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Abstract

We investigate to which extent the relevant features of (static) Systemic Risk Measures can

be extended to a conditional setting. After providing a general dual representation result,

we analyze in greater detail Conditional Shortfall Systemic Risk Measures. In the particular

case of exponential preferences, we provide explicit formulas that also allow us to show a time

consistency property. Finally, we provide an interpretation of the allocations associated to

Conditional Shortfall Systemic Risk Measures as suitably defined equilibria. Conceptually, the

generalization from static to conditional Systemic Risk Measures can be achieved in a natural

way, even though the proofs become more technical than in the unconditional framework.
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1 Introduction

We provide a natural extension of static Systemic Risk Measures to a dynamic, conditional setting,

and we study related concepts of time consistency and equilibrium.

To put the principal findings of this paper into prospective, we briefly review the literature per-

taining to Systemic Risk Measures. We let X = [X1, . . . , XN ] ∈ (L0(Ω,F ,P))N be a vector of N

P-a.s. finite random variables on the probability space (Ω,F ,P), representing a configuration of

risky (financial) factors at a future time T associated to a system of N financial institutions/banks.

A traditional approach to evaluate the risk of each institution j ∈ {1, . . . , N} is to apply a univariate

monetary Risk Measure ηj to the single financial position Xj, yielding ηj(Xj). Let L be a subspace

of L0(Ω,F ,P). A monetary Risk Measure (see [38]) is a map η : L → R that can be interpreted

as the minimal capital needed to secure a financial position with payoff Z ∈ L, i.e., the minimal

amount m ∈ R that must be added to Z in order to make the resulting (discounted) payoff at time

T acceptable

η(Z) := inf{m ∈ R | Z +m ∈ A}, (1)
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where the acceptance set A ⊆ L0(Ω,F ,P) is assumed to be monotone, i.e., Z ≥ Y ∈ A implies

Z ∈ A. Then η is monotone decreasing and satisfies the cash additivity property

η(Z +m) = η(Z)−m, for all m ∈ R and Z ∈ L. (2)

Under the assumption that the set A is convex (resp. is a convex cone) the maps in (1) are convex

(resp. convex and positively homogeneous) and are called convex (resp. coherent) Risk Measures,

see Artzner et al. (1999) [7], Föllmer and Schied (2002) [37], Frittelli and Rosazza Gianin (2002)

[42]. Once the risk ηj(Xj) of each institution j ∈ {1, ..., N} has been determined, the quantity

ρ(X) :=
N∑

j=1

ηj(Xj)

could be used as a very preliminary and naive assessment of the risk of the entire system.

1.1 Static Systemic Risk Measures

The approach sketched above does not clearly capture systemic risk of an interconnected system,

and the design of more adequate Risk Measures for financial systems is the topic of a vast literature

on systemic risk. Let LF be a vector subspace of (L0(Ω,F ,P))N . For example, we may take as

LF the space (Lp(Ω,F ,P))N , p ∈ [1,∞], of (equivalence classes of) p-integrable (or essentially

bounded if p = ∞) N -dimensional vectors of random variables on (Ω,F ,P). A Systemic Risk

Measure is a map ρ : LF → R that evaluates the risk ρ(X) of the complete system X ∈ LF and

satisfies additionally financially reasonable properties. The subspace LF of (L0(Ω,F ,P))N may

represent possible additional integrability or boundedness requirements.

First aggregate then allocate. In Chen et al. (2013) [18] the authors investigated under which

conditions a Systemic Risk Measure could be written in the form

ρ(X) = η(U(X)) = inf{m ∈ R | U(X) +m ∈ A}, (3)

for some univariate monetary Risk Measure η and some aggregation rule

U : RN → R

that aggregates the N -dimensional risk factors into a univariate risk factor. We also refer to

Kromer et al. [48] (2013) for extension to general probability space.

Such systemic risk might again be interpreted as the minimal cash amount that secures the system

when it is added to the total aggregated system loss U(X), given that U(X) allows for a monetary

loss interpretation. Note, however, that in (3) systemic risk is the minimal capital added to secure

the system after aggregating individual risks.

First allocate then aggregate. A second approach consisted in measuring systemic risk as the

minimal cash that secures the aggregated system by adding the capital into the single institutions

before aggregating their individual risks. This way of measuring systemic risk can be expressed by

ρ(X) := inf





N∑

j=1

mj | m = [m1, . . . ,mN ] ∈ RN , U(X +m) ∈ A



 . (4)
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Here, the amount mj is added to the financial position Xj of institution j ∈ {1, . . . , N} before the

corresponding total loss U(X+m) is computed. Such Systemic Risk Measures were introduced and

analyzed by Biagini et al. (2019) [11]. Feinstein et al. (2017) [32] introduced a similar approach

for set-valued Risk Measures. We refer to Armenti et al. (2018) [6] and Biagini et al. (2020) [12]

for a detailed study of Shortfall Systemic Risk Measures - a relevant subclass of Risk Measures in

the form (4) - and their dual representations. More recently, dual representations of Systemic Risk

Measures based on acceptance sets have been studied in Arduca et al. (2019) [5] for the real-valued

case, in Ararat and Rudloff (2020) [4] in the set-valued case.

Scenario dependent allocations. The “first allocate and then aggregate” approach was then

extended in Biagini et al. (2019) [11] and (2020) [12] by adding to X not merely a vector m =

[m1, . . . ,mN ] ∈ R
N of deterministic amounts but, more generally, a random vector Y ∈ C, for

some given class C. In particular, one main example considered in [12] is given by the class C such

that

C ⊆ CR ∩ LF , where CR :=



Y ∈ (L0(Ω,F ,P))N |

N∑

j=1

Y j ∈ R



 . (5)

Here, the notation
∑N

j=1 Y
j ∈ R means that

∑N
j=1 Y

j is equal to some deterministic constant in R,

even though each single Y j , j = 1, . . . , N , is a random variable. It is possible to model additional

constraints on the allocation Y ∈CR by requiring Y ∈ C ⊆ CR. The set C represents the class of

feasible allocations and it is assumed that RN ⊆ C.

Under these premises the Systemic Risk Measure considered in [12] takes the form

ρ(X) := inf





N∑

j=1

Y j | Y ∈ C, U(X + Y ) ∈ A



 (6)

and can still be interpreted, since C ⊆ CR, as the minimal total cash amount
∑N

j=1 Y
j ∈ R needed

today to secure the system by distributing the cash at the future time T among the components

of the risk vector X . However, while the total capital requirement
∑N

j=1 Y
j is determined today,

contrary to (4) the individual allocation Y j(ω) to institution j does not need to be decided today

but in general depends on the scenario ω realized at time T . As explained in details in [12], this

total cash amount ρ(X) can be composed today through the formula

N∑

j=1

aj(X) = ρ(X), (7)

where each cash amount aj(X) ∈ R can be interpreted as a risk allocation of bank j. The exact

formula for the risk allocation aj(X) will be introduced later in (10).

We remark that by selecting C = R
N in (6), one recovers the deterministic case (4); while when

C = CR no further requirements are imposed on the set of feasible allocations.

Under minimal simple properties on the sets C ⊆ CR, A ⊆L0(Ω,F ,P) and on the aggregator

U : RN → R the Systemic Risk Measures in (6) satisfy the key properties of: (i) decreasing

monotonicity, (ii) convexity, (iii) systemic cash additivity:

ρ(X+c) = ρ(X)−
N∑

j=1

cj for all c ∈ RN and X ∈ LF .
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Shortfall Systemic Risk Measures. A special, relevant case of Systemic Risk Measures of the

form (6) “first allocate and then aggregate, with scenario dependent allocation” is given by the class

of Shortfall Systemic Risk Measures, where the acceptance set has the form A = {Z ∈ L1(Ω,F ,P) |

EP[Z] ≥ B} for a given constant B ∈ R, namely:

ρ(X) := inf





N∑

j=1

Y j | Y ∈ C, EP [U(X + Y )] ≥ B



 . (8)

For the financial motivation behind these choices and for a detailed study of this class of measures,

we refer to [11] and [12] when C ⊆ CR, and to Armenti et al. (2018) [6] for the analysis of such

Risk Measures in the special case C = RN , i.e. when only deterministic allocations are allowed.

The choice of the aggregation functions U : RN → R is also a key ingredient in the construction of

ρ and we refer to Acharia et al. (2017) [1], Adrian and Brunnermeier (2016) [2], Huang and Zhou

(2009) [47], Lehar (2005) [50], Brunnermeier and Cheridito (2019) [15], Biagini et al. (2019) [11],

and (2020) [12] for the many examples of aggregators adopted in literature. In order to obtain

more specific and significant properties of ρ, [12] selected the aggregator

U(x) =

N∑

j=1

uj(x
j), x ∈ RN , (9)

for strictly concave increasing utility functions uj : R → R, for each j = 1, . . . , N .

Systemic Risk Measures can be applied not only to determine the overall risk ρ(X) of the system,

but also to establish the riskiness of each individual financial institution. As explained in [12] it is

possible to determine the risk allocations aj(X) ∈ R of each bank j that satisfy (7) and additional

meaningful properties. It was there shown that, with the choice (9), a fair risk allocation of bank

j is given by:

aj(X) := EQj(X)

[
Y j(X)

]
, j = 1, . . . , N, (10)

where the vector Y (X) is the optimizer in (8) and Q(X) = [Q1(X), ...,QN(X)] is the vector of

probability measures that optimizes the dual problem associated to ρ(X).

In this paper we will adopt the generalization of the aggregation function (9) defined by

U(x) =

N∑

j=1

uj(xj) + Λ(x), x ∈ RN , (11)

where the multivariate aggregator Λ : RN → R is concave and increasing (not necessarily in a

strict sense). Thus the selection Λ = 0 is possible and hence, in this case, (11) reduces to (9). The

term Λ allows additionally for modeling interdependence among agents also from the point of view

of the preferences.

Just to mention a few examples (see also the examples in [23]), any of the following multivariate

utility functions satisfy our assumptions:

U(x) :=

N∑

j=1

uj(x
j) + u




N∑

j=1

βjx
j


 , with βj ≥ 0, for all j,

where u : R → R, for some p > 1, is any one of the following functions:

u(x) := 1− exp (−px) ; u(x) :=





p x
x+1 x ≥ 0

1− |x− 1|p x < 0
; u(x) :=





p arctan(x) x ≥ 0

1− |x− 1|p x < 0
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and u1, . . . , uN are exponential utility functions (uj(x
j) = 1− exp (−αjx

j), αj > 0) for any choice

of u as above. As shown in this paper, a fairness property for the risk allocation of each bank can

be established also in a conditional setting and for the aggregator expressed by (11).

1.2 Conditional Systemic Risk Measures

The temporal setting in the approaches described above is static, meaning that the Risk Measures

do not allow for possible dynamic elements, such as additional information, or the possibility of

risk monitoring in continuous time, or the possibility of intermediate payoffs and valuation. In

order to model the conditional setting we then assume that G ⊆ F is a sub- σ-algebra of F and

we consider Risk Measures ρG with range in L0(Ω,G,P) and interpret ρG (X) as the risk of the

whole system X given the information G.

Conditional Risk Measures have mostly been studied in the framework of univariate dynamic Risk

Measures, where one adjusts the risk measurement in response to the flow of information that

is revealed when time elapses. The conditional coherent case was treated in Riedel (2004) [54].

Detlefsen and Scandolo (2006) [21] was one of the first contributions in the study of conditional

convex Risk Measures and since then a vast literature appeared. Among the early works on the

topic we refer to Barrieu and El Karoui (2005) [8], Tutsch (2008) [60], Weber (2006) [61]. Several

results have been obtained for the case of quasi-convex conditional maps and Risk Measures, see

Frittelli and Maggis (2011) [39], and Frittelli and Maggis (2014) [40], [41]. Conditional counterparts

to classical static results (e.g. dual representation and separation properties) have been obtained

exploiting the theory of L0-modules. Among the many contributions in this stream of research

we mention Filipović at al. (2009) [33] and (2012) [34], Drapeau et al. (2016) [24], Drapeau

et al. (2019) [25], Guo (2010) [44] and the references therein. Overall, the fact that the natural

conditional counterparts hold for static results is not so surprising. The two are intrinsically related

by a Boolean Logic principle. As seen in Carl and Jamneshan (2018) [17], traditional theorems

carry over to the conditional setup assuming that suitable concatenation properties hold. Time

consistency properties have been considered, in the univariate case, in Roorda and Schumacher

(2007) [55], (2013) [56] and (2016) [57].

We refer the reader to [38] Chapter 11 for a good overview on univariate dynamic Risk Measures.

We observe that such a conditional and dynamic framework generated a florilegium of interesting

ramification in different fields, including the relationships with BSDEs (Barrieu and El Karoui

(2005) [8], Rosazza Gianin (2006) [58], Bion-Nadal (2008) [14], Delbaen et al. (2011) [20]) and Non

Linear Expectations (Peng (2004) [52]).

A conditional Systemic Risk Measure is a map ρG : LF → L0(Ω,G,P) that associates to a N -

dimensional risk factor X∈LF ⊆ (L0(Ω,F ,P))N a G-measurable random variable. A conditional

Systemic Risk Measure thus models the risk of a system as new information arises in the course of

time. The study of conditional Systemic (multivariate) Risk Measures was initiated by Hoffmann

et al. (2016) [45] and (2018) [46]. However, as pointed out in [46], in the context of multivariate Risk

Measures, a second interesting and important dimension of conditioning arises, besides dynamic

conditioning: a risk measurement, of the N -dimensional vector X , conditional on some specific

substructure of the system, for example induced by mergers and acquisitions. In this paper we will
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not elaborate on this topic and refer the reader to Follmer (2014) [35] or Follmer and Kluppelberg

(2014) [36] for some details. However, in order to allow both interpretations, a general σ-algebra

G ⊆ F will be considered in the sequel.

The papers [45], [46], as well as Kromer et al. (2019) [49], consider only the conditional extension

of (static) Systemic Risk Measures of the “first aggregate, then allocate” form expressed by (3) and

study related consistency issues. Multivariate/Systemic and set-valued conditional Risk Measures,

and related time consistency aspects, have also been analyzed in Feinstein and Rudloff (2013) [27],

(2015) [29], (2017) [30] and (2021) [31], Tahar and Lepinette (2014) [59], Chen and Hu (2018) [19].

Although apparently similar, our approach in the present work is significantly different. Once we

clarify our setup, we will elaborate more on this after Theorem 5.4 and in Remark 6.4.

Contribution and outline of the paper. Our aim in the present paper is the study of general

conditional convex Systemic Risk Measures and the detailed analysis of Conditional Shortfall Sys-

temic Risk Measures. Our findings show that most properties of Shortfall Systemic Risk Measures

carry over to the conditional setting, even if the proofs become more technical, and that a new vec-

tor type consistency, with respect to sub σ-algebras H ⊆ G ⊆ F , replaces the scalar recursiveness

property of univariate Risk Measures.

