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KINETIC MODELING OF MULTIPLE SCATTERING OF ACOUSTIC
WAVES IN RANDOMLY HETEROGENEOUS FLOWS

JEAN-LUC AKIANAND ERIC SAVIN

Abstract. We study the propagation of sound waves in a three-dimensional, infinite ambient flow
with weak random fluctuations of the mean particle velocity and speed of s ound.We more particularly
address the regime where the acoustic wavelengths are comparable to the correlation lengths of the
weak inhomogeneities—the so -called we ak co upling li mit. Th e an alysis is ca rried on st arting from
the linearized Euler equations and the convected wave equation with variable density and speed of
sound, which can be derived from the nonlinear Euler equations. We use a multiscale expansion
of the Wigner distribution of a velocity potential associated to the waves to derive a radiative
transfer equation describing the evolution of the angularly resolved wave action in space/time phase
space. The latter experiences convection, refraction, and scattering when it propagates through
the heterogeneous ambient flow, a lthough the overall wave action i s c onserved. The convection and
refraction phenomena are accounted for by the convective part of the transport equation and depend
on the smooth variations of the ambient quantities. The scattering phenomenon is accounted for
by the collisional part of the transport equation and depends on the cross-power spectral densities
of the fluctuations o f t he ambient q uantities a t t he wavelength s cales. T he r efraction, p hase shift,
spectral broadening, and multiple scattering effects of the high-frequency regimes described in various
previous publications are thus encompassed by the proposed model. The overall derivation is based
on the interpretation of spatial-temporal Wigner transforms in terms of semiclassical operators in
their standard quantization.

Key words. linearized Euler equations, acoustic waves, kinetic model, transport equation,
radiative transfer

1. Introduction and summary.

1.1. Modeling of acoustic wave propagation in random flow. The study
of multiply-scattered acoustic waves in heterogeneous, unsteady flows h as relevance
to atmospheric and ocean acoustics, infrasound propagation, acoustics of turbulent
flows, or even astrophysics, among other examples; see [16, 33, 44, 46] and references
therein. Applications concern acoustic remote sensing and tomography in the atmos-
phere and ocean, noise emission by nozzles and exhaust pipes, localization of acoustic
sources, or prediction and reduction of sound waves from infrastructures, for instance.
The analysis of sound wave propagation in media with random perturbations of the
speed of sound has been well developed in the past; see, e.g., [32, 34, 50]. In jet
shear layers, for example, the speed of sound is likely to exhibit large fluctuations on
very short propagation paths, producing a spectral broadening of the high-frequency
tones propagating through them [16]. However, in the atmosphere or in the ocean
the sound pressure is also influenced by i nhomogeneities o f t he d ensity a nd current
velocity as argued in, e.g., [44]. As an acoustic wave propagates through a hetero-
geneous, unsteady ambient flow i t u ndergoes c onvection, r efraction, s cattering, and
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absorption. Convection is responsible for the Doppler effect, which shifts the typical
frequency of the waves. Refraction corresponds to a change of directivity of a sound
beam induced by the mean velocity gradient of the flow. Scattering by turbulence
causes a redistribution of the acoustic energy among different wave numbers and fre-
quencies resulting in spectral and directional broadening of the waves at sufficiently
high frequencies. Absorption of the waves is seen as their energy is partly transferred
to the heterogeneous ambient flow in the propagation process; see [15, 27].

Various models of acoustic wave propagation in unsteady, heterogeneous flows
have been developed to analyze these phenomena. Iterative perturbation expansions
for weakly random inhomogeneities of the ambient quantities, were considered in [22,
53] following the seminal developments of Karal and Keller [34]. Single-scattering
approximations, or Born approximations, were considered in several earlier works
alike [7, 27, 36, 37]. The so-called sound scattering cross-section of a plane wave
experiencing scattering from wind velocity and temperature fluctuations in a small
region of inhomogeneous fluid has also been proposed as a means to characterize
single-scattering in a turbulent medium [36, 42]. Geometric acoustics or ray tracing
is a popular approach to model sound propagation in moving media, though [7, 14,
26, 30, 35, 41, 47, 51]. It is a high-frequency approximation whereby the sound
field is expanded in a power series of the small acoustic wavelength. Although it is
very efficient for simulating long range propagation of intense noise (as sonic boom or
explosions, for example), it is limited in several configurations such as shadow zones or
caustics. It is in addition not able to handle scattering by fine structures or turbulence
and generally fails when multiple scattering occurs. Parabolic approximations are
classically considered to work beyond ray acoustics and their shortcomings but have
usually been limited to low Mach numbers; see, for example, [43] or [44] for a review of
their actual developments. This limitation reduces their relevance to applications in
atmospheric propagation and precludes applications in turboengine noise propagation.
However, a combination of ray acoustics and parabolic approximation for larger Mach
numbers may be envisaged, as proposed in [17].

Here we rather focus on transport and radiative transfer models which describe the
mesoscopic regime of wave propagation. The wavelength is comparable to the char-
acteristic length of the inhomogeneities, typically a correlation length in the actual
flow (hereafter referred to as the fast scale). This regime corresponds to a situation
of strong interaction between waves and random heterogeneities which cannot be ad-
dressed by usual homogenization or iterative techniques. Also it considers large prop-
agation distances compared to the wavelength and weak amplitudes of the random
perturbations in the actual flow with respect to a—possibly heterogeneous—ambient
flow varying at a length scale (the slow scale) one order of magnitude larger than the
wave/correlation lengths. This corresponds to the so-called weak coupling limit as de-
fined in the dedicated literature (see, for example, [21]), whereby an explicit separation
of scales can be invoked. The analysis developed in [1, 3, 4, 5, 9, 10, 20, 28, 48, 49]
is based on the use of a Wigner transform of the wave field, the high-frequency, non-
negative limit of which characterizes its angularly resolved energy density. It can be
made mathematically rigorous as in [1, 25, 38], ignoring, however, the influence of
random inhomogeneities, except for some particular situations [19, 39].

In this research, two kinds of perturbations of the ambient quantities are con-
sidered in order to assess their influence on the transport regime of acoustic waves
in unsteady, heterogeneous flows. The first one is related to the speed of sound, of
which variations are typically induced by variations of the ambient temperature and
humidity in the atmosphere. The second one is related to the particle velocity of



the flow, of which variations are typically induced by the turbulent structures of the
former. More specifically, a formal radiative transfer model is developed to explain
the propagation of multiply-scattered acoustic waves in such a flow. This model de-
scribes the evolution of the wave action [54] in phase space in terms of the Wigner
measure of the wave fields. The analysis starts from a second-order wave equation
and introduces the spatio-temporal Wigner transform of the acoustic waves. It fol-
lows the techniques used by Bal [3], Akian [1], or Baydoun et al. [5]. However, as
opposed to [3] it considers convected acoustic waves and the standard quantization
of the Wigner transform and associated pseudodifferential calculus, and as opposed
to [1] it considers the influence of random perturbations in the weak coupling regime.
Our derivation generalizes the earlier developments of Howe [31] in that it obtains in
a systematic way the high-frequency kinetic limit of the wave equation with explicit,
general perturbations of the ambient quantities. This limit of course encompasses
the results of [31]. The developments of [20] rely on the same mathematical tools,
but they consider time-independent ambient quantities and the first-order linearized
Euler equations rather than the second-order convected wave equation addressed be-
low. The developments of [4] consider a time-dependent flow velocity as done here.
Last, the analysis in [9] considers a constant mean velocity of the ambient flow and
acoustic waves in a forward-scattering regime of propagation.

1.2. Summary of the main results. We now summarize our main results.
We consider acoustic waves in an inhomogeneous, unsteady ambient flow and their
multiple scattering induced by random perturbations of the flow characteristics. We
also want to account for the space- and time-dependence of these perturbations and
address the regime where the leading wavelength is comparable to their (small) cor-
relation length. This setting ensures maximum interactions with the acoustic waves,
a necessary condition if we want to probe with waves in random media for the appli-
cations of correlation-based imaging techniques [2, 8, 23] we ultimately have in mind.
It defines the high-frequency range terminology we shall use throughout the paper.

As a sound wave propagates in a quiescent, randomly perturbed medium with
an incident wave vector k′, it can be scattered at any time t and position x into
any direction k̂ and wave vector k (such that k̂ = k/|k|). Therefore, it is relevant
to consider an angularly resolved energy density W (x, t;k) for this wave, defined
in phase space. In [3, 49] it is shown that energy conservation takes the form of a
radiative transfer equation:

(1) ∂tW (x, t;k) + {λ±,W}+Σ(x,k)W (x, t;k) =

∫
σ(x;k|k′)W (x, t;k′)dk′ ,

where λ±(x,k) = ±C0(x)|k| is the frequency of the waves at x with wave vector
±k, C0(x) is the sound speed in the unperturbed background medium, and {a, b} =
∇ka ·∇xb−∇xa ·∇kb stands for the usual Poisson bracket. The kernel σ(x;k|k′) is
the rate of conversion of energy with wave vector k′ into energy with wave vector k at
position x—the so-called scattering cross-section. The total scattering cross-section
Σ is

Σ(x,k) =

∫
σ(x;k|k′)dk′ ,

such that the radiative transfer equation is conservative because the former relation-
ship yields ∫∫

W (x, t;k)dkdx = Const



for all times. The scattering cross-section is explicitly determined by the power spec-
tral density of the perturbations [3, 49]. The wave frequency is also kept constant
in the scattering processes described by the radiative transfer equation (1). This
model remains valid when the waves are scattered by randomly distributed discrete
inclusions, in which case the scattering cross-section is the cross-section of a single
inclusion multiplied by their density. Here we only consider continuous random inho-
mogeneities.

For amoving ambient medium, we must in addition take account of the convective
effects of the waves and time-dependence of the ambient quantities. As a sound wave
propagates in the flow with wave vector k′ and frequency ω′, it can now be scattered
at any time t and position x into any direction k̂, wave vector k, and frequency ω.
It is now relevant to consider a directionally and frequency resolved energy density
W (x, t;k, ω) for this wave, defined in the phase space of the position-time space. Then
it is shown in section 5 that the radiative transfer equation (1) takes the following
form for a moving medium:

(2) ∂tA(x, t;k) + {λ±,A}+Σ(x, t;k)A(x, t;k) =

∫
σ(x, t;k|k′)A(x, t;k′)dk′ ,

where the Doppler-shifted frequency of the waves is actually given by ω = λ±(x, t;k)
= V 0(x, t) · k ± C0(x, t)|k|, and C0(x, t) and V 0(x, t) are the speed of sound and
particle velocity of the unperturbed ambient flow, respectively. Also A(x, t;k) =
�0(x,t)
C0(x,t)

|k|W (x, t;k, λ±) is the wave action [54, Chapter 11], �0(x, t) being the density
of the unperturbed ambient flow. The differential scattering cross-section σ(x, t;k|k′)
is again explicitly determined in terms of the power spectral density of the random
inhomogeneities, which accounts for perturbations of the speed of sound, the par-
ticle velocity, and their possible correlations. This model implies that the ambient
flow quantities and their perturbations have the following contributions to the wave
dynamics:

• The variations of the ambient quantities C0 and V 0 at the slow scale con-
tribute only to the left-hand side of the radiative transfer equation (2). They
basically characterize the group velocity v±

g := ∇kλ± of the waves in the
transport regime and account for both the phase shift (change of direction)
and spectral broadening (change of frequency) effects. Section 4 explains how
this dynamics, which is the classical geometric acoustics or ray tracing ap-
proach of sound propagation in a moving medium already outlined above, is
recovered from our theoretical analyses.

