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Abstract

We propose an algorithm for solving bound-constrained mathematical programs with complementarity
constraints on the variables. Each iteration of the algorithm involves solving a linear program with
complementarity constraints in order to obtain an estimate of the active set. The algorithm enforces
descent on the objective function to promote global convergence to B-stationary points. We provide a
convergence analysis and preliminary numerical results on a range of test problems. We also study the
effect of fixing the active constraints in a bound-constrained quadratic program that can be solved on
each iteration in order to obtain fast convergence.

1 Introduction

We consider the bound-constrained mathematical program with complementarity constraints (MPCC) of
the form

minimize
x

f(x)

subject to: `0 ≤ x0 ≤ u0,

0 ≤ x1 ⊥ x2 ≥ 0,

(1)

where f is smooth and x := (x0, x1, x2) ∈ Rn is a partition of the variables into bound-constrained variables
x0 (e.g., controls) and complementarity variables x1, x2 (e.g., states). We let n := n0 + 2n1, with x0 ∈ Rn0

and x1, x2 ∈ Rn1 , where n0, n1 are nonnegative integers. We let `0,i denote element i of `0 and similarly for
u0, x0, x1, and x2 as well. We also assume that, without loss of generality, `0,i < u0,i for i ∈ {1, . . . , n0},
because otherwise we could remove variable x0,i by fixing it to be `0,i = u0,i = x0,i. The feasible set of (1)
is nonempty because `0 < u0.

Motivation Problems of the form (1) appear as subproblems in an augmented Lagrangian approach for
solving more general MPCCs. This approach extends existing augmented Lagrangian approaches for stan-
dard nonlinear programs such as [4, 11, 21], LANCELOT [8, 9], or TANGO, [2, 3] to MPCCs. To see how (1) can
appear as a subproblem, consider the general MPCC

minimize
x

f(x)

subject to: c(x) = 0,

0 ≤ g(x) ⊥ h(x) ≥ 0,

(2)
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where c : Rn → Rm, and g, h : Rn → Rp, are smooth functions for some m, p ∈ N. By introducing slack
variables sg, sh ∈ Rp, (2) can be written as a problem with simple complementarity constraints:

minimize
x,sg,sh

f(x)

subject to: c(x) = 0, sg − g(x) = 0, sh − h(x) = 0,

0 ≤ sg ⊥ sh ≥ 0.

By introducing Lagrange multipliers y, zg, zh for the three sets of equality constraints, we obtain an aug-
mented Lagrangian of (2)

Lρ(x, sg, sh, y, zg, zh) :=f(x)− yT c(x)− zTg (sg − g(x))− zTh (sh − h(x))

+
ρ

2

(
‖c(x)‖22 + ‖sg − g(x)‖22 + ‖sh − h(x)‖22

)
,

and the augmented Lagrangian subproblem associated with (2) becomes

minimize
x,sg,sh

Lρ(x, sg, sh, y, zg, zh)

subject to: 0 ≤ sg ⊥ sh ≥ 0,
(3)

which has the same structure as (1).

Related Work We propose to solve (1) with a trust-region strategy that respects the complementarity
constraints in every iteration. Because all iterates are feasible for (1), every accepted step also provides an
estimate of the active set. While we are not aware of any publication that analyzes this described setting
and method, active set and trust-region methods have been used for MPCCs in the past. Scholtes and
Stöhr [35] analyze a trust-region method on exact penalty functions that arise from MPCCs. Fukushima
and Tseng [22] iteratively compute approximate KKT-points of nonlinear programs (NLPs) that arise from
ε-active sets induced by the previous iterates, where ε is a slack parameter that is driven to zero over the
iterations. Júdice et al. [25] and Chen and Goldfarb [6] propose active set strategies that also respect the
complementarity constraints in every iteration by alternatingly computing descent steps (projected Newton
steps in [6]) on the null space of the active constraints and updating entries of the active set based on the
Lagrange multipliers.

Notation We use subscripts to identify components of vectors or matrices, and superscripts to indicate
iterates. Similarly, functions that are evaluated at particular points are denoted as fk := f(zk), for example.

Structure of the Remainder We present our algorithm to solve (1) in Section 2. Then its execution
is demonstrated on an example problem in Section 3. Section 4 analyzes the convergence of the iterates.
Section 5 presents two approaches for including second-order information into the algorithm in order to
improve its convergence speed. In Section 6, we present computational results for two sets of benchmark
problems. We show in Section 7 that our developments generalize to lower and upper bounds on x1, x2, and
mixed complementarity conditions between x1 and x2.

2 Algorithm Statement

We now introduce our SLPCC algorithm that solves a sequence of linear programs with complementarity
constraints. We will show that it converges to B-stationary (or Bouligand stationary) points.
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Definition 2.1 ( [29], §3.3.1). A feasible point x∗ of (1) is called B-stationary if d = 0 is a local minimizer
of the linear program with complementarity constraints (LPCC) obtained by linearizing f , about x∗:

minimize
d

∇f(x∗)T d

subject to: `0 ≤ x∗0 + d0 ≤ u0

0 ≤ x∗1 + d1 ⊥ x∗2 + d2 ≥ 0,

(1)

where the step d is partitioned as d :=
(
d0, d1, d2

)
.

The B-stationarity condition in Definition 2.1 is also referred to as linearized B-stationarity [15], although
it is easy to see that the two definitions are equivalent because of the simple structure of the constraints
in (1). Definition 2.1 is also closely related to stationarity in nonlinear optimization, interpreted as the
absence of feasible first-order descent directions.

2.1 Trust-Region Subproblem of the SLPCC Algorithm

We now define a subproblem that is solved repeatedly by our algorithm. The subproblem is motivated by
Definition 2.1 with an additional `∞-norm trust-region constraint. Given a point x ∈ Rn and a trust-region
radius ∆ > 0, the LPCC subproblem is

LPCC(x,∆) :=


minimize

d
∇f(x)T d

subject to: `0 ≤ x0 + d0 ≤ u0,

0 ≤ x1 + d1 ⊥ x2 + d2 ≥ 0,

‖d‖∞ ≤ ∆.

(2)

During each SLPCC iteration k, we solve one or more instances of (2) for a sequence of trust region radii
around the current iterate xk. From Definition 2.1 and the fact that ∆ is strictly positive it follows that xk

is B-stationary if and only if d = 0 solves LPCC(xk,∆). That is, only when the trust-region constraint is
inactive.

Remark 2.2. Our global convergence results readily generalize to other trust-region norms, but we find that
the `∞-norm has useful properties that allow us to solve (2) efficiently. The problem (2) decomposes by
component into n0 bound-constrained and n1 two-dimensional LPCCs. Each of these problems can be solved
by evaluating at most four feasible points. Thus, we can solve (2) in O(n0 + n1) objective evaluations.

2.2 An SLPCC Algorithm for MPCCs

We now state the SLPCC algorithm in Algorithm 1; this provides an overview of our approach first while
detailed steps are provided later. Algorithm 1 has an outer loop (indexed by k) and an inner loop (indexed
by l). The inner loop reduces the trust-region radius ∆k,l until a new iterate xk+1 is found or the algorithm
terminates with a certificate that the current iterate xk is B-stationary. A new iterate is acceptable if it
is feasible for (1) and the improvement at f(xk+1) relative to −∇f(xk)T dk,l is more than a fixed fraction

σ ∈ (0, 1). The outer loop resets the trust-region radius to ∆k,0 ∈ [∆,∆
k
], where ∆ > 0 is fixed and

∆
k
> ∆ is nondecreasing. Then, the outer loop generates the next iterate xk+1 by invoking the inner loop.

If ∇f(xk)T dk,l = 0 in Line 5 of Algorithm 1, it follows that d = 0 is also a solution of LPCC(xk,∆k,l), and
thus xk is B-stationary by Definition 2.1 and the fact that ∆k,l > 0 and hence the trust-region constraint is
inactive.

The parameter σ controls the acceptable ratio between the actual reduction f(xk)− f(xk + dk,l) and the
linear predicted reduction −∇f(xk)T dk,l; the predicted reduction is a positive number by definition of the
subproblem LPCC(xk,∆k,l). For our global convergence analysis, the parameter σ may be chosen arbitrarily
in the open interval (0, 1).
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Algorithm 1 SLPCC Algorithm for Bound-Constrained MPCCs (1)

Given: x0 feasible for (1); ∆
0
> ∆ > 0; σ ∈ (0, 1)

1: for k = 0, 1, . . . do

2: Reset (inner) trust-region radius ∆k,0 ∈ [∆,∆
k
]

3: for l = 0, 1, . . . do
4: Solve LPCC(xk,∆k,l) for a first-order step dk,l, (see §2.4).
5: if d = 0 is a local minimizer of LPCC(xk,∆k,l) then
6: terminate # xk is B-stationary

7: Optionally, improve dk,l via dk,l ← FIND CAUCHY POINT(xk, dk,l,∆k,l). (see §5.1).

8: Evaluate f(xk + dk,l) and compute ρk,l ← f(xk)−f(xk+dk,l)

−∇f(xk)T dk,l

9: if ρk,l ≥ σ then

10: Set xk+1 ← xk + dk,l and ∆
k+1 ← max{∆k

, 2∆k,l}
11: break # xk+1 and ∆

k+1
found

12: else
13: Reduce trust-region radius ∆k,l+1 ← ∆k,l/2

14: Optionally, improve xk+1 via xk+1 ← SOLVE BQP(xk+1) (see §5.2).

Algorithm 1 also contains two optional steps, which make use of second-order information. First, in
Line 7 we can search for a local minimizer (Cauchy point) of a quadratic model along a piecewise defined
path. Second, we can add a bound-constrained quadratic minimization in Line 14 that uses the fixed active
set of constraints identified when computing xk+1. Global convergence of Algorithm 1 to B-stationary points
does not depend on—and is not hampered by—these optional steps. Section 5 discusses these second-order
steps in greater detail. We present a simpler convergence analysis without these optional steps in Section 4.

2.3 Initialization of Algorithm 1

While our analysis assumes we have a feasible initial point, we note that this assumption is not critical. If
a candidate initial point x̂0 is not feasible, then we can project its first n0 components into the bounds,
such that l0 ≤ x0

0 ≤ u0. A similar operation produces feasible components of x0 for the complementarity
constraints:

x0
1,i := max{x̂0

1,i, 0}, x0
2,i := max{x̂0

2,i, 0},

{
x0

1,i := 0 if x0
1,i ≤ x0

2,i

x0
2,i := 0 otherwise,

where the two max operations are performed before the case statement. Therefore, to simplify the presen-
tation, we assume that the initial iterate x0 in feasible for (1).

2.4 Efficient LPCC Solution

Next, we show that the trust-region subproblem LPCC(x,∆) in Algorithm 1 can be solved efficiently. We
can rewrite the objective of LPCC(x,∆) as

∇f(x)T d =

n0∑
i=1

∇f(x)0,id0,i +

n1∑
i=1

∇f(x)1,id1,i +

n1∑
i=1

∇f(x)2,id2,i,

where subscript index pairs identify entries of ∇f(x) corresponding to the entries of d and x.
With this new objective, the following proposition shows that LPCC(x,∆) can be decomposed into

n0 independent one-dimensional linear programs (LPs) and n1 independent two-dimensional LPCCs, all of
which can be solved independently, making the computational effort for solving each LPCC(x,∆) linear in
n0 + n1.
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Figure 1: Possible cases A, B, C, and D for the intersection of the trust region (dashed) with the feasible
set of the complementarity constraint in the x1,i-x2,i plane (from left to right). The current point (center of
the trust region) is indicated by a square.