More precisely, we define axiomatically a Conditional Systemic Risk Measure (CSRM) on LF as

a map ρG : LF → L0(Ω,G,P) satisfying monotonicity, conditional convexity and the conditional

monetary property (see Definition 3.5). Our first result (Theorem 3.9) shows, under fairly general

assumptions, that: (i) ρG admits the conditional dual representation

ρG (X) = ess sup
Q∈QG




N∑

j=1

EQj

[
−Xj

∣∣G
]
− α(Q)


 , P-a.s., for X ∈ LF , (12)

where QG , defined in Equation (20), is a set of vectors of probability measures and the penalty

α(Q) ∈ L0(Ω,G,P) is defined in Equation (21); (ii) the supremum in (12) is attained.

We then specialize our analysis by considering the Conditional Shortfall Systemic Risk Measure,

associated to multivariate utility functions U of the form (11), defined by

ρG (X) := ess inf





N∑

j=1

Y j | Y ∈ CG , EP [U (X + Y )|G] ≥ B



 , (13)

where B is now a random variable in L∞(Ω,G,P) and the set of G-admissible allocations is

CG ⊆



Y ∈ (L1(Ω,F ,P))N such that

N∑

j=1

Y j ∈ L∞(Ω,G,P)



 .

Thus, with these definitions that mimic those in (5) and in (8), the same motivations, mutatis

mutandis, explained in the unconditional setting remain true in the conditional one.

Observe that even for the trivial selection G = {∅,Ω}, for which conditional Risk Measures reduce

to static ones, this paper extends the results in [12] to the more general aggregator U in the form

(11).
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In Theorem 5.4 we prove the main properties of the Conditional Shortfall Systemic Risk Measure

ρG and, in particular, we show that (i) ρG is continuous from above and from below; (ii) the

essential infimum in (13) is attained by a vector Y (G, X) = [Y 1(G, X), ..., Y N (G, X)] ∈ CG ; (iii) ρG

admits the dual representation described in (33); (iv) the supremum in the dual formulation (33) of

ρG is attained by a vector Q(G, X) = [Q1(G, X), ...,QN (G, X)] of probability measures satisfying:

N∑

j=1

EQj(G,X)

[
Y j(G, X)

∣∣G
]
=

N∑

j=1

Y j(G, X) = ρG (X) P− a.s.

In the same spirit of [12], we will then interpret the quantity

aj(G, X) := EQj(G,X)

[
Y j(G, X)

∣∣G
]

as a fair risk allocation of institution j, given G.

Section 6 is then devoted to the particular case of exponential utility functions uj(x
j) := −e−αjx

j

,

αj > 0, j = 1, ..., N, and with Λ = 0. As in the static case (see [12]), also in the conditional case

it is possible to find the explicit formulas for: (i) the value of the Conditional Shortfall Systemic

Risk Measure ρG (X) ; (ii) the optimizer Y (G, X) in (13) of ρG (X); (iii) the vector Q(G, X) of

probability measures that attains the supremum in the dual formulation. Such formulas provide a

conditional counterpart to the results in [12].

Finally, for sub σ-algebras H ⊆ G ⊆ F we prove a particular consistency property, which does not

have a counterpart in the univariate case. Indeed, a recursive property of the type ρH(−ρG (X)) =

ρH (X) is not even well defined in the systemic setting, as ρG (X) is a random variable but the

argument of ρH is a vector of random variables. However, we explain that consistency properties

may be well defined for: (i) the vector optimizers Y (G, X) of ρG (X) and Y (H,−Y (G, X)) of

ρH (−Y (G, X)); (ii) the fair risk allocations vectors [a(G, X)]j := [EQj(G,X)[Y
j(G, X)|G]]j of ρG (X)

and a(H,−a(G, X)) of ρH (−a(G, X)). The consistency properties are shown in (56) and (58) and

proven in Theorem 6.3 for the entropic Conditional Systemic Risk Measure. In Remark 6.4 we

compare this consistency properties with the ones for the set-valued case from [29] and [19].

In a final Section we elaborate on the concept of a Systemic Optimal Risk Transfer Equilibrium, a

notion introduced in [10]. We defer the interested reader to [10] for the economic motivation and

for the applications of this equilibrium. Based on the results on the Conditional Shortfall Systemic

Risk Measure developed in Section 5, we are able to provide in Theorem 7.3 a direct extension of

this equilibrium in the conditional setting. At the same time, we show that the optimal allocations

for Shortfall Systemic Risk Measures, in both the static and dynamic cases, admit an interpretation

in the sense of a suitably defined equilibrium. By the choice of the trivial G = {∅,Ω} our findings

in this last section cover the static setup, and provide an explicit link between [10] and [12].

2 Static Systemic Risk Measures

We fix a probability space (Ω,F ,P). We take two vector subspaces LF , L
∗ of (L1(Ω,F ,P))N , for

N ≥ 1.

7



Definition 2.1. A functional ρ0 : LF → R will be called a (Static) Convex Systemic Risk

Measure if it satisfies: Monotonicity, that is X ≤ Y componentwise ⇒ ρ0(X) ≥ ρ0(Y ) ,

Convexity, that is 0 ≤ λ ≤ 1 ⇒ ρ0(λX+(1−λ)Y ) ≤ λρ0(X)+ (1−λ)ρ0(Y ) and the Monetary

property (or Cash Additivity), that is X ∈ LF , c ∈ RN ⇒ ρ0(X + c) = ρ0(X)−
∑N

j=1 c
j .

For LF = (L∞(Ω,F ,P))N , we also say that ρ0 : (L∞(Ω,F ,P))N → R is continuous from below

(resp. from above) if for any sequence (Xn)n such that Xn ∈ (L∞(Ω,F ,P))N and Xn ↑n X ∈

(L∞(Ω,F ,P))N (resp. Xn ↓n X ∈ (L∞(Ω,F ,P))N ) we have ρ0(X) = limn ρ0(Xn). If Q =

[Q1, . . . ,QN ] is a vector of probability measures on (Ω,F), we write Q ≪ P for Qj ≪ P ∀ j =

1, . . . , N and use the notation dQ
dP :=

[
dQ1

dP , . . . , dQN

dP

]
. We set

Q :=

{
Q = [Q1, . . . ,QN ]≪ P |

dQ

dP
∈ L∗

}
.

Definition 2.2. We say that a (Static) Convex Systemic Risk Measure ρ0 : LF → R is nicely

representable (with respect to the σ(LF , L
∗) topology) if

ρ0(X) = max
Q∈Q




N∑

j=1

EQj

[
−Xj

]
− α0(Q)


 , X ∈ LF (14)

where

α0(Q) := ρ∗0

(
−
dQ

dP

)
= sup

X∈LF




N∑

j=1

EQj

[
−Xj

]
− ρ0(X)


 , Q ∈ Q. (15)

and ρ∗0 is the convex conjugate of ρ0.

Remark 2.3. For univariate (N = 1) Convex Risk Measures, there are well known sufficient con-

ditions for nice representability, which can be split in two categories: either continuity conditions

(order upper semicontinuity or continuity from below); or structural properties of the vector spaces.

In particular:

1. If LF = L∞(Ω,F ,P), L∗ = L1(Ω,F ,P) and if ρ0 : L∞(Ω,F ,P) → R is continuous from

below then it is nicely representable (see [13] Lemma 7 or [38] Corollary 4.35). This in turns

implies σ(L∞(Ω,F ,P), L1(Ω,F ,P)-lower semicontinuity and continuity from above.

2. If LF = Lp(Ω,F ,P), L∗ = Lq(Ω,F ,P) with p ∈ [1,+∞) and q the conjugate exponent,

or if LF = MΦ(Ω,F ,P) 6= ∅, L∗ = LΦ∗

(Ω,F ,P) (see Section 5.2.2 and Equation (45) for

the definitions), then any univariate Convex Systemic Risk Measure ρ0 : LF → R is nicely

representable, due to the Extended Namioka-Klee Theorem in [13].

We will now extend one dimensional classical results to our systemic setup. Only slight modifi-

cations are needed in the proofs, but we add them in the Appendix, Section A.2 for the sake of

completeness.

Theorem 2.4. i) If ρ0 : (L∞(Ω,F ,P))N → R is a (Static) Convex Systemic Risk Measure

continuous from below then it is nicely representable with L∗ = (L1(Ω,F ,P))N and therefore

it is σ((L∞(F))N , (L1(F))N ) lower semicontinuous and continuous from above. ii) If LF ⊆

(L1(Ω,F ,P))N is a Banach lattice with order continuous topology and if L∗ ⊆ (L1(Ω,F ,P))N

8



is its topological dual space then any (Static) Convex Systemic Risk Measure ρ0 : LF → R is nicely

representable.

Obviously item ii) in the theorem covers the multidimensional versions of the cases described in

item 2 in Remark 2.3.

3 Conditional Systemic Risk Measures

We now present the conditional framework which acts as a counterpart to the static one presented

before. We introduce the conditional versions of usual properties of Systemic Risk Measures

(convexity, additivity), provide the general definition of Conditional Systemic Risk Measure and

related continuity concepts we will use in the following. We also present a general duality result

in Section 3.2.

3.1 Setup and notation

We let G ⊆ F be a sub σ-algebra and recall that LF ⊆ L1(Ω,F ,P). Throughout all the paper we

will often need to change underlying σ-algebras. In order to avoid unnecessarily heavy notation,

we will explicitly specify the one or the other only when some confusion might arise. For example,

L∞(F), L∞(G) stand for L∞(Ω,F ,P) and L∞(Ω,G,P) respectively. Unless differently stated, all

inequalities between random variables hold P-a.s.. If A ∈ F we write Ac for its complement.

Remark 3.1. In the following (MON) and (DOM) are references to Monotone and Dominated

convergence Theorem respectively. (cMON) and (cDOM) refer to their conditional counterparts.

We will use without explicit mention the properties of essential suprema (and essential infima)

collected in Proposition A.5.

Definition 3.2. LF is G-decomposable if (L∞(F))N ⊆ LF and if for any Y ∈ (L∞(G))N and

X ∈ LF the random vector Z defined as Zj = XjY j , j = 1, . . . , N, belongs to LF .

Remark 3.3. Observe that by decomposability whenever A ∈ G and X,Y ∈ LF we also have

X1A+Y 1Ac ∈ LF . We stress the fact that G-decomposability is a very mild requirement, which is

clearly satisfied for example if LF = Lp for some p ∈ [1,+∞] or LF is an Orlicz Space (see Section

5.2.2 and [23] Section 2.1).

Definition 3.4. A subset C ⊆ LF is:

• G−conditionally convex if ∀ λ ∈ L0(G), 0 ≤ λ ≤ 1 and ∀ X,Y ∈ C, λX + (1 − λ)Y ∈ C.

• a G−conditional cone if ∀ 0 ≤ λ ∈ L∞(G) and ∀ X ∈ C, λX ∈ C.

• closed under G− truncation if ∀ Y ∈ C there exists kY ∈ N and a ZY ∈ (L∞(F))N such

that
∑N

j=1 Z
j
Y =

∑N
j=1 Y

j and ∀ k ≥ kY , k ∈ N

Y(k) := Y 1⋂
j
{|Y j |<k} + ZY 1⋃

j
{|Y j |≥k} ∈ C. (16)

We will explicitly specify the σ-algebra (G in the notation above) with respect to which the properties

are required to hold only when some confusion might arise.
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Definition 3.5. A map ρG : LF → L0(G) is a Conditional Systemic Risk Measure (CSRM)

if it satisfies for all X,Y ∈ LF

1. Monotonicity, that is

X ≤ Y componentwise ⇒ ρG (X) ≥ ρG (Y ) (17)

2. Conditional Convexity, that is

ρG (λX + (1− λ)Y ) ≤ λρG (X) + (1− λ)ρG (Y ) for all 0 ≤ λ ≤ 1, λ ∈ L∞(G) (18)

3. Conditional G-Additivity (or the conditional monetary property), that is

ρG (X + Y ) = ρG (X)−
N∑

j=1

Y j if Y ∈ (L∞(G))N ∩ LF (19)

One may easily show, as in the one dimensional case, that a map ρG : (L∞(F))
N → L0(G) satisfying

ρG(0) ∈ L∞(G), monotonicity and the conditional monetary property has range in L∞(G) and

|ρG(X) − ρG(0)| ≤
∑N

j=1

∥∥Xj
∥∥
∞

P-a.s.. For the Conditional Shortfall Systemic Risk Measure

in Section 5 we prove first that ρG(X) ∈ L∞(G) for all X ∈ (L∞(F))N and then show all the

properties of the Risk Measure. When LF 6= (L∞(F))
N
, in order to apply the scalarization

procedure ρ0(·) = EP[ρG(·)] we will need, in Theorem 3.9, the assumption that the range of ρG is

contained in L1(G), and for this we will require that ρG : LF → L0(G) ∩ LF .

Definition 3.6. For the particular choice LF = (L∞(F))N we say that a CSRM ρG : (L∞(F))N →

L0(G) is

• continuous from above if for any sequence (Xn)n ⊆ (L∞(F))N and X ∈ (L∞(F))N such

that for each j = 1, . . . , N Xj
n ↓n Xj we have ρG (Xn) ↑n ρG (X) P−a.s.

• continuous from below if for any sequence (Xn)n ⊆ (L∞(F))N and X ∈ (L∞(F))N such

that for each j = 1, . . . , N Xj
n ↑n Xj we have ρG (Xn) ↓n ρG (X) P−a.s.

• Lebesgue continuous (or that ρG (·) has the Lebesgue property) if for any sequence (Xn)n ⊆

(L∞(F))N and X ∈ (L∞(F))N such that for each j = 1, . . . , N supn
∥∥Xj

n

∥∥
∞

< +∞ and

Xj
n →n Xj P−a.s. we have ρG (Xn) →n ρG (X) P−a.s.

Remark 3.7. Observe that continuity from above and continuity from below of a CSRM ρG yield

the Lebesgue property, by simple computations similar to the univariate case.

3.2 Dual representation of Conditional Systemic Risk Measures

This section follows the lines of the scalarization procedure in [21] and [51] and we defer the proofs

to the Appendix, Section A.3.

Define the following subset of Q:

QG :=

{
Q = [Q1, . . . ,QN ] ≪ P |

dQj

dP
∈ L∗, EP

[
dQj

dP

∣∣∣∣G
]
= 1 ∀ j = 1, . . . , N

}
, (20)
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and set

α(Q) := ess sup
X∈LF ,ρG(X)≤0

N∑

j=1

EQj

[
−Xj

∣∣G
]
, Q ∈QG . (21)

Remark 3.8. Observe that each component Qj of elements in QG satisfies EP

[
dQj

dP

∣∣∣G
]
= 1. In this

case, Qj = P on G and EQj

[
Xj
∣∣G
]
= EP

[
dQj

dP Xj
∣∣∣G
]
is defined not only Qj-a.s. but also P-a.s..

Hence (21) and (22) are well defined P-a.s..

Theorem 3.9. Suppose that LF is G-decomposable and that for any X ∈ LF , Z ∈ L∗ we have
∑N

j=1 X
jZj ∈ L1(F). Let ρG : LF → L0(G) ∩ LF satisfy monotonicity, conditional convexity

and conditional additivity (that is, let ρG be a CSRM) and let ρ0(·) := EP [ρG (·)] : LF → R be

nicely representable (with respect to the σ(LF , L
∗) topology). Then ρG admits the following dual

representation:

ρG (X) = ess sup
Q∈QG




N∑

j=1

EQj

[
−Xj

∣∣G
]
− α(Q)


 , X ∈ LF . (22)

Furthermore, there exists Q̂ ∈ QG such that ρG (X) =
∑N

j=1 EQ̂j

[
−Xj

∣∣G
]
− α(Q̂) and ρG is

continuous from above.