• The perturbations of the ambient quantities primarily contribute to the right-
hand side of the radiative transfer equation in terms of their cross-power
spectral densities. This collisional kernel describes how high-frequency waves
are continuously scattered by the flow inhomogeneities at the fast scale, which
is also their (small) wavelength. It thus models the multiple-scattering effects
analyzed in detail in section 5. Here we generalize the radiative transfer
model (1) to a moving medium with possibly time-varying characteristics of
the background flow using revisited rules of pseudodifferential calculus. This
section contains the main novelties introduced in this paper.

• The total scattering cross-section Σ(x, t;k) describes both the overall acous-
tic energy that is scattered into all other directions and frequencies by the
multiple scattering process and the acoustic energy that is irreversibly trans-
ferred to the ambient flow. In section 5.6 more particularly we also generalize
the expressions of the time-independent differential and total scattering cross-

---



Fig. 1. Differential scattering cross-section σ(x, t;k|k′) for scattering from wave action
A(x, t;k′) with wave vector and frequency k′ to wave action A(x, t;k) with wave vector and fre-
quency k, at the time t and position x shown by the grey circle. The random fluctuations of the
ambient medium sketched in light grey have small amplitudes and a small correlation length compa-
rable to the acoustic wavelength.

sections σ(x;k|k′) and Σ(x;k), respectively, in (1) for a quiescent medium,
to their time-dependent counterparts σ(x, t;k|k′) and Σ(x, t;k), respectively,
in (2) for a moving medium. This is also a new result of the paper.

This mechanism of conversion of the wave actions by scattering on inhomo-
geneities as described by their differential scattering cross-section σ(x, t;k|k′) is illus-
trated in Figure 1. The forward wave actionA(x, t;k′) with wave vector and frequency
k′ is converted to the wave action A(x, t;k) with wave vector and frequency k with
a rate σ(x, t;k|k′) at time t and position x depending only on the second-order sta-
tistics (cross-power spectral densities) of the random fluctuations of the background
medium. The paths of the wave actions are curved because of the variations of the
ambient quantities C0 and V 0 at the slow scale. Last, the typical size (correlation
length) of the random fluctuations sketched in light grey in Figure 1 is small but
comparable to the wavelength.

Of course (2) can be recast as a conservative radiative transfer equation (1) for a
vanishing particle velocity of the ambient flow and time-independent ambient quan-
tities. This is shown in section 5 alike. We conclude this introduction by noting
that kinetic models for first-order hyperbolic systems in media with time-dependent
random perturbations have already been studied in [10] in a general mathematical
framework.

1.3. Outline. The rest of the paper is organized as follows. In section 2 we
introduce the basic physical framework and notation used throughout. We more par-
ticularly focus on the characterization of sound propagation in a flow by a convected
wave equation. The spatio-temporal Wigner transform and the formal mathematical
tools used in our analyses are reviewed in section 3. Here the relevance of considering
a Wigner transform and its nonnegative limit measure for the analysis of multiple
scattering phenomena in the high-frequency range is emphasized. This limit is simply
the energy density W introduced above. We also stress that the quantization of the
semiclassical operators and Wigner transform we use here is different from the one



classically invoked in, e.g. [3, 4, 5, 20, 49], which we argue clarifies the derivation of
their relevant properties. The corresponding transport model is then derived in detail
in section 4, ignoring the influence of random inhomogeneities in a first step. The
main contribution of the paper is section 5, which outlines the extension of the previ-
ous transport model to account for random perturbations of the speed of sound and
particle velocity in the ambient flow. A radiative transfer equation is obtained in the
most general case. Its collisional kernel is explicitly described in terms of the correla-
tion structure of the random perturbations. In this respect, it should be noted that
the proposed theory requires a full characterization of the power spectral densities of
these perturbations (assumed to be statistically homogeneous at the small wavelength
scale), but no other statistical information. Some conclusions and perspectives are
finally drawn in section 6.

2. Model of sound propagation in unsteady inhomogeneous flow. In
this section we establish the model of sound wave propagation in an unsteady in-
homogeneous flow we are interested in for the derivation of the multiple-scattering
kinetic (transport) model that will be detailed in the subsequent parts. The primary
objective is to introduce the main notation that will be used throughout the paper.

2.1. Linearized Euler equations about an unsteady inhomogeneous flow.
The full nonlinear Euler equations for an ideal fluid flow in the absence of friction,
heat conduction, or heat production are

d�

dt
+ �∇x · v = 0 ,

dv

dt
+

1

�
∇xp = 0 ,

ds

dt
= 0 ,

(3)

where � is the fluid density, v is the particle velocity, s is the specific entropy, and p
is the thermodynamic pressure given by the equation of state p = p(�, s). Also,

d

dt
=

∂

∂t
+ v ·∇x

is the usual convective derivative following the particle paths. This shows that the
flow is isentropic, i.e., each fluid particle has constant entropy (but different particles
may have different entropy), and by the equation of state

dp

dt
= c2

d�

dt
, c2(�, s) =

(
∂p

∂�

)
s

,

where c is the speed of sound.
Linearized acoustics equations arise from the previous conservation equations

when its variables are expressed as sums of ambient quantities pertaining to the back-
ground flow (subscript 0) and lower-order acoustic perturbations (primed quantities):

�(x, t) = �0(x, t) + �′(x, t) ,
v(x, t) = v0(x, t) + v′(x, t) ,
s(x, t) = s0(x, t) + s′(x, t) ,
p(x, t) = p0(x, t) + p′(x, t) .



In such a manner, the primed quantities satisfy the linearized Euler equations:

d�′

dt
+ �′∇x · v0 +∇x · (�0v′) = 0 ,

dv′

dt
+ v′ ·∇xv0 +

1

�0
∇xp

′ − �′

�20
∇xp0 = 0 ,

ds′

dt
+ v′ ·∇xs0 = 0 ,

(4)

where here and in the remaining of the paper

(5)
d

dt
=

∂

∂t
+ v0 ·∇x ,

that is, the convective derivative within the ambient flow. In addition, one has from
the linearized equation of state

p′ = c20�
′ +

(
∂p

∂s

)
�0

s′ ,

where c0(x, t) > 0 is the sound speed in the ambient flow. In turn, the ambient
variables satisfy

d�0
dt

+ �0∇x · v0 = 0 ,

dv0

dt
+

1

�0
∇xp0 = 0 ,

ds0
dt

= 0 ,

(6)

together with the following relations from the equation of state applicable to the
ambient flow:

∇xp0 = c20∇x�0 +

(
∂p

∂s

)
�0

∇xs0 ,

dp0
dt

= c20
d�0
dt

+

(
∂p

∂s

)
�0

ds0
dt

.

(7)

2.2. Acoustic wave equation. We now introduce a velocity quasi-potential φ
such that [7, 47]

(8) p′ = −�0
dφ

dt
, v′ = ∇xφ+O(L−1) + O(T−1) ,

where L is a length scale over which the ambient quantities have significant spatial
variations (the outer scale of turbulence), and T is an associated time scale. These
scales are assumed to be much larger than the corresponding ones for the acoustic
disturbances, i.e., the primed quantities. Then it is shown in [7] that for a steady,
irrotational ambient flow which is in addition homentropic (the entropy is constant
and the same for all particles) one has

(9) ∇x · (�0∇xφ)− �0
d

dt

(
1

c20

dφ

dt

)
= 0 ,



where d
dt is given by (5). It is a convected wave equation with the ambient inhomoge-

neous and steady particle velocity, density, and sound speed v0(x), �0(x), and c0(x),
respectively. In [47] it is shown that this model approximately extends to unsteady
ambient flow up to second- and higher-order terms with respect to the first-order
terms pertaining to the ambient flow. Thus the above convected wave equation (9)
with time-dependent ambient quantities v0(x, t), �0(x, t), and c0(x, t) is the model
of sound wave propagation considered in the remainder of the paper. It is argued
in [44, Chapter 2] that it is valid at high frequencies when the wavelength λ of the
acoustic disturbances is much smaller than the characteristic length L of the ambient
quantities: this is precisely the situation analyzed here. We also note that the model
(9) has recently been considered in [9] to derive a high-frequency transport model
for the acoustic energy density in a forward-scattering regime whereby the waves
propagate within a cone of small opening angle.

We thus consider acoustic disturbances in an open domain O ⊆ R3, where R3

stands for the usual three-dimensional Euclidean space, which is constituted by an
unsteady inhomogeneous ambient flow at the particle celerity v0(x, t), density �0(x, t),
and speed of sound c0(x, t) for x ∈ O and t ∈ R. The velocity potential of the
acoustic disturbances is denoted by φε(x, t) ∈ R, where the subscript ε stands for its
(small) spatial and temporal scales of variation with respect to the scales of variation
of the ambient quantities. That is, ε ≡ λ

L and ε ≡ 1
ωT , where λ and ω are the

typical wavelength and circular frequency of the acoustic waves, respectively. Initial
conditions for (9) can modeled by

(10) φε(x, 0) = φ0(x; ε) , ∂tφε(x, 0) = ψ0(x; ε) .

They are parameterized by the small parameter ε, which quantifies the rate of change
of x �→ φ0(x) and x �→ ψ0(x) with respect to the typical length scale of the ambient
flow. Since high-frequency waves will be generated by an initial acoustic disturbance
oscillating at a scale ε � 1, the functions ∇xφ0 and ψ0 shall be considered as strongly
ε-oscillating functions in the sense of Gérard et al. [25]. The plane waves φ0(x; ε) =
εA(x) eik·x/ε and ψ0(x; ε) = B(x) eik·x/ε for a given wave vector k ∈ R3 and i =

√
−1

typically fulfill this condition. Prior to these excitations there is no wave, φε(x, t) ≡ 0
for t � 0, but the background medium is moving due to the ambient flow.