Proposition 2.3. The problem LPCC(x,∆) in (2) decomposes into n0 + n1 independent subproblems,
namely, n0 one-dimensional LPs:

minimize
d0,i

∇f(x)0,id0,i

subject to: `0,i ≤ x0,i + d0,i ≤ u0,i, |d0,i| ≤ ∆
(3)

for i ∈ {1, . . . , n0}, and n1 two-dimensional LPCCs:

minimize
d1,i,d2,i

∇f(x)1,id1,i +∇f(x)2,id2,i

subject to: 0 ≤ x1,i + d1,i ⊥ x2,i + d2,i ≥ 0, ‖(d1,i, d2,i)
T ‖∞ ≤ ∆

(4)

for i ∈ {1, . . . , n1}.

Proof. The decomposition follows from the linearity of the objective of (2) and the fact that there are no
coupling constraints between d0 and (d1, d2) apart from simple two-dimensional complementarity constraints.
In particular, for all i ∈ {1, . . . , n1}, the variables d1,i and d2,i are coupled only by the constraints 0 ≤
x1,i + d1,i ⊥ x2,i + d2,i ≥ 0.

Proposition 2.3 ensures that LPCC(x,∆) can be solved efficiently. To represent the solution of the
subproblems explicitly, we note that for x1,i, x2,i such that 0 ≤ x1,i ⊥ x2,i ≥ 0 and ∆ > 0, we can
distinguish four mutually exclusive and exhaustive cases,

A: ∆ ≥ x1,i ≥ 0 and x2,i = 0,

B: x1,i = 0 and ∆ ≥ x2,i > 0,

C: x1,i > ∆ and x2,i = 0,

D: x1,i = 0 and x2,i > ∆,

(5)

where cases C and D and cases A and B are symmetric. Note, however, that the biactive components are
only included in case A. Figure 1 shows a sketch of the constraint and the trust region in the x1,i-x2,i-plane
for each of these cases. We represent a solution of LPCC(x,∆) in the following proposition.

Proposition 2.4. Let x ∈ Rn be feasible for (1) and let ∆ > 0. Then the problem LPCC(x,∆) in (2) is

solved by any vector d =
(
dT0 dT1 dT2

)T
that satisfies

d0,i :=


min{u0,i − x0,i,∆} if ∇f(x)0,i < 0,

max{`0,i − x0,i,−∆} if ∇f(x)0,i > 0,

0 else

5



for i ∈ {1, . . . , n0} and(
d1,i

d2,i

)
∈ arg min

{
∇f(x)1,id1,i +∇f(x)2,id2,i :

(
d1,i

d2,i

)
∈ Di

}
(6)

for all i ∈ {1, . . . , n1}, where Di is a finite set of points:

Di :=


{(0, 0), (∆, 0), (−x1,i, 0), (−x1,i,∆)} if (x1,i, x2,i) satisfy case A,

{(0, 0), (∆,−x2,i), (0,−x2,i), (0,∆)} if (x1,i, x2,i) satisfy case B,

{(0, 0), (−∆, 0), (∆, 0)} if (x1,i, x2,i) satisfy case C,

{(0, 0), (0,−∆), (0,∆)} if (x1,i, x2,i) satisfy case D

(7)

for the cases in (5).

Proof. The result for d0 is straightforward and therefore omitted.
Now consider (6). The objective of (2) is separable for each i ∈ {1, . . . , n0} and for each pair of com-

plementarity variables d1,i, d2,i for i ∈ {1, . . . , n1}. The feasible set for each index i consists of the union or
one of the following two line segments,

{
(d1,i, d2,i) : x1,i + d1,i ∈ [max{0, xi,1−∆}, xi,1 + ∆], x2,i + d2,i = 0

}
and

{
(d1,i, d2,i) : x1,i + d1,i = 0, x2,i + d2,i ∈ [max{0, xi,2 − ∆}, xi,2 + ∆]

}
. Because the objective of (2)

is linear, an optimum occurs at (d1,i, d2,i) = 0 if (∇f1,i,∇f2,i) = 0, or at the boundary of one of the two
line segments, or at the origin of the feasible region of (2). Therefore, to find the (global) minimizer of the
partial minimization, problem (4), we need to evaluate the linear objective only at three points (cases C and
D if the origin (x1,i, x2,i) = (0, 0) is outside the trust region) or at four points (cases A and B if the point
(x1,i, x2,i) = (0, 0) is inside in the trust region).

The possible minimizers in the brackets correspond to the points in the cartoons in Figure 1 in the order
of the numbering of the cartoon.

Remark 2.5. Our construction for solving the LPCC(x,∆) can be interpreted as projecting the steepest-
descent direction −∇f onto the feasible set intersected by the trust region. This point of view makes the
algorithm a projected-gradient algorithm.

We also allow the choice (d1,i, d2,i) := (0, 0) in the case distinction in (6) to detect B-stationarity. Algo-
rithmically this means that if the arg min in (6) contains (0, 0), then we choose (0, 0).

Proposition 2.4 shows that LPCC(x,∆) can be solved by evaluating
∑n1

i=1 |Di| ≤ 4n1 points, providing
an efficient solution approach. We note that other approaches such as pivoting schemes [12] and mixed-
integer approaches [24] also provide means to solve LPCC(x,∆); these approaches are typically less efficient,
however, because they do not exploit the structure of LPCC(x,∆).

3 Illustrative Example

We now demonstrate the behavior of our SLPCC algorithm on an illustrative example. This example
highlights how the trust region radius is reset and shows how SLPCC overcomes a degenerate situation,
where a second-order approach may stop at a suboptimal point. The contraction of the trust region at
points that may be suboptimal is also a possible outcome for the trust region strategy, see [35, Proposition
4.5].

Consider the two-dimensional MPCC

minimize
x

x3
1 − (x2 − 0.5x2

2) subject to: 0 ≤ x1 ⊥ x2 ≥ 0, (8)

which has the global minimizer at (x1, x2) = (0, 1) with an objective value of −0.5.
We first consider solving (8) with a sequential quadratic programming (SQP) approach (see, for exam-

ple, [32, Ch. 18]) that uses exact Hessian information and with initial iterate values x0
1 ∈ (0, 2) and x0

2 := 0.
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For simplicity, we assume that ∆k > x0
1 is sufficiently large for all k so that the trust region does not restrict

the steps. In such an SQP approach, the first quadratic minimization stops at the local minimizer x1 = 0.5x0

of the quadratic model m(x1) = (x0
1)3 +3(x0

1)2(x1−x0
1)+3x0

1(x1−x0
1)2 arising from the second-order Taylor

approximation of the objective of (8). Because x0
1 > 0, the choice x0

2 = 0 is necessary for feasibility; and we
will show below that an SQP approach generates a sequence of iterates converging to (0, 0) with xk1 > 0 and
xk2 = 0.

Inductively, we obtain xk = 0.5xk−1 for the kth iteration. Setting 0 = ∂m
∂x1

, we have that

∂m

∂x1
= 0 ⇒ 0 = 3(xk1)2 + 6xk1(x1 − xk1) ⇒ xk+1

1 =
1

2
xk1 ,

which imply that xk1 ↘ 0 and xk2 = 0 for all k. Thus, we obtain xk → (0, 0). The limit point, (0, 0),
is a so-called M-stationary point [33], which is not a local minimizer of (8) or even a B-stationary point.
Therefore, the tangent cone [32, Definition 12.2] at (0, 0) contains directions that are not contained in the
tangent cones of the iterates xk, and thus an SQP approach applied to (8) starting from x0

1 ∈ (0, 2) and
x0

2 := 0 will converge to (0, 0) even though there is a descent direction at (0, 0). This example is a reason for
developing our approach using sequential linear models rather than a sequential quadratic approach, which
would suffer from the same behavior as an SQP approach.

In contrast, the proposed SLPCC algorithm applied to (8) will not converge to the origin when started
from a point on the positive x1 axis. This is because it generates iterates that lie at the boundary of the trust
region or at the origin. If we assume that xk → (0, 0), then once the algorithm is sufficiently close (xk1 < ∆)
to the origin, the LPCC problem will detect the descent direction (−xk1 , 1) from the origin, allowing it to

“turn the corner” and converge to x∗ = (0, 1). The trust region radius reset, ∆k,0 ∈ [∆,∆
k
], in Algorithm 1

ensures that the trust region radius does not go to zero too quickly.
Figure 2 illustrates the iterates of both Algorithm 1 and an SQP approach when starting in the point

(2, 0) and using the initial trust region radius ∆k,0 = 0.5 for the inner loop.

0

0

0 1 2

0

1

x0x1x2

x3

0

0

0 1 2

0

1

x0x4

Figure 2: Iterates of Algorithm 1 (left) and an SQP approach with exact Hessian approximation (right)
on (8).

4 SLPCC Convergence Proof

We now establish that the SLPCC algorithm converges to B-stationary points.

4.1 Preliminaries

We first derive a test for B-stationarity that is equivalent to Definition 2.1 while also being more constructive
and simplifying our analysis. To this end, we consider the constraints that are active at a point x and split
them into three disjoint sets that correspond to the respective entries of x0, x1, and x2:

A0(x) := {i : x0,i = `0,i or x0,i = u0,i} ,
A1(x) := {i : x1,i = 0} , and
A2(x) := {i : x2,i = 0} .

(1)
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The active set A0(x) for x0 may be decomposed into the indices where the lower bound is active and the
indices where the upper bound is active, namely,

A0`(x) := {i : x0,i = `0,i}, and A0u(x) := {i : x0,i = u0,i}.

These sets satisfy A0`(x) ∩A0u(x) = ∅ because ` < u, and A0`(x) ∪A0u(x) = A0(x). The set of degenerate
(i.e., nonstrict) complementarity constraints at x is denoted

D(x) := A1(x) ∩ A2(x).

In addition, we define the set of binding complementarity constraints, namely, those where strict comple-
mentarity holds and either x1,j = 0 or x2,j = 0 (but not both), as

A1+(x) := {j ∈ A1(x) : x2,j > 0} , and A2+(x) := {j ∈ A2(x) : x1,j > 0} .

With this notation, we can now characterize feasible directions along which the objective of the LPCC (1)
can be reduced if a given x ∈ Rn is feasible for (1) but not B-stationary. We formalize this result in
Proposition 4.1.

Proposition 4.1. Let x be feasible for the MPCC (1) but not be B-stationary. Then there exist ε > 0, a
direction s ∈ Rn with ‖s‖∞ = 1, and a partition (D1,D2) of D(x) such that

∇f(x)T s ≤ −ε (2a)

s0,i ≥ 0 ∀i ∈ A0`(x), (2b)

s0,i ≤ 0 ∀i ∈ A0u(x), (2c)

s1,i = 0 ∀i ∈ A1+(x), (2d)

s2,i = 0 ∀i ∈ A2+(x), (2e)

s1,i = 0 and s2,i ≥ 0 ∀i ∈ D1, (2f)

s1,i ≥ 0 and s2,i = 0 ∀i ∈ D2. (2g)

Proof. This result follows from equivalent reformulations of the LPCC (1), which is used to define B-
stationarity, by considering branch problems per component, see also [29, Corollary 3.3.1] and [29, Theorem
3.3.4].