4 Multivariate utility functions

We will now turn our attention to Conditional Systemic Risk Measures of shortfall type, which

consider as eligible for securing the system those terminal time allocations which produce a utility

(for the system) above a given threshold. Before formulating the precise definition of such a risk

measurement regime, we need to specify a model for preferences of the agents in the system. To

this end, we exploit multivariate utility functions. This allows for modeling the fact that a single

agent’s preferences might depend on the actions of the others.

Definition 4.1. We say that U : RN → R is a multivariate utility function if it is strictly

concave and increasing with respect to the partial componentwise order. When N = 1 we will use

the term univariate utility function instead.

The following assumption, as well as Standing Assumption II below, holds true throughout the

paper without further mention.

Standing Assumption I. We will consider multivariate utility functions in the form

U(x) :=

N∑

j=1

uj(x
j) + Λ(x) (23)

where u1, . . . , uj : R → R are univariate utility functions and Λ : RN → R is concave, increasing

with respect to the partial componentwise order and bounded from above. Inspired by Asymptotic

Satiability as defined in Definition 2.13 [16] we will furthermore assume that for every ε > 0 there

exist a point zε ∈ RN and a selection νε ∈ ∂Λ(zε), such that
∑N

j=1 |νε| < ε .

For each j = 1, . . . , N , we also assume the Inada conditions

lim
x→+∞

uj(x)

x
= 0 and lim

x→−∞

uj(x)

x
= +∞
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and that, without loss of generality, uj(0) = 0.

Observe that such a multivariate utility function is split in two components: the sum of single

agent utility functions and a universal part Λ that could be either selected upon agreement by all

the agents or could be imposed by a regulatory institution. As Λ is not necessarily strictly convex

nor strictly increasing, we may choose Λ = 0, which corresponds to the case analyzed in [12] for

the non conditional case.

Remark 4.2. U defined in (23) is a multivariate utility function since it inherits strict concavity

and strict monotonicity from u1, . . . , uN . We may assume without loss of generality that uj(0) =

0 ∀ j = 1, . . . , N , since we can always write

U(x) =

N∑

j=1

(
uj(x

j)− uj(0)
)
+


Λ(x) +

N∑

j=1

uj(0)




Thus, we can always redefine the univariate utilities and the multivariate one, without affecting

other assumptions, in such a way that univariate utilities are null in 0.

We will make use of the following properties, without explicit mention: for every f : R → R

nondecreasing and such that f(0) = 0 it holds that

f(x) = f(x+) + f(−x−), (f(x))+ = f
(
x+
)
.

Moreover, if u1, . . . , uN are all null in 0 (w.l.o.g. by the argument above), for any x1, . . . , xN ≥ 0

N∑

j=1

uj(x
j) ≤ max

j=1,...,N

(
duj

dxj
(0)

) N∑

j=1

xj (24)

where
duj

dxj (0), by an abuse of notation, stands for any choice in ∂uj(0), i.e. in the subdifferential of

uj at the point 0, for each j = 1, . . . , N . Inequality (24) can be showed observing that ∂uj(0) 6= ∅

by concavity and that ∂uj(0) ⊆ [0,+∞) since uj is nondecreasing.

5 Conditional Shortfall Systemic Risk Measures on (L∞(F))N

Once we fixed our model for the preferences in the system, we discuss the set of allocations we admit

for the terminal time exchanges, of scenario dependent nature. This will allow us to formalize the

problem which will be the protagonist of our analysis in the subsequent parts of the paper, and to

state some of its main features in Theorem 5.4.

Given a sub σ-algebra G ⊆ F we introduce the set

DG :=



Y ∈ (L0(Ω,F ,P))N |

N∑

j=1

Y j ∈ L0(Ω,G,P)



 . (25)

We would like to consider as the set of admissible allocations a subset

BG ⊆ DG

satisfying appropriate conditions (see the Standing Assumption II).
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At the same time, we observe that the constraints in (25) can be interpreted saying that the risk

can be shared by all the agents in the single group I := {1, . . . , N}. This can be generalized by

introducing the set of constraints corresponding to a cluster of agents conditional on the information

in G, inspired by an example in [12] for the static case.

Definition 5.1. For h ∈ {1, . . . , N} , let I := (Im)m=1,...,h be some partition of {1, . . . , N}. Then

we set

B
(I)
G

:=

{

Y ∈ (L0(F))N | ∃ d = [d1, . . . , dh] ∈ (L0(G))h |
∑

i∈Im

Y
i = dm for m = 1, . . . , h

}

, (26)

B
(I),∞
G

:=

{

Y ∈ (L0(F))N | ∃ d = [d1, . . . , dh] ∈ (L∞(G))h |
∑

i∈Im

Y
i = dm for m = 1, . . . , h

}

. (27)

We stress that the family B
(I)
G admits two extreme cases:

(i) when we have only one group h = 1 then B
(I)
G = DG is the largest possible class, corresponding

to risk sharing among all agents in the system;

(ii) on the opposite side, the strongest restriction occurs when h = N, i.e., we consider exactly

N groups, and in this case B
(I)
G = (L0(G))N corresponds to no risk sharing. This generalizes

to a dynamic setting the case of deterministic allocations, when no further information is

available (i.e. G is trivial). This case has been treated in the literature, especially in the

set-valued approach we mentioned in the Introduction. See also the comments after Theorem

5.4 below for further details.

Suppose now a partition I has been fixed. We will consider a subset

BG ⊆ B
(I)
G

and note that each component of Y ∈ BG is required to be F -measurable, while the sums
∑

i∈Im
Y i

are G-measurable, and so is consequently
∑N

j=1 Y
j . Thus BG ⊆ B

(I)
G ⊆ DG .

We define

CG := BG ∩ B
(I,∞)
G ∩ (L1(Ω,F ,P))N . (28)

Standing Assumption II. BG is closed in probability, it is conditionally convex and it is a

conditional cone. Moreover BG + (L0(G))N = BG and the set CG is closed under G-truncation.

We finally consider a B ∈ L∞(G) with ess sup (B) < supz∈RN U(z) ≤ +∞.

Example 5.2. It is easily seen that taking BG = B
(I)
G and consequently CG = B

(I,∞)
G ∩(L1(Ω,F ,P))N

Standing Assumption II is satisfied. Closedness under truncation in particular is verified as follows:

for Y ∈ CG , for j ∈ Im we can take Z
j
Y = 1

|Im|

∑
i∈Im

Y i where |Im| is the cardinality of Im. Then

it is easily verified that Y(k) defined as in (16) satisfies for every m = 1, . . . , h

∑

i∈Im

Y i
(k) =

(
∑

i∈Im

Y i

)
1⋂

j{|Y
j |<k} +

(
∑

i∈Im

(
1

|Im|

∑

i∈Im

Y i

))
1⋃

j{|Y
j |≥k} =

∑

i∈Im

Y i ∈ L∞
G

which proves that Y(k) ∈ B
(I),∞
G ∩ (L∞(F))N ⊆ CG and that also

N∑

j=1

Y
j
(k) =

h∑

m=1

∑

i∈Im

Y i
(k) =

h∑

m=1

∑

i∈Im

Y i =

N∑

j=1

Y j .

13



Finally, we point out that we can cover the setup of [12] in our framework (clearly, here we work

with bounded positions and not in an Orlicz setup). Indeed, we may take the trivial partition

I = {{1, . . . , N}} and, to cover the static case, we may choose G = {∅,Ω}. Then we select the set

BG equal to the set C0, defined in [12], which is assumed to be closed under truncation in the sense

of [12] Definition 4.18. Then our assumptions here are satisfied as well.

Definition 5.3. For each X ∈ (L∞(Ω,F ,P))N we set

ρ∞G (X) := ess inf





N∑

j=1

Y j | Y ∈ CG ∩ (L∞(F))N , EP [U (X + Y )|G] ≥ B



 , (29)

ρG (X) := ess inf





N∑

j=1

Y j | Y ∈ CG , EP [U (X + Y )|G] ≥ B



 . (30)

and we call ρG (X) the Conditional Shortfall Systemic Risk Measure associated to the mul-

tivariate utility function U and the set of allocations CG .

The difference between the two definitions only resides on the additional constraint Y ∈ (L∞(F))N

appearing in ρ∞G (X). As stated in our next main result, the two Risk Measures coincide under

our Standing Assumptions I and II. The proof, which is quite lengthy, is split in separate results

in the following Section 5.1.

For every Q = [Q1, . . . ,QN ] ∈ QG defined in (20), we set

α1(Q) := ess sup





N∑

j=1

EQj

[
−Zj

∣∣G
]
| Z ∈ (L∞(F))N and EP [U (Z)|G] ≥ B



 (31)

and we introduce the set

Q
1
G :=




Q ∈ QG

∣∣∣∣∣∣∣∣

α1(Q) ∈ L1(G) and

N∑

j=1

EQj

[
Y j
∣∣G
]
≤

N∑

j=1

Y j , ∀Y ∈ CG ∩ (L∞(F))N





. (32)

As the set Q1
G is included in QG , the observation made in Remark 3.8 on the conditional expectation

applies also here.

Theorem 5.4. Consider the maps ρ∞G and ρG defined in (29) and (30).

1. ρ∞G (X) ∈ L∞(G) for all X ∈ (L∞(F))N and ρ∞G is a Conditional Systemic Risk Measure as

ρ∞G is monotone (17), conditionally convex (18) and conditionally monetary (19). It is also

continuous from above and from below in the sense of Definition 3.6.

2. For every X ∈ (L∞(F))N

ρ∞G (X) = ρG (X)

and the essential infimum in (30) is attained.

3. The CSRM ρ∞G admits the following dual representation:

ρ∞G (X) = ess sup
Q∈Q1

G




N∑

j=1

EQj

[
−Xj

∣∣G
]
− α1(Q)


 , ∀X ∈ (L∞(F))N . (33)
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Furthermore, for every X ∈ (L∞(F))N there exists Q̂ ∈ Q1
G such that

ρ∞G (X) =
N∑

j=1

E
Q̂j

[
−Xj

∣∣G
]
− α1(Q̂) .

As anticipated in the Introduction, several works have focused on the set-valued theory for Sys-

temic Risk Measures, in both the static and dynamic case. A key difference with our approach

is marked by our use of random allocations. In [19], [27], [28], [29], [30], [31], [59] one associates,

to each risky position X ,“the set Rt(X) of eligible portfolios at time t that cover the risk of the

portfolio X”, quoting from [29]. The risk of X is quantified in these works using a set of vectors

which are measurable with respect Ft (the information known at time t). Here, instead, we are

primarily interested in random allocations which happen at terminal time. Taking G = Ft in

Definition 5.3 and Theorem 5.4 to uniform notation, we stress once again that the amount ρFt
(X)

is known once the information of Ft is known, but this is not the case for Y ∈ CFt
since the latter

vectors are F -measurable, hence known only at terminal time. The label Ft in CFt
only points out

that
∑N

j=1 Y
j is Ft-measurable. An evident consequence of this can be found in the dual repre-

sentation result (33): the dual variables are taken in the set Q1
G and satisfy the fairness condition

∑N
j=1 EQj

[
Y j
∣∣Ft

]
≤
∑N

j=1 Y
j , ∀Y ∈ CFt

∩ (L∞(F))N . This would be a triviality taking vectors Y

which are componentwise Ft-measurable, but becomes an additional characteristic feature in our

setup. Additionally, recall the scalarization procedure in [31] for weights [w1, . . . , wN ] which are

Ft-measurable, namely

ρwFt
(X) := ess inf





N∑

j=1

wjY j | Y ∈ Rt(X)



 .

This is meaningful whenever the eligible allocations Y ∈ Rt(X) are Ft-measurable. We point out

that our eligible assets for ρFt
satisfy Y ∈ CFt

, a condition purposely designed for the valuation

Y →
∑N

j=1 Y
j . Using any other type of weights w ∈ L∞(Ft))

N would produce an amount
∑N

j=1 w
jY j which would be in general only F -measurable. This would violate the basic idea

that the (scalar) measurement of risk, given the information in Ft, should only depend on the

information in Ft.

5.1 Proof of Theorem 5.4

In the notation (30), the expression EP [U (X + Y )|G] ≥ B stands for a shortened version of the

following set of conditions: U(X + Y ) ∈ L1(Ω,F ,P) and EP [U (X + Y )|G], which is well defined,

is not P−a.s smaller than the random variable B. Recall also that for any random variable W

taking values in [0,+∞] EP [W |G] is always well defined via the Radon-Nikodym Theorem (see [9],

Theorems 17.10-11), and in this case the notation EP [W |G] will be used with this meaning.

For technical reasons we first study the functional ρG defined in (30). We will first prove in Claim

5.5 that the range of ρG is L∞(G) and then we will show all the properties in Theorem 5.4 Item 1,

made exception for continuity from above and below, and existence of an allocation for ρG . We

will then prove that ρG ≡ ρ∞G on (L∞(F))N (Claim 5.6), which yields Theorem 5.4 Item 2, and

move on proving continuity from below and from above (Claim 5.7). Finally, in Claim 5.8 we prove

Theorem 5.4 Item 3.
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Claim 5.5. The functional ρG on (L∞(F))N takes values in L∞(G), the infimum is attained by a

Ŷ ∈ CG, ρG is monotone (17) conditionally convex (18) and conditionally monetary (19).

Proof.

STEP 1: ρG takes values in L∞(G).

First we see that the set over which we take the essential infimum defining ρG is nonempty. We have

by monotonicity (for m an N -dimensional deterministic vector) EP [U (X +m)|G] ≥ U(−‖X‖∞ +

m) where ‖X‖∞ stands for the vector [
∥∥X1

∥∥
∞

, . . . ,
∥∥XN

∥∥
∞
] ∈ RN . Since by assumption

sup
m∈RN

U(−‖X‖∞ +m) = sup
z∈RN

U(z) > ess sup (B),

we have consequently EP [U (X +m)|G] ≥ B, for some m ∈ RN .

We claim that the set over which we take the essential infimum is downward directed. To show

this, suppose that Z, Y ∈ (L1(F))N are such that
∑N

j=1 Y
j ,
∑N

j=1 Z
j ∈ L∞(G) and

EP [U (X + Y )|G] ≥ B, EP [U (X + Z)|G] ≥ B

Define the set A := {
∑N

j=1 Y
j ≤

∑N
j=1 Z

j} ∈ G and the random variable W := 1AY + 1AcZ ∈

(L1(F))N ∩BG (observe that it belongs to BG since BG is conditionally convex). It is easy to see

that
∑N

j=1 W
j = 1A

∑N
j=1 Y

j + 1Ac

∑N
j=1 Z

j = min
(∑N

j=1 Y
j ,
∑N

j=1 Z
j
)
∈ L∞(G), so that the

set is downward directed. Furthermore

EP [U (X +W )|G] = EP [U (X +W )|G] 1A + EP [U (X +W )|G] 1Ac =

= EP [U (X + Y )|G] 1A + EP [U (X + Z)|G] 1Ac ≥ B1A +B1Ac = B

which concludes the proof of our claim.