3. Pseudodifferential calculus and Wigner measure in a high-frequency
setting. The high-frequency limit ε → 0 in the previous setting shall be derived for
quadratic observables of the velocity potential φε as emphasized in [1, 3, 4, 5, 9, 10,
20, 28, 48, 49]. More particularly, the Wigner measure of the solutions of (26) shall
be considered [1, 25, 38, 40, 49], introducing a spatio-temporal Wigner transform of
that equation and its high-frequency limit as ε → 0 as in, e.g., [3, 4]. This is because
the spatial and temporal scales in the wave equation (26) play symmetric roles, and
their oscillations should be accounted for altogether. Therefore, a larger phase space
than the usual phase space in physical space has to be introduced. In this section we
summarize theses concepts and outline the main (formal) rules of pseudodifferential
calculus that we shall use throughout the paper to characterize the Wigner measure
and the transport and radiative transfer equations it satisfies.

3.1. Semiclassical operators and Wigner measure. From now on let us in-
troduce the space-time variable s = (x, t) ∈ O ×R and its dual variable ξ = (k, ω) ∈
R4 in the wave vector-frequency Fourier domain. Let P be a smooth, compactly sup-
ported function of both the space-time variable s and impulse variable ξ. For a scalar



field φ ∈ L2(R4), the functional space of square integrable functions endowed with the
scalar product (φ, ψ)L2 =

∫
R4 φ(s)ψ(s) ds, where ψ stands for complex conjugation,

consider the following (semiclassical) operator:

(11) Pϑ(s, εD)φ(s) =
1

(2π)4

∫
R4×R4

eiξ·(s−τ ) P ((1− ϑ)s+ ϑτ , εξ)φ(τ ) dτdξ

for ϑ ∈ [0, 1]. This parameter defines the so-called quantization of the operator. The
case ϑ = 0 corresponds to the standard quantization. It is simply denoted by P (s, εD)
such that

(12) P (s, εD)φ(s) =
1

(2π)4

∫
R4

eiξ·s P (s, εξ)φ̂(ξ) dξ ,

where

(13) φ̂(ξ) =

∫
R4

e−iξ·s φ(s)ds

stands for the Fourier transform of φ(s). The case ϑ = 1/2 corresponds to the Weyl
quantization, which is usually denoted by PW (s, εD). Then for a sequence (φε)
uniformly bounded in L2(R4), there exists a positive measure W [φε] such that up to
extracting a subsequence if need be (see, e.g., [55, Theorem 5.2]),

(14) lim
ε→0

(
Pϑ(s, εD)φε, φε

)
L2 =

∫
R4×R4

P (s, ξ)W [φε](ds, dξ) ∀P ,

independently of the quantization ϑ. Here the notation of, e.g., [25, p. 330], is used for
the limitW (independent of ε) of the family (φε) (dependent of ε) but clearly the right-
hand side in (14) above is independent of ε. W [φε] is the so-called Wigner measure
of (φε) because it can also be interpreted as the weak limit of its Wigner transform
Wϑ

ε [φε, φε] := Wϑ
ε [φε]. Indeed, if the latter is defined for temperate distributions φ, ψ

by

(15) Wϑ
ε [φ, ψ](s, ξ) =

1

(2π)4

∫
R4

eiξ·τ φ (s− ε(1− ϑ)τ )ψ∗ (s+ εϑτ ) dτ ,

where ψ∗ stands for the conjugate (and transpose if it is a vector or a matrix) of ψ,
then one has the trace formula [25]

(16)
(
Pϑ(s, εD)φ, ψ

)
L2 =

∫
R4×R4

P (s, ξ)Wϑ
ε [φ, ψ](ds, dξ) .

ThusW [φε] describes the limit energy of the sequence (φε) in the phase space R4
s × R4

ξ.
The observable P (s, ξ) is used to select any quadratic observable or quantity of interest
associated to this energy: the kinetic energy, or the free energy, or the power flow,
etc. This connection of Wigner measures with energetic quantities has already been
outlined in [5, section 2.3] starting with the example of a simple oscillating function.
For example, the high-frequency “strain energy” Vε(t) := 1

2

∫
O �0(

1
c0

dφε

dt )
2 dx in O

may be estimated from

(17) lim
ε→0

Vε(t) =
1

2

∫
O×R4

�0(x, t)W

[
1

c0

dφε

dt
(·, t)

]
(dx, dξ) ,



up to some possible boundary effects on ∂O. Similarly, the “kinetic energy” Tε(t) :=
1
2

∫
O �0|∇xφε|2 dx is estimated by

(18) lim
ε→0

Tε(t) =
1

2

∫
O×R4

�0(x, t)W [∇xφε(·, t)](dx, dξ) .

The acoustical energy density Eε := Vε + Tε that would be perceived by an observer
moving with the ambient flow does not solve a closed-form equation in the high-
frequency limit ε → 0. However, the Wigner measure, which provides a decomposition
of these quantities in phase space, does so as explained in the subsequent derivations.
This is another reason why we shall now focus on such limit measure rather than φε

directly or quadratic quantities of φε.

3.2. Some formal rules of pseudodifferential calculus. In [3, 5] various
formal rules of pseudodifferential calculus were given for quantities like

W 1/2
ε [P (x, εDx)φε, ψε],

mixing the quantization chosen by these authors for the Wigner transform (15) (ϑ =
1/2) and the standard quantization of the semiclassical operator P (x, εDx) (ϑ =
0). Here we revisit these formulas with the same quantization for both the Wigner
transform and pseudodifferential operators, which seems more natural in view of the
trace formula (16). This will also significantly simplify the calculations below, leaving
of course the final results unchanged since in the limit ε → 0 the Wigner measure
is independent of the quantization; see (14). Last, we consider pseudodifferential
operators in the space-time domain and its Fourier counterpart since, again, time and
space play symmetric roles in (9).

Let P (s, ξ) be a smooth function defined on R4
s × R4

ξ and recall the notation of
(12) for the operator P (s, εD) in the standard quantization ϑ = 0. Owing to [40,
Theorem 2.7.4] for the composition of pseudodifferential operators, and [40, Remark
2.5.7] for the adjoint of a pseudodifferential operator, it can be shown that formally
(omitting again the ϑ = 0 superscript for both Wε and P (s, εD))

(19) Wε[P (s, εD)φε, ψε] = P (s, ξ)Wε[φε, ψε]−
ε

i
∇sP ·∇ξWε[φε, ψε]

− ε

i
(∇s ·∇ξP )Wε[φε, ψε] + O(ε2)

and

(20)
Wε[φε, P (s, εD)ψε] = P ∗(s, ξ − εD)Wε[φε, ψε]

= P ∗(s, ξ)Wε[φε, ψε]−
ε

i
∇ξP

∗ ·∇sWε[φε, ψε] + O(ε2) .

Here ∇sA ·∇ξB := ∇xA ·∇kB+∂tA∂ωB, and the differential operator D within the
observable P acts on Wε[φε, ψε] so that, for instance, P ∗(s, ξ − εD)Wε[φε, ψε](s, ξ)
should be interpreted as the inverse Fourier transform of P ∗(s, ξ − εη)Ŵε[φε, ψε](η, ξ),
where Ŵε[φε, ψε](η, ξ) is the Fourier transform (13) of Wε[φε, ψε](s, ξ) with respect
to the space-time variable s. For the chosen quantization, the Wigner transform is
defined by

(21) Wε[φε, ψε](s, ξ) :=
1

(2π)4

∫
R4

eiξ·τ φε(s− ετ )ψ∗
ε (s) dτ .



Note that if it is applied to φε and ψε ≡ φε, Wε[φε, φε] will be denoted by Wε[φε] as
implicitly done in (14).

The proof of these results is diverted to Appendix B. If P (s, εD) is in addition
formally self-adjoint, the situation gets simpler and we have

(22) Wε[P (s, εD)φε, ψε]−Wε[φε, P (s, εD)ψε] =
ε

i
{P,Wε[φε, ψε]}+O(ε2) ,

where {A,B} := ∇ξA ·∇sB−∇sA ·∇ξB stands for the usual Poisson bracket. This
is also shown in Appendix B. It should be noted at this stage that the second equality
(20) above holds true if the Wigner transform Wε[φε, ψε] does not depend on s/ε. In
section 5 we will consider the situation where it also depends on this fast-scale variable
and this rule has to be modified accordingly; this is done in section 3.3 below.

3.3. Rules of pseudodifferential calculus with oscillating coefficients.
Let τ �→ f(τ ) be a smooth real-valued function. Then, we have that

Wε

[
f
(s
ε

)
φε, ψε

]
=

1

(2π)4

∫
R4

ei
s
ε ·η f̂(η)Wε[φε, ψε] (s, ξ − η) dη ,

Wε

[
φε, f

(s
ε

)
ψε

]
= f

(s
ε

)
Wε [φε, ψε] ,

(23)

where f̂ is the Fourier transform (13) of f . Applying the above formula for highly
oscillatory fluctuations s/ε with a real-valued observable f(τ )P (s, εD) yields

(24) Wε

[
f
(s
ε

)
P (s, εD)φε, ψε

]
=

∫
ei

s
ε ·η dη

(2π)4
f̂(η)P (s, ξ − η)Wε[φε, ψε] (s, ξ − η) + O(ε)

and

(25) Wε

[
φε, f

(s
ε

)
P (s, εD)ψε

]
= f

(s
ε

)
P ∗(s, ξ − εD)Wε [φε, ψε]

in view of (19) and (20) for example. These formulas will be used in the subsequent
derivation of the evolution properties of the Wigner measure accounting for randomly
perturbed ambient quantities. Their proofs are given in Appendix C.

4. Wigner measure of high-frequency acoustic waves in an unsteady
inhomogeneous flow. In this section we show how to obtain explicitly the Wigner
measure (14) of the high-frequency solutions of the convected wave equation (9) in the
setting outlined in the foregoing section. The objectives are also to outline its main
properties for a slowly varying ambient medium, as well as the (formal) mathematical
tools used for its derivation. Both will prove useful in the subsequent section 5,
where acoustic waves in a rapidly varying random ambient medium with correlation
lengths comparable to the small wavelength ε are considered. The analysis presented
here is derived from [25], where first-order hyperbolic systems with constant and
slowly varying coefficients are addressed, and [1], where arbitrary-order hyperbolic
systems with slowly varying coefficients are addressed. The dispersion properties of
the acoustic Wigner measure are derived in section 4.2, and its evolution properties are
derived in section 4.3. Here it is shown that it satisfies a Liouville transport equation,



which states that the energy density in phase space is transported with a celerity
corresponding to the convected group velocity. We use the formal mathematical tools
introduced in section 3.2 above in order to compute the Wigner transform and its
limit for high-frequency acoustic waves. Now to hopefully clarify the subsequent
derivations, we start by reformulating the convected wave equation (9) in a form that
is adapted to the analysis developed in the remaining of the paper.

