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Abstract

In 1990, Hendry conjectured that all Hamiltonian chordal graphs are cycle extendable. After
a series of papers confirming the conjecture for a number of graph classes, the conjecture is yet
refuted by Lafond and Seamone in 2015. Given that their counterexamples are not strongly chordal
graphs and they are all only 2-connected, Lafond and Seamone asked the following two questions:
(1) Are Hamiltonian strongly chordal graphs cycle extendable? (2) Is there an integer k such that all
k-connected Hamiltonian chordal graphs are cycle extendable? Later, a conjecture stronger than
Hendry’s is proposed. In this paper, we resolve all these questions in the negative. On the positive
side, we add to the list of cycle extendable graphs two more graph classes, namely, Hamiltonian 4-
FAN-free chordal graphs where every induced Ks — e has true twins, and Hamiltonian {4-FAN, A}-free
chordal graphs.

1 Introduction

A graph is Hamiltonian if it has a Hamiltonian cycle. Investigating sufficient conditions for the existence
of a Hamiltonian cycle has been a prevalent topic, initiated by the seminal work of Dirac [8]. A
commonly used scheme to show the existence of a Hamiltonian cycle is to derive a contradiction to
the assumption that the graph has no Hamiltonian cycle, by means of extending an assumed longest
non-Hamiltonian cycle to a longer cycle. After observing this, Hendry [13, 14, 15] proposed the concept
of cycle extendability. Concretely, a cycle C is extendable if there exists a cycle C’ which contains all
vertices of C plus one more vertex not in C. A graph is cycle extendable if all non-Hamiltonian cycles
of the graph are extendable. The notion of cycle extendability is related to the well-studied notion of
pancyclicity. Recall that a graph on n vertices is pancyclic if it contains a cycle of length ¢ for every ¢
such that 3 < £ < n. Clearly, every cycle extendable graph containing at least one cycle of length 3
is pancyclic, and every pancyclic graph is Hamiltonian. In [14], Hendry studied several sufficient
conditions for a graph to be cycle extendable, and in the conclusion he put forward a “reverse” notion
of cycle extendability, namely the cycle reducibility. Precisely, a graph is cycle reducible if for every
cycle C containing more than 3 vertices in the graph there exists a cycle C’ which consists of [V(C)| — 1
vertices of C. In light of the facts that (1) a graph is cycle reducible if and only if it is a chordal graph,
and (2) Hamiltonian chordal graphs are pancyclic, Hendry [14] proposed the following conjecture.

Hendry’s Conjecture. Hamiltonian chordal graphs are cycle extendable.
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Recall that chordal graphs are the graphs without holes (induced cycles of length at least four) as
induced subgraphs. Since the work of Hendry [14], the above conjecture has received considerable
attention. Remarkably, Hendry’s conjecture has been confirmed for a number of special graph classes
including planar Hamiltonian chordal graphs [17], Hamiltonian interval graphs [2, 7], Hamiltonian
split graphs [2], etc. In 2013, Abueida, Busch, and Sritharan [1] added to the list of cycle extendable
graph classes the Hamiltonian spider intersection graphs, a superclass of Hamiltonian interval and
Hamiltonian split graphs.

Though all these confirmative works continuously fill the gap step by step and provide more
and more evidence towards a positive answer to Hendry’s conjecture, the conjecture is, somewhat
surprisingly, eventually disproved the first time by Lafond and Seamone [18] in 2015. Particularly,
Lafond and Seamone derived a counterexample with only 15 vertices. Based on this counterexample,
they also showed that for any n > 15, a counterexample on n vertices exists. Nevertheless, Lafond and
Seamone’s work is not the end of the story, as there are many interesting subclasses of chordal graphs
for which whether Hendry’s conjecture holds still remained open. Notably, as all counterexamples
constructed in [18] contain an induced 3-SUN which is a forbidden induced subgraph of strongly
chordal graphs (see Figure 2 for a 3-suUN), and contain at least one degree-2 vertex, Lafond and
Seamone proposed two questions as follows. (For notions in the following discussions, we refer to the
next section for the formal definitions.)

Question 1. Are Hamiltonian strongly chordal graphs cycle extendable?

Question 2. Is there an integer k > 2 such that all k-connected Hamiltonian chordal graphs are
cycle extendable?

Later, based on the concept of R-cycle extendability first studied in [5], a more general conjecture
was proposed. Let R be a nonempty subset of positive integers. A cycle C in a graph G is R-extendable
if there exists another cycle C’ in G which consists of all vertices of C and i additional vertices for
some integer i € R. A graph is R-cycle extendable if every non-Hamiltonian cycle of the graph is
R-extendable. Clearly, {1}-cycle extendable graphs are exactly cycle extendable graphs. After observing
that the counterexamples of Lafond and Seamone are {1, 2}-cycle extendable, Arangno [4] put forward
in his Ph.D. thesis the following conjecture.