The conditions on the entries in A0`(x), A0u(x), A1+(x), A2+(x), D1, and D2 in (2) ensure the existence
of a direction s that points into the feasible set while ∇f(x)T s ≤ −ε gives a means to identify that x is
not B-stationary. We will exploit this existence of feasible descent directions from nonoptimal points in our
convergence analysis. Note that an expensive enumeration of partitions is not necessary in practice because
the results from Section 2.4 show that we need to solve only 2|D(x∗)| LPs.

4.2 Main Convergence Result

To derive our convergence results, we make the following assumption on the MPCC problem.

Assumption 4.1. The function f is continuously differentiable, and ∇f is locally Lipschitz continuous.

Our main convergence result shows that the SLPCC algorithm generates a subsequence that converges
to a B-stationary point.

Theorem 4.2. Let Assumption 4.1 hold, let σ ∈ (0, 1) be fixed, and let x0 be feasible for (1). Then one of
the following mutually exclusive outcomes must occur.

O1 Algorithm 1 terminates at a B-stationary point; that is, d = 0 solves the subproblem LPCC(xk,∆k,l) for
some k and l.

8



O2 Algorithm 1 generates an infinite sequence of iterates {xk} with decreasing objective values. If this
sequence has an accumulation point, then any such accumulation point is feasible and B-stationary.

This theorem is proven after Lemma 4.5. The outcomes O1 and O2 with a bounded sequence of iterates
correspond to normal asymptotics of the algorithm. If we make additional assumptions on f(x), such as
coercivity (that is, f(x) → ∞ if ‖x‖ → ∞), then we can exclude the case that a subsequence of iterates
becomes unbounded. We prefer not to make such assumptions, however, and instead detect unboundedness
in our implementation by checking whether f(xk) ≤ −U for some large U > 0.

Outline of Convergence Proof. First, in Lemma 4.3, we revisit the relationship between the actual
and linear predicted reduction of the objective following from Taylor’s theorem; this result is used in the
subsequent proofs. Second, we show in Lemma 4.4 that the inner loop of Algorithm 1 always terminates
after finitely many iterations. Consequently, Algorithm 1 produces a sequence of feasible iterates that have
decreasing objective values because

f(xk)− f(xk+1) ≥ −σ∇f(xk)T dk,l > 0.

Because the feasible set of (1) is closed, all accumulation points of the sequence xk are feasible. Therefore,
it remains to prove that the accumulations points are also B-stationary. We show in Lemma 4.5 that in
a neighborhood of a feasible but not B-stationary point, the LPCC will eventually generate a step that is
accepted and implies a reduction in the objective that is bounded from below by a multiple of the trust-region
radius. Finally, we synthesize these steps in Theorem 4.2.

4.3 SLPCC Convergence Proof

As indicated above, we start with a well-known lemma about the reduction implied by the LPCC step.

Lemma 4.3. Let f satisfy Assumption 4.1. Let x ∈ Rn and r > 0 be given, and let d ∈ Rn be such that
‖d‖∞ ≤ r. Define

M := sup

{
‖∇f(y)−∇f(z)‖1

‖y − z‖∞
:
y, z ∈ Rn with y 6= z and

‖x− y‖∞ ≤ r and ‖x− z‖∞ ≤ 2r

}
.

Then M <∞, and the linearly predicted reduction and actual reduction for d satisfies

f(y)− f(y + d) ≥ −∇f(y)T d− 1

2
‖d‖2∞M (3)

for all y with ‖x− y‖∞ ≤ r.

Proof. This result follows with standard arguments and Taylor’s theorem.

Next, we employ Lemma 3 to prove that the inner loop of Algorithm 1 always terminates after finitely
many iterations.

Lemma 4.4. Let Assumption 4.1 hold. Then the inner loop of Algorithm 1 terminates in a finite number
of steps.

Proof. If xk is B-stationary, then d = 0 solves LPCC(xk,∆) for any ∆ > 0, and thus the subproblem solver
chooses dk,l such that ∇f(xk)T dk,l = 0 in the first iteration of the inner loop, which yields a termination of
the algorithm.

If xk is not B-stationary, then Proposition 4.1 guarantees that there exist s ∈ Rn with ‖s‖∞ = 1 and
ε > 0 such that

−∇f(xk)T dk,l ≥ −∇f(xk)T (∆k,ls) ≥ ∆k,lε,

where the first inequality holds because dk,l is the solution of a minimization problem for which ∆k,ls is a
feasible point.
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The inner loop terminates when the sufficient reduction condition f(xk)−f(xk+dk,l) ≥ −σf(xk)T dk,l > 0
is satisfied. For all l ∈ N, Lemma 4.3 gives

f(xk)− f(xk + dk,l) ≥ −σ∇f(xk)T dk,l − (1− σ)∇f(xk)T dk,l − 1

2
‖dk,l‖2∞M

with M as defined in Lemma 3 for the choice r = ∆k,0. Because

‖dk,l‖∞ ≤ ∆k,l = ∆k,0/2l,

it follows that
f(xk)− f(xk + dk,l) ≥ −σ∇f(xk)T dk,l

for ∆k,l < 2(1 − σ)ε/M with the estimates from Lemma 4.3, and the inner iteration terminates finitely as
soon as l is sufficiently large.

Lemma 4.4 implies that if Algorithm 1 does not terminate with Outcome O1, then it generates an infinite
sequence of iterates. If the iterates remain bounded, then the sequence admits at least one accumulation
point.

Next, we show that LPCC steps yield a reduction of the objective that is bounded below by a fraction
of the trust-region radius near any feasible point that is not B-stationary.

Lemma 4.5. Let σ ∈ (0, 1) and f satisfy Assumption 4.1. Let x∞ be feasible for (1) but not B-stationary.
Then there exist an ε > 0, a direction s ∈ Rn with ‖s‖∞ = 1 and ∇f(xk)T s ≤ −ε, a relative neighborhood
N∞ of x∞, and constants η > 0 and κ > 0 such that for any sequence {xk} ⊂ N∞ with xk → x∞, the
LPCC(xk,∆) produces a descent direction dk for all k sufficiently large that produces at least a fraction of
decrease as realized by ∆s. That is, there exists a sequence δk → 0 as xk → x∞ such that there is a feasible
dk for LPCC(xk,∆) with

f(xk)− f(xk + dk) ≥ −σ∇f(xk)T (∆s) ≥ σε∆, (4)

and

f(xk)− f(xk + dk) ≥ −σ∇f(xk)T dk (5)

for all trust region radii ∆ satisfying

δkη ≤ ∆ ≤ κ. (6)

Furthermore, for all k sufficiently large, the interval [δkη, κ] in (6) is nonempty.

Proof. Because x∞ is not B-stationary, Proposition 4.1 ensures the existence of ε0 > 0 and a direction s with
‖s‖∞ = 1 such that ∇f(x∞)T s < −ε0. Moreover, the characterization of s given in (2) implies that one can
choose t0 > 0 sufficiently small such that x∞ + ts is feasible for (1) for all 0 ≤ t ≤ t0. Next, we choose a
relative neighborhood N∞ of x∞. (By relative neighborhood we mean the intersection of the neighborhood
of x∞ in Rn with the feasible set of (1).) Because Assumption 4.1 implies that ∇f is a continuous function,
we may choose N∞ sufficiently small so that it satisfies the following two properties.

1. There exists 0 < ε ≤ ε0 such that ∇f(x)T s ≤ −ε for all x ∈ N∞.

2. ‖x− x∞‖∞ ≤ 1
2 t0 for all x ∈ N∞.

Let ∆ ≤ 1
2 t0. The next step of the proof is to construct a feasible point d for LPCC(x,∆) for a given

x ∈ N∞∩{ξ ∈ Rn : ‖ξ−x∞‖∞ ≤ ∆}. Afterwards, we will use the characterization to obtain the estimate (4)
under the condition (6) on ∆.
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To this end, we consider the active sets A0(x∞), A1+(x∞), A2+(x∞), and D(x∞) from Section 4.1 and
the decomposition (D∞1 ,D∞2 ) of D(x∞) that exists by virtue of Proposition 4.1. We highlight that the active
sets may differ between x∞ and x, but this analysis requires the sets at x∞.

We construct d by combining a step from x ∈ N∞ ∩ {ξ ∈ Rn : ‖ξ − x∞‖∞ ≤ ∆} towards the activities
defined at x∞ and a step of length ∆. We start by defining the projection onto the activities

x̂1,i :=

{
x1,i if i ∈ A2+(x∞) ∪ D∞2 ,
0 if i ∈ D∞1 ∪ A1+(x∞),

and similarly for x̂2, and we set x̂0 := x0. Then it follows that

p̂ := x̂− x

is the orthogonal projection of x onto the degenerate indices. We construct the step

d := p̂+ ∆s. (7)

The step d is feasible for LPCC(x,∆) by construction of p̂, ∆ ≤ 1
2 t0, and the second property of N∞. The

choices of x̂1,i and x̂2,i are made so that a pivoting of the inactive coordinates can happen by adding ∆s to
x̂ = x+ p̂ if this is necessary to obtain the descent following from the direction s. The feasibility follows from
the fact that the projection gives a step of at most ∆ in an inactive coordinate of x. If this step is nonzero,
the inactive coordinate is pivoted at the kink and a step of length of at most ∆ is added to the new inactive
coordinate. If this step was zero, the inactive coordinate does not change and a step of length of at most ∆
is added to the inactive coordinate. In both cases, the x+ d stays in the `∞-ball of radius ∆ around x.

To visualize this construction of d, Figure 3 shows sketches of the three situations that can occur for a
pair of coordinates x1,i, x2,i if one coordinate is strictly positive and x ∈ N∞. The rightmost sketch shows
how the solution of LPCC(x,∆) can detect a descent direction for the point x∞ even if the descent is not
available at x by virtue of the intermediate projection of x to x̂.

0

0

0

0
x∞

x = x̂

0

0

0

0
x∞

x = x̂

0

0

0

0
x∞ = x̂

x

Figure 3: Three configurations of x∞ (square), x ∈ N∞ (circle), and x̂ in two dimensions, where one
coordinate of x is strictly positive. The max-norm ball of radius t0 around x∞ is depicted with a dashed line
(gray). The max-norm ball of radius .5t0 around x is depicted with a dashed-dotted line (green). If available,
the vector p̂ originating from x is depicted in blue. The possible vectors ∆s with ∆ = 1

2 t0 originating from
x̂ are depicted in orange.

Next, we show the estimate (4) holds under the condition (6) on ∆ for d. Afterwards, we transfer the
result to the sequence xk → x∞ and show that the condition on ‖p̂‖∞ is satisfied for k sufficiently large. We
choose δ = ‖p̂‖∞ and L := sup{‖∇f(ξ)‖1 : ξ ∈ N∞}, and obtain the estimate

f(x)− f(x+ d) ≥ −∇f(x)T d− 1

2
‖d‖2∞M

≥ −∇f(x)T (∆s)−∇f(x)T p̂− (∆)2M − δ2M (8)

≥ −σ∇f(x)T (∆s)− (1− σ)∇f(x)T (∆s)− Lδ − (∆)2M − δ2M, (9)
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where the first inequality follows from Lemma 4.3 with M computed for the choices x = x∞ and r =
sup{‖ξ − x∞‖∞ : ξ ∈ N∞}. The second inequality follows from the definition of d in (7), the triangle
inequality, and the inequality (a + b)2 ≤ 2a2 + 2b2 for real numbers a and b. The third inequality follows
from the Cauchy–Schwarz inequality and the definitions of L and δ.