4.1. Acoustic wave equation as a semiclassical operator. Here (9) is writ-
ten in a more convenient form for the derivation of the high-frequency regime ε � 1.
We shall first consider a slowly fluctuating ambiant flow characterized by ambient
quantities �0,v0, p0, and c0, which are independent of the small parameter ε. Pre-
multiplying it by (iε)2, the acoustic wave equation (9) reads

(26) Lε(s, εDs)φε = 0 , s = (x, t) ∈ O × R ,

where Ds = (Dx,Dt) for Dx = 1
i∇x, Dt =

1
i ∂t, and the operator Lε is

(27) Lε = L0 +
ε

i
L2

with

L0(s, ξ; c0,v0) =
1

2
a(s)

(
Ω2(s, ξ)− c20(s)|k|2

)
,

L2(s, ξ; c0,v0) =
1

2
∇ξ ·∇sL0(s, ξ; c0,v0) ,

Ω(s, ξ) = ω + v0(s) · k ,

(28)

and a = �0/c
2
0 > 0. The impulse variable is ξ = (k, ω) ∈ R4 and its norm is |ξ|2 =

|k|2 + ω2. We emphasizes that L0 and L2 depends on c0 and v0, which will both
be considered as random fields in section 5. The expression of L2 stems from the
formal self-adjointness of Lε, which is shown in Appendix A. Here and throughout
we use the standard quantization ϑ = 0 and omit this superscript in all subsequent
developments. It should be observed that L2(s, εDs; c0,v0) is a first-order partial
differential operator in space and time and that L2 ≡ 0 in a steady, homogeneous
medium where c0 and v0 are constant. In deriving (26) from (9) we have used (6)
and the fact that

�0
df

dt
=

∂

∂t
(�0f) +∇x · (�0fv0)

for any function f . Also the 1/2 factor in L0 will be clarified below.

4.2. Dispersion properties. The foregoing pseudodifferential calculus and
spatio-temporal Wigner transform are now used for the wave equation (26). Comput-
ing the space-time Wigner transform (21) of φε from (26) yields

Wε [Lε(s, εDs)φε, φε] = 0 .

However, invoking the rule of calculus (19) we get

(29) Wε[Lε(s, εDs)φε, φε] =
(
L0 +

ε

i
L2

)
Wε[φε]−

ε

i
∇sL0 ·∇ξWε[φε]

− ε

i
(∇s ·∇ξL0)Wε[φε] + O(ε2) .



Considering the leading-order term, one obtains as ε → 0 (see also, for instance, [55,
Theorem 5.3])

(30) L0(s, ξ)W [φε](s, ξ) = 0

for the Wigner measure W [φε] (independent of ε) of the sequence (φε) (dependent of
ε) given by (14) in phase space (s, ξ) ∈ X = O×Rt×R4

ξ\{k = 0}. Again, the notation
of [25, p. 330] is used and the left-hand side in (30) above is clearly independent of
ε. Thus suppW [φε] ⊂ {(s, ξ) ∈ X ; L0(s, ξ) = 0}, so the Wigner measure W [φε] of
the ε-oscillating wave field (φε) is localized onto the different energy paths of the
propagation operator with principal symbol L0(s, ξ). These paths are determined by
the equation Ω(s, ξ) = ±c0(s)|k| in phase space. They correspond to the rays for the
ambient flow arising in classical Hamiltonian dynamics, as shown in the subsequent
section. Hence W [φε] may be written

(31) W [φε](s, ξ) = W−(s,k)⊗ δ (ω − ω−(s,k)) +W+(s,k)⊗ δ (ω − ω+(s,k)) ,

k �= 0, where the W±’s are the so-called specific intensities for high-frequency acoustic
waves in an inhomogeneous ambient flow, which are independent of ω, and

(32) ω+(s,k) = −v0(s) · k − c0(s)|k| , ω−(s,k) = −v0(s) · k + c0(s)|k|

are the Doppler frequencies. Note that the specific intensities are positive since the
Wigner measure is positive. It is assumed in the remainder of the paper that these
measures do not load the set {k = 0}.

4.3. Evolution properties. On the other hand, we also have

Wε [φε, Lε(s, εDs)φε] = 0 .

But Lε is formally self-adjoint, and therefore using the rule (22) we end up with the
simple Wigner equation

(33) 0 =
i

ε
(Wε [Lε(s, εDs)φε, φε]−Wε [φε, Lε(s, εDs)φε]) = {L0,Wε[φε]}+O(ε) .

Passing to the limit ε → 0 yields the transport equation in space-time phase space
(see also, for instance, [55, Theorem 5.4]):

(34) {L0,W [φε]} = 0

for the Wigner measure W [φε] of the velocity quasi-potential (φε). Here again with
the notation of [25, p. 330], the left-hand side above is clearly independent of ε.
Introducing the following system of Hamiltonian equations

ds

dl
= ∇ξL0(s(l), ξ(l)) ,

dξ

dl
= −∇sL0(s(l), ξ(l))

(35)

with initial conditions satisfying L0(s(0), ξ(0)) = 0, then its solutions l �→ (s(l), ξ(l))
are the null bicharacteristics such that L0(s(l), ξ(l)) remains constant (and null) along
them. Indeed, one observes by a straightforward application of the chain rule that
d
dlL0(s(l), ξ(l)) ≡ 0. Thus the rays supporting the Wigner measure W [φε] may be



constructed by solving the ordinary differential equations (35) (provided that the
usual conditions for the local existence, uniqueness, and smoothness of its solutions
with respect to the initial conditions are fulfilled (see, e.g., [29]); this issue is, however,
much beyond the scope of this paper). The Wigner measure is kept constant on these
bicharacteristics since by the chain rule again

(36)
dW [φε]

dl
= {L0,W [φε]} = 0 ,

formally on the bicharacteristics. In agreement with [11, 14, 18, 26, 30, 35, 41, 45, 47,
51, 52], the rays l �→ (s(l), ξ(l)) are determined by (this also clarifies the 1

2 factor in
(28))

dx

dl
= aΩv0 − �0k ,

dk

dl
=

�0
c0

|k|2∇xc0 − aΩ∇x(v0 · k) ,
dt

dl
= aΩ ,

dω

dl
=

�0
c0

|k|2∂tc0 − aΩ∂tv0 · k

with Ω = Ω+ = −c0|k| if ω = ω+ or Ω = Ω− = +c0|k| if ω = ω− on these paths (in
both cases Ω �= 0). Alternatively, these ordinary differential equations may be written

(37)

dx

dt
= v±

g ,
dk

dt
= −∇x(v

±
g · k) ,

dl

dt
=

1

aΩ
,

dω

dt
= −∂t(v

±
g · k) ,

where v±
g (s,k) := v0(s)± c0(s)k̂ denotes the ray trajectory velocity, or group velocity

[11, 30], with the usual notation k̂ = k/|k| for the unit vector in the direction of k.
Note that ω±(s,k) = −v±

g (s,k) · k with these definitions. Here the time derivatives
on the left sides are to be interpreted as time derivatives that would be seen when
moving along a ray trajectory with the local and instantaneous group velocity v+

g or
v−
g . Relative to the ambient flow the ray moves in the direction of ±k with the local

and instantaneous speed of sound c0. In this respect, the “total” time derivative of
any quantity observed as moving on a ray trajectory in the forward (+k̂) or backward
(−k̂) direction can be expressed in terms of its partial derivatives with respect to time
and spatial coordinates as [11, 47]:

d

dt
=

d

dt
± c0k̂ ·∇x .

Now (37) shows that if the ambient medium is frozen (i.e., independent of t),
then the wave frequency is unchanged, as expected. Alternatively, a time-dependent
ambient medium is responsible for the spectral broadening, or “haystacking,” effect of
the acoustic spectrum around a tone frequency [12, 13, 15, 24, 27]. Spatial variations of
the ambient flow velocity and sound speed are responsible for the phase shift effect [31],
which is manifested in the evolution of the wave vector k along the paths. Last,
introducing

(38) H(s, ξ) =
1

2

(
Ω2(s, ξ)− c20(s)|k|2

)
such that L0 = aH, the Liouville transport equation (36) also reads (formally on the
bicharacteristics t �→ (s(t), ξ(t)))

(39)
d

dt
(aΩW [φε]) = 0 .



Alternatively, this transport equation is

(40) {H, aW [φε]} = 0 ,

asH(s, ξ) = 0 on the support ofW [φε]. Indeed, (34) holds in the sense of distributions
that is

∫
{L0, P}dW [φε] = 0 for all smooth, compactly supported function P on X .

But {L0, P} = a{H,P}+H{a, P} and thus
∫
{L0, P}dW [φε] =

∫
a{H,P}dW [φε] =

0 ∀P , which is the equality (40) above. Equation (39) is derived along the same lines
as the first equality in (36) with the change of variable of (37). In terms of the specific
intensities W± of (31) the transport equation (40) is

(41) ∂tA± +∇k(v
±
g · k) ·∇xA± −∇x(v

±
g · k) ·∇kA± = 0 ,

where it is easily verified that v±
g (s,k) = ∇k(v

±
g (s,k) · k) and

(42) A±(s,k) = a(s) |Ω(s,k, ω±(s,k))|W±(s,k) =
�0(s)

c0(s)
|k|W±(s,k)

are the forward and backward wave actions at the group velocities v+
g = v0 + c0k̂ and

v−
g = v0 − c0k̂, respectively. Note that the ambient density �0 does not influence the

transport process in the proposed model since it only appears in the definition of A±.
Equation (41) (or (40)) is a generalization of [30, eq. (5)] accounting for angularly
resolved wave actions in phase space and describes their conservation along the rays;
see also, e.g., [11, eq. (1.9)].

5. Radiative transfer equation. We now turn to the weak coupling regime
of high-frequency acoustic waves in a random ambient flow. This regime denotes the
situation whereby (i) propagation distances are large compared to the wavelength
ε and (ii) random perturbations of the ambient quantities are weak and vary at the
same scales as the wavelength (meaning that their correlation lengths scale as ε). The
subsequent analysis is derived from [3], where acoustic waves in a quiescent medium
are considered, and [10], where general first-order anti-selfadjoint systems (possibly
depending on time) are considered. The main result of this section is the radiative
transfer equation (64) accounting for themultiple scattering effect on acoustic waves in
an ambient flow. Radiative transfer equations are linear Boltzmann equations which
describe the kinetics of particles in a lattice of randomly distributed inclusions, for
example. Thus high-frequency wave propagation phenomena may be very well under-
stood in terms of a gas kinetics analogy. It involves collisional processes characterized
in terms of differential and total scattering cross-sections, of which expressions are
precisely given by (61) and (63), respectively, for the present case. The different steps
for this derivation are the following. The mathematical form chosen for modeling
inhomogeneities is first given in the section 5.1. The random perturbations of the
ambient quantities considered in the previous part are assumed to vary at the fast
scale x/ε as opposed to the slow scale of variation x of the latter. Therefore, one has
to use (i) the rules of pseudodifferential calculus outlined in section 3.3 to account for
both scales and generalize the rules invoked in the previous section and (ii) a two-
scale expansion of the Wigner transform of the waves in this situation. This is done
in sections 5.2 and 5.3, respectively. A major consequence of this separation of scales
and of the scaling of the amplitudes of the random inhomogeneities in section 5.1 is
that the fast scale does not modify the spectral (dispersion) properties of the Wigner

---



measure already derived in section 4.2. Section 5.4 shows why this property holds.
However, the fast scale modifies the next-order contribution to the Wigner transform
and consequently the evolution properties of the Wigner measure. The contribution
of the fast scale of variations of the random perturbations of the ambient quantities
to the two-scale expansion of the Wigner transform is given explicitly in section 5.5.
This correction actually gives rise to the collision operator characterizing the multi-
ple scattering process of high-frequency waves on the random inhomogeneities. It is
therefore responsible for the modification of the transport equation of section 4.3 for
the bare ambient flow into a radiative transfer equation for the randomly perturbed
ambient flow. Section 5.6 outlines how this modification arises.