Arangno’s Conjecture. Hamiltonian chordal graphs are {1, 2}-cycle extendable.

Our first contribution is the following theorem, which directly refutes Arangno’s conjecture and
provides negative answers to Questions 1-2 !.

Theorem 1.1. Let R be a nonempty set of positive integers, and let t be the maximum integer in R. Then,
for all integers k > 0 and n > 14 + t + 2k, there exists a (2 + k)-connected Hamiltonian strongly chordal
graph with n vertices that is not R-cycle extendable.

On the positive side, we add to the list of graph classes fulfilling Hendry’s conjecture two subclasses
of Hamiltonian chordal graphs. Recently, Gerek [12] proved that Hendry’s conjecture holds for
Hamiltonian Ptolemaic graphs. Recall that Ptolemaic graphs are exactly chordal graphs that are
3-FAN-free [16]. Though that we could not extend this result to Hamiltonian 4-FAN-free chordal graphs,
we show that Hendry’s conjecture holds for two subclasses of 4-FAN-free chordal graphs, namely,
Hamiltonian 4-FAN-free chordal graphs where every induced Ks — e has true twins, and Hamiltonian
{4-FAN, A}-free chordal graphs. See Figure 1 for 3-FAN, 4-FAN, Ks — e, and A.

Theorem 1.2. Hamiltonian 4-FAN-free chordal graphs where every induced Ks — e (if there are any) has
true twins are cycle extendable.

!Independent of our work, Lafond et al. [19] obtained similar results for these conjectures.
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Figure 1: 3-FAN, 4-FAN, A, and K5 — e

Theorem 1.3. Hamiltonian {4-FAN, A}-free chordal graphs are cycle extendable.

In addition, it is known that the class of k-leaf powers for all integers k > 1 are a natural subclass of
strongly chordal graphs [20]. Gerek’s result also implies that Hendry’s conjecture holds for Hamiltonian
k-leaf powers for k = 1, 2, 3 because they are subclasses of Ptolemaic graphs. Because 4-leaf powers are
free of induced 4-FANs and contain induced Ks — e only with true twins [21], we obtain the following
corollary as a consequence of Theorem 1.2.

Corollary 1.4. Hamiltonian 4-leaf powers are cycle extendable.

We also would like to mention, in passing, that {4-FAN, A}-free chordal graphs contain the well-
partitioned chordal graphs coined by Ahn et al. [3] very recently.

Organization. In Section 2, we provide basic notions used in our paper. Section 3 is devoted to the
proof of Theorem 1.1, and Section 4 composites the proofs of Theorems 1.2-1.3. We conclude our
study in Section 5.

2 Preliminaries

We assume the reader is familiar with the basics of graph theory. We reiterate numerous important
notions used in our discussions, and refer to [22] for notions used in the paper but whose definitions
are not provided in this section. By convention, for an integer i, we use [i] to denote the set of all
positive integers at most i.

All graphs considered in this paper are finite, undirected, and simple. The vertex set and the edge
set of a graph G are denoted by V(G) and E(G), respectively. We use uv to denote an edge between two
vertices u and v. For a vertex v € V(G), N(v) = {u | uv € E(G)} denotes the (open) neighborhood of v,
and N[v] = N(v) U {v} denotes the closed neighborhood of v. The degree of v is the cardinality of N(v).
For a subset X C V(G), let N(X) = [J, cx N(v) \ X and N[X] = N(X) U X. The subgraph induced by X
is denoted by G[X]. For brevity, we write G — X for the subgraph of G induced by V(G) \ X. When

= {x}, we simply use the shorthand G — x for G — X.

We say that two vertices are true twins if they have the same closed neighborhood. A vertex v is a
true-twin vertex (true-twin for short) if there is another vertex u such that v and u are true twins. In
this case, we call v a true-twin for u. A true-twins pair refers to a pair {u, v} such that u and v are true
twins.

A vertex is universal in a graph if it is adjacent to all other vertices. A vertex of degree 0 is called an
isolated vertex. A vertex v in a graph G is simplicial if N[v] is a clique. Moreover, if the vertices in N(v)
can be ordered as (vi1,Vvs,..., Vi) such that N[v1] € N[vy] C --- C N[w], where k = |[N(v)|, then we
say that v is simple. A simple vertex is always simplicial.

A hole in a graph G is an induced cycle of G of length at least 4. An independent set of G is a subset S
of vertices such that G[S] contains only isolated vertices. A clique is a subset S of vertices such that there



)

X1
Y2 Ys
Y1 Y2 ! L3
0N Y4
xs3 Y3 X2 Ty
3-SUN 4-SUN

Figure 2: 3-suN and 4-SUN

is an edge between every pair of vertices in S. For an integer k > 3, a k-SUN is a graph of 2k vertices
which can be partitioned into an independent set X = {x,...,xx} and a clique Y = {y1, ..., yx} such
that for every i € [k], x; is only adjacent to y; and Y (i (mod x))+1- See Figure 2 for the 3-SUN and 4-SUN.

