with k < n. Then since B1 is irreducible, B1x1 must have at least one entry
in one of the positions i1, i2, . . . ik which is nonzero, as detailed in subsection 2.1.
Suppose it is position i1. Then from the above equations, ẋ1i1(t) > 0. It follows that
for t > T with t− T sufficiently small, there are fewer than k entries of xi which are
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zero. An extension of this argument in fact shows that for all t > 0, all entries of xi

must be nonzero, i.e. xi(t)� 0n for t > 0.

A.3. Proof of Lemma 3.3. Under the hypothesis of the lemma, Lemma 3.2
guarantees that In−X1−X2 is nonsingular, and so (In−X1−X2)Bi is irreducible.
Moreover, B̃i, i = 1, 2 are nonsingular positive diagonal matrices since xi � 0n for
i = 1, 2. Evidently, it is enough then to show that the nonnegative matrix

(A.2) H :=

[
B1 B̃1

B̃2 B2

]
is irreducible, which is equivalent to the graphG = (V, E , H) being strongly connected.
The graph G is comprised of two strongly connected subgraphs, call them G1 and G2,
associated with irreducible matrices B1 and B2, respectively. The matrix B̃1 captures
edges from nodes in G2 to nodes in G1, while B̃2 captures edges from nodes in G1
to nodes in G2. Since B̃i are positive diagonal for i = 1, 2, there exists a path
from any node k in G1 to any node j in G2, and vice versa. It follows that G is
strongly connected, and hence H is irreducible. The proof for the equilibrium value
PJ(x̄1, x̄2)P is effectively identical.

A.4. Proof of Lemma 3.7. When the two equations of (3.1) corresponding to
S are multiplied on the left by (D1)−1 and (D2)−1, respectively, equilibrium equations
for Ŝ result (and the converse is trivial). The proves that the equilibrium sets are
identical. The equivalence of equilibrium stability properties requires slightly more
work. Begin with system S. Because J̃S =: PJS(x̄1, x̄2)P is Metzler, local exponential
stability of the equilibrium (x̄1, x̄2) implies that −J̃S is an M -matrix. As the M -
matrix property is preserved under multiplication by a positive diagonal matrix, it
follows on multiplying J̃S by diag

(
(D1)−1, (D2)−1

)
that the result is another M -

matrix. But this multiplication yields J̃Ŝ = −PJŜP . Thus the stability property

for the equilibrium is the same. An identical argument works if −J̃S is a singular
M -matrix and by negation if it is not an M -matrix.

A.5. Proof of Proposition 3.9. Observe that

[−In + (In − Z)B2]z = [−In + C]z = 0n

Also, setting x̄1α = αz, x̄2α = (1 − α)z yields Z = X̄1
α + X̄2

α, with Z independent
of α. Hence [−In + (In − X̄1

α − X̄2
α)B1]x̄1α = [−In + (In − Z)B1]αz = 0n, and

likewise, [−In+ (In− X̄1
α− X̄2

α)B2]x̄2α = [−In+ (In−Z)B2](1−α)z = 0n. Evidently,
(x̄1α, x̄

2
α) = (αz, (1− α)z) satisfies the equilibrium equations for all α ∈ [0, 1].

We now consider the Jacobian at such an equilibrium. Let B̃iα denote diag(Bix̄iα).
The Jacobian at any equilibrium on this interval is

(A.3) J =

[
−In + (In − X̄1

α − X̄2
α)B1 − B̃1

α −B̃1
α

−B̃2
α −In + (In − X̄1

α − X̄2
α)B2 − B̃2

α

]
Now the equilibrium equations give immediately diag(B1x̄1α) = α(In − Z)−1Z and
diag(B2x̄2α) = (1− α)(In − Z)−1Z. Then, J is seen to be similar to

J̄ =

[
−In + (In − Z)B1 − α(In − Z)−1Z α(In − Z)−1Z

(1 − α)(In − Z)−1Z −In + (In − Z)B2 − (1 − α)(In − Z)−1Z

]
using the transformation matrix P = diag(In,−In). The matrix J̄ is an irreducible
Metzler matrix. Further, [z>, z>]> � 0n is a nullvector of J̄ for all α. It follows
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that all other eigenvectors of the matrix have negative real parts. It also follows that
the bivirus equations defining the line of equilibria define a one-dimensional center
manifold along which the Jacobian is singular. By standard center manifold theory,
see e.g. [30, Section 7.6], the eigenvalue properties of J then imply the center manifold
is exponentially attractive, i.e. for initial conditions sufficiently close to the manifold,
convergence occurs to some point on the manifold exponentially fast.