5.1. Perturbations of the ambient flow. In the setting invoked above it is
assumed that the ambient flow velocity and speed of sound now read

1

c20(s)
=

1

C2
0 (s)

[
1 +

√
εχ1

(s
ε

)]
,

v0(s) = V 0(s) +
√
εV 1

(s
ε

)
.

(43)

Here V 0 is the part of the ambient velocity varying at the slow scales L and T (outer
scale of turbulence), and V 1 is its fluctuation with amplitude

√
ε. Likewise, C0 is the

ambient speed of sound and χ1 is the fluctuations of its squared inverse with amplitude√
ε. We typically think of V 0 as the flow component on the energy-containing integral

scale and
√
εV 1 as the flow component on the inertial subrange. In this approach the

typical acoustic wavelength λ lies in the inertial subrange � � λ � L, where � is the
inner scale of turbulence, or dissipation (Kolmogorov) length, and ε ≡ λ

L � 1. Note
that the proposed simple model of turbulence is the one retained in [20]. Our scaling
is also different from the one considered in [9], where a forward-scattering regime of
propagation is emphasized for a constant mean flow velocity V 0 independent of s. Of
course such a separation of scales may not be feasible for real turbulence.

The fluctuations v1 = (χ1,V 1) are modeled by a vector-valued, second-order sto-
chastic field {v1(τ ) ; τ ∈ R4}, which has mean zero and is mean square homogeneous
(stationary). The latter property means that the cross-correlations of the perturba-
tions at two different locations and times τ and τ ′ depend on τ ′ − τ solely; it is
the model actually retained in, e.g., [20, 31, 44]. In [31] the author considered either
perturbations of the ambient velocity associated with the presence of sound waves
or perturbations of the sound speed associated with random variations of the ambi-
ent temperature. If the cross-correlations depend on |τ − τ ′| the medium is said to
be statistically isotropic. Last, the inhomogeneities are small as expressed by their
O(ε

1
2 ) amplitude. This size is the unique scaling which allows them to significantly

modify the energy spreading in the transport regime at long propagation distances;
see, e.g., [3, 49]. Larger fluctuations could lead to localization of the waves, a situa-
tion beyond the scope of kinetic models. The model of correlation of the fluctuation
velocity is given as

(44) E {v̂1(ξ)⊗ v̂1(η)} := (2π)8δ(ξ + η)R̂(ξ) ,

where the 4× 4 correlation tensor is R(τ ′ − τ ) := E {v1(τ )⊗ v1(τ
′)} and

R̂(ξ) :=
1

(2π)4

∫
R4

eiτ ·ξ R(τ )dτ =

[
R̂c(ξ) R̂

∗
cv(ξ)

R̂cv(ξ) R̂v(ξ)

]
.



In the above E {·} stands for the mathematical expectation (average), R̂c(ξ) is the
power spectral density of the perturbations of the speed of sound, R̂v(ξ) is the power
spectral density matrix of the perturbations of the particle velocity, and R̂cv(ξ) is the
cross-spectral density vector of the perturbations of the speed of sound and particle
velocity. We stress that the spectral density matrix p �→ R̂(ξ) is such that R̂(−ξ) =
R̂(ξ)T, where AT stands for the transpose of matrix A. As in [49] we assume that
R̂ is real, which implies that both R̂ and R are even functions: R̂(−ξ) = R̂(ξ) and
R(−τ ) = R(τ ). Usually it is further assumed that R̂cv(ξ) = 0 (the perturbations of
the speed of sound and of the particle velocity are uncorrelated), which is true if these
perturbations are statistically isotropic and incompressible, ∇x · V 1 = 0 [44, 53]. If
the latter properties hold, the power spectral density matrix of the perturbations of
the particle velocity reads R̂v(ξ) = R̂(|k|, ω)(I − k̂ ⊗ k̂), where R̂(|k|, ω) is a scalar
function and ξ = (k, ω), i.e., wave vector and (circular) frequency.

We note at this stage that a randomly perturbed ambient density may be ac-
counted for as well in the subsequent developments. However, it is observed, follow-
ing the conclusions of section 4.3, that the ambient density does not influence the
evolution of the Wigner measure in our model. Thus we ignore that possibility in the
remainder of the paper. The analysis could be carried on, though, along the same
lines as in [3, sect. 7]. Also the consideration of nonhomogeneous (nonstationary)
perturbations—provided that relevant models of nonhomogeneous turbulent fluctua-
tions are available—is left to future works as it may yield very different propagation
regimes.

5.2. Acoustic wave equation with randomly perturbed ambient quan-
tities. Having introduced the random fluctuations of the ambient flow velocity, we
can write the acoustic wave equation (9) accounting for these inhomogeneities in a
similar form as (26) as follows. Let us introduce two operators L1 and L21 arising
from the random fluctuations v1 and defined by

L1

(
s,

s

ε
, εDs

)
=

1

2
a(s)

[
Ω(s, εDs)V 1

(s
ε

)
· (εDx) + V 1

(s
ε

)
· (εDx)Ω(s, εDs)

+ Ω(s, εDs)χ1

(s
ε

)
Ω(s, εDs)

]
,

L21

(
s,

s

ε
, εDs

)
=

i

2
a(s)

[
V 1

(s
ε

)
· (εDx)χ1

(s
ε

)
Ω(s, εDs) +

(
V 1

(s
ε

)
· εDx

)2

+ Ω(s, εDs)(χ1V 1)
(s
ε

)
· (εDx)

]
,

(45)

where a(s) = �0(s)/C
2
0 (s) and Ω(s, ξ) = ω+V 0(s) ·k, as in (28). The acoustic wave

equation (26) is now Lεφε = 0 with the operator Lε defined by

Lε = Lε +
√
εL1 +

ε

i
L21 +O(ε

3
2 )

= L0 +
√
εL1 +

ε

i
(L2 + L21) + O(ε

3
2 ) ,

(46)

where Lε is given by (27) with the unperturbed ambient quantities C0 and V 0:
Lε(s, ξ) = L0(s, ξ;C0,V 0) − iεL2(s, ξ;C0,V 0). Then by applying the space-time
Wigner transforms Wε[·, φε] and Wε[φε, ·] to (26) with Lε given by (46), we obtain,



respectively,

(47) Wε[Lε(s, εDs)φε, φε] +
√
εWε

[
L1

(
s,

s

ε
, εDs

)
φε, φε

]
+

ε

i
Wε

[
L21

(
s,

s

ε
, εDs

)
φε, φε

]
= O(ε

3
2 )

and

(48) Wε[φε, Lε(s, εDs)φε] +
√
εWε

[
φε, L1

(
s,

s

ε
, εDs

)
φε

]
− ε

i
Wε

[
φε, L21

(
s,

s

ε
, εDs

)
φε

]
= O(ε

3
2 ) .

The operator Lε corresponding to the unperturbed wave equation is formally self-
adjoint because the unperturbed ambient quantities C0 and V 0 satisfy (6a) (see Ap-
pendix A); it is in addition independent of s/ε. Therefore, taking the difference of
(47) and (48) yields

(49) Wε[Lε(s, εDs)φε, φε]−Wε[φε, Lε(s, εDs)φε]

+
√
εWε

[
L1

(
s,

s

ε
, εDs

)
φε, φε

]
−
√
εWε

[
φε, L1

(
s,

s

ε
, εDs

)
φε

]
+

ε

i
Wε

[
L21

(
s,

s

ε
, εDs

)
φε, φε

]
+

ε

i
Wε

[
φε, L21

(
s,

s

ε
, εDs

)
φε

]
= O(ε

3
2 ) .

Equation (49) for the case of a randomly inhomogeneous medium is the counterpart of
the Wigner equation (33) for a slowly varying ambient flow. The difference stems from
the terms involving L1 and L21, which must be carefully evaluated in an asymptotic
analysis since they contain both scales s and s/ε. We may then make use of the rules
of pseudodifferential calculus with oscillating coefficients described in section 3.3. In
addition, the Wigner transform Wε[φε] also depends on these two scales, and therefore
its derivatives with respect to s must be carefully evaluated as well. This issue is
subsequently addressed in section 5.3 below.

5.3. Multiple scale expansion of the Wigner transform of the acoustic
wave equation. Now we introduce a two-scale version of Wε[φε] as follows:

Wε[φε](s, ξ) = W̃ε (s, τ , ξ)

= W0(s, ξ) +
√
εW1(s, τ , ξ) + εW2(s, τ , ξ) + o(ε) .

(50)

Consequently, the space-time gradient εDs has to be rewritten εDs +Dτ to account
for this two-scale expansion in (49). Considering the terms corresponding to the
unperturbed wave equation in this latter equation, one first has, invoking the rules
(19)–(20),

Wε[Lε(s, εDs)φε, φε]−Wε[φε, Lε(s, εDs)φε] = (L0(s, ξ)− L∗
0(s, ξ − εDs)) W̃ε

− ε

i
∇ξ · (∇sL0(s, ξ) W̃ε) +

ε

i
(L2(s, ξ) + L∗

2(s, ξ − εDs)) W̃ε +O(ε2)

= (L0(s, ξ)− L0(s, ξ −Dτ )) W̃ε +
ε

i
∇ξL0(s, ξ −Dτ ) ·∇sW̃ε

− ε

i
∇ξ · (∇sL0(s, ξ) W̃ε) +

ε

i
(L2(s, ξ) + L2(s, ξ −Dτ )) W̃ε +O(ε2) .