If the condition ∆ ≤ (1− σ)ε/(4M) holds, then it follows that

(∆)2M + δ2M ≤ 2(∆)2M ≤ ∆(1− σ)ε

2
≤ −1

2
(1− σ)∇f(x)T (∆s),

where the first inequality follows from δ = ‖p̂‖∞ ≤ ∆ by construction and the last inequality holds because
0 < ε ≤ −∇f(x)T s.

Moreover, if ∆ ≥ 2δL/((1− σ)ε) holds, then it follows that

Lδ ≤ ∆(1− σ)ε

2
≤ −1

2
(1− σ)∇f(x)T (∆s).

Thus, with the definitions

η :=
2L

(1− σ)ε
and κ := min

{
1

2
t0,

(1− σ)ε

4M

}
,

the analysis above implies that if ∆ ∈ [ηδ, κ], then

f(x)− f(x+ d) ≥ −σ∇f(x)T (∆s) ≥ σε∆. (10)

Moreover,

f(x)− f(x+ d) ≥ −σ∇f(x)T d (11)

follows by replacing the terms σ∇f(x)T (∆s), ∇f(x)T p̂, and Lδ with σ∇f(x)T d, (1 − σ)∇f(x)T p̂, and
(1− σ)Lδ in (8), and (9). Note that (11) already holds if ∆ ∈ [(1− σ)ηδ, κ].

Finally, we start from the obtained estimate (10) from x ∈ N∞ to prove the claim for a sequence xk → x∞

in N∞. To this end, we consider a sequence xk → x∞ in N∞ and inspect the quantities introduced above
for the choices x = xk and denote them with the superscript k. For all 0 < ∆ ≤ κ, there exists k0 ∈ N such
that for all k ≥ k0 it holds that δk = ‖p̂k‖∞ ≤ ‖x∞ − xk‖∞ ≤ ∆ by construction of p̂k and the fact that
‖x∞ − xk‖∞ → 0.

Thus, (10) and (11) imply that (4) and (5) hold for all ∆ satisfying (6) because η and κ are constant
for the neighborhood N∞ while xk → x∞ provides that δk → 0, and hence that [δkη, κ] is nonempty
eventually.

By construction, the lower bound ηδk of the interval (6) converges to zero as xk → x∞, while the upper
bound of this interval is bounded away from zero. By virtue of Lemma 4.5, ε depends only on x∞ and is
independent of k.

Hence, the iterates cannot converge to a non-B-stationary point x∞ because Lemma 4.5 shows that
sufficiently small steps in a neighborhood of x∞ can always be accepted. These steps satisfy a sufficient
reduction condition bounded below by the trust-region radius so that the algorithm must select steps that
are acceptable and eventually improve over x∞.

We are now in a position to prove our main convergence result, Theorem 4.2, which in particular shows
that every accumulation point is B-stationary.

Proof of Theorem 4.2. We need to consider only Outcome O2, because in the other case we obtain a B-
stationary point by virtue of the finite termination condition. We deduce inductively over the iterations
that xk is feasible for (1) if the inner loop terminates finitely for every k because if dk,l is feasible for
LPCC(xk,∆k,l), it follows that xk+1 = xk + dk,l is feasible for (1). Steps are accepted only when there is
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a reduction in the objective. Thus all iterations reduce the objective function if the inner loop terminates
finitely. The inner loop terminates finitely by Lemma 4.4.

It remains to show that every accumulation point of the sequence of iterates is B-stationary. We seek
a contradiction and assume that an accumulation point of the sequence x∞ is not B-stationary. To ease
the notation, we denote the approximating subsequence by the same symbol, that is, xk → x∞. Moreover,
we further restrict ourselves to a subsequence such that its elements are in the neighborhood N∞ given by
Lemma 4.5. Lemma 4.5 implies that for any ∆ in the range

δkη ≤ ∆ ≤ κ

the conditions for a step that is accepted by Algorithm 1, line 9, and also leads to a linear reduction with
respect to ∆ are satisfied. We note that the upper bound of this range is constant and that δk → 0. Thus,
there exists k0 ∈ N such that for all k ≥ k0 it holds that δkη <

1
2κ and δk <

1
2κε/ sup{‖∇f(x)‖1 |x ∈ N∞}.

Moreover, Lemma 4.5 also asserts the existence of a fixed ε > 0 that enters the lower-bound estimate of the
reduction, which we use frequently below.

Next, we distinguish two cases. First, assume that in outer iteration k the inner loop accepts dk,l such
that ‖dk,l‖∞ = ∆k,l > κ. Then, by virtue of Lemma 4.5, there exists another step d̃k that is the solution of
LPCC(xk, κ), which we can write as d̃k = ∆s+ p̂k with ‖p̂k‖∞ = δk, see (7) in the proof of Lemma 4.5. We
obtain

−σ∇f(xk)T d̃k = −σ∇f(xk)T (κs+ p̂k) ≥ 1

2
εσκ,

where the inequality follows from the estimate −σ∇f(xk)Tκs ≥ εσκ from Lemma 4.5 and the estimate
|σ∇f(xk)T p̂k| ≤ σδk‖∇f(xk)‖1 ≤ 1

2σκε due to the choice of k0. We deduce that

f(xk)− f(xk + dk,l) ≥ −σ∇f(xk)T dk,l ≥ −σ∇f(xk)T d̃k ≥ ε1

2
σκ, (12)

where the first inequality follows from the acceptance of the step dk,l and the second inequality follows from
the fact that d̃k is feasible for LPCC(xk,∆k,l) because d̃k is feasible for LPCC(xk, κ) and κ < ∆k,l.

Next, we assume that the inner loop accepts dk,l such that ‖dk,l‖∞ = ∆k,l ≤ κ. Since the upper bound

∆
k

on ∆k,0 is nondecreasing, the interval [∆,∆
k
] is never empty. Starting from the reset trust region radius

∆ ≤ ∆k,0, the inner loop will eventually choose a trust region radius ∆k,l ∈ {∆k,0,∆k,0/2,∆k,0/4, . . .}. We
know that the sufficient reduction condition in Algorithm 1, line 9, was not satisfied for ∆k,l > κ. By virtue
of Lemma 4.5, our choice of k0 and the fact that the inner loop always halves the tested trust region radius,
we obtain 1

2κ < ∆k,l for the trust region radius ∆k,l in inner loop l that leads to acceptance in Algorithm 1,
line 9. In this case we also obtain

f(xk)− f(xk + dk,l) ≥ −σ∇f(xk)T (∆k,ls) > ε
1

2
σκ. (13)

Combining (12) and (13), we bound the actual reduction f(xk)−f(xk+dk,l) from below for all iterations
k ≥ k0 of the considered subsequence. It follows that

f(xk) = f(xk0)−
k−1∑
m=k0

f(xm)− f(xm+1) ≤ f(xk0)− (k − k0)σε
κ

2
→ −∞ (14)

for k →∞. This contradicts the fact that the iterates xk of the subsequence converge to x∞, which implies
f(xk)→ f(x∞) ∈ R because f is continuous.

Remark 4.6. A crucial ingredient of the proof is that the trust region radius is reset in every iteration of the
outer loop, which is different from classical statements of trust region algorithms. Consequently, whenever
a subsequence starts to approach a non-B-stationary point, the trust region radius cannot contract to zero,
which implies that the subsequence eventually moves away from this point, due to Lemma 4.5. A similar
technique is used in the convergence analysis in [20].
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Figure 4: Convergence of the objective value for the example (15) described in Section 5.3 over the iterations
of Algorithm 1 with BQP acceleration in ln. 14 (left) vs. Algorithm 1 without BQP acceleration (right).
The convergence is plotted with (cauchy, black) and without (plain, green) an optional Cauchy line search
in ln. 7 of Algorithm 1.

5 Including Second-Order Information

The subproblem (2) uses only first-order information, resulting in a step to the boundary of the trust region
or a step to the kink of the complementarity constraints, which generally result in slow convergence, as
shown in Figure 4 for an example that is described in Section 5.3. In this section, we discuss two ways
to include second-order information in Algorithm 1. The first approach proposes a Cauchy line search
along a quadratic approximation, and the second approach adds an additional bound-constrained quadratic
programming (BQP) step on the active set identified by the LPCC. In this section, we assume that f is
twice continuously differentiable.

5.1 Cauchy Line Search with Quadratic Models

We first show how to perform a line search on a quadratic model in the direction of the LPCC step. We use
the second-order Taylor expansion to define the quadratic model that is minimized.

We follow the procedure for bound-constrained quadratic optimization that is described in Chapter 16.7
of [32]. There, the piecewise path is defined by following the negative gradient direction until a bound is
reached in one of the coordinates. Then, this coordinate is fixed, and the path continues by following the
negative gradient direction only in the other coordinates, thereby resulting in a piecewise-linear path. The
Cauchy point is defined as the first local minimizer of the quadratic model along this path.

We can define the search for a Cauchy point for problems of the form (1) using a quadratic model for f
along with some subtle changes to the approach in [32]. As in [32], we use −∇f(xk) as the search direction
to compute the piecewise-linear path starting from xk. For the entries of x0, the procedure is the same as in
Chapter 16.7 of [32]. For the other coordinates, we note that x1i and x2i cannot both become nonzero but
for i ∈ {1, . . . , n1}, only one of the coordinates x1i and x2i may be changed to remain inside the feasible set,
that is, to satisfy complementarity. If the path reaches a kink, not only do we stop changing the coordinate
with which we arrived at the kink but we also pivot to the other coordinate involved in the kink if the
corresponding entry of the current search direction is positive.

If a complementarity constraint is biactive at the start of this piecewise-linear path, that is xk1i = 0 = xk2i
for some i ∈ {1, . . . , n1}, and if the search direction is positive in both coordinates, we must choose which
coordinate is increased and which one is fixed to zero. In this case, we make a greedy choice and increase the
one with the larger entry in the search direction. Ties are broken in lexicographical order. The procedure is
summarized in Algorithm 2. The symbol 1n in Algorithm 2 denotes the vector in Rn that is equal to 1 in
all components.
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We note that the Cauchy point computation following the negative gradient direction vector does not
give us global convergence to B-stationary points. The counterexample given in (8) is also valid for the
Cauchy point computation. However, there are several possibilities to obtain convergence by leveraging the
LPCC(xk,∆k,l) step. We first observe that by construction, the computed Cauchy point is feasible and
contained in an `∞-ball around xk.

One option is to base the sufficient reduction condition on the LPCC(xk,∆k,l) step. We accept the Cauchy
point, if its actual reduction is larger than the actual reduction of the LPCC(xk,∆k,l) step (otherwise we
use the LPCC(xk,∆k,l) step). With this option, the Cauchy point computation becomes a post-processing
step and convergence follows from the analysis of the LPCC steps.

An alternative approach that allows us to save evaluations of the objective function is to check whether
the actual reduction from the Cauchy point satisfies the sufficient decrease condition with respect to the
linear predicted reduction from the LPCC(xk,∆k,l) step. Only if this is not the case, do we need to check
the sufficient decrease condition as well. This approach guarantees that the sufficient decrease condition to
obtain convergence of Algorithm 1 to a local minimizer of (1) will eventually be satisfied by virtue of the
arguments in Section 4. We include this variant of using the Cauchy point computation in Algorithm 1 and
Algorithm 2. The empirical results in Section 6 indicate that we can reduce the number of iterations with
the introduction of this step.