A.6. Proof of Theorem 3.10. We establish the result for the boundary equi-
librium (x̄1,0n), with the proof for (0n, x̄

2) being identical after adjustment of certain
indices. First, we give some relevant results concerning the single virus model (2.2).
Let R > 1, and thus the unique endemic equilibrium x̄ of (2.2) satisfies

(A.4) (−D + (In − X̄)B)x̄ = 0n.

The positive vector x̄ � 0n can be seen as the nullvector of the matrix P = −D +
(In− X̄)B, which is an irreducible Metzler matrix. From the discussions in section 2,
it follows that s(P ) = 0, which in turn implies that −P is a singular irreducible M -
matrix. It is known that an irreducible singular M -matrix plus a nonnegative diagonal
matrix with at least one positive diagonal element yields an irreducible nonsingular
M -matrix [25, Theorem 4.31]. With B̃ = diag(Bx̄), it follows that

−P + B̃ = D − (In − X̄)B + B̃

is a nonsingular M -matrix, and thus s(−P + B̃) < 0.
The Jacobian J(x̄1,0n) is upper block triangular, as seen from (3.2). From the

arguments immediately above, one can conclude that the upper diagonal block matrix
−In + (In − X̄1)B1 − B̃1 is the negative of a nonsingular M -matrix, and is therefore
Hurwitz. The lower diagonal block matrix In + (In− X̄1)B2 is an irreducible Metzler
matrix, and note that X̄1 is uniquely determined by B1 and is therefore independent
of B2. As outlined in section 2, one has that s

(
− In + (In − Z1)B2

)
< 0⇔ ρ

(
(In −

Z1)B2
)
< 1. The condition for instability of (x̄1,0n) can be similarly proved. This

completes the proof.

A.7. Proof of Corollary 3.11. Item 1: As detailed below (A.4), one has that
s(−In+(In−X̄1)B1) = 0, which in turn implies that ρ((In−X̄1)B1) = 1, according to
section 2. Since B2 > B1, it follows that there exists at least one entry of (In−X̄1)B2

is strictly greater than the corresponding entry of (In − X̄1)B1. Then, [34, Theorem
2.7] establishes that ρ((In − X̄1)B2) > ρ((In − X̄1)B1) = 1, which in conjunction
with Theorem 3.10 delivers the claim on instability. The argument for local stability
of (0n, x̄

2) is similar, starting with the observation s(−In + (In − X̄2)B2) = 0.
To show there is no equilibrium of the form (x̃1, x̃2) with x̃1 � 0n, x̃

2 � 0n, let us
assume to the contrary that such a (x̃1, x̃2) exists. Then, (3.1a) indicates that x̃1 is a
positive eigenvector associated with the simple eigenvalue 0 of the irreducible Metzler
matrix −I + (I − X̃1 − X̃2)B1. Let y> be the associated positive left eigenvector,
normalized to satisfy y>x̃1 = 1. Set C = (I − X̃1 − X̃2)(B2 − B1). Observe that
C > 0n×n. Further, (3.1b) yields [−I+(I−X̃1−X̃2)B1]x̃2+Cx̃2 = 0n. Premultiplying
the left by y> gives a contradiction, since C > 0n×n, y � 0n, x̃

2 � 0n.
Item 2: We first show there are no coexistence equilibria, and then show the

instability of (x̄1,0n). Suppose, to obtain a contradiction, that there is an interior
equilibrium (x̃1, x̃2). Let J,K be indices such that x̃1i ≤ x̃1J and x̃2i ≥ x̃2K , for all i.
Observe firstly that 0 < 1 − x̃1J − x̃2J ≤ 1 − x̃1J − x̃2K ≤ 1 − x̃1K − x̃2K < 1. Next,
obtain (1 − x̃1J − x̃2J)−1x̃1J = (B1x̃1)J ≤ (B11nx̃

1
J)J ≤ b̄1x̃

1
J from the J-th row of



20 M. YE, B. D. O. ANDERSON, AND J. LIU

(3.1). It follows that (1− x̃1J − x̃2K)−1 ≤ (1− x̃1J − x̃2J)−1 ≤ b̄1. Similar arguments give
(1− x̃1J− x̃2K)−1 ≥ (1− x̃1K− x̃2K)−1 ≥ b2 and then there is an immediate contradiction
of the hypothesis condition that b̄1 < b2.