Considering now the third and fourth terms in (49), one obtains using the rules (24)
and (25) and the notation τ = s/ε = (y, u)

(51) Wε [L1 (s, τ , εDs)φε, φε]−Wε [φε, L1 (s, τ , εDs)φε]

=
a(s)

2

∫
R4

eiτ ·η dη

(2π)4
α̂1(s, ξ,η, ξ − η)W̃ε (s, τ , ξ − η)

− a(s)

2

[
Ω(s, ξ −Dτ )V 1(τ ) · (k −Dy) + V 1(τ ) · (k −Dy)Ω(s, ξ −Dτ )

+ Ω(s, ξ −Dτ )χ1(τ )Ω(s, ξ −Dτ )
]
W̃ε(s, τ , ξ) + O(ε) ,

where (recall (45))

(52) α̂1(s, ξ,η, ξ
′) = Ω(s, ξ + ξ′)V̂ 1(η) · k′ +Ω(s, ξ)χ̂1(η)Ω(s, ξ

′) .

In the above we have noted ξ = (k, ω), ξ′ = (k′, ω′), and η = (p, υ) so that ξ − η =
(k − p, ω − υ). Last, one notices again from (24) and (25) that

(53) Wε [L21 (s, τ , εDs)φε, φε] +Wε [φε, L21 (s, τ , εDs)φε]

=
ia(s)

2

∫
R8

eiτ ·(η+η′) dηdη′

(2π)8
β̂(s, ξ,η,η′)W̃ε (s, τ , ξ − η − η′)

− ia(s)

2

[
V 1(τ ) · (k −Dy)χ1(τ )Ω(s, ξ −Dτ ) + (V 1(τ ) · (k −Dy))

2

+Ω(s, ξ −Dτ )(χ1V 1)(τ ) · (k −Dy)
]
W̃ε(s, τ , ξ) + O(ε) ,

where η′ = (p′, υ′) and

β̂(s, ξ,η,η′) = V̂ 1(η) · (k − p)
[
χ̂1(η

′)Ω(s, ξ − η − η′) + V̂ 1(η
′) · (k − p− p′)

]
+Ω(s, ξ)χ̂1(η)V̂ 1(η

′) · (k − p− p′) .

Thus the Wigner equation (49) takes the form

(54) [L0(s, ξ)− L0(s, ξ −Dτ )] W̃ε +
√
εL1W̃ε

+
ε

i
[∇ξL0(s, ξ −Dτ ) ·∇s −∇sL0(s, ξ) ·∇ξ −∇ξ ·∇sL0(s, ξ)] W̃ε

+
ε

i
[L2(s, ξ) + L2(s, ξ −Dτ )] W̃ε +

ε

i
L21W̃ε = O(ε

3
2 ) ,

where L1 is given by the right-hand side of (51) and L21 is given by the right-hand
side of (53). Now we equate like-powers of ε in (54) to obtain a sequence of three
equations for the orders O(ε0), O(ε

1
2 ), and O(ε). This procedure follows [3, sect. 7] for

quiescent acoustics. Thus we can follow the analysis developed in section 4 to account
for the influence of the random perturbations characterized by the operators L1 and
L21 above. The O(ε0) terms yield the dispersion properties of W0 as in section 4.2,
while the O(ε) terms yield its evolution properties as in section 4.3. The O(ε

1
2 ) terms

yield a linear relation between W1 and W0 that make explicit the contribution of the
random inhomogeneities on the evolution properties of the latter.



5.4. Dispersion properties. We start by establishing the connection between
the temporal and spatial oscillations of the waves in the high-frequency limit, the so-
called dispersion relation. It is given by the leading-order terms O(ε0) in (47). Since
the symbol of the operator L0 of (46) is identical with that of (29), we simply have
L0(s, ξ)W0(s, ξ) = 0 and thus, as with (31)

(55) W0(s, ξ) = W−(s,k)⊗ δ (ω − ω−(s,k)) +W+(s,k)⊗ δ (ω − ω+(s,k)) ,

where ω± are given by (32) with c0 and v0 replaced by C0 and V 0, respectively. We
keep the same notations for the specific intensities W± as in the nonrandom case for
convenience.

5.5. Half-order correction O(ε
1
2 ). By considering the O(ε

1
2 ) terms in (54)

we can calculate Ŵ1(s,p, ξ), the Fourier transform of W1(s, τ , ξ) with respect to τ ,
in terms of W0(s, ξ). This expression will be used in what follows for the derivation
of the evolution properties of W0. The O(ε

1
2 ) terms are

0 = (L0(s, ξ)− L0(s, ξ −Dτ ))W1(s, τ , ξ)

+
a(s)

2

∫
R4

eiτ ·η dη

(2π)4
α̂1(s, ξ,η, ξ − η)W0 (s, ξ − η)

− a(s)

2

[
(Ω(s, ξ −Dτ ) + Ω(s, ξ))V 1(τ ) · k +Ω(s, ξ −Dτ )χ1(τ )Ω(s, ξ)

]
W0(s, ξ)

since W0 is independent of τ . Taking the Fourier transform with respect to τ yields

(56) Ŵ1(s,η, ξ) =
1

2

α̂1(s, ξ − η,η, ξ)W0(s, ξ)− α̂1(s, ξ,η, ξ − η)W0(s, ξ − η)

H(s, ξ)−H(s, ξ − η)− iθ
.

Here θ is a regularization parameter to evade the case H(s, ξ) = H(s, ξ − η) for the
time being. It will be sent to 0 at the end of the derivation.

5.6. Evolution properties. The evolution equation for W0 is finally obtained
from the O(ε) terms in (54). The latter are

0 =
1

i
{L0,W0}+

1

i
(2L2(s, ξ)−∇ξ ·∇sL0(s, ξ))W0(s, ξ)

+ (L0(s, ξ)− L0(s, ξ −Dτ ))W2(s, τ , ξ)

+
a(s)

2

∫
R4

eiτ ·η dη

(2π)4
α̂1(s, ξ,η, ξ − η)W1 (s, τ , ξ − η)

− a(s)

2

[
Ω(s, ξ −Dτ )V 1(τ ) · (k −Dy) + V 1(τ ) · (k −Dy)Ω(s, ξ −Dτ )

+ Ω(s, ξ −Dτ )χ1(τ )Ω(s, ξ −Dτ )
]
W1(s, τ , ξ)

+
a(s)

2

∫
R8

eiτ ·(η+η′) dηdη′

(2π)8
β̂(s, ξ,η,η′)W0 (s, ξ − η − η′)

− a(s)

2

[
V 1(τ ) · (k −Dy)χ1(τ )Ω(s, ξ) + V 1(τ ) · (k −Dy)V 1(τ ) · k

+Ω(s, ξ −Dτ )(χ1V 1)(τ ) · k
]
W0(s, ξ) .

(57)

The term in W2 vanishes once it is averaged (E {W2} = 0 since E {W̃ε} = E {W0}
by construction). The sum of the last two terms in W0 vanishes as well once it



is averaged in view of (44) and the mixing assumption invoked below (see (58)).
Also 2L2 −∇ξ ·∇sL0 = 0 by the formal self-adjointness of Lε (see (28)), and hence
only the Poisson bracket with W0 remains. Thus the last step is to evaluate the
integrals above when W1 is replaced by its expression (56) as a function of W0. This
closure, together with averaging in (57), gives rise to a collisional linear radiative
transfer equation for the average E {W0} of the Wigner measure associated to the
waves velocity potential. The collision operator is shown to depend on the phase
functions of the random ambient inhomogeneities, R̂(η) in (44). We obtain here
a general form of the collisional kernel describing multiple scattering of waves in a
random, unsteady ambient flow, which is the main contribution of the paper. We
detail in the next two subsections how it is derived.

5.6.1. Averaging (57). We first consider the following integral term in (57):

I1 =

∫
R4

eiτ ·η dη

(2π)4
α̂1(s, ξ,η, ξ − η)W1 (s, τ , ξ − η) .

Introducing the Fourier transform Ŵ1 of W1 given by (56) yields

I1 =

∫
R8

eiτ ·(η+η′) dηdη′

(2π)8
α̂1(s, ξ,η, ξ − η)Ŵ1(s,η

′, ξ − η)

=
1

2

∫
R8

eiτ ·(η+η′) dηdη′

(2π)8
α̂1 (s, ξ,η, ξ − η)

H(s, ξ − η)−H(s, ξ − η − η′)− iθ

×
(
α̂1(s, ξ − η − η′,η′, ξ − η)W0(s, ξ − η)

− α̂1(s, ξ − η,η′, ξ − η − η′)W0(s, ξ − η − η′)
)
.

Now because of (44), we see that the average of I1 will give rise to the Dirac factor
δ(η + η′). Therefore, one introduces the notation

E
{
α̂1(s, ξ,η, ξ1)α̂1(s, ξ

′,η′, ξ′1)
}
= (2π)8δ(η + η′)α̂2(s,η; ξ, ξ1, ξ

′, ξ′1)

and assumes that

(58) E {ϕ̂1(η)⊗ ψ̂1(η
′)W0(s, ξ)} = E {ϕ̂1(η)⊗ ψ̂1(η

′)}E {W0(s, ξ)}
for ϕ1, ψ1 ∈ {χ1,V 1}, since the quantities ϕ1, ψ1, and W0 vary on different scales.
Indeed, χ1 and V 1 are given in the definition (43) of the perturbations of the ambient
flow, and W0 is from the two-scale expansion (50). This crucial mixing assumption is
also the one invoked in [3, 49]. Thus considering the change of variable η + η′ → 0,
one arrives at

E {I1} =
1

2

∫
R4

α̂2(s,η; ξ, ξ − η, ξ − η, ξ)E {W0(s, ξ)}
H(s, ξ)−H(s, ξ − η) + iθ

dη

− 1

2

∫
R4

α̂2(s,η; ξ, ξ − η, ξ, ξ − η)E {W0(s, ξ − η)}
H(s, ξ)−H(s, ξ − η) + iθ

dη

because W0 does not depend on the fast scale.
As for the last terms in (57), namely,

I2 =
[
Ω(s, ξ −Dτ )V 1(τ ) · (k −Dy) + V 1(τ ) · (k −Dy)Ω(s, ξ −Dτ )

+ Ω(s, ξ −Dτ )χ1(τ )Ω(s, ξ −Dτ )
]
W1(s, τ , ξ) ,



observing that Ω(s, ξ) is a (first-order) polynomial in ξ, one arrives at, by a straight-
forward direct computation using the definition (12),

I2 =

∫
R8

eiτ ·(η+η′) dηdη′

(2π)8
α̂1(s, ξ − η − η′,η, ξ − η′)Ŵ1(s,η

′, ξ)

=
1

2

∫
R8

eiτ ·(η+η′) dηdη′

(2π)8
α̂1 (s, ξ − η − η′,η, ξ − η′)
H(s, ξ)−H(s, ξ − η′)− iθ

×(
α̂1(s, ξ − η′,η′, ξ)W0(s, ξ)− α̂1(s, ξ,η

′, ξ − η′)W0(s, ξ − η′)
)
.