We note that there is at least one other approach to define a piecewise-linear path along which a quadratic
model, qk in Algorithm 2, is minimized. One can also generate and record a pivoting sequence, similar to
what the solver PATH does to solve a set of linear and complementarity conditions; see [10, 14]. Having
obtained this pivoting sequence, one can backtrack the path and minimize a quadratic model on the different
segments.

Algorithm 2 FIND CAUCHY POINT(xk, dk,l,∆k,l)

1: Compute piecewise-linear path s : [0, 1]→ Rn from xk in direction −∇f(xk) that satisfies the complementarity constraints
with bounds given by `0, u0, xk − 1n∆k,l, and xk + 1n∆k,l.

2: t∗ ← first local minimizer of qk(t) = 0.5s(t)T∇2f(xk)s(t) +∇f(xk)T s(t) for t ∈ [0, 1]

3: Evaluate f(xk + s(t∗)) and compute ρk,l ← f(xk)−f(xk+s(t∗))
−∇f(xk)T dk,l

4: if ρk,l ≥ σ then
5: return s(t∗)
6: else
7: return dk,l

The Cauchy step alone does not alleviate the slow convergence of the LPCC algorithm, and, hence, we
consider adding a second-order step next.

5.2 Bound-Constrained Quadratic Programming (BQP) Step

Here, we propose a second-order step, similar to sequential linear/quadratic programming techniques for
nonlinear programming (SLQP), see, e.g., [5, 7, 16, 26]. Given an estimate of the active set produced by the
LPCC step (or the Cauchy point), we consider the predicted active sets

A0(xk + dk,l), A1(xk + dk,l), A2(xk + dk,l), and D(xk + dk,l)

as defined in Section 4.1. One important question is how to handle the degenerate constraints D(xk + dk,l).
We may choose any partition Dk1 ,Dk2 ⊂ D(xk + dk,l) to define the components of the biactive set that are
free variables for the BQP step. In our implementation, we partition the set greedily with respect to the
gradient; that is, we partition D(xk + dk,l) into

Dk1 =
{
i ∈ D(xk + dk,l) | ∇f(xk + dk,l)1,i ≥ ∇f(xk + dk,l)2,i

}
,

Dk2 = D(xk + dk,l) \ Dk1 ,
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which corresponds to fixing the component with the larger gradient. Given these active sets, we define the
BQP as follows:

BQP(xk,∆)



minimize
d

qk(d) := ∇fTk d+
1

2
dTHkd

subject to: `0 ≤ xk0 + d0 ≤ u0,

xk1,i + d1,i = 0 and xk2,i + d2,i ≥ 0 ∀i ∈ A1(xk + dk,l)\Dk1 ,
xk1,i + d1,i ≥ 0 and xk2,i + d2,i = 0 ∀i ∈ A2(xk + dk,l)\Dk2 ,
‖d‖∞ ≤ ∆,

which is used to compute a second-order step, as described in Algorithm 3. Here Hk is an approximation of
the Hessian ∇2f(xk).

Algorithm 3 SOLVE BQP(xk,∆k
QP , ρ

k,l)

1: Compute a BQP(xk,∆k
QP ) step dkQP and ratio ρkQP =

f(xk)−f(xk+dkQP )

q(0)−q(dk
QP

)

2: Update

∆k+1
QP =


min{∆k

, 2∆k
QP } if ρkQP ≥ 0.75,

∆k
QP if 0.75 > ρkQP ≥ 0.25,

1

4
∆k
QP otherwise

3: Accept step if ρkQP ≥
ρk,l

2
, update xk+1 = xk + dkQP

The identity D(xk + dk,l) = A1(xk + dk,l) ∩ A2(xk + dk,l) implies that for all i ∈ {1, . . . , n1}, either
i ∈ A1(xk + dk,l) \ Dk1 or i ∈ A2(xk + dk,l) \ Dk2 . Consequently 0 ≤ xk1,i + d1,i ⊥ xk2,i + d2,i ≥ 0 holds for all

d that are feasible for BQP(xk,∆k
QP ) and hence xk + d is feasible for (1).

We note that the BQP step in Algorithm 3 differs from the SLQP approaches, because we only fix the
complementarity constraints, and solve a bound-constrained QP, rather than an equality-constrained QP.
Because our problem involves only bound constraints, solving it is computationally not much harder than
solving an equality-constrained QP.

We briefly comment on the convergence of SLPCC with BQP steps. The introduction of the additional
BQP step does not change the outline of the proof of Theorem 4.2. The only small difference is that the right-
hand side of the second inequality in (14) now requires the factor 1/2 in front of the term (k−k0)σε∆

2l . This
follows from the acceptance criterion of the step in Algorithm 3, line 3. Under such an acceptance criterion
it does not matter whether we use BQP steps or solve other subproblems to accelerate the convergence of
Algorithm 1.

If the inner loop (that is, the solution of LPCC(xk,∆k,l)) identifies the optimal active set for all iterations
k ≥ k0 for some finite k0 ∈ N and appropriate Hessian approximations are used, then the BQP steps can be
regarded as SQP steps on the reduced problem, which yield superlinear convergence.

5.3 Illustrative Example

We now demonstrate the potential effect of using BQP steps in Algorithm 1. We choose an augmented
Lagrangian subproblem derived from nash1a in the library MacMPEC [27], with n0 = 4 and n1 = 2. We use
the augmented Lagrangian parameters ρ = 2, λ1 = 3.9375, λ2 = −6.5, λ3 = −0.25, and λ4 = 2.5. The
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resulting objective function becomes

f(x) :=
1

2

(
(x0,1 − x0,3)2 + (x0,2 − x0,4)2

)
+ λ1

(
−34 + 2x0,3 +

8

3
x0,4 + x2,1

)
− λ2 (−24.25 + 1.25x0,3 + 2x0,4 + x2,2)

− λ3 (x1,1 + x0,2 + x0,3 − 15)

+ λ4 (x1,2 + x0,1 − x0,4 − 15)

+ .5ρ
(

(−34 + 2x0,3 +
8

3
x0,4 + x2,1)2 + (−24.25 + 1.25x0,3 + 2x0,4 + x2,2)2

+ (x1,1 + x0,2 + x0,3 − 15)2 + (x1,2 + x0,1 − x0,4 − 15)2
)

(15)

We run Algorithm 1 with Algorithm 3 using ∆ = 2, ∆
0

= 2, and initial point x0 = 0 until a first-order
optimality of 10−7 is reached.

For this example, Algorithm 1 with Algorithm 3 reaches a B-stationary point within a tolerance of 10−7

after 3 iterations, while Algorithm 1 reaches the tolerance after 1250 (with Algorithm 2 in ln. 7, labeled
cauchy) and 1798 (without Algorithm 2, labeled plain) illustrating the advantage of BQP steps. Figure 4
shows the decrease in the objective value over the iterations for both algorithms. The slow convergence of
Algorithm 1 is due to the fact that, without using Line 14, the algorithm behaves like a steepest descent
method whose rate of convergence is at best linear. When using second-order information at the expense
of an additional BQP solve, the algorithm converges quickly because the active sets A1(x∗) = {0, 1} and
A2(x∗) = ∅ are correctly identified after the first iteration and remain constant over the remaining iterations.

6 Numerical Results for Synthetic Benchmark Problems

To obtain quantitative results, we implemented Algorithm 1 in Python and benchmarked it on two classes
of benchmark problems: quadratic problems and general nonlinear problems.

All instances were solved with two variants of Algorithm 1. The first variant includes taking BQP steps
(labeled plain), and the second variant includes both Cauchy steps as well as BQP steps (labeled cauchy) as
presented in Section 5. The experiments were executed on a compute server with four Intel(R) Xeon(R)
CPU E7-8890 v4 CPUs, clocked at 2.20 GHz. Because our problem instances are nonconvex due to the
complementarity constraints, the two versions of our algorithm, plain and cauchy, may return different
local solutions. We used the open source library ALGLIB1 to compute the BQP steps.

We also compare our implementations with four state-of-the-art NLP solvers, namely filterSQP [17],
IPOPT [36], MINOS [30,31], and SNOPT [23]. NLP methods have been shown to currently be arguably the
most efficient solvers for MPECs; see, for example, [18, 19, 28, 34]. NLP solvers reformulate the complemen-
tarity constraint in (1) as a set of inequalities,

x1 ≥ 0, x2 ≥ 0, xT1 x2 ≤ 0,

where we do not need to enforce equality on the nonlinear constraint because the solvers will maintain feasible
iterates with respect to the simple bounds. (It has been shown that using xT1 x2 = 0 has worse theoretical
properties and produces inferior numerical results; see [19].) We provide the numbers of outer iterations,
running times, and achieved objective values for our approach and the NLP solvers. The NLP solvers
generally have different per-iteration complexities than our approach, but we include this information mainly
to understand whether our approach solves the problems within a reasonable number of outer iterations.
Moreover, these quantities are difficult to compare because the considered problems have nonconvex feasible
sets and different optimizers may converge to different stationary points. We list run times as reported by
the solvers themselves.

1https://www.alglib.net/, Sergey Bochkanov
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Figure 5: Computational results obtained with two variants of Algorithm 1 on test problem sets 20-ind,
20-psd, 40-ind, 40-psd. Both variants include BQP steps in ln. 14, the variant cauchy does and the variant
plain does not include the SEARCH CAUCHY POINT routine after the LPCC step in ln. 7.

6.1 Quadratic Test Problems

We consider four sets of quadratic test problems. Each set consists of 10 instances of (1) with a quadratic
objective function f . The instances in the problem sets are generated randomly and differ in their size and
their spectral properties of the Hessian of f .

1. Set 20-ind: n0 = n1 = 20, ∇2f(x) indefinite.

2. Set 20-psd: n0 = n1 = 20, ∇2f(x) positive semidefinite.

3. Set 40-ind: n0 = n1 = 40, ∇2f(x) indefinite.

4. Set 40-psd: n0 = n1 = 40, ∇2f(x) positive semidefinite.

Further details on the test problem instances are given in Appendix A.1.
The averaged relative difference between the locally optimal objective values for plain and cauchy was

small for all quadratic problems considered: (−1% for 20-ind, 0% for 20-psd, 2% for 40-ind, and 0% for
40-psd).

Both variants of Algorithm 1 converge in a modest number of outer iterations (less than 10). Similarly,
the average number of inner iterations per outer iteration is small, which indicates that our trust region
update strategy is efficient. In comparing the two variants, we note that the addition of the Cauchy step
reduces the average number of inner iterations by a factor of 2–3 and slightly improves the number of outer
iterations. Figure 5 shows violin plots comparing the performance of the two variants. The plots represent
the distribution of the respective results on each of the four sets of problems. One can see that cauchy is
slightly more efficient in terms of iteration numbers than plain and that both variants require a similar
number of BQP iterations.

The number of major iterations of our approach is similar to or slightly less than the best NLP solver.
Figure 6 shows violin plots for the largest problem instances (the results for the smaller instances are similar).
We note that one run of SNOPT reached the maximum iteration limit of 200. Moreover, we have excluded
four runs of MINOS of the set 40-psd, which stopped at infeasible points. We note that several runs of
MINOS reported convergence to optimality but stopped with a first-order optimality tolerance higher than
10−5. To provide a realistic impression of the iteration counts, we have decided to include these runs in the
plots.