A graph is chordal if it does not contain any holes. Strongly chordal graphs are chordal graphs
without induced k-sUNs for all k > 3. Hence, the minimal forbidden induced subgraphs of strongly
chordal graphs are k-sUNs and holes, none of which contains a universal vertex or a true-twins pair.
Strongly chordal graphs admit an ordering characterization. In particular, a simple elimination ordering
of a graph G is an ordering (vi,Va,...,vn) over V(G) such that for every i € [n], v; is simple in the
subgraph of G induced by {vi, vi+1,...,vn}. It has been proved that a graph is a strongly chordal graph
if and only if it admits a simple elimination ordering [10].

A graph G is a k-leaf power if there exists a tree T such that (1) the vertices of G one-to-one
correspond to the leaves of T, and (2) for every two vertices u,v € V(G), it holds that uv € E(G) if and
only if the distance between u and v in T is at most k. It is a folklore that k-leaf powers are strongly
chordal graphs [20].

A path between two vertices v and u is a sequence of distinct vertices such that v and u are the first
and last vertices in the sequence and, moreover, every two consecutive vertices are adjacent. Such a
path is called a v-u path. For a v-u path P, and two vertices v/ € N(v) and u’ € N(u) not in the path,
v/Pu’ denotes the v/-u’ path obtained from P by putting v’ before v and putting u’ after u. The length
of a path refers to the number of vertices in the path minus one.

A graph is connected if it has only one vertex or between every two vertices there exists a path in the
graph. A graph is k-connected if it is connected after the deletion of any subset of at most k — 1 vertices.

3 Negative Results

This section is devoted to the proof of Theorem 1.1. Our counterexamples are based on the graphs H
and H™~ shown in Figure 3, where the graph H is obtained from the 15-vertex counterexample of
Lafond and Seamone by adding one edge aus [18]. The following two observations follow immediately
from the definitions of strongly chordal graphs and Hamiltonian graphs respectively.

Observation 3.1. A strongly chordal graph remains strongly chordal after adding or deleting a universal
vertex or a true-twin for any vertex.



Observation 3.2. A Hamiltonian graph remains Hamiltonian after adding a universal vertex or a true-twin
vertex for any vertex.
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Figure 3: Two graphs Hand H-. Heavy edges are in bold. The graph H—{v1, V2, V3, V4, Vs} is composed
by a 7-vertex path abcdefg plus three universal vertices u;, 1y, and us, and H™ is obtained from H by
the deletion of the edge u;e and the nonheavy edges incident to uy and us.

Lemma 3.3. H is a Hamiltonian strongly chordal graph.

Proof. The graph H is Hapiltonian since avjuyvagfvausvsbedevsuga is a Hamiltonian cycle of H.
It remains to prove that H is a strongly chordal graph. It is fairly easy to check that the vertices
V1, V2, V3, V4, and vs are simple vertices in H. Let H" = H — {v1, v2, v3, V4, vs}. Since simple vertices are
not in any induced holes and k-suNs for all k > 3, it suffices to prove that H’ is a strongly chordal graph.
To this end, observe that H’ consists of a 7-vertex path abcdefg and three universal vertices uy, uo,
and ug. A path is clearly a strongly chordal graph. Then, by Observation 3.1, H’ is a strongly chordal
graph too. O

The vertices v1, va, v3, v4, and vs are all of degree-2 in H. We call the edges incident to them heavy
edges (see Figure 3).

Observation 3.4. Every cycle in H containing {v1, V2, V3, V4, Vs } must contain all the heavy edges.

Lemma 3.5. C is a ¢ycle containing all heavy edges in H if and only if C is a cycle containing all heavy
edges in H™.

Proof. Note that the heavy edges of H and H~ are the same. The “if” direction is trivial since H™ is a
subgraph of H. For the “only if” direction, assume that C is a cycle containing all heavy edges in H.
As evs,u1vs € E(C), we have that uje ¢ E(C). As viug, vouy € E(C), the other edges incident to uy,
which are all nonheavy edges, are not in C. For the same reason, all nonheavy edges incident to us are
not in C. Recall that H™ is obtained from H by the deletion of u;e and the nonheavy edges incident
to uy and ug. Therefore, E(C) C E(H™), which means that C is a cycle of H-. O



Now we study a nonextendable cycle in H.
Lemma 3.6. The cycle C = aviugvaguivsefvqusvsba in H is not extendable.