Therefore,

E {I2} = −1

2

∫
R4

α̂2(s,−η; ξ, ξ − η, ξ − η, ξ)E {W0(s, ξ)}
H(s, ξ − η)−H(s, ξ) + iθ

dη

+
1

2

∫
R4

α̂2(s,−η; ξ, ξ − η, ξ, ξ − η)E {W0(s, ξ − η)}
H(s, ξ − η)−H(s, ξ) + iθ

dη .

5.6.2. Radiative transfer equation. To conclude we insert in the average of
(57) the foregoing expressions of E {I1} and E {I2}. By a proper change of variable
ξ − η → η in I1 and I2 it is deduced that

{L0,E {W0}} =− a(s)

4

∫
R4

α̂2(s, ξ − η; ξ,η,η, ξ)E {W0(s, ξ)}
i(H(s,η)−H(s, ξ)) + θ

dη

+
a(s)

4

∫
R4

α̂2(s, ξ − η; ξ,η, ξ,η)E {W0(s,η)}
i(H(s,η)−H(s, ξ)) + θ

dη

− a(s)

4

∫
R4

α̂2(s,η − ξ; ξ,η,η, ξ)E {W0(s, ξ)}
i(H(s, ξ)−H(s,η)) + θ

dη

+
a(s)

4

∫
R4

α̂2(s,η − ξ; ξ,η, ξ,η)E {W0(s,η)}
i(H(s, ξ)−H(s,η)) + θ

dη .

(59)

But H(s, ξ) = 0 on the support of E {W0(s, ξ)}, and H(s,η) = 0 on the support of
E {W0(s,η)}. Also α̂2(s, ξ − η; ·) = α̂2(s,η − ξ; ·) from the symmetry of the spectral
density matrix, R̂(ξ − η) = R̂(η − ξ)T. Therefore, (59) reduces to

(60) {L0,E {W0}}

=
a(s)

2

∫
R4

(
θ

H(s, ξ)2 + θ2

)
α̂2(s, ξ − η; ξ,η, ξ,η)E {W0(s,η)} dη

− a(s)

2

∫
R4

(
θ

H(s,η)2 + θ2

)
α̂2(s, ξ − η; ξ,η,η, ξ)E {W0(s, ξ)} dη .

On the other hand, by letting θ → 0± we have in the sense of distribution for
(s, ξ) ∈ X

θ

H(s, ξ)2 + θ2
→ πθ̂

∣∣∣∣∂H∂ω
∣∣∣∣−1

[δ(ω − ω+(s,k)) + δ(ω − ω−(s,k))] ,

where θ̂ stands for the sign of θ, and
∣∣∂H
∂ω

∣∣ = |Ω(s, ξ)| = C0(s)|k| whenever ω =
ω±(s,k). A similar expression holds for θ

H(s,η)2+θ2 . In view of (52), one then intro-
duces the notation

(61) σd(s; ξ|η) =
2π

C2
0 (s)|k||p|

T (s, ξ,η)TR̂(ξ − η)T (s, ξ,η) ,



where

T (s, ξ,η) =
1

2

(
Ω(ξ)Ω(η)
Ω(ξ + η)p

)
,

and observes that ξ = (k, ω) and η = (p, υ) do not a priori play symmetric roles in
this expression: σd(s; ξ|η) �= σd(s;η|ξ). One also defines

(62) σt(s;η|ξ) =
2π

C2
0 (s)|k||p|

T (s, ξ,η)TR̂(ξ − η)T (s,η, ξ)

and

(63) Σt(s, ξ) =

∫
R3

(σt(s;p, ω−(s,p)|ξ) + σt(s;p, ω+(s,p)|ξ)) dp .

Choosing θ̂ = Ω̂ (the sign of Ω �= 0 on X ) to preserve causality [3, 49] and recalling that
L0(s, ξ) = a(s)H(s, ξ), (60) finally reads as the following radiative transfer equation:

(64) {H, aE {W0}}+ Ω̂Σt(s, ξ)a(s)C0(s)|k|E {W0(s, ξ)}

= Ω̂

∫
R4

(σd(s;k, ω−(s,k)|η) + σd(s;k, ω+(s,k)|η)) a(s)C0(s)|p|E {W0(s,η)} dη.

This is (2) of the introduction, where one recognizes the average wave action A =
a|Ω|E {W0} with Ω(s,k, ω±(s,k)) = ∓C0(s)|k| on the support of E {W0} (up to the
proper redefinition λ± = −ω±). It describes the evolution of the wave action in a ran-
domly perturbed, inhomogeneous ambient flow. It is very much similar to the kinetic
equations for the spectrum of the Fourier coefficients of the density disturbances de-
rived by Howe by an alternative approach, starting from Lighthill’s acoustic analogy;
see [31, equations (37) and (39)]. The kernel σd(s; ξ|η) is the rate of conversion of
energy with wave vector and circular frequency η into energy with wave vector and
frequency ξ, at position and time s, and is called a differential scattering cross-section.
Parallely, Σt(s, ξ) is the total scattering cross-section accounting for all conversions
into energy with wave vector and frequency different from ξ at position and time s.

Now proceeding as for (41) in view of (55) and with the notation (42), the fore-
going radiative transfer equation also reads

(65) ∂tA+(s,k) + v+
g ·∇xA+ −∇x(v

+
g · k) ·∇kA+ +Σ+(s,k)A+(s,k)

=

∫
R3

(σ++(s;k|p)A+(s,p) + σ+−(s;k|p)A−(s,p)) dp ,

∂tA−(s,k) + v−
g ·∇xA− −∇x(v

−
g · k) ·∇kA− +Σ−(s,k)A−(s,k)

=

∫
R3

(σ−+(s;k|p)A+(s,p) + σ−−(s;k|p)A−(s,p)) dp ,

where the differential and total scattering cross-sections are now

σ±±(s;k|p) = σd(s;k, ω±(s,k)|p, ω±(s,p))

and

Σ±(s,k) =
∫
R3

(σt(s;p, ω−(s,p)|k, ω±(s,k)) + σt(s;p, ω+(s,p)|k, ω±(s,k)) dp .



If one neglects, for example, the correlation of the perturbations of the speed of sound
and the particle velocity (R̂cv(ξ − η) = 0), these expressions are

σ++(s;k|p) =
π

2
C2

0 (s)|k||p|R̂c(k − p, ω+(k)− ω+(p))

+
π

2

(|k|+ |p|)2
|k||p| p · R̂v(k − p, ω+(k)− ω+(p))p ,

σ+−(s;k|p) =
π

2
C2

0 (s)|k||p|R̂c(k − p, ω+(k)− ω−(p))

+
π

2

(|k| − |p|)2
|k||p| p · R̂v(k − p, ω+(k)− ω−(p))p

(66)

and

Σ+(s,k) =
π

2

∫
R3

[
C2

0 (s)|k||p|R̂c(k − p, ω+(k)− ω+(p))

+ C2
0 (s)|k||p|R̂c(k − p, ω+(k)− ω+(p))

+ (|k|+ |p|)2p̂ · R̂v(k − p, ω+(k)− ω−(p))k̂

+ (|k| − |p|)2p̂ · R̂v(k − p, ω+(k)− ω−(p))k̂
]
dp .

(67)

If the perturbations of the particle velocity are in addition divergence-free, it can be
readily checked that [20]

p · R̂v(k − p, ω)p = p · R̂v(k − p, ω)k = k · R̂v(k − p, ω)k = k · R̂v(k − p, ω)p .

Therefore, σd(s; ξ|η) = σd(s;η|ξ) = σt(s; ξ|η) = σt(s;η|ξ) and

Σ+(s,k) =

∫
(σ++(s;k|p) + σ+−(s;k|p)) dp ,

Σ−(s,k) =
∫

(σ−+(s;k|p) + σ−−(s;k|p)) dp .

Thus the equations of radiative transfer (65) are conservative for the overall wave
action A = A+ ⊗ δ(ω − ω+) + A− ⊗ δ(ω − ω−):

∫∫
(A+ + A−)dxdk is constant,

ignoring, however, possible boundary effects in O × R3 (see [1] for the consideration
of the hyperbolic set). This result is to be paralleled with the conclusions of [20],
where the flow-acoustic scattering is shown to become nonconservative because of the
flow-straining term (nonvanishing gradient of the ambient quantities).

5.7. Particular case: Quiescent ambient medium. We consider the case of
a quiescent medium with v0(x, t) = 0 and a sound speed c0(x) and density �0(x)
which are independent of time. Then (9) reads

(68)
1

�0
∇x · (�0∇xφ)−

1

c20

∂2φ

∂t2
= 0 ,

to be compared with the classical acoustic wave equation for the pressure field in an
inhomogeneous medium [6]:

�0∇x ·
(

1

�0
∇xp

′
)
− 1

c20

∂2p′

∂t2
= 0 .



Consequently H(x;k, ω) = 1
2 (ω

2 − C2
0 (x)|k|2) is independent of time and accounting

for random perturbations of the speed of sound solely one has that

R̂c(k, ω) = R̂c(k)⊗ δ(ω)

for the correlation time is “infinite” in this situation. Thus ω±(x,k) = ∓C0(x)|k|
and one arrives at the radiative transfer equation for A±(x, t;k) (A+ and A− being
uncoupled in this case):

(69) ∂tA± ± C0(x)k̂ ·∇xA± ∓ |k|∇xC0 ·∇A±

=

∫
R3

σ(x;k|p) (A±(x, t;p)−A±(x, t;k)) δ(C0(x)|p| − C0(x)|k|)dp ,

where the scattering cross-section is

(70) σ(x;k|p) = π

2
C2

0 (x)|k|2R̂c(k − p) .

This result agrees with the models developed in [3, 49]. Equation (69) is the counter-
part of (1) of the introduction for the energy density itself. In this situation, even if all
waves have the same frequency, they may nevertheless interact if they have different
wave numbers. The right-hand side of (69) describes this wave number conversion
process.

6. Conclusions. In this paper, a (kinetic) radiative transfer equation describ-
ing the propagation of high-frequency acoustic waves in arbitrarily random ambient
flows has been derived. The model accounts for possible perturbations of the ambient
particle velocity and ambient speed of sound when both quantities vary spatially and
temporally. These situations correspond to random variations of the temperature (and
humidity in the atmosphere) and random variations of the possibly turbulent particle
velocity induced by the presence of sound waves, at the small scale (wavelength) of
the acoustic waves. In this respect, it generalizes the previous results established for
high-frequency acoustic waves in a quiescent medium [3, 49] and in a frozen ambient
flow [20]. The proposed model also extends earlier works for time-varying ambient
flows [31] where radiative transfer equations were obtained by a formal approach for
specific forms of the perturbations of the ambient quantities. The links with classical
geometric acoustics are also established. We have used a Wigner functional approach
to derive the radiative transfer equation, which basically describes the evolution of
the angularly and frequency resolved action of the acoustic waves in phase space. It
also describes the phase shift, spectral broadening, and multiple scattering effects. In
future works we should consider the diffusion limit of the radiative transfer model,
whereby the wave action is evolved in physical space solely, thus reducing the dimen-
sion of the kinetic equation. Another issue for practical applications is the derivation
of ad hoc boundary conditions for the Wigner measures, which raises challenging
mathematical questions. They are addressed in [1] for the case of transverse reflec-
tions in quiescent media, but further investigations are needed for the cases of tangent
and total reflections in quiescent or moving media.