The objective values and iteration numbers achieved with our implementation are comparable to those of
the NLP solvers while the running times of our implementations are comparable to IPOPT but slower than
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Figure 6: Number of outer iterations obtained with two variants of Algorithm 1 on test problem sets
20-ind, 20-psd, 40-ind, 40-psd compared with iterations of filterSQP, IPOPT, MINOS, and SNOPT.
Both variants include BQP steps, the variant the variant cauchy does and the variant plain does not
include the SEARCH CAUCHY POINT routine after the LPCC step.

the running times of filterSQP, MINOS and SNOPT. Although not always the case, the variant cauchy is
often the slowest solver, but this may be attributed to the use of Python.

We provide detailed results in Appendix B. Specifically, Table 2 provides results of our two implemen-
tations on the quadratic problems. The rows of the table are the test problem instances with the names
introduced above. For each test problem instance, the objective values for plain and cauchy are given as
well as the number of outer, inner, and BQP iterations. Table 3 provides the major/outer iteration counts
of the NLP solvers filterSQP, IPOPT, MINOS, and SNOPT and our implementations. Table 4 provides
the running times of the NLP solvers and our implementations and Table 5 provides the achieved objective
values for all solvers.

6.2 General Nonlinear Test Problems

We have also run our implementations cauchy and plain described above on twenty nonlinear test prob-
lems that are detailed in Appendix A.2. For the instances that are called 20-fletcher0, 20-fletcher1,
40-fletcher0, and 40-fletcher1 the reduced Hessian in the BQP subproblem is nearly singular and has
a condition number larger than 108 at the final iterate.

With the exception of the aforementioned degenerate instances, our implementation of Algorithm 1 always
terminates with an iterate that satisfies a first-order optimality tolerance of 10−6 or less using relatively
few iterations, approximately comparable to the test instances with quadratic objectives. Note that a
first-order tolerance of 10−6 is reached by plain for 20-fletcher0, and 20-fletcher1 and by cauchy

for 20-fletcher1, 40-fletcher0, and 40-fletcher1. The implementation terminates for the remaining
instances because the trust region contracts to zero at the final iterate (our implementation stops after
halving trust region radius 50 times), with a first-order error of around 10−5, which we count as a failure of
our algorithm.

We have run the same four NLP solvers on the general nonlinear test problems. The NLP solvers
filterSQP and MINOS require a similar amount of outer iterations. The solvers SNOPT and IPOPT require
significantly more iterations. IPOPT does not find a solution of sufficient first-order optimality for the
degenerate instances within 3000 iterations. The solver MINOS terminates at infeasible points in three runs.
In seven further runs, it shows a first-order error of 10−5 or higher on termination. We give a performance
profile for the nonlinear test cases in Figure 7, where we count the aforementioned runs of IPOPT, MINOS,
and our implementation as failures. We observe that our implementations are competitive with the best
NLP solvers on the set of general nonlinear benchmark problems. As for the quadratic test problems, the
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Figure 7: Number of major/outer iterations vs. fraction of problems solved for two variants of Algorithm 1
on the nonlinear test problem set compared with filterSQP, IPOPT, MINOS, and SNOPT. Both vari-
ants include BQP steps, the variant the variant cauchy does and the variant plain does not include the
SEARCH CAUCHY POINT routine after the LPCC step.

objective values achieved with our implementation are comparable to those of the NLP solvers while the
running time of our implementation plain is comparable to IPOPT but slower than the running times by
filterSQP, MINOS and SNOPT. Again, the variant cauchy is often significantly slower than all other solvers.

We provide detailed results in Appendix B. Specifically, Table 6 provides detailed results of our two imple-
mentations on the quadratic problems. The rows of the table are the test problem instances with the names
introduced above. For each test problem instance, the objective values for plain and cauchy computation
are given as well as the number of outer, inner, and BQP iterations. Table 7 provides the major/outer iter-
ation counts of the NLP solvers filterSQP, IPOPT, MINOS, and SNOPT and our implementations. Table 8
provides the running times of the NLP solvers and our implementations and Table 9 provides the achieved
objective values of the NLP solvers and our implementations.

7 Conclusion and Extension

We have introduced a new sequential LPCC algorithm for bound-constrained MPCCs and shown that it
converges to a B-stationary point. Such an approach can be used as a (nonsmooth) subproblem solver
for general MPCCs. Our approach is shown to be competitive with state-of-the-art approaches for solving
a collection of synthetic benchmark problems. The outer and inner loops of the benchmarked variants
plain and cauchy of Algorithm 1 have been implemented in Python; switching to a different language
may result in some performance improvements. We also believe that a more efficient implementation of
the SEARCH CAUCHY POINT procedure would reduce the current gap in running times between the plain and
cauchy variants.

To test the algorithmic developments in the context of our motivation, we have implemented an aug-
mented Lagrangian method based on [32, Section 17.4] that solves subproblems of the form (3) using Algo-
rithm 1. We test this approach on the nash1 problem from MacMPEC. Compared to an augmented Lagrangian
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Table 1: Different types of complementarity constraints per coordinate pair (x1,i, x2,i): short notation,
description of feasible set, and sketch of the feasible set. The coordinate index is omitted.

Short notation Feasible set Sketch

(a) `1 ≤ x1 ≤ u1 ⊥ x2

`1 ≤ x1 ≤ u1,

x2 ∈


[0,∞) : x1 = `1

{0} : x1 ∈ (`1, u1)

(−∞, 0] : x1 = u1

`1 u1

0

(b) `1 ≤ x1 ⊥ x2 ≤ u2
`1 ≤ x1, x2 ≤ u2,
(x1 − `1)(u2 − x2) ≤ 0

`1

u2

method that treats the complementarities as general nonlinear constraints, we observe a different qualitative
behavior on this test instance. In particular, the penalty parameter exhibits a slower growth over the itera-
tions and a different sequence of iterates is taken. Both methods converge to the same strongly stationary
point. In particular, our approach reaches minimal values for the constraint violation and stationarity mea-
sure after 4 iterations at a penalty parameter value of 103; the method that handles the complementarity
constraint as a general nonlinear constraint reaches minimal values for constraint violation and stationarity
measure after 8 iterations at a penalty parameter value of 107. See Appendix C for more detailed results
and plots.

We note that it is straightforward to extend the developments of the preceding sections to formulations
of complementarity-constrained problems of the form

min
x

f(x)

s.t. `0 ≤ x0 ≤ u0,

`1 ≤ x1 ≤ u1 ⊥ `2 ≤ x2 ≤ u2,

(1)

where for all i ∈ {1, . . . , n1} exactly two of {`1,i, u1,i, `2,i, u2,i} are finite. This format allows more general
mixed-complementarity expressions and mimics the definition of complementarity constraints in AMPL [13].
We tabulate two such types of complementarity formulations and sketch their active sets in Table 1. Other
general forms are easily derived by swapping components between x1 and x2, shifting bounds, or negating
variables. We note that we do not reformulate these complementarity constraints using slack variables,
because such a reformulation would introduce additional linear constraints, making it harder to apply our
trust region algorithm.

The trust region subproblem corresponding to general LPCCs is given by

G-LPCC(x,∆)


minimize

d
∇f(x)T d

subject to: l0 ≤ x0 + d0 ≤ u0

`1 ≤ x1 + d1 ≤ u1 ⊥ `2 ≤ x2 + d2 ≤ u2,
‖d‖∞ ≤ ∆,

where `0, `1, `2, u0, u1, and u2 satisfy the conditions in (1).
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It is a straightforward exercise to show that the trust region subproblem G-LPCC(x,∆) can be solved
as efficiently as (2), again by considering all possible solutions for each index i independently. The con-
vergence results then follow from the sufficient reduction condition, which is unaffected by the form of the
complementarity constraints.
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A Description of Test Problems

Here, we briefly describe the two classes of test problems that we used in our computational experiments.
The problems were generated in Matlab and written out as AMPL model and data files. All problem

instances, as well as the Matlab routine used to generate them are available at https://wiki.mcs.anl.

gov/leyffer/index.php/BndMPCC.

A.1 Quadratic MPCCs

The quadratic test problems are of the form

minimize
x

1

2
xTHx+ gTx

subject to: `0 ≤ x0 ≤ u0,

0 ≤ x1 ⊥ x2 ≥ 0,

(2)
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where x0 ∈ Rn0 , x1, x2 ∈ Rn1 , H is a symmetric sparse matrix with density (n0 + 2n1)2/4 whose entries
are normally distributed, and g is a vector in Rn0+2n1 whose components are uniform random numbers in
the range [−10, 10]. The bounds l0, u0 are uniform random numbers in the range [−10, 10] and [0, 20], and
we ensure that l0,i < u0,i. We round all data to four digits, because we have observed that this makes the
problems harder to solve. In addition, we believe that real-life problems are not typically described in terms
of double precision data.

A.2 General Nonlinear MPCCs

We have also curated a set of nonquadratic test problems of the form (1) by adding bounds and complemen-
tarity constraints to some well-known nonlinear test problems. For each nonlinear function, we created two
sets of instances by varying the indices in the complementarity constraints. In all cases, n = n0 + 2n1, with
n0 = n1 = 20 or n0 = n1 = 40, is used in our experiments. All functions are taken from [1].

fletcher f(x) =

n−1∑
i=1

100
(
xi+1 − xi + 1− x2

i

)2

himmelblau f(x) =

n/2∑
i=1

(
(x2i−1 + x2i − 11)2 + (x2i−1 + x2

2i − 7)2
)

mccormick f(x) =

n−1∑
i=1

(
− 1.5xi + 2.5xi+1 + 1 + (xi − xi+1)2 + sin(xi + xi+1)

)
powell

f(x) =

n/4∑
i=1

(
(x4i−3 + 10x4i−2)2 + 5(x4i−1 − x4i)

2 + (x4i−2 − 2x4i−1)4 + 10(x4i−3 − x4i)
4
)

rosenbrock f(x) =

n−1∑
i=1

(
100(xi+1 − x2

i )
2 + (1− xi)2

)
For each function, we generated two instance classes with different complementarity constraints:

Class 0: 0 ≤ xi ⊥ xn1+i ≥ 0, ∀i ∈ 1, . . . , n1

Class 1: 0 ≤ x2i−1 ⊥ x2i ≥ 0, ∀i ∈ 1, . . . , n1.

For all nonlinear test problem instances, the lower bound l0 on x0 was set to zero in all coordinates. The
upper bound u0 on x0, was set to 108 in all coordinates.
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B Detailed Computational Results

Table 2: Performance for Algorithm 1 with Algorithm 3, and with (cauchy) and without (plain) Algorithm 2
on 40 problem instances. (All first-order optimality measures are less than 10−13.) For each problem instance,
boldface numbers indicate the algorithm that delivered the best (lowest) objective values and (total) iteration
counts.