Proof. Note that the cycle C contains all vertices of H except the two vertices ¢ and d. Suppose for
contradiction that C admits an extension C ’A Clearly, C’ contains {v1, Vg, V3, v4,Vs}, and it holds that C’
is a Hamiltonian cycle of either H — ¢ or H — d. By Observation 3.4 and Lemma 3.5, C’ is either a
Hamiltonian cycle of H~ — ¢ or a Hamiltonian cycle of H~ — d and, moreover, C’ contains all heavy
edges.

If C’ is a Hamiltonian cycle of H™ — ¢, then as the vertex d has degree 2 in H™ — ¢, the two
edges du; and de incident to d are contained in the cycle C’. However, these two edges together
with the heavy edges incident to vs form a cycle dujvsed of length four, contradicting that C’ is a
Hamiltonian cycle of H™ — c.

Finally, if C’ is a Hamiltonian cycle of H~ — d, then as ¢ and e are both degree-2 vertices
in H™ — d, C’ must contain the edges cb, ujc, and fe. However, these edges together with the heavy
edges bvs, vsus, usvs, vaf, evs, and vsu; form a cycle bvsusvsfevsuicb of length nine, contradicting
that C’ is a Hamiltonian cycle of H™ — d. O

Now we are ready to give the proof of Theorem 1.1. We first show the proof for the special case
where k = 0. The proof for the case where k > 1 is built upon the proof for k = 0 by adding a number
of vertices, and is given subsequently.

Proof of Theorem 1.1 for k = 0. Let R be a nonempty set of positive integers, and let t be the maximum
integer in R. In the following, we show that for every integer n > 14 + t, there exists a 2-connected
Hamiltonian strongly chordal graph with n vertices that is not [t]-cycle extendable, and hence not
R-cycle extendable. To this end, we modify the graph H into a graph G; as follows: we first replace
the edge cd by a path P = cz1z5---z¢_1d of t 4+ 1 vertices, and then we add edges so that each z;,
where i € [t — 1], is adjacent to uj, up, and uz. For convenience, we use zy to denote c, use z; to
denote d, and define Z = {zo, ..., z¢}. Let G| be the graph obtained from G by deleting all nonheavy
edges incident to uy and us, and deleting the edge eu;. Clearly, both G and G; contain exactly 14+t
vertices. See Figure 4 for illustrations of G¢ and G .

The graph G is Hamiltonian since aviuyvagfvausvsbzg - - - zevsuia is a Hamiltonian cycle of Gy.
Analogous to the proof of Lemma 3.3, it can be shown that Gy is a strongly chordal graph. In particular,
it is easy to see that every v;, where i € [5], is a simple vertex in G¢. Then, it suffices to show that
the graph G without the five vertices vi, ..., vs is a strongly chordal graph. This is the case as
Gt —{v1,...,vs} consists of a path abzpz; - - - ztefg (which is strongly chordal) and three universal
vertices uq, uo, and us.

Observation 3.4 and Lemma 3.5 also apply to G;. That is, the following conditions are fulfilled
by G.

* Every cycle in G containing {v1, v2, v3, V4, vs} contains all heavy edges.
e (Cis a cycle containing all heavy edges in G if and only if C is a cycle containing all heavy edges
in G .
We show now that the cycle
C = aviugvaguivsefvausvsba

in G| is not {i}-extendable for all i € [t]. We prove this by induction. For the base case where i =1,
our proof goes as follows. Assume for the sake of contradiction that C can be extended to C’ such that



V(C’) = V(C) U{z} where z € Z. Since z; where j € [t — 1] has degree one in G; — (Z \ {z;}), it holds
that z ¢ Z\ {zo, z¢}. Note that G{ — (Z\{zo}) is isomorphic to H-— d, and Gy — (Z\{z¢}) is isomorphic
to H™ —c. Then, by Lemma 3.6, z can neither be zg nor z;. This completes the proof for the base case.

Now assuming that i > 1 and C is not [i — 1]-extendable, we claim that the cycle C in G is not
{i}-extendable. We prove this by contradiction. Assume for the sake of contradiction that C* is an
{i}-extension of C in G such that V(C*) = V(C)U Z’ for some Z’' C Zwith |Z/| =1. Let Z~ =Z\ Z'.
We claim that G, — (Z \ {zo, z¢}) is not Hamiltonian: In Gy — (Z \ {zo, z¢}), z¢+ and vs are degree-2
vertices; a Hamiltonian cycle of G, — (Z \ {zo, z¢}) must contain z, and vs, and hence contains the four
edges ez, ztu1, u1vs, and vse, which, however, form a cycle of length four. By the claim, Z’ # {zg, z¢ }.
Note that vertices of Z are all degree-3 vertices in G, Z\ Z’ # () (because |Z| =t + 1 and i < t), and
every vertex of Z' in C* has degree 2. Hence, there exists at least one vertex of Z" in Gy — Z~ with
degree 2, and there exists no vertex of Z’ in G — Z~ with degrees 0 or 1. As Z’ # {z, z¢}, there are
two vertices z,z" € Z’ such that z has degree 2 in G; — Z~ with z’ and u; being its two neighbors. It
is clear that z'u; € E(Gy — Z7). By replacing the edges zz’ and zu; with the edge z'u; in C* we get a
cycle on V(C*) \ {z}, an {i — 1}-extension of C, a contradiction.