Since the set is downward directed, there exists a minimizing sequence (Yn)n ⊆ CG such that
∑N

j=1 Y
j
n ↓n ρG (X) and, having ρG (X) ≤

∑N
j=1 Y

j
1 ∈ L∞, we conclude that ‖(ρG (X))+‖∞ < +∞.

Suppose now by contradiction that for a sequence kn ↑ +∞ we had P (An) > 0 for all n, where

An := {ρG (X) ≤ −kn} ∈ G. Since for all M ∈ N we have −‖B‖∞ ≤ B ≤ EP [U(X + YM )|G] we

deduce:

−‖B‖∞ P (An) ≤ EP [B1An
] ≤ EP [EP [U(X + YM )|G] 1An

] = EP [U (X + YM ) 1An
]

Lemma A.6.(ii)
≤

N∑

j=1

EP

[(
a
(
Xj + Y

j
M

)
+ b
)
1An

]

≤


a

N∑

j=1

∥∥Xj
∥∥
∞

+ b


P (An) + aEP




N∑

j=1

Y
j
M1An


 , with a > 0.

Consequently

−‖B‖∞ P (An) ≤


a

N∑

j=1

∥∥Xj
∥∥
∞

+ b


P (An) + a lim

M
EP




N∑

j=1

Y
j
M1An




(MON)
=


a

N∑

j=1

∥∥Xj
∥∥
∞

+ b


P (An) + aEP [ρG (X) 1An

]

≤


a

N∑

j=1

∥∥Xj
∥∥
∞

+ b


P (An)− knaP (An) .
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Dividing by P (An) and sending n to infinity we would get a contradiction. This proves that

‖(ρG (X))−‖∞ < +∞. Recalling that we already proved ‖(ρG (X))+‖∞ < +∞, we obtain ρG (X) ∈

L∞(G).

STEP 2: the infimum in the definition of ρG is attained.

For the minimizing sequence (Yn)n, from the budget constraint EP [U (X + Y )|G] ≥ B and the

fact that
∑N

j=1 EP

[
Xj + Y j

n

]
is bounded in n because of what we just proved (L∞ ∋ ρG (X) ≤

∑N
j=1 Y

j
n ≤

∑N
j=1 Y

j
1 ∈ L∞) , we obtain that the sequence (Yn)n is bounded in (L1(F))N using

Lemma A.7.

Applying Corollary A.2 we can find a subsequence and a Ŷ ∈ (L1(F))N such that

WK :=
1

K

K∑

k=1

Ynk

P−a.s.
−−−−→
H→∞

Ŷ .

Furthermore
∑N

j=1 Y
j ∈ L1(G), WK ∈ BG by convexity of the set and Ŷ ∈ BG since this set is

closed in probability. Additionally we have that

N∑

j=1

Ŷ j = lim
K

1

K

K∑

k=1

N∑

j=1

Y j
nk

Rem.A.4
= lim

k

N∑

j=1

Y j
nk

= ρG (X) ∈ L∞(G) (34)

which yields that also
∑N

j=1 Ŷ
j ∈ L∞(G). To prove that Ŷ ∈ CG we need to show that

∑
i∈Im

Ŷ i ∈

L∞(G) for every m = 1, . . . , h. This will be a consequence of Proposition A.9, once we show that

EP

[
U
(
X + Ŷ

)∣∣∣G
]
≥ B. Hence we now focus on the latter inequality. We observe now that setting

ZK := X + 1
K

∑K
k=1 Ynk

and Z = X + Ŷ Items 2 and 3 in Lemma A.8 are satisfied. Moreover if

we take
N∑

j=1

EP

[
Z

j
K

∣∣∣G
]
=

N∑

j=1

EP

[
Xj
∣∣G
]
+

1

K

K∑

k=1

N∑

j=1

Y j
nk

we see that the first term in the sum in RHS does not depend on K, while the Césaro means almost

surely converge. Hence also Item 1 in Lemma A.8 is satisfied, and we get that EP [U (Z)|G] =

EP

[
U
(
X + Ŷ

)∣∣∣G
]
≥ B. As mentioned above, we now get also Ŷ ∈ CG . We finally recall from

(34) that
∑N

j=1 Ŷ
j = ρG (X) so that the infimum is in fact attained at Ŷ , which satisfies the

constraints for ρG (X).

STEP 3: ρG satisfies equations (17), (18), (19).

These have to be checked directly using definition of ρG (·). We start with (17): if X ≤ Z

componentwise a.s. , for all Y ∈ (L1(P))N such that EP [U (X + Y )|G] ≥ B we have automatically

(by monotonicity of U) that EP [U (Z + Y )|G] ≥ EP [U (X + Y )|G] ≥ B so that




N∑

j=1

Y j | Y ∈ CG ,EP [U (X + Y )|G] ≥ B



 ⊆





N∑

j=1

Y j | Y ∈ CG ,EP [U (Z + Y )|G] ≥ B





and taking essential infima equation (17) follows.

As to (18), fix 0 ≤ λ ≤ 1, λ ∈ L∞(G) and X,Z ∈ (L∞(F))N . For Y,W ∈ CG such that

EP [U (X + Y )|G] ≥ B, EP [U (Z +W )|G] ≥ B we then have by concavity of utilities and G-

measurability of λ

EP [U (λX + (1− λ)Z + λY + (1− λ)W )|G] = EP [U (λ(X + Y ) + (1− λ)(Z +W ))|G]
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≥ λEP [U (X + Y )|G] + (1− λ)EP [U (Z +W )|G] ≥ λB + (1− λ)B = B .

Moreover obviously λY + (1− λ)W ∈ CG , so that by definition

ρG (λX + (1− λ)Z) ≤ λ

N∑

j=1

Y j + (1− λ)

N∑

j=1

W j .

Taking essential infima in RHS over Y and W yields equation (18).

Finally we come to (19). For Y ∈ (L∞(G))N the assumption BG + (L0(G))N = BG implies that

W := Z + Y ∈ CG for all Z ∈ CG . Hence

ρG (X + Y ) = ess inf





N∑

j=1

Zj | Z ∈ CG , EP [U(X + Y + Z)|G] ≥ B





= ess inf





N∑

j=1

(W j − Y j) | W ∈ CG , EP [U(X +W )|G] ≥ B



 = ρG (X)−

N∑

j=1

Y j .

Claim 5.6. We have that ρ∞G (X) = ρG (X) for every X ∈ (L∞(F))N .

Proof. It is clear that

ρG (X) ≤ ess inf





N∑

j=1

Y j | Y ∈ CG ∩ (L∞(F))N ,EP [U (X + Y )|G] ≥ B





since the infimum on RHS is taken over a smaller set.

We prove now the reverse inequality: by Claim 5.5 an allocation exists, call it Y ∈ CG . Use

closedness under truncation to see that for k ≥ kY Y(k) ∈ CG where Y(k), defined as in (16), satisfies

Y(k) →k Y a.s.. We want to show that the convergence U
(
X + Y(k) + ε1

)
→k U (X + Y + ε1) is

dominated, where 1 is the N−components vector with all components equal to 1. To see this

observe that |U (X + Y + ε1)| and |U (X + ZY + ε1)| are integrable:

L1(F) ∋ a




N∑

j=1

(Xj + Y j)


+ aNε+ b

Lemma.A.6.(ii)
≥ U (X + Y + ε1) ≥ U(X + Y ) ∈ L1(F)

while integrability of |U (X + ZY + ε1)| is trivial by boundedness of the vectors X,ZY and conti-

nuity of U . Moreover

∣∣U
(
X + Y(k) + ε1

)∣∣ =
∣∣∣U (X + Y + ε1) 1⋂

j{|Y
j |<k} + U (X + ZY + ε1) 1⋃

j{|Y
j |≥k}

∣∣∣

≤ max (|U (X + Y + ε1)| , |U (X + ZY + ε1)|)

≤ |U (X + Y + ε1)|+ |U (X + ZY + ε1)| .

Applying (cDOM) we then get that for all ε > 0

EP

[
U
(
X + Y(k) + ε1

)∣∣G
]
→k EP [U (X + Y + ε1)|G] > B .

From the last expression we infer that

P


ΓK :=

⋂

k≥K

{
EP

[
U
(
X + Y(k) + ε1

)∣∣G
]
≥ B

}

 ↑K 1 . (35)
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Fix K and take αK ∈ RN with

U
(
−‖X‖∞ −

∥∥Y(K)

∥∥
∞

+ ε1+ αK

)
≥ ess sup (B)

where again ‖X‖∞ denotes the vector [
∥∥X1

∥∥
∞

, . . . ,
∥∥XN

∥∥
∞
] and similar notation is used for∥∥Y(K)

∥∥
∞
. Notice that such an αK exists since supz∈RN U(z) > ess sup (B). Define ZK by Z

j
K :=

Y
j
(K)+ε+α

j
K1Γc

K
, j = 1, . . . , N and observe that since ΓK ∈ G, ZK ∈ CG∩(L∞(F))

N
. Furthermore

EP [U (X + ZK)|G] = EP [U (X + ZK)|G] 1ΓK
+ EP [U (X + ZK)|G] 1Γc

K

and

EP [U (X + ZK)|G] 1ΓK
= EP

[
U
(
X + Y(K) + ε1

)∣∣G
]
1ΓK

≥ B1ΓK

by definition of ΓK and the fact that 1ΓK
can be moved inside conditional expectation.

Moreover by definition of αK

EP [U (X + ZK)|G] 1Γc
K
= EP

[
U
(
X + Y(K) + ε1+ αK

)∣∣G
]
1Γc

K
≥ B1Γc

K
.

Hence we have that ZK ∈ CG ∩ (L∞(F))
N
, EP [U (X + ZK)|G] ≥ B, and we conclude that

ρ∞G (X) ≤
N∑

j=1

Z
j
K . (36)

Now, by (35), for almost all ω ∈ Ω there exists a K(ω) ∈ N such that ω ∈ ΓK for all K ≥ K(ω),

which implies for all j = 1, . . . , N Z
j
K(ω) = Y

j
(K)(ω) + ε ∀K ≥ K(ω).

By definition Y(K) →K Y a.s., so that by (36) we can write for almost all ω ∈ Ω:

ρ∞G (X) ≤ lim inf
K→+∞

N∑

j=1

Z
j
K = lim inf

K→+∞




N∑

j=1

(
Y

j
(K) + ε

)



= lim
K→+∞

N∑

j=1

Y
j
(K) +Nε = ρG (X) +Nε .

Hence ρ∞G (X) ≤ ρG (X) P-a.s., which implies ρ∞G (X) = ρG (X) P-a.s..

Claim 5.7. The CSRM ρG on (L∞(F))N is continuous from below and from above, in the sense

of Definition 3.6.

Proof. Consider a sequence Xn ↑n X and take any Y ∈ CG ∩ (L∞)N such that EP [U (X + Y )|G] ≥

B. Then for any ε > 0

B < EP [U (X + Y + ε1)|G]
(cMON)

= lim
n

EP [U (Xn + Y + ε1)|G]

Hence the sequence (AK)K , where

AK := {EP [U (Xn + Y + ε1)|G] ≥ B, ∀n ≥ K}

satisfies P(AK) ↑K 1. Take αK ∈ RN such that

U(−‖Xn‖∞ − ‖Y ‖∞ + ε1+ αK) ≥ ess sup (B) ∀n ≥ K
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where the notation for ‖Xn‖∞ and ‖Y ‖∞ is the same as in the proof of Claim 5.6. Define ZK ∈

(L∞(F))N by Z
j
K := Y j + ε1 + αK1Ac

K
for j = 1, . . . , N . Since AK ∈ G we have Z ∈ CG .

Furthermore for all n ≥ K

EP [U (Xn + ZK)|G] = EP [U (Xn + ZK)|G] 1AK
+ EP [U (Xn + ZK)|G] 1Ac

K

≥ B1AK
+ ess sup (B)1Ac

K
≥ B .

Hence by definition of ρG (Xn)

ρG (Xn) ≤
N∑

j=1

Z
j
K =

N∑

j=1

Y j +Nε+
N∑

j=1

α
j
K1Ac

K
,

lim
n

ρG (Xn) ≤ lim inf
K




N∑

j=1

Y j +Nε+
N∑

j=1

α
j
K1Ac

K


 .

Recall now that P(AK) →K 1 and AK ⊆ AK+1. Hence almost all ω ∈ Ω are such that 1Ac
K
(ω) = 0

definitely in K. As a consequence

lim inf
K




N∑

j=1

Y j +Nε+

N∑

j=1

α
j
K1Ac

K


 = lim inf

K




N∑

j=1

Y j +Nε


 =

N∑

j=1

Y j +Nε .

It follows that

lim
n

ρG (Xn) ≤
N∑

j=1

Y j P− a.s.

and this holds for all Y ∈ CG such that EP [U (X + Y )|G] ≥ B. Taking essential infimum on RHS

for Y ∈ CG ∩ (L∞(F))N , EP [U (X + Y )|G] ≥ B by Claim 5.6 we obtain

lim
n

ρG (Xn) ≤ ρ∞G (X) = ρG (X)
(17)

≤ lim
n

ρG (Xn) ,

which shows continuity from below. By monotone convergence, the continuity from below of ρG

yields the continuity from below of ρ0(·) := EP [ρG (·)] : (L∞(F))N → R so that Theorem 2.4 item

i) shows that ρ0 is nicely representable. The continuity from above then follows from Theorem

3.9.

We now study the dual representation of the CSRM ρ∞G . Notice that we just showed that Theorem

3.9 applies and so it yields the dual representation (22) for ρ∞G , using LF := (L∞(F))N and

L∗ := (L1(F))N . However, in view of Claim 5.6, we can apply an argument inspired by [43]

Proposition 3.6 to get a more specific dual representation. Observe that the set QG defined in (20)

takes the form

QG :=

{
Q ≪ P :

dQ

dP
∈ (L1(F))N , EP

[
dQj

dP

∣∣∣∣G
]
= 1 ∀ j = 1, . . . , N

}
(37)

and let

ρ∗G(Y ) := ess sup
X∈LF





N∑

j=1

EP

[
XjY j

∣∣G
]
− ρG (X)



 , Y ∈ L∗. (38)

Claim 5.8. Let ρG : (L∞(F))N → L∞(G) be defined by (29) and take α1(·) as in (31). Then the

following are equivalent for fixed p ∈ {0, 1} and Q ∈ QG :
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1. ρ∗G
(
−dQ

dP

)
∈ Lp(G).

2. α(Q) ∈ Lp(G), where α is defined in (21) for LF = (L∞(F))N and L∗ = (L1(F))N .

3. α1(Q) ∈ Lp(G) and
∑N

j=1 EQj

[
Y j |G

]
≤
∑N

j=1 Y
j for all Y ∈ CG ∩ (L∞(F))N .

Moreover ρG admits the dual representation in (33) and, for every X ∈ (L∞(F))N , there exists

Q̂ ∈ Q1
G such that ρG (X) =

∑N
j=1 EQ̂j

[
−Xj

∣∣G
]
− α1(Q̂).