Prob-Inst.
Obj. val. outer iters total inner iters BQP iters

plain cauchy plain cauchy plain cauchy plain cauchy
20-ind-0 -6459.47 -6459.47 10 8 46 8 28 24
20-ind-1 -7373.48 -7135.19 14 12 28 14 30 26
20-ind-2 -2618.47 -2538.46 6 6 8 6 13 13
20-ind-3 -3115.40 -3115.40 8 7 24 7 18 17
20-ind-4 -6272.72 -6219.23 8 8 12 8 16 18
20-ind-5 -2829.78 -2748.66 6 7 8 7 13 16
20-ind-6 -8374.58 -8374.58 11 10 31 10 22 20
20-ind-7 -1588.59 -1588.59 6 6 20 6 14 13
20-ind-8 -2045.32 -2045.32 8 7 30 7 17 15
20-ind-9 -5622.22 -5622.22 6 6 6 6 13 13
20-psd-0 1147.55 1147.55 2 2 12 4 4 4
20-psd-1 1043.67 1043.67 2 2 16 2 4 4
20-psd-2 1772.49 1772.49 2 2 14 4 4 4
20-psd-3 566.63 566.63 1 1 1 1 2 2
20-psd-4 896.98 898.00 2 2 18 6 4 4
20-psd-5 1507.17 1507.17 2 2 12 2 4 4
20-psd-6 751.21 751.21 4 3 36 3 8 6
20-psd-7 2050.00 2050.00 2 2 16 8 4 4
20-psd-8 1109.89 1109.89 3 2 25 2 7 6
20-psd-9 1090.73 1090.73 2 2 14 4 5 5
40-ind-0 -7999.59 -7997.27 6 7 6 7 12 15
40-ind-1 -17702.74 -17702.74 11 10 45 10 25 22
40-ind-2 -23716.62 -23462.24 8 7 16 7 16 16
40-ind-3 -7710.66 -7589.43 7 6 17 6 14 12
40-ind-4 -13571.15 -17301.43 12 13 46 13 24 26
40-ind-5 -10395.51 -10395.51 9 8 31 8 19 16
40-ind-6 -4889.03 -4890.66 8 7 40 7 18 15
40-ind-7 -17301.07 -17147.55 9 10 19 10 18 21
40-ind-8 -14414.19 -14198.29 8 8 14 10 18 21
40-ind-9 -10073.14 -10073.14 11 8 69 8 22 16
40-psd-0 4009.29 4009.29 3 3 23 7 6 6
40-psd-1 4147.27 4147.27 3 2 29 2 7 4
40-psd-2 3105.85 3116.39 2 2 10 2 5 6
40-psd-3 4944.42 4944.42 3 2 35 2 8 5
40-psd-4 2452.84 2452.84 3 2 25 2 6 6
40-psd-5 2365.25 2365.25 3 2 29 2 7 6
40-psd-6 4035.26 4035.26 2 2 12 4 4 5
40-psd-7 3154.05 3154.05 2 3 12 11 6 6
40-psd-8 2220.87 2220.87 2 2 16 8 4 4
40-psd-9 3657.14 3657.14 3 2 25 2 7 4
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Table 3: Number of major/outer iterations for solving random instances of bound-constrained MPCCs (INF
= Termination at infeasible point, F = Termination with violated optimality tolerance).

Prob-Inst.
Number of major/outer iterations

plain cauchy filterSQP IPOPT MINOS SNOPT
20-ind-0 10 8 6 108 F 7 41
20-ind-1 14 12 4 113 15 31
20-ind-2 6 6 5 79 7 25
20-ind-3 8 7 5 99 5 76
20-ind-4 8 8 6 108 F 20 68
20-ind-5 6 7 6 84 5 30
20-ind-6 11 10 6 91 6 36
20-ind-7 6 6 5 51 6 34
20-ind-8 8 7 6 92 7 33
20-ind-9 6 6 5 91 7 41
20-psd-0 2 2 6 43 F 18 15
20-psd-1 2 2 5 50 6 18
20-psd-2 2 2 5 39 6 15
20-psd-3 1 1 5 40 F 19 18
20-psd-4 2 2 5 43 F 18 16
20-psd-5 2 2 6 38 F 18 17
20-psd-6 4 3 5 42 7 19
20-psd-7 2 2 5 42 16 15
20-psd-8 3 2 5 42 14 19
20-psd-9 2 2 6 48 7 30
40-ind-0 6 7 6 132 7 F 200
40-ind-1 11 10 5 163 6 64
40-ind-2 8 7 6 96 F 15 47
40-ind-3 7 6 6 175 8 54
40-ind-4 12 13 6 178 7 118
40-ind-5 9 8 5 197 F 16 47
40-ind-6 8 7 6 75 F 7 39
40-ind-7 9 10 6 182 F 16 78
40-ind-8 8 8 6 167 F 15 122
40-ind-9 11 8 5 117 7 74
40-psd-0 3 3 6 49 19 27
40-psd-1 3 2 6 59 7 20
40-psd-2 2 2 6 43 24 23
40-psd-3 3 2 5 46 6 22
40-psd-4 3 2 6 54 INF 19
40-psd-5 3 2 6 48 INF 31
40-psd-6 2 2 6 46 20 17
40-psd-7 2 3 6 47 INF 25
40-psd-8 2 2 5 57 INF 21
40-psd-9 3 2 6 37 7 24
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Table 4: Run times (seconds) for Algorithm 1 with Algorithm 3, and with (cauchy) and without (plain)
Algorithm 2 as well as the NLP solvers on 40 problem instances (INF = Termination at infeasible point, F
= Termination with violated optimality tolerance).

Prob-Inst.
Run times (seconds)

plain cauchy filterSQP IPOPT MINOS SNOPT
20-ind-0 0.039 0.098 0.0053 0.066 F 0.01 0.03
20-ind-1 0.046 0.12 0.0027 0.073 0.01 0.02
20-ind-2 0.019 0.059 0.0025 0.040 0.01 0.01
20-ind-3 0.028 0.076 0.0024 0.058 0.01 0.03
20-ind-4 0.024 0.092 0.0030 0.063 F 0.01 0.04
20-ind-5 0.019 0.083 0.0037 0.041 0.01 0.02
20-ind-6 0.039 0.12 0.0036 0.055 0.01 0.03
20-ind-7 0.021 0.059 0.0027 0.028 0.01 0.02
20-ind-8 0.030 0.066 0.0035 0.059 0.01 0.02
20-ind-9 0.018 0.093 0.0032 0.050 0.01 0.03
20-psd-0 0.0093 0.020 0.0030 0.027 F 0.01 0.01
20-psd-1 0.010 0.026 0.0034 0.029 0.01 0.01
20-psd-2 0.0098 0.027 0.0047 0.019 0.01 0.01
20-psd-3 0.0036 0.016 0.0033 0.011 F 0.01 0.01
20-psd-4 0.010 0.021 0.0031 0.024 F 0.03 0.01
20-psd-5 0.0092 0.021 0.0037 0.024 F 0.01 0.01
20-psd-6 0.022 0.041 0.0032 0.024 0.01 0.01
20-psd-7 0.0098 0.026 0.0029 0.022 0.01 0.01
20-psd-8 0.016 0.023 0.0033 0.027 0.02 0.01
20-psd-9 0.010 0.029 0.0044 0.029 0.01 0.02
40-ind-0 0.058 0.24 0.016 0.23 0.03 F 0.67
40-ind-1 0.12 0.38 0.011 0.278 0.02 0.04
40-ind-2 0.082 0.41 0.016 0.18 F 0.03 0.03
40-ind-3 0.075 0.25 0.014 0.32 0.03 0.04
40-ind-4 0.13 0.40 0.016 0.34 0.04 0.08
40-ind-5 0.12 0.35 0.012 0.36 F 0.03 0.03
40-ind-6 0.087 0.27 0.013 0.12 F 0.03 0.03
40-ind-7 0.093 0.39 0.015 0.33 F 0.05 0.05
40-ind-8 0.082 0.34 0.014 0.305 F 0.04 0.08
40-ind-9 0.13 0.38 0.013 0.20 0.03 0.05
40-psd-0 0.038 0.10 0.016 0.069 0.05 0.02
40-psd-1 0.040 0.080 0.016 0.087 0.03 0.02
40-psd-2 0.024 0.081 0.015 0.068 0.18 0.02
40-psd-3 0.043 0.093 0.013 0.059 0.02 0.02
40-psd-4 0.040 0.077 0.017 0.085 INF 0.02
40-psd-5 0.041 0.11 0.019 0.062 INF 0.03
40-psd-6 0.023 0.081 0.014 0.061 0.05 0.01
40-psd-7 0.025 0.13 0.018 0.060 INF 0.02
40-psd-8 0.026 0.11 0.015 0.070 INF 0.02
40-psd-9 0.038 0.086 0.016 0.053 0.03 0.02
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Table 5: Achieved objective values for Algorithm 1 with Algorithm 3, and with (cauchy) and without
(plain) Algorithm 2 as well as the NLP solvers on 40 problem instances (INF = Termination at infeasible
point, F = Termination with violated optimality tolerance). For each problem instance, the lowest achieved
objective values are printed in boldface.

Prob-Inst.
Achieved objective value

plain cauchy filterSQP IPOPT MINOS SNOPT
20-ind-0 -6459.47 -6459.47 -7582.63 -7550.90 F -7582.63 -6459.47
20-ind-1 -7373.48 -7135.19 -7373.48 -7135.19 -7334.84 -7336.22
20-ind-2 -2618.47 -2538.46 -2618.47 -2627.96 -3098.27 -2594.18
20-ind-3 -3115.40 -3115.40 -3038.25 -2953.03 -2946.15 -3115.40
20-ind-4 -6272.72 -6219.23 -8735.77 -7648.74 F -8370.13 -7819.34
20-ind-5 -2829.78 -2748.66 -2623.97 -2108.59 -2131.34 -2116.81
20-ind-6 -8374.58 -8374.58 -8172.41 -8374.58 -8374.58 -8374.58
20-ind-7 -1588.59 -1588.59 -1923.79 -1589.24 -1800.37 -1588.59
20-ind-8 -2045.32 -2045.32 -1969.94 -1970.99 -1963.62 -1969.94
20-ind-9 -5622.22 -5622.22 -3245.52 -5399.08 -3098.11 -5622.22
20-psd-0 1147.55 1147.55 1147.69 1147.55 F 1147.88 1147.55
20-psd-1 1043.67 1043.67 1043.67 1043.67 1043.67 1043.67
20-psd-2 1772.49 1772.49 1772.49 1772.49 1772.49 1772.49
20-psd-3 566.63 566.63 564.89 564.89 F 565.63 564.89
20-psd-4 896.98 898.00 896.98 896.98 F 897.95 896.98
20-psd-5 1507.17 1507.17 1487.97 1487.97 F 1488.45 1489.83
20-psd-6 751.21 751.21 725.97 725.97 725.97 725.97
20-psd-7 2050.00 2050.00 2050.00 2050.00 2050.00 2050.00
20-psd-8 1109.89 1109.89 1109.89 1109.89 1109.89 1109.89
20-psd-9 1090.73 1090.73 1075.17 1075.23 1075.17 1081.99
40-ind-0 -7999.59 -7997.27 -8254.03 -8089.13 -8197.27 F -8137.61
40-ind-1 -17702.74 -17702.74 -17891.48 -17702.74 -17970.51 -17702.74
40-ind-2 -23716.62 -23462.24 -23315.13 -22970.72 F -22994.94 -23117.33
40-ind-3 -7710.66 -7589.43 -7866.74 -7589.43 -7735.33 -7800.41
40-ind-4 -13571.15 -17301.43 -14451.51 -14746.28 -14746.28 -16984.42
40-ind-5 -10395.51 -10395.51 -10668.66 -10668.66 F -10456.41 -10672.87
40-ind-6 -4889.03 -4890.66 -4851.44 -4728.64 F -4767.99 -5073.21
40-ind-7 -17301.07 -17147.55 -20378.55 -17361.50 F -17412.02 -17835.51
40-ind-8 -14414.19 -14198.29 -15355.83 -14339.09 F -13804.13 -14309.26
40-ind-9 -10073.14 -10073.14 -10848.63 -10732.42 -10848.63 -10633.96
40-psd-0 4009.29 4009.29 4002.46 4002.77 4005.18 4009.60
40-psd-1 4147.27 4147.27 4130.51 4130.51 4130.51 4147.27
40-psd-2 3105.85 3116.39 3105.85 3105.85 3106.95 3105.85
40-psd-3 4944.42 4944.42 4941.11 4941.11 4941.11 4941.11
40-psd-4 2452.84 2452.84 2446.08 2450.67 INF 2452.84
40-psd-5 2365.25 2365.25 2364.77 2364.77 INF 2365.25
40-psd-6 4035.26 4035.26 4035.23 4035.23 4035.23 4035.26
40-psd-7 3154.05 3154.05 3152.99 3152.99 INF 3154.05
40-psd-8 2220.87 2220.87 2220.35 2222.91 INF 2220.32
40-psd-9 3657.14 3657.14 3657.14 3657.14 3657.14 3657.88

29



Table 6: Performance for Algorithm 1 with Algorithm 3, and with (cauchy) and without (plain) Algorithm 2
on nonlinear test instances. For each problem instance, the lowest (total) iteration numbers are printed in
boldface.