A Hamiltonian strongly chordal graph of n > 14 + t vertices which is not R-cycle extendable can be
obtained from the graph G by adding n — 14 — t true-twins of v;. O

Figure 4: Two graphs G¢ and G, in the proof of Theorem 1.1 for k =0 and t = 3.

Now, we move on to the proof of Theorem 1.1 for the case where k > 1. We need a few additional
notions for our exposition. For two positive integers p and q, a (p, q)-star is a graph whose vertex set can
be partitioned into an independent set X of p vertices and a clique Y of q vertices such that all vertices
in X are adjacent to all vertices in Y. Moreover, such a partition (X, Y) is called the (p, q)-partition of
the graph.

Proof of Theorem 1.1 for k > 1. Let G and Z ={zo,...,z¢} be as defined in the above proof for k = 0.
We construct a graph GF of 14 + t + 2k vertices as follows:
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Figure 5: The graph G}. The set of vertices in the left box induces a G for t = 3, and
{x1,x2,%3,Y1,Y2,ys} induces a (3, 3)-star. Multiedges between a vertex and the left box means that the
vertex is adjacent to all vertices in the box.

1.

2.
3.
4.

take the union of Gy and a (k, k)-star with the (k, k)-partition (X, Y);
add an edge between every vertex in Y and every vertex in Gg;
add an edge between uy and each vertex of X; and

add an edge between u3 and each vertex of X.

We refer to Figure 5 for an illustration of G2.
We first show that the graph G¥ is a (2 + k)-connected Hamiltonian strongly chordal graph.

GK is (2 + k)-connected

As |Y| = k and all vertices in Y are universal vertices, this is equivalent to showing that GF — Y is
2-connected, i.e., GX — Y is connected after deleting any arbitrary vertex. This is the case as G
has a Hamiltonian cycle and, moreover, every vertex in X is adjacent to two vertices in G.

GF is Hamiltonian
Let x1x2 - - - xx and yjys - - - yx be any arbitrary but fixed orders over X and Y respectively. The

following Hamiltonian cycle is an evidence that G¥ is Hamiltonian:

aviusXiyixayz - - - Xkyk\)zng4U3V3bZOZl -+ Zt€vsuga.

GF is a strongly chordal graph

After deleting all the universal vertices in Y from G¥, vy, vo, v3, V4, vs are all simple vertices. After
deleting Y U {v1, V2, V3, v4,vs} from G‘;, vertices of X are all simple vertices. As simple vertices
and universal vertices of a graph never participate in any induced holes or induced j-suNs for all
integers j > 3, it holds that G¥ is a strongly chordal graph if GF — (XU Y U{vy,va,Vv3,V4,Vs}) =
Gt — {v1, Va2, V3, V4, Vvs}is, which is the case as shown in the proof for the case where k = 0.

8
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Figure 6: The graph G¢ — {ug, u3} where t = 3.

Now we prove that there is a cycle C in G¥ which is not [t]-extendable by contradiction. In particular,
let
C= aviuzXiyixayz - - - XxykVva gl,L1V5er4LL3\)3b(l.

It is clear that C contains all vertices of GF except zo, zo, ..., z¢. Suppose for contradiction that C
is [t]-extendable in G¥. Note that |Z| = t + 1. Then there exists a non-Hamiltonian cycle C’ of G¥
such that V(C) ¢ V(C’) and, more precisely, V(C’) is composed by V(C) and a nonempty proper
subset of Z. Let ] = {uz,us}U Y. Clearly, ] C V(C’). The graph G} — ] has exactly k + 1 connected
components, i.e., Gy — {uy, us} and the k isolated vertices in X. We refer to Figure 6 for an illustration
of Gt — {uy, uz}. Then, as v, vo, v3, and v4 are degree-1 vertices in Gy — {ug, us}, and |J| = k + 2, we
know that removing | from C’ yields exactly k + 2 paths, where k of them one-to-one correspond to
the vertices of X, and the other two paths, denoted P; and P, are vertex-disjoint and each contains
exactly two of v1, va, v3, and v4 as the ends. By the above discussion, V(P1) U V(P3) consist of vertices
in Gy — Z —{uy, up} and a nonempty proper subset of Z. As vs has degree two in Gy — {uy, us}, with ug
and e being its two neighbors, we know that u,, vs, and e appear consecutively in one of P; and P».
Due to symmetry, we need only to consider the following three cases. We shall show that all the three
cases lead to some contradictions. Bear in mind that in the paths P; or P, the neighbor of v; is a, of vy
is g, of v3 is b, and of v4 is f.