Proof. Recall that in this specific setup we have by Claim 5.5 that ρG ∈ L∞(G) and that ρG = ρ∞G

on (L∞(F))N by Claim 5.6. We argued before that Theorem 3.9 applies here. From its proof,

more precisely from STEP 5, selecting the setup LF = (L∞(F))N and L∗ = (L1(F))N we have:

α(Q) = ρ∗G

(
−
dQ

dP

)
(39)

for all Q ∈ QG . Moreover we have:

ρ∗G

(
−
dQ

dP

)
= ess sup

X∈(L∞(F))N




N∑

j=1

EQj

[
−Xj

∣∣G
]
− ρG (X)




(29)
= ess sup

X∈(L∞(F))N




N∑

j=1

EQj

[
−Xj

∣∣G
]
− ess inf

Y ∈CG∩(L∞(F))N

EP[U(X+Y )|G]≥B




N∑

j=1

Y j







= ess sup
X,Y ∈(L∞(F))N

Y ∈CG,EP[U(X+Y )|G]≥B




N∑

j=1

EQj

[
−Xj

∣∣G
]
−

N∑

j=1

Y j




= ess sup
Z,Y ∈(L∞(F))N ,

Y ∈CG,EP[U(Z)|G]≥B




N∑

j=1

EQj

[
−(Zj − Y j)

∣∣G
]
−

N∑

j=1

Y j


 .

We conclude that

α(Q) = ess sup
Z∈(L∞(F))N ,
EP[U(Z)|G]≥B




N∑

j=1

EQj

[
−Zj

∣∣G
]

+ ess sup

Y ∈CG∩(L∞(F))N




N∑

j=1

EQj

[
Y j
∣∣G
]
−

N∑

j=1

Y j


 . (40)

The equivalence among Items 1-2-3 is now clear, once we observe that for every Q ∈ QG such that

α(Q) ∈ L0(G) we must have
∑N

j=1 EQj

[
Y j
∣∣G
]
−
∑N

j=1 Y
j ≤ 0 P−a.s. since CG ∩ (L∞(F))N is a

conditional cone.

All the claims then follow from Theorem 3.9, observing that for the optimum Q̂ provided there we

must have α(Q) ∈ L1(G) (since ρG (X) ∈ L∞(G)).

Remark 5.9. We stress the fact that by Claim 5.8 we have for every Y ∈ CG ∩ (L∞(F))N

N∑

j=1

EQj

[
Y j
∣∣G
]
≤

N∑

j=1

Y j P− a.s. for all Q ∈ QG such that α(Q) ∈ L0(G) . (41)
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5.2 Uniqueness and integrability of optima of ρG

In this Section, under suitable additional assumptions on U we prove uniqueness for primal optimal

allocations of ρG . We also provide a fairness condition in the form (41) for such optima Ŷ and

measures in Q1
G (notice that, a priori, at the moment we do not even know if Ŷ is integrable under

the various measures Q ∈ Q1
G).

5.2.1 Uniqueness

Assumption 5.10. The function U : RN → R satisfies:

X ∈ (L1(Ω,F , P))N , (U(X))− ∈ L
1(Ω,F , P) ⇒ ∃ δ > 0 s.t. (U(X−ε1))− ∈ L

1(Ω,F ,P)∀ 0 ≤ ε < δ . (42)

Observe that for example taking α1, . . . , αN , β1, . . . , βN > 0 the function

U(x) :=

N∑

j=1

(1− exp (−αjxj)) +


1− exp


−

N∑

j=1

βjxj






satisfies Assumption 5.10.

Proposition 5.11. Under Assumption 5.10 ρG (X) defined in (30) admits a unique optimum in

CG for every X ∈ (L∞(F))N .

Proof. Suppose Ŷ1 6= Ŷ2 were two optima. Then clearly so is Ŷλ = λŶ1 + (1 − λ)Ŷ2 for λ ∈

R, 0 < λ < 1 by concavity of U . At the same time, we have that Γ := {EP

[
U(X + Ŷλ)

∣∣∣G
]
>

λEP

[
U(X + Ŷ1)

∣∣∣G
]
+ (1− λ)EP

[
U(X + Ŷ2)

∣∣∣G
]
} ∈ G satisfies P(Γ) = 1 by strict concavity: if this

were not the case, from concavity and

EP

[
U(X + Ŷλ)1Γc

]
= λEP

[
U(X + Ŷ1)1Γc

]
+ (1 − λ)EP

[
U(X + Ŷ2)1Γc

]

we would get that on Γc, which has positive probability, U(X+Ŷλ) = λU(X+Ŷ1)+(1−λ)U(X+Ŷ2)

which contradicts strict concavity of U .

Fix now for some ε > 0. Recall that we showed

EP

[
U(X + Ŷλ)

∣∣∣G
]
> λEP

[
U(X + Ŷ1)

∣∣∣G
]
+ (1− λ)EP

[
U(X + Ŷ2)

∣∣∣G
]
≥ B P− a.s..

By monotonicity of U and Assumption 5.10 we have the convergence

EP

[
U

(
X + Ŷλ −

1

H
1

)∣∣∣∣G
]
↑H EP

[
U(X + Ŷλ)

∣∣∣G
]
> B P− a.s.

where 1 := [1, . . . , 1] ∈ RN . By Egorov Theorem A.3, there exists a Ξ ∈ G, with P(Ξ) > 0, such

that on Ξ both the following conditions hold: EP

[
U
(
X + Ŷλ

)∣∣∣G
]
≥ B + ε and the convergence

EP

[
U

(
X + Ŷλ −

1

H
1

)∣∣∣∣G
]
↑H EP

[
U(X + Ŷλ)

∣∣∣G
]

is uniform. Hence, definitely in H ∈ N,

EP

[
U

(
X + Ŷλ −

1

H
1Ξ1

)∣∣∣∣G
]
≥ B .

At the same time, Ŷλ − 1
H 1Ξ1 ∈ CG and by definition ρG (X) 1Ξ ≤

(∑N
j=1 Ŷ

j
λ −N 1

H

)
1Ξ <

(∑N
j=1 Ŷ

j
λ

)
1Ξ which contradicts the optimality of Ŷ , as P(Ξ) > 0.
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5.2.2 Integrability

We now wish to establish a conditional fairness property for any optimum Ŷ from Theorem 5.4,

namely we aim to prove (see Proposition 5.13):
∑N

j=1 EQj

[
Ŷ j
∣∣∣G
]
≤
∑N

j=1 Ŷ
j for any Q ∈ Q1

G

(defined in (32)). Notice that this is not automatic from the fairness condition (41) coming from the

definition of Q ∈ Q1
G , since we do not know in general if Ŷ ∈ CG ∩ (L∞(F))N (we only know, from

Theorem 5.4, that Ŷ ∈ CG). We point out that Proposition 5.13 will be also needed in the proof

of Theorem 7.3. In order to show such a fairness property, we need to establish an integrability

result for such a Ŷ , and the theory of multivariate Orlicz spaces will come in handy for this

purpose. To each univariate Young function φ : R+ → R we can associate its conjugate φ∗(y) :=

supx∈R (xy − φ(x)). As in [53], we can associate to both φ and φ∗ the Orlicz spaces and Hearts

Lφ,Mφ, Lφ∗

,Mφ∗

. Univariate Young functions naturally arise from univariate utility functions u,

setting φ(x) := u(0)− u(−x), x ≥ 0. We now recall from [23] how to produce multivariate Orlicz

functions and spaces from multivariate utility functions, inspired by [6], Appendix B. Indeed, for

a multivariate utility function U specified in (23), we define the function Φ on (R+)
N by

Φ(y) := U(0)− U(−y) . (43)

and

φj(z) := uj(0)− uj(−z), z ∈ R+ (44)

as the (univariate) functions associated to the univariate utilities u1, . . . , uN . Note that Φ defined

in (43) is a multivariate Orlicz function ([23] Lemma 3.5.(i) observing that U satisfying Standing

Assumption I in this paper is well controlled according to [23] Definition 3.4, as shown in [23]

Proposition 7.1). As such, Φ in (43) generates a multivariate Orlicz space and a multivariate

Orlicz Heart:

LΦ :=
{
X ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
| ∃λ ∈ (0,+∞) s.t. EP [Φ(λ |X |)] < +∞

}
,

MΦ :=
{
X ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
| ∀λ ∈ (0,+∞) EP [Φ(λ |X |)] < +∞

}
. (45)

Moreover, φ1, . . . , φN are univariate Orlicz functions.

The Köthe dual KΦ of the space LΦ is defined as

KΦ :=



Z ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
|

N∑

j=1

XjZj ∈ L1(Ω,F ,P) ∀X ∈ LΦ



 . (46)

Section 2.1 in [23] collects some useful properties on multivariate Orlicz spaces, Orlicz Hearts and

Köthe duals.

Assumption 5.12. LΦ = Lφ1 × · · · × LφN .

Assumption 5.12 is a request on the utility functions we allow for. It can be rephrased as: if for

X ∈ (L0 ((Ω,F ,P); [−∞,+∞]))N there exist λ1, . . . , λN > 0 such that EP

[
uj(−λj

∣∣Xj
∣∣)
]
> −∞,

then there exists α > 0 such that EP [Λ(−α |X |)] > −∞. This request is rather weak and there are

many examples of choices of U and Λ that guarantee this condition is met, see [23] Proposition

7.3. Note however that this is not a request on the topological spaces, but just an integrability

requirement, and it is automatically satisfied if Λ = 0.
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Proposition 5.13. Suppose Assumption 5.12 is fulfilled. Then for any Q ∈ Q1
G (defined in (32)),

any optimum Ŷ from Theorem 5.4 satisfies Ŷ ∈ L1((Ω,F ,Q1)× · · · × L1((Ω,F ,QN) and

N∑

j=1

EQj

[
Ŷ j
∣∣∣G
]
≤

N∑

j=1

Ŷ j .

Proof. Postponed to Section A.4.

5.3 Optimization with a fixed measure Q ∈ Q1
G

We will now study a counterpart of ρG which can be obtained by fixing a vector of pricing measures

Q = [Q1, . . . ,QN ]. For Q ∈ Q1
G we define the following optimization problem:

ρQG(X) := ess inf





N∑

j=1

EQj

[
Y j
∣∣G
]
| Y ∈ (L∞(Ω,F ,P))N and EP [U (X + Y )|G] ≥ B



 . (47)

Notice that in the problem (47) the constraint
∑N

j=1 Y
j ∈ L∞(G) does not appear anymore. The

problem still makes sense, however, since a valuation of Y is now assigned by the pricing vector

Q. By the fairness condition (41), it is easy to verify that ρG(X) ≤ ρ
Q
G(X) for all Q ∈ Q1

G and

X ∈ (L∞(F))N . Such a bound is actually tight, as the following Theorem 5.14 shows. The result

we are to present will also be useful when studying equilibrium properties for primal and dual

optima of ρG in Section 7. In order to state the result more easily, and since we will need to change

underlying probability measures, some additional notation is in place: from now on, given a vector

of probability measures Q = [Q1, . . . ,QN ] and a number p ∈ {0, 1}, we set

Lp(F ,Q) := Lp(Ω,F ,Q1)× · · · × Lp(Ω,F ,QN) .

Similarly, when some confusion might arise, we will write explicitly also the measure P, that is we

will use Lp(F ,P) := Lp(Ω,F ,P) in place of the shortened Lp(F).

Theorem 5.14. Suppose Assumption 5.12 is fulfilled and let X ∈ (L∞(F ,P))N . Then for any

optimum Q̂ ∈ Q1
G of (33), the optimum Ŷ ∈ CG of Theorem 5.4 is an optimum for ρ

Q̂
G(X) in the

following extended sense: Ŷ ∈ (L1(F ,P))N ∩
⋂

Q∈Q1
G

L1(F ,Q), EP

[
U
(
X + Ŷ

)∣∣∣G
]
≥ B and

ρQ̂G(X) = ess inf





N∑

j=1

E
Q̂j

[
Y j
∣∣G
]
| Y ∈ (L1(F ,P))N ∩

⋂

Q∈Q1
G

L1(F ,Q), EP [U (X + Y )|G] ≥ B





(48)

=
N∑

j=1

E
Q̂j

[
Ŷ j
∣∣∣G
]
= ρG (X) .

Proof. See Section A.4.

6 The exponential case

A specific, rather canonical choice for the multivariate utility U is the aggregation of univariate

exponential utility functions for single agents. It allows for obtaining explicit formulas for ρG , as

well for the corresponding optima.
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Throughout the whole Section 6 we take uj(x) = −e−αjx, j = 1, . . . , N for real numbers α1, . . . , αN >

0 and Λ = 0. We set:

X :=
N∑

j=1

Xj ; β :=
N∑

j=1

1

αj
; Aj :=

1

αj
log

(
1

αj

)
; A :=

N∑

j=1

Aj . (49)

We consider only the case BG = DG (recall (25) and (28)), which corresponds to the case of full

sharing among all agents in the system (i.e., the extreme case of one single group, as described in

Item (i) on page 13).

Theorem 6.1. Consider a general sub σ-algebra G ⊆ F , X ∈ (L∞(F))N , B ∈ L∞(G), with

ess sup (B) < 0 and ρG defined in (30). Then

ρG (X) = β log

(
−
β

B
EP

[
exp

(
−
X

β

)∣∣∣∣G
])

−A;

Ŷ = [Ŷ 1, ..., Ŷ N ] ∈ (L∞(F))N is an optimal allocation for ρG (X) and Q̂ = [Q̂1, ..., Q̂N ] is an

optimum for the dual representation of ρG (X), where for j = 1, . . . , N

Ŷ j := −Xj +
1

βαj

(
X + ρG (X) +A

)
−Aj , (50)

dQ̂j

dP
=

dQ̂

dP
:=

exp
(
−X

β

)

EP

[
exp

(
−X

β

)∣∣∣G
] . (51)

Proof. See Section A.5.

Remark 6.2. In order to avoid more complex notations and lengthy proofs, we provided the explicit

formulas only for the case BG = DG . The reader may obtain similar formulas for the cluster cases

in Example 5.2, using the corresponding deterministic formulas in Biagini et al, ”On fairness of

Systemic Risk Measures”, arXiv:1803.09898v3, 2018, Section 6.

6.1 Time consistency

A rather natural issue we now wish to tackle is whether a consistency or concatenation property

can be associated to the Conditional Shortfall Systemic Risk Measures, at least in the exponential

case where explicit computations are feasible. More precisely, we consider now two sub σ-algebras

H ⊆ G ⊆ F and study the relations between primal and dual allocations corresponding to the

various possible risk measurements (from F to H, from G to H, and combinations). In this

subsection we will need to exploit explicitly the dependence of optimal allocations and minimax

measures given by Theorem 6.1 on initial datum and sub σ-algebras. To fix the notation, given

X ∈ (L∞(F))N and G ⊆ F we define for each k = 1, . . . , N :

Ŷ k (G, X) := −Xk +
1

βαk

(
X + ρG (X) +A

)
−Ak , (52)

dQ̂k (G, X)

dP
:=

exp
(
−X

β

)

EP

[
exp

(
−X

β

)∣∣∣G
] , (53)

âk (G, X) := E
Q̂k(G, X)[Ŷ

k (G, X) |G] , (54)
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ρG (X) = β log

(
−
β

B
EP

[
exp

(
−
X

β

)∣∣∣∣G
])

−A =

N∑

j=1

Ŷ j (G, X) =

N∑

j=1

âj (G, X) . (55)

Theorem 6.3. Let X ∈ (L∞(F))N . The following time consistency property holds whenever

B ∈ L∞(H) is given: for every k = 1, . . . , N

Ŷ k
(
H, −Ŷ (G, X)

)
= Ŷ k (H, X) + Ŷ k (H, 0) , (56)

dQ̂k

dP
(G, X)

dQ̂k

dP

(
H, −Ŷ (G, X)

)
=

dQ̂k

dP
(G, X)

dQ̂k

dP
(H, −â (G, X)) =

dQ̂k

dP
(H, X) , (57)

âk (H, −â (G, X)) = âk (H, X) + âk (H, 0) . (58)

Proof. See Section A.5.