From (I − X̄1)−1x̄1 = B1x̄1 and setting x̄1J = maxj x̄
1
j ∈ (0, 1), notice that

(1− x̄1J)−1x̄1J = (B1x̄1)J ≤ (B11nx̄
1
J)J ≤ b̄1x̄1J < b2x̄

1
J or equivalently (1− x̄1J)b2 > 1.

For any irreducible nonnegative matrices A1, A2 the condition A1 > A2 implies
ρ(A1) > ρ(A2) and ρ(A1) ≥ mini

∑n
j=1 aij . This means that ρ[(I − X̄1)B2] ≥ ρ[(1−

x̄1J)B2] ≥ (1− x̄1J)b2 > 1 and the instability claim is complete. The proof that (0n, x̄
2)

is locally stable, by establishing ρ[(I − X̄2)B1] < 1, is the same, mutatis mutandis.
Item 3: Since x̄2 > x̄1, it immediately follows that (In − X̄1)B2 > (In − X̄2)B2,

which according to [34, Theorem 2.7] implies that ρ((In−X̄1)B2) > ρ((In−X̄2)B2) =
1, thus establishing the instability of (x̄1,0n) by the result of Theorem 3.10. Similarly,
we have that (In− X̄1)B1 > (In− X̄2)B1, and it follows from [34, Theorem 2.7] that
ρ((In − X̄2)B1) < ρ((In − X̄1)B1) = 1, and hence (0n, x̄

2) is locally stable.

A.8. Proof of Theorem 3.12. It is evident that with m = (0>n ,1
>
n ) the initial

conditions specified in the theorem statement obey xB(0) >Km xC(0) >Km xA(0), and
so by Lemma 2.2 on monotone systems, φt(xB(0)) �Km

φt(xC(0)) �Km
φt(xA((0))

holds for all t. These inequalities yield the first two lines of (3.6). The inequality of
the last line was established in Lemma 3.2.

A.9. Proof of Lemma 3.13. Without loss of generality, suppose that S has a
globally stable equilibrium at x̄. To obtain a contradiction, suppose there is an initial
state x(0) ∈ ∆ for Ŝ for which the trajectory x(t) does not converge to x̄. Let N ⊂ ∆
be a suitably small neighborhood of x(0). Then there exist xA(0) ∈ N and xB(0) ∈ N
with xB(0) � x(0) � xA(0) such that, by Theorem 3.6, the trajectories xA(t) and
xB(t) starting from xA(0) and xB(0) converge to a stable equilibrium of Ŝ. But by
Lemma 3.7, the system Ŝ cannot have a stable equilibrium other than x̄, since the
system S has no stable equilibrium point other than x̄. In other words, convergence of
trajectories in the system Ŝ must occur to x̄. Now use the key result of Theorem 3.12
on Ŝ. The inequality for the initial conditions implies xB(t) � x(t) � xA(t) ∀t and
taking the limit as t → ∞ yields limt→∞ x(t) = x̄. Note we can always select xA(0)
and xB(0) to satisfy Theorem 3.12; due to Lemma 3.2, any x(0) ∈ ∆ will satisfy
0n � xi(t)� 1n, i = 1, 2, after a finite time t.

A.10. Proof of Corollary 3.14. The underlying system is an irreducible mono-
tone system and by assumption, almost all trajectories converge to a limit point (which
may be locally stable, or a saddle point); the remaining trajectories are nonattractive
limit cycles. The inequalities established in Theorem 3.12 imply that the limiting
trajectory resulting from xC(0) necessarily lies within the hyperrectangleW, and this
can only be a nonattractive limit cycle if xC(0) itself lies in W and W is neither a
single point nor a one-dimensional interval. These observations imply one of the three
conclusions in the corollary statement must hold.