Appendix A. Formal self-adjointness of the convected wave equation
(9). We define ((φ, ψ)) for the L2(R3

x × Rt,C) scalar product. Then ∀φ, ψ ∈
C∞(R3

x × Rt) with either φ or ψ being compactly supported,

((∇x · (�0∇xφ), ψ)) = − ((�0∇xφ,∇xψ)) = − ((∇xφ, �0∇xψ))

= ((φ,∇x · (�0∇xψ))) .



Likewise,

((
dφ

dt
, ψ

))
= ((∂tφ+ v0 ·∇xφ, ψ))

= − ((φ, ∂tψ +∇x · (ψv0)))

= −
((

φ,
dψ

dt
+ ψ∇x · v0

))
,

so that the formal adjoint of the convective derivative (5) is dφ
dt

∗
= −dφ

dt − φ∇x · v0.
Therefore,

((
�0

d

dt

(
1

c20

dφ

dt

)
, ψ

))
=

((
d

dt

(
1

c20

dφ

dt

)
, �0ψ

))
= −

((
1

c20

dφ

dt
,
d(�0ψ)

dt
+ �0ψ∇x · v0

))
= −

((
1

c20

dφ

dt
, ψ

���������(
d�0
dt

+ �0∇x · v0

)
+ �0

dψ

dt

))
= −

((
dφ

dt
,
�0
c20

dψ

dt

))
= −

((
dψ

dt
,
�0
c20

dφ

dt

))
=

((
�0

d

dt

(
1

c20

dψ

dt

)
, φ

))
=

((
φ, �0

d

dt

(
1

c20

dψ

dt

)))
,

where the conjugate equalities stem from the fact that φ and ψ play symmetric roles;
also we have used the mass-conservation equation (6). We can thus conclude that the
convected wave equation (9) is formally self-adjoint. Multiplying it by ( εi )

2 we have
for all compactly supported, smooth test functions ψ

((Lε(x, t, εDx, εDt)φ, ψ)) = ((φ, Lε(x, t, εDx, εDt)ψ)) .

Appendix B. Proof of the rules (19) and (20). Invoking the trace formula
(16) one has for any smooth function P1 ∈ C∞

0 (Rn
x × Rn

k)

(71) 〈Wε[P2(x, εDx)φ, ψ], P1〉 = (P1(x, εDx)P2(x, εDx)φ, ψ)L2 ,

where 〈·, ·〉 denotes the duality bracket between S and S ′ on Rn
x ×Rn

k. But according
to [40, Theorem 2.7.4] the operator P1(x, εDx)P2(x, εDx) can be identified with the
operator P (x, εDx) provided that

(72) P (x,k) = P1(x,k)P2(x,k) +
ε

i
∇kP1 ·∇xP2 +O(ε2) ,



where all higher-order terms are explicitly given in [40, Chapter 6]. Therefore,

(P1(x, εDx)P2(x, εDx)φ, ψ)L2 = 〈Wε[φ, ψ], P1P2〉
+

ε

i
〈Wε[φ, ψ],∇kP1 ·∇xP2〉+O(ε2)

= 〈P2Wε[φ, ψ], P1〉 −
ε

i
〈∇xP2 ·∇kWε[φ, ψ], P1〉

− ε

i
〈(∇x ·∇kP2)Wε[φ, ψ], P1〉+O(ε2) .

(73)

Identifying (71) and (73) one formally obtains the rule (19). As for the adjoint state,
one has invoking again the trace formula (16)

〈Wε[φ, P2(x, εDx)ψ], P1〉 = (P1(x, εDx)φ, P2(x, εDx)ψ)L2

=
(
P2(x, εDx)

∗
P1(x, εDx)φ, ψ

)
L2 .

(74)

But according to [40, Rem. 2.5.7] the operator P (x, εDx)
∗
can be identified with the

operator P̃ (x, εDx) provided that

(75) P̃ (x,k) = P ∗(x,k) +
ε

i
∇k ·∇xP

∗ +O(ε2) ,

where all higher-order terms are explicitly given in [40, Chapter 6]. Therefore, com-
bining (72) and (75) one has

(
P2(x, εDx)

∗
P1(x, εDx)φ, ψ

)
L2 = 〈Wε[φ, ψ], P

∗
2 P1〉+

ε

i
〈Wε[φ, ψ], (∇k ·∇xP

∗
2 )P1〉

+
ε

i
〈Wε[φ, ψ],∇kP

∗
2 ·∇xP1〉+O(ε2)

= 〈P ∗
2Wε[φ, ψ], P1〉

− ε

i
〈∇kP

∗
2 ·∇xWε[φ, ψ], P1〉+O(ε2) .

(76)

Identifying (74) and (76) one formally obtains the rule (20). Additionally if P2(x, εDx)
is formally self-adjoint, it turns out that

〈Wε[φ, P2(x, εDx)ψ], P1〉 = (P2(x, εDx)P1(x, εDx)φ, ψ)L2

= 〈Wε[φ, ψ], P2P1〉+
ε

i
〈Wε[φ, ψ],∇kP2 ·∇xP1〉+O(ε2)

= 〈P2Wε[φ, ψ], P1〉 −
ε

i
〈∇kP2 ·∇xWε[φ, ψ], P1〉

− ε

i
〈(∇k ·∇xP2)Wε[φ, ψ], P1〉+O(ε2) .

Therefore, one formally has in this situation

(77) Wε[P2(x, εDx)φ, ψ]−Wε[φ, P2(x, εDx)ψ] =
ε

i
{P2,Wε[φ, ψ]}+O(ε2) ,

which is (22).



Besides, we explicitly have

〈Wε[φ, P2(x, εDx)ψ], P1〉

=

∫
dx

∫∫
dkdy

(2π)n
eik·(x−y) P1(x, εk)φ(y)

∫∫
dpdy′

(2π)n
e−ip·(x−y′) P ∗

2 (x, εp)ψ
∗(y′)

=

∫∫
εndkdp

(2π)n

∫∫∫
dxdydy′

(2π)n
ei(k−p)·(x−y′)+iεk·y P1(x, εk)P

∗
2 (x, εp)φ(y

′−εy)ψ∗(y′)

by the change of variable y → y′ − εy. Now by the change of variable εk → k we
arrive at

〈Wε[φ, P2(x, εDx)ψ], P1〉

=

∫∫
dkdp

(2π)n

∫∫
dxdy′ ei(

k
ε −p)·(x−y′) P1(x,k)P

∗
2 (x, εp)

∫
dy

(2π)n
eik·y φ(y′−εy)ψ∗(y′)

=

∫∫
dkdp

(2π)n

∫∫
dxdy′ ei(

k
ε −p)·(x−y′) P1(x,k)P

∗
2 (x, εp)Wε[φ, ψ](y

′,k) .

The additional changes of variable p → p
ε and y′ → x− εy′ yield

〈Wε[φ, P2(x, εDx)ψ], P1〉

=

∫∫
dkdp

(2π)n

∫∫
dxdy′ ei(k−p)·y′

P1(x,k)P
∗
2 (x,p)Wε[φ, ψ](x− εy′,k) ,

so that

Wε[φ, P2(x, εDx)ψ](x,k) =

∫∫
dy′dp
(2π)n

ei(k−p)·y′
P ∗
2 (x,p)Wε[φ, ψ](x− εy′,k) .

However, ∫
Rn

eiy·k f(x− εy)dy = ε−n eix·
k
ε f̂

(
k

ε

)
,

so that we finally arrive at

Wε[φ, P2(x, εDx)ψ](x,k) =

∫
Rn

dp

(2πε)n
eix·

(k−p)
ε P ∗

2 (x,p)Ŵε[φ, ψ]

(
k − p

ε
,k

)
=

∫
Rn

dp

(2π)n
eix·p P ∗

2 (x,k − εp)Ŵε[φ, ψ](p,k)

= (P ∗
2 (x,k − εDx)Wε[φ, ψ]) (x,k) ,

which is the claimed formula (20).

Appendix C. Proof of the rules (24) and (25). We start by showing
how the rules (23) arise. Invoking once again the trace formula (16) one has for any
smooth function P ∈ C∞

0 (Rn
x × Rn

k)

(78)
〈
Wε

[
f
(x
ε

)
φ, ψ

]
, P

〉
=

(
P (x, εDx)f

(x
ε

)
φ, ψ

)
L2

.

But f̂( ·
ε )(k) = εnf̂(εk) such that

̂
f
( ·
ε

)
φ(·)(k) =

∫
Rn

εndp

(2π)n
f̂(εp)φ̂(k − p) ,



and therefore

P (x, εDx)f
(x
ε

)
φ(x) =

∫
Rn

dk

(2π)n
eix·k P (x, εk)

̂
f
( ·
ε

)
φ(·)(k)

=

∫
Rn

dk

(2π)n
eix·k P (x, εk)

∫
Rn

εndp

(2π)n
f̂(εp)φ̂(k − p)

=

∫
Rn

dk

(2πε)n
ei

x
ε ·k P (x,k)

∫
Rn

dp

(2π)n
f̂(p)φ̂

(
k − p

ε

)
.

However,

φ̂

(
k − p

ε

)
=

∫
Rn

e−iyε ·(k−p) φ(y)dy =

∫
Rn

e−i(x
ε −y)·(k−p) φ(x− εy)εndy ,

so that one finally has(
P (x, εDx)f

(x
ε

)
φ, ψ

)
L2

=

∫
Rn

dk

(2πε)n
ei

x
ε ·k P (x,k)

∫
Rn

dp

(2π)n
f̂(p)

∫∫
Rn

x×Rn
y

e−i(x
ε −y)·(k−p) φ(x−εy)ψ(x)εndydx

=

∫∫
Rn

x×R
n
k

dxdkP (x,k)

∫
Rn

dp

(2π)n
ei

x
ε ·p f̂(p)Wε[φ, ψ](x,k − p) ,

which when identified with (78) gives the claimed result. Regarding (24), it now
suffices to observe that

Wε

[
f
(x
ε

)
P (x, εDx)φ, ψ

]
=

∫
Rn

dp

(2π)n
ei

x
ε ·p f̂(p)Wε[P (x, εDx)φ, ψ](x,k − p)

=

∫
Rn

dp

(2π)n
ei

x
ε ·p f̂(p)P (x,k − p)Wε[φ, ψ](x,k − p) + O(ε) ,

applying the rule (19).
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