Remark 6.4. Various concepts of time consistency have already been explored in the literature for

the dynamic and set-valued case. In particular, those of “time consistency”in [59] and “multiport-

folio time consistency”in [19] and [29], were shown to be equivalent under mild assumptions in

[28]. Let us point out that in these approaches consistency is required for the whole set of eligible

portfolio that covers the risk of X . Instead, we only request consistency of particular allocations,

enjoying some peculiar optimality property, as well as for the dual optimizers. Furthermore, as

mentioned already after Theorem 5.4 and adopting the same notation introduced there for Ft, we

use terminal-time, random allocations for securing the system. This enlightens a further difference

from the aforementioned works where the whole set of allocations is required to be Ft-measurable,

making the properties hardly comparable. Possible links might become clearer with a more de-

tailed inspections of the properties of our allocations â, and we wish to leave this topic for further

research.

The proof of Theorem 6.3 is entirely based on the availability of explicit formulas, as well as on

the nice combinations of logarithms and exponentials one sees also in the univariate case.

7 Conditional Shortfall Systemic Risk Measures and equi-

librium: dynamic mSORTE

In the papers [10] and [23] the equilibrium concepts of Systemic Optimal Risk Transfer Equilibrium

(SORTE) and of its multivariate extension Multivariate Systemic Optimal Risk Transfer Equilib-

rium (mSORTE) were introduced and analyzed in a static setup. We refer the reader to these

papers for the economic motivation, applications and unexplained notation. Here we show that a

generalization to the conditional setting is possible and prove the existence of a time consistent

family of dynamic mSORTE in the exponential setup. Consider a multivariate utility function U .

For each j = 1, ..., N consider a vector subspace L
j
F with L∞(F) ⊆ L

j
F ⊆ L0(F) and set

LF :=L1
F × ...× LN

F⊆(L0(Ω,F ,P))N .

With

M ⊆ QG

we will denote a subset of probability vectors.
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Remark 7.1. We impose the condition M ⊆ QG , which implies that for every Q ∈ QG and for

every j = 1, . . . , N , Qj coincides with P on G and

(L1(G,P))N = L1(G,Q) := L1(Ω,F ,Q1)× · · · × L1(Ω,F ,QN) .

For (Y,Q, α, A) ∈ (LF ∩ L1(F ,Q))×M×(L1(G,P))N×L∞(G) define for j = 1, . . . , N

Y [−j] := [Y 1, . . . , Y j−1, Y j+1, . . . , Y N ] ∈ L0(F ,P)N−1 ,

[Y [−j], Z] := [Y 1, . . . , Y j−1, Z, Y j+1, . . . , Y N ], Z ∈ L0(F ,P) ,

UY [−j]

j (Z) := E
[
uj(X

j + Z)
∣∣G
]
+ E

[
Λ(X + [Y [−j], Z])

∣∣∣G
]
, Z ∈ L0(F ,P) , (59)

U
Qj ,Y [−j]

j (αj) := ess sup
{
UY [−j]

j (Z) | Z ∈ L
j
F ∩ L1(Ω,F ,Qj), EQj [Z|G] ≤ αj

}
, (60)

and

TQ(α) := ess sup
{
EP [U(X + Y )|G] | Y ∈ LF ∩ L1(F ,Q), EQj

[
Y j |G

]
≤ αj , ∀j

}
, (61)

SQ(A) := ess sup



TQ(α) | α ∈ (L1(G,P))N ,

N∑

j=1

αj ≤ A



 . (62)

Obviously, all such quantities depend also on X ∈ (L∞(F))N , but as X will be kept fixed

throughout the analysis, we may avoid to explicitly specify this dependence in the notations. As

u1, . . . , uN ,Λ, U are increasing we can replace, in the definitions (60), (61), (62), the inequalities

in the budget constraints with equalities.

Definition 7.2. The triple (YX ,QX , αX) ∈ LF×M×(L1(G,P))N with Y ∈ L1(F ,QX) is a Dy-

namic Multivariate Systemic Optimal Risk Transfer Equilibrium (Dynamic mSORTE)

with budget A ∈ L∞(G) if

1. (YX , αX) is an optimum for

ess sup
α∈(L1(P,G))N∑N

j=1 αj=A

{
ess sup

{
EP [U(X + Y )|G] | Y ∈ LF ∩ L1(F ,QX), E

Q
j

X

[
Y j |G

]
≤ αj , ∀j

}}
;

(63)

2. YX ∈ CG and
∑N

j=1 Y
j
X = A P-a.s..

Theorem 7.3. Suppose Assumption 5.10 and Assumption 5.12 hold and let X ∈ (L∞(F))N . Let

Ŷ be the optimum of ρG in (30) and let Q̂ be an optimum of (33). Define α̂j := E
Q̂j [Ŷ

j |G].

Then (Ŷ , Q̂, α̂) is a Dynamic mSORTE for M := Q1
G , LF := (L1(F ,P))N ∩

⋂
Q∈Q1

G

L1(F ,Q),

A := ρG (X).

Proof.

STEP 1: Item 2 of Definition 7.2 is satisfied. We start observing that by Theorem 5.4, Ŷ ∈ CG

and trivially being an optimum it satisfies
∑N

j=1 Ŷ
j = ρG (X) =: A.

STEP 2: we prove that for any optimum Q̂ ∈ Q1
G of (33), the optimization problem
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π
G,Q̂
A (X) := ess sup




EP [U (X + Y )|G]

∣∣∣∣∣∣∣∣∣∣

Y ∈ (L1(F ,P))N ∩
⋂

Q∈Q1
G

L1(F ,Q) and

N∑

j=1

E
Q̂j [Y

j |G] ≤ A





(64)

satisfies πG,Q̂
A (X) = B.

We start showing that the optimal allocation Ŷ for ρG (X) provided by Theorem 5.4 satisfies
∑N

j=1 EQ̂j [Y
j |G] = A (directly from Theorem 5.14) and EP

[
U
(
X + Ŷ

)∣∣∣G
]
= B. To see the

latter equality, observe that we already know that EP

[
U
(
X + Ŷ

)∣∣∣G
]
≥ B. If on a set Ξ of

positive measure we had that the inequality is strict, we would have for some N > 0 that ΞN :=

{EP

[
U
(
X + Ŷ

)∣∣∣G
]
> B+ 1

N } ∈ G has positive probability. By Assumption 5.10 and (cDOM) we

have

EP

[
U

(
X + Ŷ −

1

H
1

)∣∣∣∣G
]
↑H EP

[
U
(
X + Ŷ

)∣∣∣G
]
on ΞN .

By Egorov Theorem A.3 there exists a ΘN ∈ G, with both ΘN ⊆ ΞN and P(ΘN) > 0, on which

the convergence above is uniform (in H).

Hence, definitely in H , EP

[
U
(
X + Ŷ − 1

H 1ΘN
1
)∣∣∣G
]
≥ B. Putting things together, we have then

Ŷ −
1

H
1ΘN

1 ∈ CG , EP

[
U

(
X + Ŷ −

1

H
1ΘN

1

)∣∣∣∣G
]
≥ B .

Clearly then ρG (X) ≤
∑N

j=1 Ŷ
j − N

H 1ΘN
. This in turns gives a contradiction, since Ŷ is supposed

to be an optimum for ρG (X).

Now we prove that πG,Q̂
A (X) = B. Take Ŷ as before. We stress that it satisfies Ŷ ∈ (L1(F ,P))N

by Theorem 5.4 and Ŷ ∈ L1(F ,Q) for every Q ∈ Q1
G by Proposition 5.13. We showed above

that
∑N

j=1 EQ̂j [Ŷ
j |G] = A and EP

[
U
(
X + Ŷ

)∣∣∣G
]
= B. Hence by (64) we have π

G,Q̂
A (X) ≥ B.

Since the set over which we take the essential supremum to define π
G,Q̂
A (X) is upward directed,

we can take a maximizing sequence for π
G,Q̂
A (X), call it (Yn)n. W.l.o.g. we may suppose that

∑N
j=1 EQ̂j [Y

j
n |G] = A. Suppose for ∆ := {πG,Q̂

A (X) > B} we had P(∆) > 0. Then setting

∆N := {πG,Q̂
A (X) > B + 1

N } ∈ G we have P(∆N ) > 0 for some N big enough. By Egorov Theorem

A.3, we have that on a subset ∆̃N of ∆N , having positive probability, the pointwise convergence

of EP [U (X + Yn)|G] to the essential supremum is uniform. Hence given ε > 0 small enough, for

n big enough and for Ỹn = Yn − ε1∆̃N
1 ∈ CG ∩ (L∞(P,F))N we have EP

[
U
(
X + Ỹn

)∣∣∣G
]
≥ B.

Clearly
∑N

j=1 EQ̂j [Ỹ
j
n |G] < A with positive probability, by definition of Ỹn. By the definition of ρQ̂G

in (47), we obtain that with positive probability (i.e. on ∆̃N )

ρ
Q̂
G (X) ≤

N∑

j=1

E
Q̂j [Ỹ

j
n |G] < A .

We then get a contradiction to A := ρG (X), since by Theorem 5.14 we have ρG (X) = ρQ̂G(X).

STEP 3: the optimal allocation Ŷ of ρG (X) given in Theorem 5.4 (which is an optimum by

Theorem 5.14) is an optimum for the RHS of (64). This follows trivially from the arguments in

the previous steps, as Ŷ ∈ (L1(F ,P))N by Theorem 5.4, Ŷ ∈ L1(F ,Q) for every Q ∈ Q1
G by
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Proposition 5.13, and
∑N

j=1 EQ̂j [Y
j |G] = A. Thus Ŷ satisfies the constraints of RHS of (64).

Moreover we proved in STEP 1 that EP

[
U
(
X + Ŷ

)∣∣∣G
]
= B = π

G,Q̂
A (X).

STEP 4: conclusion. We easily see that Ŷ is an optimum for

ess sup



EP [U (X + Y )|G] | Y ∈ LF ,

N∑

j=1

E
Q̂j [Y

j |G] ≤ A



 =

ess sup
α∈(L1(G,P))N∑N

j=1 αj=A

{
ess sup

{
EP [U (X + Y )|G] | Y ∈ LF ,EQ̂j [Y

j |G] ≤ αj ∀ j = 1, . . . , N
}}

.

Hence (Ŷ , α̂) are optimum for (63), and also Item 1 of Definition 7.2 is satisfied. This completes

the proof.

Corollary 7.4. For the exponential utilities there exists a time consistent family of Dynamic

mSORTEs.

Proof. Follows from Theorem 6.3 and Theorem 7.3.

A Appendix

A.1 Miscellaneous results

We recall the original Komlós Theorem:

Theorem A.1 (Komlós). Let (fn)n ⊆ L1(Ω,F ,P) be a sequence with bounded L1 norms. Then

there exists a subsequence (fnk
)k and a random variable g in L1(Ω,F ,P) such that for any further

subsequence the Cesaro means satisfy:

1

N

∑

i≤N

fnki
→N g P- a.s..

Corollary A.2. Consider probability measures P1, . . . ,PN ≪ P. Let a sequence (Xn)n be given in

L1(Ω,F ,P1)× · · · × L1(Ω,F ,PN ) such that

sup
n

N∑

j=1

EP

[∣∣Xj
n

∣∣ dPj

dP

]
< ∞ .

Then there exists a subsequence (Xnh
)h and an Y ∈ L1(Ω,F ,P1) × · · · × L1(Ω,F ,PN ) such that

every further subsequence (Xnhk
)k satisfies

1

K

K∑

k=1

Xj
nhk

Pj−a.s.

−−−−−→
K→+∞

Y j ∀ j = 1, . . .N .

Proof. See [23] Corollary A.12.

Theorem A.3 (Egorov). Let (Xn)n be a sequence in L0(Ω,F ,P) almost surely converging to

X ∈ L0(Ω,F ,P). For every ε > 0 there exists Aε ∈ F with P(Aε) < ε satisfying

∥∥(Xn −X) 1(Aε)c
∥∥
∞

→n 0.
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Proof. See [3] Theorem 10.38.

Remark A.4. Observe that for any sequence of real numbers (an)n converging to an a ∈ R and

for any sequence (Nh)h ↑ +∞ we have 1
Nh

∑
j≤Nh

aj →h a. This can be seen as follows: for ε > 0

fixed, take K s.t. |aj − a| ≤ ε for all j ≥ K. Take h big enough to have Nh > K. Then
∣∣∣∣∣∣
1

Nh

∑

j≤Nh

aj − a

∣∣∣∣∣∣
≤

1

Nh

∑

j≤Nh

|aj − a| ≤
K

Nh
sup
j≤K

|aj − a|+
Nh −K

Nh
ε

and we can send h to infinity.

A.1.1 Essential suprema and infima

In this Section A.1.1 we write L0(Ω,F ,P; [−∞,+∞]) for the set of (equivalence classes of) [−∞,+∞]-

valued random variables. L0(Ω,F ,P; [0,+∞)) is defined analogously.

Proposition A.5. Let A,B ⊆ L0(Ω,F ,P; [−∞,+∞]) be nonempty, λ ∈ L0(Ω,F ,P; [0,+∞)),

f : A × B → L0(Ω,F ,P; [−∞,+∞]), g : A → L0(Ω,F ,P; [−∞,+∞]), a sequence (αn)n ⊆ A be

given. Then:

ess sup
(α,β)∈A×B

(α+ β) = ess sup
α∈A

α+ ess sup
β∈B

β = ess sup
α∈A

(
α+ ess sup

β∈B
β

)
;

ess sup
(α,β)∈A×B

f(α, β) = ess sup
α∈A

ess sup
β∈B

f(α, β) = ess sup
β∈B

ess sup
α∈A

f(α, β) ;

ess sup
α∈A

λg(α) = λ ess sup
α∈A

g(α); ess sup
α∈A

α ≥ lim sup
n

αn ; ess sup
α∈A

−g(α) = − ess inf
α∈A

g(α).

A.1.2 Additional properties of multivariate utility functions

Recall that we are working under Standing Assumption I.

Lemma A.6.

(i) There exist a > 0, b ∈ R such that

U(x) ≤ a

N∑

j=1

xj + a

N∑

j=1

(−(xj)−) + b ∀x ∈ RN .

(ii) There exist a > 0, b ∈ R such that

U(x) ≤ a

N∑

j=1

xj + b ∀x ∈ RN .

(iii) For every ε > 0 there exist a constant bε such that

U(x) ≤ ε

N∑

j=1

(xj)+ + bε ∀x ∈ RN .