A.11. Proof of Corollary 3.16. The argument relies on the fact that all trajec-
tories of the bivirus system approach a locally stable equilibrium, except possibly from
a set of initial conditions of measure zero, as per Theorem 3.6 and Lemma 2.3. If there
were two unstable boundary equilibria, a contradiction is immediate because almost all
trajectories approach a stable equilibrium; boundary equilibria are excluded through
their instability and a coexistence equilibrium is not present by hypothesis. If there
were two stable boundary equilibria, Corollary 3.14 yields existence of an interior un-
stable equilibrium, another contradiction. Hence there is precisely one stable bound-
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ary equilibrium. Suppose that there exists an interior point x(0) = (x1(0), x2(0)) for
which the associated trajectory does not converge to the stable boundary equilibrium
(perhaps on a nonattractive limit cycle). Let N be a suitably small neighbourhood of
x(0). Then, there exist xA(0) ∈ N and xB(0) ∈ N with xB(0)� x(0)� xA(0) such
that the trajectories starting from xA(0) and xB(0) converge to the stable boundary
equilibrium, and Corollary 3.14 implies that the trajectory beginning at x(0) also
converges to the common limit, delivering the contradiction.

Appendix B. Applying algebraic geometry to the proof of Theorem 3.6.
The main focus is to prove that for generic Di, Bi, the bivirus system in (2.3) has a
finite number of equilibria. To do this, we shall first argue that there can only be an
infinite number of equilibria for values of the free parameters in Di, Bi lying in an
algebraic set, i.e. a set defined by setting a multivariate polynomial in the parameters
to zero. The existence of this set will be demonstrated by algebraic geometry. If the
multivariate polynomial is the zero polynomial, the algebraic set comprises the whole
space. If it is not zero, then the algebraic set has measure zero and for almost all
parameter values, there will be a finite number of equilibria. Then we prove that for
any given n, there exists a specific choice of Di and Bi for which the bivirus system
has a finite number of equilibria, implying that the algebraic set cannot be the whole
set and so necessarily has measure zero.

B.1. Background on algebraic geometry. We first provide relevant back-
ground on algebraic geometry, the main reference being [5, Chapter 3].

With x denoting an n-vector of unknowns, a monomial is a term of the form
xα1
1 xα2

2 . . . xαn
n , where the αi are nonnegative integers. A single multivariate poly-

nomial equation is obtained by taking a linear combination of such monomials and
setting it to zero. Algebraic geometry enables examination of the solvability question
for n such equations in n unknowns. They can be written in the form P (x, β) = 0
where β is the set of free coefficients of the different monomials. (In any one equation,
some monomials may be absent, and others again may have a fixed coefficient, such
as 1; the coefficients of the remaining monomials make up the entries of β). We focus
on the case of real polynomial equations, so that β can be regarded as a real vector,
the first block of entries corresponding to monomials in the first equation, the second
block to monomials in the second equation, and so on.

In order to deal with a phenomenon (so-called ‘solutions at infinity’) not encoun-
tered in working with a purely linear equation set, a technical device is introduced.

A single multivariate polyonomial equation is termed homogeneous when the sum
of the powers in each monomial in the equation is the same for all terms. If one has
a nonhomogeneous equation, it can be made homogeneous by introducing a further
variable, x0, with a monomial xα1

1 xα2
2 . . . xαn

n being replaced by xα0
0 xα1

1 xα2
2 . . . xαn

n with
α0 chosen to ensure all monomials in the single polynominal equation have the same
total degree

∑n
i=0 αi.

Consider in fact n such homogeneous polynomial equations in the n+1 unknowns
x0, x1, . . . xn. Note that while separately homogeneous, the individual equation de-
grees are not necessarily the same. The equations may well have been obtained by
making homogeneous the inhomogeneous set P (x, β) = 0. We shall write the homo-
geneous set as P̄ (x0, x, β) = 0. This is related to P by P̄ (1, x, β) = P (x, β). The key
result from algebraic geometry is the following, [5, pg. 86, Theorem 2.3].

Theorem B.1. Consider a set of n homogeneous polynomial equations, denoted
P̄ (x0, x, β) = 0 with free parameters in the vector β and with unknowns x0, x1, . . . , xn.
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Then there exists an expression R(β) (termed the resultant) that is polynomial in the
entries of β such that if R(β) 6= 0 for particular values of the β entries, there are a
finite number of nonzero solutions (possibly complex) to P̄ (x0, x, β) = 0, disregard-
ing scaling. If R(β) = 0, there are either no solutions or an infinity of solutions
(disregarding scaling).