Prob-Inst.
Obj. val. outer iters total inner iters BQP iters

plain cauchy plain cauchy plain cauchy plain cauchy
20-fletcher0 2246.86 2246.86 6 8 184 366 16 17
20-fletcher1 4046.86 4046.86 14 13 228 129 44 40
20-himmelblau0 826.29 826.29 9 9 93 49 9 9
20-himmelblau1 230.31 230.31 9 8 93 58 9 8
20-mccormick0 58.93 58.93 3 3 21 23 3 2
20-mccormick1 58.93 58.93 4 3 60 23 4 2
20-powell0 9.6× 10−10 7.5× 10−10 17 16 449 364 37 35
20-powell1 3.0× 10−9 1.1× 10−18 15 6 441 12 28 7
20-rosenbrock0 58.61 58.61 3 2 81 40 4 2
20-rosenbrock1 58.61 58.61 3 2 83 40 4 2
40-fletcher0 4246.86 4246.86 9 4 445 72 18 8
40-fletcher1 8046.86 8046.86 18 16 512 222 48 39
40-himmelblau0 1652.58 1652.58 9 9 93 49 10 9
40-himmelblau1 460.63 460.63 9 8 91 58 9 8
40-mccormick0 118.93 118.93 3 3 21 23 3 2
40-mccormick1 118.93 118.93 4 3 60 23 4 2
40-powell0 9.8× 10−9 1.5× 10−9 16 16 396 364 35 35

40-powell1 5.9× 10−9 2.1× 10−18 15 6 441 12 28 7
40-rosenbrock0 118.20 118.20 3 2 81 40 4 2
40-rosenbrock1 118.21 118.21 3 2 83 40 4 2

Table 7: Number of major/outer iterations for solving instances of bound-constrained nonlinear MPCCs
(INF = Termination at infeasible point, F = Termination with violated optimality tolerance).

Prob-Inst.
Number of major/outer iterations

plain cauchy filterSQP IPOPT MINOS SNOPT
20-fletcher-0 6 F 8 49 F 3000 F 7 45
20-fletcher-1 14 13 13 F 3000 F 8 62
20-himmelblau-0 7 7 13 107 7 277
20-himmelblau-1 9 8 13 28 F 5 20
20-mccormick-0 3 3 4 75 4 15
20-mccormick-1 4 3 4 116 5 11
20-powell-0 17 16 15 146 6 29
20-powell-1 15 6 15 60 13 25
20-rosenbrock-0 3 2 13 80 7 107
20-rosenbrock-1 3 2 9 105 INF 86
40-fletcher-0 F 9 4 12 F 3000 F 7 176
40-fletcher-1 F 18 16 13 144 F 9 110
40-himmelblau-0 9 9 11 102 F 3 140
40-himmelblau-1 9 8 13 32 F 3 22
40-mccormick-0 3 3 4 175 5 11
40-mccormick-1 4 3 4 133 5 10
40-powell-0 16 16 15 181 9 37
40-powell-1 15 6 15 49 6 54
40-rosenbrock-0 3 2 13 86 INF 102
40-rosenbrock-1 3 2 9 95 INF 54
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Table 8: Run times (seconds) for Algorithm 1 with Algorithm 3, and with (cauchy) and without (plain)
Algorithm 2 as well as the NLP solvers for solving instances of bound-constrained nonlinear MPCCs (INF
= Termination at infeasible point, F = Termination with violated optimality tolerance).

Prob-Inst.
Run times (seconds)

plain cauchy filterSQP IPOPT MINOS SNOPT
20-fletcher-0 0.061 F 1.107 0.013 0.625 F 0.01 0.05
20-fletcher-1 0.093 0.556 0.0048 0.637 F 0.01 0.06
20-himmelblau-0 0.045 0.251 0.0042 0.032 0.01 0.22
20-himmelblau-1 0.045 0.214 0.0038 0.010 F 0.01 0.03
20-mccormick-0 0.013 0.047 0.0015 0.029 0.00 0.01
20-mccormick-1 0.025 0.045 0.0015 0.040 0.00 0.01
20-powell-0 0.154 1.849 0.0048 0.044 0.01 0.05
20-powell-1 0.144 0.081 0.0052 0.011 0.01 0.03
20-rosenbrock-0 0.028 0.171 0.0057 0.027 0.01 0.12
20-rosenbrock-1 0.029 0.189 0.0050 0.031 INF 0.08
40-fletcher-0 F 0.088 0.323 0.013 0.801 F 0.01 0.26
40-fletcher-1 F 0.324 1.672 0.0091 0.057 F 0.01 0.13
40-himmelblau-0 0.104 0.609 0.010 0.032 F 0.01 0.16
40-himmelblau-1 0.103 0.517 0.010 0.015 F 0.01 0.03
40-mccormick-0 0.033 0.107 0.0025 0.071 0.01 0.01
40-mccormick-1 0.054 0.106 0.0023 0.062 0.01 0.01
40-powell-0 0.266 4.319 0.014 0.079 0.02 0.07
40-powell-1 0.264 0.206 0.015 0.016 0.01 0.12
40-rosenbrock-0 0.052 0.396 0.018 0.032 INF 0.27
40-rosenbrock-1 0.053 0.438 0.015 0.038 INF 0.18

Table 9: Achieved objective values for Algorithm 1 with Algorithm 3, and with (cauchy) and without (plain)
Algorithm 2 as well as the NLP solvers for solving instances of bound-constrained nonlinear MPCCs (INF
= Termination at infeasible point, F = Termination with violated optimality tolerance). For each problem
instance, the lowest achieved objective values are in boldface.

Prob-Inst.
Achieved objective value

plain cauchy filterSQP IPOPT MINOS SNOPT
20-fletcher-0 2246.86 F 2246.86 2246.86 2246.86 F 2246.86 2246.86
20-fletcher-1 4046.86 4046.86 4032.29 3930.27 F 3988.57 3988.57
20-himmelblau-0 826.29 826.29 826.29 1840.62 1840.63 1029.16
20-himmelblau-1 230.31 230.31 826.29 1422.27 F 954.29 1422.27
20-mccormick-0 58.93 58.93 58.93 58.93 58.93 59.92
20-mccormick-1 58.93 58.93 58.93 58.93 58.93 58.93

20-powell-0 9.6·10−10 7.5·10−10 3.2·10−10 8.0·10−8 6.6·10−14 1.3·10−13

20-powell-1 3.0·10−9 1.1·10−18 2.2·10−10 8.7·10−8 4.7·10−15 6.5·10−5

20-rosenbrock-0 58.60 58.60 55.88 58.39 40.06 44.02
20-rosenbrock-1 58.61 58.61 58.34 58.61 INF 58.39
40-fletcher-0 F 4246.86 4246.86 4246.86 4246.86 F 4246.86 4679.15
40-fletcher-1 F 8046.86 8046.86 8032.29 7784.54 F 7988.57 7959.42
40-himmelblau-0 1652.58 1652.58 1652.58 1754.02 F 5118.83 1754.02
40-himmelblau-1 460.63 460.63 1652.58 2844.54 F 4074.33 2844.54
40-mccormick-0 118.93 118.93 118.93 118.93 118.93 118.93
40-mccormick-1 118.93 118.93 118.93 118.93 118.93 118.93

40-powell-0 9.8·10−9 1.5·10−9 6.4·10−10 5.9·10−8 8.4·10−13 4.5·10−10

40-powell-1 5.9·10−9 2.1·10−18 4.4·10−10 1.6·10−7 2.7·10−18 2.1·10−8

40-rosenbrock-0 118.20 118.20 115.48 118.20 INF 113.51
40-rosenbrock-1 118.21 118.21 117.99 118.21 INF 117.99
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Visualization of the augmented Lagrangian method with nonsmooth subproblems, convergence of
the constraints and slacks for the nonsmooth constraints over the iterations ((a)-(d) in top row), feasibility
of the complementarity conditions ((e)-(f) in bottom row), penalty parameter over the iterations ((g) in
bottom row) and Convergence of optimality and feasibility over the iterations ((h) in bottom row).

C Example – Augmented Lagrangian Integration

To demonstrate one approach for integrating our algorithm into an augmented Lagrangian method, we have
implemented the algorithm for bound- and equality-constrained NLPs from [32, Section 17.4] and replaced
the subproblems by (3) as described in Section 1.

We demonstrate the observed behavior of such an approach on the nash1 problem from MacMPEC, which
is stated (including slack variables) below:

min
x0,x1,x2

1

2

(
(x0,1 − x0,3)2 + (x0,2 − x0,4)2

)
s.t. x1,1 = 15− x0,2 − x0,3, x1,2 = 15− x0,1 + x0,4,

x2,1 = 34− 2x0,3 −
8

3
x0,4, x2,2 = 24.25− 1.25x0,3 − 2x0,4,

0 ≤ x1 ⊥ x2 ≥ 0,

0 ≤ x0,1 ≤ 10, 0 ≤ x0,2 ≤ 10.

The augmented Lagrangian method converges to the strongly stationary point (xT0 , x
T
1 , x

T
2 ) = (5, 9, 5, 9, 1, 19, 0, 0)

within four iterations, where the constraints are satisfied to an accuracy of 10−10 in the `2-norm and strong
stationarity (computed as the `∞-norm residual of the gradient of the Lagrangian projected to bounds and
complementarity conditions) is satisfied to an accuracy of 10−10 as well. Tightening these criteria further
results in numerical instabilities in later iterations (multipliers and penalty parameters start diverging while
the obtained point does not move). To help demonstrate the iterations, we illustrate the convergence of
the method in Figure 8. We compare this approach to an augmented Lagrangian method applied to a
problem where the complementarity constraint x1,ix2,i ≤ 0 is penalized in the objective. We use again the
method from [32, Section 17.4] (just adapting the multiplier update for the inequality constraints), and use
L-BFGS-B for the subproblem solves. We provide the same starting point and converge to the same point
although we obtain a slightly worse accuracy of 10−7 and the algorithm takes more iterations. An analogous
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Visualization of the augmented Lagrangian method with complementarity constraints treated as
general nonlinear constraints, convergence of the constraints and slacks for the nonsmooth constraints over
the iterations ((a)-(d) in top row), feasibility of the complementarity conditions ((e)-(f) in bottom row),
penalty parameter over the iterations ((g) in bottom row) and Convergence of optimality and feasibility over
the iterations ((h) in bottom row).

plot of Figure 8 is given in Figure 9. That our proposed method satisfies the complementarity constraints
throughout all iterations is clearly visible.
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