Proof. (i) See [23] Lemma 3.5 (as pointed out before, a function U satisfying Standing Assumption

I in this paper is well controlled according to [23] Definition 3.4, as shown in [23] Proposition 7.1).

(ii) Use Item (i) and observe that a
∑N

j=1 x
j + a

∑N
j=1(−(xj)−) + b ≤ a

∑N
j=1 x

j + b.

(iii) See [23] Lemma 3.5.
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Lemma A.7. Let (Zn) ∈ (L0(Ω,F ,P))N satisfy EP [U(Zn)] ≥ B for all n ∈ N and for some

constant B ∈ R. If supn

∣∣∣
∑N

j=1 EP

[
Zj
n

]∣∣∣ < +∞ then supn
∑N

j=1 EP

[∣∣Zj
n

∣∣] < ∞.

Proof. See [23] Lemma A.1.

Lemma A.8. Suppose (Zn)n is a sequence in (L1(Ω,F ,P))N . Suppose furthermore that the fol-

lowing conditions are met for some B ∈ L∞(Ω,G,P):

1. supn

∣∣∣
∑N

j=1 EP

[
Zj
n

∣∣G
]∣∣∣ < +∞ P-a.s.;

2. infn EP [U (Zn)|G] ≥ B P-a.s.;

3. Zn →n Z P-a.s..

Then EP [U (Z)|G] ≥ B a.s..

Proof.

STEP 1: supn

(∑N
j=1 EP

[
(Zj

n)
+
∣∣G
])

< +∞ P−a.s..

Define the sets

A+ :=



sup

n

N∑

j=1

EP

[
(Zj

n)
+
∣∣G
]
= +∞



 A− :=



sup

n

N∑

j=1

EP

[
(Zj

n)
−
∣∣G
]
= +∞



 .

We prove that P(A−) = 0 : suppose by contradiction that P(A−) > 0. Apply Item 2 together with

the fact that A− is G measurable to see that for some a > 0, b ∈ R

B1A− ≤ EP [U (Zn)|G] 1A−

Lemma A.6(i)
≤


a

N∑

j=1

EP

[
Zj
n | G

]
+ a

N∑

j=1

(Zj
n)

− + b


 1A−

which is a contradiction, by definition of A− and boundedness of B. Hence P(A−) = 0. By Item

1, together with
N∑

j=1

EP

[
Zj
n

∣∣G
]
=

N∑

j=1

EP

[
(Zj

n)
+
∣∣G
]
−

N∑

j=1

EP

[
(Zj

n)
−
∣∣G
]

we have that the symmetric difference A+∆A− is P-null (equivalently 1A+ = 1A−), so that from

P(A−) = 0 we get P(A+) = 0, and the claim follows.

STEP 2: Fatou Lemma and conclusion.

By Lemma A.6 (iii) for every ε > 0 there exist bε > 0 such that Γε(x) := −U(x) + ε
∑N

j=1(x
j)+ +

bε ≥ 0 for all x ∈ RN . By Fatou Lemma (Γε is continuous) we have that

−EP [U (Z)|G] + ε

N∑

j=1

EP

[
(Zj)+

∣∣G
]
+ bε = EP [Γε(Z)|G] = EP

[
lim inf

n
Γε(Zn)

∣∣∣G
]

≤ lim inf
n

EP [Γε(Zn)|G] = lim inf
n


−EP [U (Zn)|G] + ε

N∑

j=1

EP

[
(Zj

n)
+
∣∣G
]
+ bε


 .

This chain of inequalities yields, since bε disappears on both sides:

−EP [U (Z)|G] + ε

N∑

j=1

EP

[
(Zj)+

∣∣G
]
≤ lim inf

n


−EP [U (Zn)|G] + ε

N∑

j=1

EP

[
(Zj

n)
+
∣∣G
]

 .
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We can thus exploit Item 2 in RHS to get

−EP [U (Z)|G] + ε

N∑

j=1

EP

[
(Zj)+

∣∣G
]
≤


−B + ε sup

n




N∑

j=1

EP

[
(Zj

n)
+
∣∣G
]



 .

From the latter inequality we deduce

−EP [U (Z)|G] ≤ −B + ε sup
n




N∑

j=1

EP

[
(Zj

n)
+
∣∣G
]



which holds P−a.s. for all ε > 0. By STEP 1, supn

(∑N
j=1 EP

[
(Zj

n)
+
∣∣G
])

< ∞ and therefore

−EP

[
U
(
Zj
)∣∣G
]
≤ −B.

The following result is of technical nature and is used in the proof of the existence of an optimal

allocation Ŷ in Claim 5.5, STEP 2.

Proposition A.9. Suppose the vectors X ∈ (L∞(F))N and Y ∈ (L1(F))N satisfy
∑N

j=1 Y
j ∈

L∞(G) and

EP [U(X + Y ) | G] ≥ B .

Suppose
∑

i∈I Y
i ∈ L0(G) for some family of indexes I ⊆ {1, . . . , N}. Then

∑
i∈I Y

i ∈ L∞(G).

Proof. Set AH := {
∑

i∈I Y
i < −H} ∈ G for H > 0 and suppose P(AH) > 0 for all H > 0. Then

we have by Lemma A.6 (i) and EP [U (X + Y )|G] ≥ B that

B1AH
≤ a




N∑

j=1

Xj +
N∑

j=1

Y j


 1AH

− a




N∑

j=1

(Xj + Y j)−


 1AH

+ b1AH
. (65)

At the same time from
∑N

j=1 Y
j ∈ L∞(G) we must have for some index k ∈ I (depending on

H) that Ak
H := {Y k < − 1

N+1H} ∩ AH ⊆ AH satisfies P(Ak
H) > 0 (otherwise we would get that

∑
i∈I Y

i ≥ − N
N+1H on AH , which is a contradiction). From (65) and H big enough we also have

B1Ak
H
≤ a




N∑

j=1

Xj +

N∑

j=1

Y j


 1Ak

H
+ a(−(Xk + Y k)−)1Ak

H
+ b1Ak

H

≤ a




N∑

j=1

Xj +

N∑

j=1

Y j


 1Ak

H
+ a(−(

∥∥Xk
∥∥
∞

+ Y k)−)1Ak
H
+ b1Ak

H

≤ a



∥∥∥∥∥∥

N∑

j=1

Xj +
N∑

j=1

Y j

∥∥∥∥∥∥
∞


 1Ak

H
+ a

(∥∥Xk
∥∥
∞

−
H

N + 1

)
1Ak

H
+ b1Ak

H
.

As B is bounded, for an even bigger H in this inequality, we get a contradiction.

Now set BH := {
∑

i∈I Y
i > H}. Assume that P(BH) > 0 for all H > 0. Then from

∑N
j=1 Y

j ∈

L∞(G) we get that

P






∑

i/∈I

Y i <

N∑

j=1

Y j −H






 > 0 .

The argument in the first part of the proof can then be replicated, since
∑

i/∈I Y
i ∈ L0(G), yielding

a contradiction.
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A.2 Proofs for Section 2

Proof of Theorem 2.4. In Item i) we consider LF = L∞(Ω,F ,P), L∗ = (L1(Ω,F ,P))N . We denote

by ba1 the set of N -dimensional vectors of finitely additive functionals on F taking values in [0, 1]

and taking value 1 on Ω. Applying the Namioka-Klee Theorem in [13] together with a standard

argument regarding the monetary property, we see that

ρ0(X) = max
µ∈ba1




N∑

j=1

µj(−Xj)− ρ∗0(−µ)


 . (66)

We now follow the lines of [38], Theorem 4.22 and Lemma 4.23.

Take any optimum µ̂ = [µ̂1, . . . , µ̂N ] in the dual representation (66), so that ρ∗0(−µ̂) < +∞, and

select a real number c > −ρ0(0) big enough so that c ≥ ρ∗0(−µ̂). Take any sequence of sets (An)n in

F increasing to Ω. We claim that µ̂k(An) →n 1 for all k ∈ {1, . . . , N}, which allows us to conclude

that each µ̂k is σ-additive. Hence any optimum of (66) belongs to Q, which as a consequence

can replace ba1 in (66), obtaining thus the thesis. To prove the claim fix any k ∈ {1, . . . , N}. By

definition of ρ∗0

c ≥ ρ∗0(−µ̂) ≥ µ̂(−λ1An
ek)− ρ0(λ1An

ek),

which implies

µ̂(1An
ek) = µ̂k(An) ≥

1

λ

(
−c− ρ0(λ1An

ek)
)
.

Now using continuity from below of ρ0 we deduce that for each λ > 0:

lim inf
n

(
µ̂k(An)

)
≥ lim

n

1

λ

(
−c− ρ0(λ1An

ek
)
=

1

λ

(
−c− ρ0(λe

k)
) Monetary prop.

= 1−
c+ ρ0(0)

λ
.

Letting λ → +∞ we see that

µ̂k(An) →n 1 .

The σ((L∞(F))N , (L1(F))N )-lower semicontinuity of ρ0 follows directly from (14) and continuity

from above is a consequence of the σ((L∞(F))N , (L1(F))N )-lower semicontinuity (see [13]).

The proof of Item ii) is a simple consequence of the Namioka-Klee Theorem in [13] applied to the

dual system (LF , L
∗). In particular, the thesis follows from Lemma 7 [13] and the application of

the monetary property.

A.3 Proofs for Section 3

Proof of Theorem 3.9. Set ρ0(X) := EP [ρG (X)] and let

γ(Q) := ess sup
X∈LF





N∑

j=1

EQj

[
−Xj

∣∣G
]
− ρG (X)



 := ρ∗G

(
−
dQ

dP

)
, Q ∈ QG ,

where ρ∗G was introduced in (38). From the definition of γ(Q) we immediately deduce

ρG (X) ≥ ess sup
Q∈QG





N∑

j=1

EQj

[
−Xj

∣∣G
]
− γ(Q)



 ≥





N∑

j=1

E
Q̂j

[
−Xj

∣∣G
]
− γ(Q̂)



 (67)

for any Q̂ ∈ QG .

STEP 1: ρG has the local property, i.e. for any A ∈ G and X ∈ LF ρG (X) 1A = ρG (1AX) 1A.
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Observe that

ρG (1AX)
(18)

≤ ρG (X) 1A + ρG (0) 1Ac

(18)

≤ 1A (ρG (1AX) 1A + ρG (X1Ac) 1Ac) + ρG (0) 1Ac

= ρG (1AX) 1A + ρG (0) 1Ac ,

then multiply by 1A. The local property of ρG is equivalent to:

ρG (X1A + Z1Ac) = ρG (X) 1A + ρG (Z) 1Ac (68)

if A ∈ G and X,Z ∈ LF .

STEP 2: for every Q ∈ QG the set {
∑N

j=1 EQj

[
−Xj

∣∣G
]
− ρG (X) , X ∈ LF} is upward directed.

For X,Z ∈ LF we set

ξX :=

N∑

j=1

EQj

[
−Xj

∣∣G
]
− ρG (X) , ξZ :=

N∑

j=1

EQj

[
−Zj

∣∣G
]
− ρG (Z) ,

A := {ξX ≥ ξZ} ∈ G, W := X1A + Z1Ac .

As explained in Remark 3.3, by the decomposability of LF we get W ∈ LF . Then one can check,

using (68), that

N∑

j=1

EQj

[
−W j

∣∣G
]
− ρG (W ) = ξX1A + ξZ1Ac = max(ξX , ξY )

proving the claim.

STEP 3: For Q ∈ QG , γ0(Q) = EP [γ(Q)] where we set

γ0(Q) := sup
X∈LF




N∑

j=1

EQj

[
−Xj

]
− ρ0(X)


 = ρ∗0

(
−
dQ

dP

)
, Q ∈ Q.

Recall that Qj = P on G for all Q ∈ QG . By Step 2 we deduce:

EP [γ(Q)] = EP


ess sup

X∈LF





N∑

j=1

EQj

[
−Xj

∣∣G
]
− ρG (X)








= sup
X∈LF

EP




N∑

j=1

EQj

[
−Xj

∣∣G
]
− ρG (X)


 = sup

X∈LF





N∑

j=1

EQj

[
EQj

[
−Xj

∣∣G
]]

− EP [ρG (X)]





= sup
X∈LF





N∑

j=1

EQj

[
−Xj

]
− ρ0 (X)



 = γ0(Q) .

Notice that we have also shown: ρ∗0
(
−dQ

dP

)
= EP

[
ρ∗G
(
−dQ

dP

)]
.

STEP 4 Dual Representation and attainment of the supremum.

As in the univariate case, applying the monetary property one may show that γ0(Q) = +∞ if
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Q ∈ Q\QG . Then by nice representability of ρ0

EP [ρG(X)] = ρ0(X) = max
Q∈Q




N∑

j=1

EQj

[
−Xj

]
− γ0(Q)


 = max

Q∈QG




N∑

j=1

EQj

[
−Xj

]
− γ0(Q)




= sup
Q∈QG




N∑

j=1

EQj

[
EQj

[
−Xj

∣∣G
]]

− EP [γ(Q)]




= sup
Q∈QG

EP




N∑

j=1

EQj

[
−Xj

∣∣G
]
− γ(Q)


 ≤ EP


ess sup

Q∈QG




N∑

j=1

EQj

[
−Xj

∣∣G
]
− γ(Q)




 .

From this inequality and (67) we then deduce the dual representation:

ρG(X) = ess sup
Q∈QG




N∑

j=1

EQj

[
−Xj

∣∣G
]
− γ(Q)


 . (69)

Similarly, for the vector Q̂ ∈ QG attaining the maximum in ρ0(X) we have:

EP [ρG(X)] = EP




N∑

j=1

E
Q̂j

[
−Xj

∣∣G
]
− γ(Q̂)




and then again from (67) we deduce

ρG(X) =

N∑

j=1

E
Q̂j

[
−Xj

∣∣G
]
− γ(Q̂).

STEP 5 We prove that α(Q) = γ(Q) for all Q ∈ QG , where α is defined in (21). Then (22)

follows from (69). Applying the monetary property of ρG , for each Q ∈ QG

γ(Q) = ess sup
X∈LF





N∑

j=1

EQj

[
−Xj

∣∣G
]
− ρG (X)



 = ess sup

X∈LF




N∑

j=1

EQj

[(
−Xj −

1

N
ρG (X)

)∣∣∣∣G
]


≤ ess sup
Z∈LF ,ρG(Z)≤0




N∑

j=1

EQj

[
−Zj

∣∣G
]

 = α(Q)

≤ ess sup
Z∈LF ,ρG(Z)≤0

N∑

j=1

(
EQj

[
−Zj

∣∣G
]
−

1

N
ρG (Z)

)
≤ ess sup

Z∈LF




N∑

j=1

EQj

[
−Zj

∣∣G
]
− ρG (Z)


 = γ(Q) .

STEP 6 Continuity from above of ρG

Continuity from above is an easy consequence of the dual representation (22) just proved. Take

Xn ↓ X ⇔ −Xn ↑ −X and observe that:

ρG (X) = ess sup
Q∈QG




N∑

j=1

EQj

[
−Xj

∣∣G
]
− α(Q)




(cMON)
= ess sup

Q∈QG


ess sup

n

N∑

j=1

EQj

[
−Xj

n

∣∣G
]
− α(Q)
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Prop.A.5
= ess sup

n
ess sup
Q∈QG




N∑

j=1

EQj

[
−Xj

n

∣∣G
]
− α(Q)




= sup
n

ρG (Xn) = lim
n

ρG (Xn) ≤ ρG (X) .