Evidently, if (x̄0, x̄1, . . . , x̄n) is a solution to a homogeneous set of equations
P̄ (x0, x, β) = 0, then (λx̄0, λx̄1, . . . λx̄n) for any nonzero real or complex λ is also
a solution. If x̄0 6= 0, the choice λ = (x̄0)−1 recovers a solution to the inhomogeneous
set P (x, β) = 0. However, if x̄0 = 0, a solution to P (x, β) = 0 cannot be recovered in
this way; such solutions are however sometimes termed ‘solutions at infinity’ of the
set P (x, β) = 0, [5, pg. 115].

Corollary B.2. Assume the same hypotheses as Theorem B.1. If for a particu-
lar choice of values for the entries of β, call it β̂, the resultant takes a nonzero value,
then for almost all choices of β, the resultant will be nonzero.

The proof is immediate: it is obvious that if a polynomial in a single variable is
nonzero for some value of that variable, it is nonzero for almost all values, i.e. nonzero
everywhere except on a set of measure zero (which in the case of a polynomial in a
single variable is a finite set). The first property is clearly also true for any (nonzero)
multivariate polynomial such as the resultant.

Thus if the resultant takes a nonzero value for a particular choice of values β̂
for the free parameters of the equation set P̄ (x0, x, β), then for almost all values
assumed by the entries of β, the resultant polynomial R(β) will evaluate as a nonzero
number. Further, if it takes a nonzero value for a particular choice of values for the
free parameters in the equation set P̄ (x0, x, β) = 0 and there is an associated solution
with x0 6= 0, i.e. there is a solution of P (x, β) = 0, the same will hold true for almost
all values of the free parameters.

B.2. Proof of Theorem 3.6. As noted just prior to Definition 3.4, evidently
the key part of the theorem we have to prove is that the number of equilibria is finite.

The equilibrium equations for the bivirus system, given in (3.1), are a set of
polynomial equations in the x̄ji . Suppose that we take D1 = D2 = In, and B1, B2 as
positive diagonal matrices with no two corresponding entries equal. The equation set
then becomes decoupled, and the i-th entry of each of the vector equations in (3.1) is

[−1 + (1− x̄1i − x̄2i )β1
ii]x̄

1
i = 0

[−1 + (1− x̄1i − x̄2i )β2
ii]x̄

2
i = 0

The solvability of these equations yielding a finite number of solution pairs (x̄1i , x̄
2
i )

is easily checked. The solutions in fact are (0, 0), (0, 1 − (1/β2
ii)), (1 − (1/β1

ii), 0).
Of course, the other entries of the x̄i can be treated in the same way due to the
decoupling. Since there is a particular choice for the entries of B1, B2 and D1, D2

(the latter particular choice being the identity matrix) yielding a finite number of
solutions, the algebraic geometry arguments presented above show that for almost all
choices of the free parameters in Bi, and the diagonal entries of Di, a finite number
of solutions to the equilibrium equations exist.

Due to Lemma 3.2, it follows that for any x(0) ∈ ∆, we have x(τ) ∈ ∆̃ for some
finite time τ ≥ 0, with ∆̃ an open strict subset of ∆ that is positively invariant.
With finiteness of the equilibria assured, we apply Lemma 2.3 to the bivirus system
(2.3), relating M to ∆̃. Note, we can relate M to ∆ , {x1, x2|0n ≤ xi ≤ 1n for i =
1, 2, and x1 + x2 ≤ 1n}.



ANALYSIS OF A NETWORKED BIVIRUS EPIDEMIC MODEL 23

Acknowledgments. We would like to acknowledge the anonymous referees and
their comments and suggestions for improving the manuscript.

REFERENCES

[1] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Com-
puter Science and Applied Mathematics, Academic Press: London, 1979.

[2] C. Castillo-Chavez, W. Huang, and J. Li, Competitive exclusion in gonorrhea models and
other sexually transmitted diseases, SIAM Journal on Applied Mathematics, 56 (1996),
pp. 494–508.

[3] C. Castillo-Chavez, W. Huang, and J. Li, Competitive exclusion and coexistence of multiple
strains in an SIS STD model, SIAM Journal on Applied Mathematics, 59 (1999), pp. 1790–
1811.

[4] H.-D. Chiang and L. F. C. Alberto, Stability Regions of Nonlinear Dynamical Systems:
Theory, Estimation, and Applications, Cambridge University Press, 2015.

[5] D. A. Cox, J. Little, and D. O’shea, Using algebraic geometry, vol. 185, Springer Science &
Business Media, 2nd ed., 2006.
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