Case 1: P; is a v1-v, path and P, is a v3-v4 path

Due to the above discussion, in this case, the second and third vertices of Pq, starting from v,
must be a and u;, respectively. Additionally, the second-last and the third-last vertices of P; must
be g and f, respectively. However, this contradicts that f is the neighbor of v4 in Py, and P; and P,
are vertex-disjoint.

Case 2: P; is a vi-v3 path and P, is a vo-v4 path

In this case, the third vertex of P4, starting from v, is either b or u;.



We consider first the former case. In this case, P; = vyabvs. Clearly, P, cannot be vogfvg, since
otherwise Z N (V(P1) U V(P3)) = 0, contradicting that V(P;) U V(P3) contains a proper subset
of Z. Moreover, we know that u; is in P,. Then, by the above discussion, the first five vertices
of P, are respectively vo, g, uj, vs, and e. The next vertex in P, can be either f or z,. If it is f,
then P, = vogujvsefvy. However, in this case Z N (V(P1) U V(P2)) = 0, a contradiction. So, it
remains only the possibility that the sixth vertex of P, is z¢. However, it is easy to see that there
is no path from z. to v4 in the graph G¢ — ({uz, us, v2, g, u1,vs, e} U V(P1)), contradicting that Py,
containing vy, g, Ui, vs, and e, is a vo-v4 path that is vertex-disjoint from P; in Gy — {ug, us}.

Let us consider the latter case now. In light of the above discussions, the first five vertices of P;
must be vq, a, u, vs and e. The next vertex is either f or z;. It cannot be f because f is the
neighbor of v4 in Py. However, it cannot be z; either: as zyz¢_1 - - - zgbvs is the only z-v3 path
in Gy —{uy,us,v1,a,us,vs, e}, it holds that Z C V(P;), which contradicts that V(P1) U V(P5)
contains a proper subset of Z.

Case 3: P; is a vi-v4 path and P, is a v3-v3 path

As b is the neighbor of v3 in P, we know that the third vertex in Pq, starting from v, must be u;.
Recall also that f is the neighbor of v4 in P;. However, as {u1, f} separate v, and v3, P; and P,
cannot be two vertex-disjoint paths in Gy — {us, us}, a contradiction.

This completes the proof that C is not [t]-cycle extendable, and hence G¥ is not R-cycle extendable.
A Hamiltonian strongly chordal graph of n > 14 4 t + 2k vertices which is not R-cycle extendable
can be obtained from the graph G by adding n — 14 — t — 2k true-twins of v;. O

4 Affirmative Results

This section is devoted to the proofs of Theorems 1.2 and 1.3. The following lemmas are from [18].

Lemma 4.1. [18] Let C be a cycle of a chordal graph and let uv be an edge in C. Then u and v have a
common neighbor in V(C).

Lemma 4.2. [18] Let G be a connected chordal graph, and let S be a clique of V(G). If G — S is
disconnected, then each connected component of G — S contains a simplicial vertex of G.

It is well-known that if a chordal graph is not a clique, then it contains two non-adjacent simplicial
vertices [9]. Hence, Lemma 4.2 is extendable to the case where G — S is connected.

Corollary 4.3. Let G be a connected chordal graph, and let S be a clique of V(G). Then each connected
component of G — S contains a simplicial vertex of G.

Lemma 4.4. Let n be an integer such that all Hamiltonian chordal graphs of at most n — 1 vertices are
cycle extendable, and there exists a Hamiltonian chordal graph G of n vertices which is not cycle extendable.
Let C be a nonextendable cycle of G, Q be a connected component of G — C, and S = N(Q) be the set of
neighbors of Q. Then the following conditions hold:

1. Sis not a clique of G,
2. any two vertices of S are not adjacent in C, and

3. if two vertices of S are adjacent in G, then they have a common neighbor in Q.
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Proof. The integer n stipulated in the lemma must exist, because any Hamiltonian chordal graph of at
most four vertices are cycle extendable and there are nonextendable Hamiltonian chordal graphs of 15
vertices [18]. We prove the three statements of the lemma by contradiction.

1. For contradiction, assume that S is a clique of G. Then, by Corollary 4.3, Q has a simplicial vertex,
say v. Then G — v is Hamiltonian since G is Hamiltonian and all neighbors of v are pairwise
adjacent in G. Since C is not extendable in G, and G is Hamiltonian, we know that C is not a
Hamiltonian cycle of G —v. Then, as all Hamiltonian chordal graphs with vertices less than n
are cycle extendable, C is extendable in G — v. This implies that C is also extendable in G, a
contradiction.

2. For the sake of contradiction, assume that there are two vertices x,y € S such that xy € E(C).
As S = N(Q), both x and y have neighbors in Q. However, x and y cannot have a common
neighbor v in Q: if this was the case, adding v to C and replacing the edge xy by the two edges xv
and vy in C yield an extension of C, contradicting that C is not extendable in G. Now, there exist
two distinct vertices x” and y’ such that (1) x’ is a neighbor of x in Q; (2) y’ is a neighbor of y
in Q; and (3) x’ and y’ have the shortest distance in G[Q] among all two distinct vertices fulfilling
the first two conditions. However, every shortest x’-y’ path in G[Q] plus the three edges xx’, yy’,
and xy yields a hole, a contradiction.

3. Let x,y € S be two distinct vertices such that they are adjacent in G. By Statement 2, it holds
that xy ¢ E(C). Assume for contradiction that x and y do not have any common neighbors in Q.
Then, analogous to the above proof for Statement 2, there are two distinct vertices x’ and y’ in Q
satisfying the same three conditions given above. However, any shortest x’-y’ path in G[Q] plus
the three edges xx’, yy’, and xy yields a hole, a contradiction.

O]

Now, we are ready to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Suppose for contradiction that there exist cycle nonextendable Hamiltonian
4-FAN-free graphs where every induced Ks — e has true twins. Let G be such a graph with the minimum
number of vertices. Clearly, G contains at least five vertices. Let C be a non-Hamiltonian cycle in G
which is not extendable, let Q be a connected component of G—C, and let S = N(Q). Clearly, S C V(C).
By Lemma 4.4 (1), S is not a clique and hence [S| > 2. Let x,y € S be two non-adjacent vertices in S
with the shortest distance on C among all pairs of non-adjacent vertices in S. Let P be a shortest x-y
path on C. There must be at least one inner vertex of P that is contained in S, since otherwise a shortest
x-y path in G[Q U {x, y}] plus a shortest x-y path in G[V(P)] yields a hole. We break the discussion into
two cases.

Case 1: there is exactly one inner vertex of P contained in S, say z.

By the selection of x and y, we have that xz,yz € E(G). By Lemma 4.4 (2), xz,yz ¢ E(C). Let P; be
the path between x and z on P, and P, the path between y and z on P. By Lemma 4.1, there exists an
inner vertex x’ of P; adjacent to x and z, and an inner vertex y’ of Py adjacent to y and z. Since z is the
only inner vertex of P in S, it holds that x’,y’ ¢ S, i.e., x’ and y’ are not adjacent to any vertex of Q.
Moreover, it holds that xy’, x'y, x'y’ ¢ E(G), since otherwise the shortest x-y path in G[{x,x’,y,y’}]
plus a shortest x-y path in G[Q U{x,y}] is a hole.

If x, y, and z have a common neighbor w in Q, then {x’, x, w,y,y’, z} induces a 4-FAN, in which z
has degree 5, a contradiction.

Now we assume that x, y, and z do not have any common neighbors in Q. Then, by Lemma 4.4 (3),
we can find two distinct vertices u and v in Q such that (1) u is adjacent to x and z but not to y,
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(2) v is adjacent to y and z but not to x, and (3) u and v are two vertices with the shortest distance
in G[Q] among all pairs of vertices in Q satisfying the first two conditions. Let P’ be a shortest path
between u and v in G[Q]. Since uz,vz € E(G), to avoid a hole, all inner vertices of P’ (if exist) are
adjacent to z. Moreover, by the selection of u and v, all inner vertices of P’ (if exist) are adjacent to
neither x nor y. Therefore, x'xP’y is an induced path of length at least 4 in G. Then, one can check
that there are induced 4-FANs in G (e.g., a subgraph induced by z and any five consecutive vertices in
the path x'xP’y).

Case 2: there are more than one inner vertex of P in S.

Let z and z’ be two inner vertices of P in S such that z and z’ are the nearest to x and y on P
respectively, in terms of the length of the shortest paths between them. Clearly, z and z’ are distinct. By
the selection of x and y, we have that xz, xz’,yz,yz’,zz’ € E(G). By Lemma 4.4 (2), xz,zz’,yz" ¢ E(C).
By Lemma 4.1, there exists a vertex x’ adjacent to x and z, located between x and z on P. Symmetrically,
there exists a vertex y’ adjacent to y and z’, located between y and z’ on P. By the selection of z
and z’, we have that x’ and y’ are not adjacent to any vertex of Q, i.e., x’,y’ ¢ S. Moreover, it must
be that xy’, x'y, x'y’ ¢ E(G), since otherwise there will be an x-y path whose inner vertices are not
adjacent to any vertex of Q and, moreover, this path plus a shortest x-y path of G[Q U {x,y}] is a hole.

We claim that x, y, and z do not have any common neighbors in Q. For contradiction, suppose they
have a common neighbor w from Q. Then wz’ € E(G); otherwise, {x, w,y, z’} induces a hole. Now,
{z,z',x,w,y} induces a Ks — e, with xy being the missing edge. Then, there exists a true-twins pair
of G from {z, z/, x, w, y}. Notice that any true-twins pair in G is also a true-twins pair in any induced
subgraph containing the true-twins pair. This restricts our focus only to the pairs {z, w}, {z/, w}, and
{z,z'}. The vertices z and w cannot be true twins, since otherwise the vertex next to z in P is also
adjacent to w, contradicting with Lemma 4.4 (2). Symmetrically, z’ and w cannot be true twins either.
If z and z’ are true twins, then zy’ € E(G) as z'y’ € E(G). However, we arrive at a contradiction that
{x’,x,w,y,y’, z} induces a 4-FAN, in which z is the degree 5 vertex (notice that the selection of z and z’
implies that x’,y’ ¢ S, and hence w is adjacent to neither x’ nor y’). Therefore, z and z’ are not true
twins, and the proof for the claim that x, y, and z have no common neighbors in Q is completed.

However, if x, y, and z do not have any common neighbors in Q, we can find two vertices v and u
exactly the same way as we did in the proof for Case 1, and arrive at a contradiction that the graph G
contains a 4-FAN as an induced subgraph. O

Proof of Theorem 1.3. The proof is analogous to the proof of Theorem 1.2 provided above. First, assume
for the sake of contradiction that there is a Hamiltonian {4-FAN, A}-free chordal graph which is not
cycle extendable. Let G be such a graph with the minimum number of vertices. Then, let C, x, y, P,
and S be defined the same as in the proof of Theorem 1.2. Moreover, same to the proof of Theorem 1.2,
we know that there must be at least one inner vertex in P that is contained in S. Our proof proceeds by
distinguishing the following two cases.

Case 1: there is exactly one inner vertex of P in S, say z.

The proof for this case is exactly the same as the one for Case 1 in the proof of Theorem 1.2. (The
correctness of the proof relies only on the fact that the graph in consideration is a 4-FAN-free chordal
graph.)

Case 2: there are more than one inner vertex of P in S.

Let z, z’, x’, and y’ be defined the same as in Case 2 in the proof of Theorem 1.2. We first claim
that x, y, and z do not have any common neighbors in Q. For contradiction, suppose they have a
common neighbor w € Q. Same to the proof of Theorem 1.2, we can show that wz’ € E(G) and
xy’,yx’,x"y’ € E(G). We have the following subcases to consider.
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* Case 2.1: If x'z’ € E(G), then {x’,x,w,y,y’,z’} induces a 4-FAN, in which z’ is the degree-5
vertex.

* Case 2.2: If y’z € E(G), then {x/, x,w,y,y’, z} induces a 4-FAN, in which z is the degree-5 vertex.

e Case2.3: Ifx'z',y’z ¢ E(G), then {x/,%,z,z’,y,y’} induces a A in which z and z’ are the degree-4
vertices.

Therefore, x, y, and z do not have any common neighbors in Q.

If x, y, and z do not have any common neighbors in Q, we can find two vertices v and u exactly
the same way as we did in Case 1 of the proof of Theorem 1.2, and arrive at a contradiction that the
graph G contains a 4-FAN as an induced subgraph. O

5 Concluding Remarks

In 1990, Hendry conjectured that every Hamiltonian chordal graph is cycle extendable [14]. In 2015,
this conjecture was refuted by Lafond and Seamone [18] who, at the same time, proposed two new
questions (Questions 1 and 2). Later, Arangno [4] proposed a stronger conjecture. In this paper, we
refuted all these conjectures and questions by providing many counterexamples that even satisfy further
conditions (Theorems 1.1). To complement these negative results, we confirmed Hendry’s conjecture
for Hamiltonian 4-FAN-free chordal graphs where every induced Ks — e has true twins (Theorem 1.2),
and for Hamiltonian {4-FAN, A}-free chordal graphs (Theorem 1.3).

Our study arises two questions for future research. First, given that Hamiltonian 3-FAN-free chordal
graphs are cycle extendable [12], it is interesting to study whether Hendry’s conjecture holds for
Hamiltonian 4-FAN-free chordal graphs. Second, as discussed earlier, our results imply that Hendry’s
conjecture holds for Hamiltonian 4-leaf powers (Corollary 1.4), extending the results of Gerek [12]
who showed that Hendry’s conjecture holds for Hamiltonian k-leaf powers for all k € [3]. So, another
interesting question is whether Hendry’s conjecture holds for Hamiltonian 5-leaf powers. We reiterate
that in general i-leaf powers are (i + 2)-leaf powers, and for each i € [3], i-leaf powers are (i + 1)-leaf
powers. However, there are 4-leaf powers which are not 5-leaf powers [6, 11].
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