A.4 Proofs for Section 5

The proof of Proposition 5.13 needs some preparation. Recall the definition of ρ∗G in (38).

Proposition A.10. There exists an extension, ρΦ0 , of ρ0(·) := EP [ρG (·)] to MΦ which is convex,

nondecreasing and ‖·‖Φ-continuous.

Proof. Observe that because of the downward directness proved in STEP 1 of Claim 5.5, together

with (MON), we have

ρ0(X) = inf





N∑

j=1

EP

[
Y j
]
| Y ∈ CG , EP [U(X + Y )|G] ≥ B



 X ∈ (L∞(F))N .

Define now

ρΦ0 (X) := inf





N∑

j=1

EP

[
Y j
]
| Y ∈ CG , EP [U(X + Y )|G] ≥ B



 X ∈ MΦ . (70)

We easily see that ρΦ0 (X) < +∞ for every X ∈ MΦ (since the set over which we take infima in

(70) is nonempty). Moreover ρΦ0 (X) > −∞ since if this were the case, for a minimizing sequence

(Yn)n we would have infn
∑N

j=1 EP

[
Y j
n

]
= −∞. Now, by Lemma A.6.(ii)

EP [B] ≤ EP [U(X + Yn)]

≤ a

N∑

j=1

EP

[
Xj
]
+ a

N∑

j=1

EP

[
Y j
n

]
+ b ≤ const+ a

N∑

j=1

EP

[
Y j
n

]
,

which gives a contradiction. Clearly, mimicking what we did in the proof of Claim 5.5 Step 3,

we can check that ρΦ0 (·) is also convex and nondecreasing. Now by the Extended Namioka-Klee

Theorem in [13]) it is also norm continuous.

Lemma A.11. For any Z ∈ (L1(F))N we have that ρ∗G(Z) ∈ L1(Ω,G,P) if and only if ρ∗0(Z) <

+∞ and, if any of the two conditions is met, we have Z ∈ KΦ.

Proof. Notice first that, for any Z ∈ (L1(F))N , ρ∗G(Z) ≥ −ρG (0) ∈ L∞(Ω,G,P) and ρ∗0(Z) ≥

−ρ0 (0) > −∞. As in STEP 3 of Theorem 3.9, one can show that ρ∗0(Z) = EP

[
ρ∗G(Z)

]
for any

Z ∈ (L1(F))N . The first claim then follows. Suppose now ρ∗G(Z) ∈ L1(G). By [3] Theorem 5.43

Item 3 ρΦ0 is bounded on a ball Bε (defined using the norm ‖·‖Φ) of M
Φ centered at 0. We have

as a consequence

+∞ > sup
X∈Bε

(
ρΦ0 (X) + ρ∗0(Z)

)
.
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Now we use the fact that ρΦ0 , when restricted to (L∞(F))N , coincides with ρ0, and continuity of

ρΦ0 (by Proposition A.10) to see that

+∞ > sup
X∈Bε

(
ρΦ0 (X) + ρ∗0(Z)

)
≥ sup

X∈Bε∩(L∞(F))N

(
ρΦ0 (X) + ρ∗0(Z)

)

= sup
X∈Bε∩(L∞(F))N

(ρ0(X) + ρ∗0(Z)) ≥ sup
X∈Bε∩(L∞(F))N




N∑

j=1

EP

[
XjZj

]



where we used Fenchel inequality to obtain the last inequality. Furthermore, using the fact that

given Z, for any X ∈ Bε ∩ (L∞(F))N the vector X̂ defined by X̂j = sgn(Zj)
∣∣Xj

∣∣ still belongs to
Bε ∩ (L∞(F))N , we have

sup
X∈Bε∩(L∞(F))N




N∑

j=1

EP

[
XjZj

]

 = sup

X∈Bε∩(L∞(F))N




N∑

j=1

EP

[∣∣XjZj
∣∣]

 .

To conclude, we observe that an approximation with simple functions yields:

sup
X∈Bε∩(L∞(F))N




N∑

j=1

EP

[∣∣XjZj
∣∣]

 = sup

X∈Bε




N∑

j=1

EP

[∣∣XjZj
∣∣]

 .

This completes the proof using [23] Proposition 2.5 Item 1.

Lemma A.12. Suppose Assumption 5.12 holds. Let Z ∈ (L1(F))N be given and suppose that

EP [U(Z)|G] ≥ B. Then for any W ∈ KΦ we have
∑N

j=1(Z
j)−W j ∈ L1(F).

Proof. Observe that EP [U(Z)] = EP [EP [U(Z)|G]] ≥ EP [B]. Furthermore

U(Z) =

N∑

j=1

uj(Z
j) + Λ(Z) =

N∑

j=1

uj((Z
j)+) +

N∑

j=1

uj(−(Zj)−) + Λ(Z) .

As uj(0) = 0 and uj is increasing, for each j, this implies

0 ≤ −
N∑

j=1

uj(−(Zj)−) ≤ max
j=1,...,N

(
duj

dxj
(0)

) N∑

j=1

(Zj)+ + sup
z∈RN

Λ(z)− U(Z)

where in the last inequality we used (24). It then follows that
∑N

j=1

(
−uj(−(Zj)−)

)
∈ L1(F),

which in turns yields (Z)− ∈ Lφ1 × · · · ×LφN , for φj defined in (44). Since by [23] Proposition 2.5

Item 3 we have W ∈ Lφ∗
1 × · · · ×Lφ∗

N , we get by [26] Proposition 2.2.7 that (Zj)−W j ∈ L1(F) for

every j = 1, . . . , N , and the last claim is proved.

Proof of Proposition 5.13. Observe that Q ∈ Q1
G implies α1(Q) ∈ L1(G) by definition of Q1

G , which

in turns implies that ρ∗G
(
−dQ

dP

)
∈ L1(G) by Claim 5.8. By Lemma A.11, then, for any Q ∈ Q1

G

we have dQ
dP ∈ KΦ, so that, by Lemma A.12, for any Q ∈ Q1

G we get [(Ŷ 1)−, . . . , (Ŷ N )−] ∈

L1(Q1) × · · · × L1(QN). Given Ŷ , we use the notation Ŷ(k) and ZY from (16) for large values
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k ≥ kŶ . By Fatou Lemma we have for any Q ∈ Q1
G

N∑

j=1

EQj

[
(Ŷ j)+

∣∣∣G
]
≤ lim inf

k

N∑

j=1

EQj

[
(Ŷ j

(k))
+
∣∣∣G
]

= lim inf
k




N∑

j=1

EQj

[
Ŷ

j
(k)

∣∣∣G
]
+

N∑

j=1

EQj

[
(Ŷ j

(k))
−
∣∣∣G
]



Q∈QG

≤ lim inf
k




N∑

j=1

Ŷ
j
(k) +

N∑

j=1

EQj

[
(Ŷ j

(k))
−
∣∣∣G
]

 .

We conclude that

N∑

j=1

EQj

[
(Ŷ j)+

∣∣∣G
]
≤

N∑

j=1

Ŷ j + lim
k

N∑

j=1

EQj

[
(Ŷ j

(k))
−
∣∣∣G
]

(cDOM)
=

N∑

j=1

Ŷ j +

N∑

j=1

EQj

[
(Ŷ j)−

∣∣∣G
]

where we used in the last step that Y(k) → Ŷ P− a.s. and that (Ŷ )− ∈ L1(Q1) × · · · × L1(QN)

to apply (cDOM): (Ŷ j
(k))

− ≤ max
(
(Ŷ j)−, (Zj

Y )
−
)

∈ L1(Qj), j = 1, . . . , N . This yields both

integrability and the fact that, rearranging terms,

N∑

j=1

EQj

[
Ŷ j
∣∣∣G
]
≤

N∑

j=1

Ŷ j .

To prove Theorem 5.14 we first state two preliminary Propositions.

Proposition A.13. Let X ∈ (L∞(F ,P))N . For any Q ∈ Q1
G we have:

ρQG (X) =

N∑

j=1

EQj

[
−Xj

∣∣G
]
− α1(Q) (71)

and

ρG (X) = max
Q∈Q1

G

ρQG(X) = ρQ̂G(X) for any optimum Q̂ of (33). (72)

Proof. We first prove (71): observe that by (31) we have for any Q ∈ Q1
G

α1(Q) = ess sup





N∑

j=1

EQj

[
−W j

∣∣G
]
| W ∈ (L∞(F ,P))N , EP [U (W )|G] ≥ B





= − ess inf
W−X∈(L∞(F ,P))N

EP[U(X+(W−X))|G]≥B





N∑

j=1

EQj

[
(W j −Xj)

∣∣G
]
+

N∑

j=1

EQj

[
Xj
∣∣G
]




=

N∑

j=1

EQj

[
−Xj

∣∣G
]
− ess inf





N∑

j=1

EQj

[
Zj
∣∣G
]
| Z ∈ (L∞(F ,P))N , EP [U (X + Z)|G] ≥ B





=

N∑

j=1

EQj

[
−Xj

∣∣G
]
− ρQG (X) .

Observe now that by Theorem 5.4 Item 3 ρG (X) ≥
∑N

j=1 EQj

[
−Xj

∣∣G
]
−α1(Q) for every Q ∈ Q1

G ,

and equality holds for any optimum Q̂ of (33). Direct substitution yields then (72).
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Proposition A.14. Suppose Assumption 5.12 is fulfilled and let X ∈ (L∞(F ,P))N . Then for any

Q ∈ Q1
G we have:

ρQG (X) = ess inf





N∑

j=1

EQj

[
Y j
∣∣G
]
| Y ∈ L1(F ,Q) ∩ (L1(F ,P))N , EP [U (X + Y )|G] ≥ B



 . (73)

Proof. Clearly the inequality (≥) is trivial, since we are enlarging the set over which we take the

essential infimum. As to the converse (≤), observe that whenever Y ∈ L1(F ,Q) ∩ (L1(F ,P))N

is given with EP [U (X + Y )|G] ≥ B, then, for any ε > 0, EP [U (X + Y + ε1)|G] > B P− a.s. by

strict monotonicity of U . Hence, given Y(k) as in (16), k ≥ kY , defining

ΓK :=
⋂

k≥K

{
EP

[
U
(
X + Y(k) + ε1

)∣∣G
]
≥ B

}
∈ G

we have that ΓK ⊆ ΓK+1 and P(∪KΓK) = 1. The argument is now similar to the one in the proof

of Claim 5.6. As a consequence, we have

1Γc
K
= 0 definitely in K P− a.s.. (74)

For each K, take a vector αK ∈ RN such that

U(−‖X‖∞ −
∥∥Y(K)

∥∥
∞

+ ε1+ αK) ≥ ess sup (B)

where the notation for the vectors ‖X‖∞ ,
∥∥Y(K)

∥∥
∞

is the same used in the proof of Claim 5.6 and

define

ZK := Y(K) + ε1+ αK1Γc
K
∈ (L∞(F ,P))N .

Then clearly

EP

[
U
(
X + Y(K) + ε1

)∣∣G
]
1ΓK

+ EP

[
U
(
Y(K) + ε1+ αK1Γc

K

)∣∣G
]
1Γc

K
≥ B

which implies EP [U (X + ZK)|G] ≥ B. Hence

ρ
Q
G(X) ≤ lim inf

K

N∑

j=1

EQj

[
Z

j
K

∣∣∣G
]

= lim inf
K






N∑

j=1

EQj

[
Y

j
(K)

∣∣∣G
]

 1ΓK

+




N∑

j=1

α
j
K


 1Γc

K


+Nε

= lim
K

N∑

j=1

EQj

[
Y

j
(K)

∣∣∣G
]
+ lim

K




N∑

j=1

α
j
K1Γc

K


+Nε

(74)
(cDOM)

=

N∑

j=1

EQj

[
Y j
∣∣G
]
+Nε .

Proof of Theorem 5.14. By Proposition 5.13 we have that Ŷ ∈ (L1(F ,P))N ∩
⋂

Q∈Q1
G

L1(F ,Q).

We also know that EP

[
U
(
X + Ŷ

)∣∣∣G
]
≥ B. Hence we have

ρ
Q̂
G(X)

(73)

≤
N∑

j=1

E
Q̂j [Ŷ

j |G]
Prop.5.13

≤
N∑

j=1

Ŷ j .
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Moreover, by optimality of Ŷ for ρG (X) and (72), we have
∑N

j=1 Ŷ
j = ρG (X) = ρQ̂G(X). We then

conclude jointly optimality in the extended sense of Ŷ for ρQ̂G (X) and (48).

A.5 Proofs for Section 6

A.5.1 Proof of Theorem 6.1

Let us rename

HG(X) := β log

(
−
β

B
EP

[
exp

(
−
X

β

)∣∣∣∣G
])

−A ∈ L∞(G). (75)

We consider Ŷ and Q̂ assigned in (50) and (51). One immediately checks that Q̂ ∈ QG . As all the

components Q̂j of Q̂ are all equal, to prove that Q̂ ∈ Q1
G it is sufficient to show that α1(Q̂) ∈ L1(G).

Let

V (y) := sup
x∈RN



U(x)−

N∑

j=1

xjyj



 =

N∑

j=1

(
yj

αj
log

(
yj

αj

)
−

yj

αj

)
, y ∈ (0,+∞)

N
,

be the the convex conjugate of U and let λ ∈ L∞(G) with λ ≥ c P-a.s. for some constant

c ∈ (0,+∞). Then the Fenchel inequality U(W )− V ( 1λ
dQ̂
dP ) ≤

∑N
j=1 W

j 1
λ

dQ̂j

dP holds P-a.s. for any

W ∈ (L∞(F))N . Take any j ∈ {1, ..., N} and set IG(Q̂,P) := EP

[
dQ̂j

dP log
(

dQ̂j

dP

)∣∣∣G
]
. Then

α1(Q̂) = ess sup
W∈(L∞(F))N

EP[U(W )|G]≥B

N∑

j=1

E
Q̂j

[
−W j | G

] Q̂∈QG

= ess sup
W∈(L∞(F))N

EP[U(W )|G]≥B

N∑

j=1

λEP

[
−W j

(
1

λ

dQ̂

dP

)∣∣∣∣∣G
]

≤ ess sup
W∈(L∞(F))N

EP[U(W )|G]≥B

(
λEP

[
V

(
1

λ

dQ̂

dP

)∣∣∣∣∣G
]
− λEP [U(W )|G]

)
≤ λEP

[
V

(
1

λ

dQ̂

dP

)∣∣∣∣∣G
]
− λB

=

N∑

j=1

1

α j
log

(
1

αj

)
−

N∑

j=1

1

αj
+

N∑

j=1

1

αj
IG(Q̂,P) +

N∑

j=1

1

αj
log

(
1

λ

)
− λB

= A− β + βIG(Q̂,P) + β log

(
1

λ

)
− λB

= A+ βIG(Q̂,P) + β log

(
−
B

β

)
if λ := −

β

B

=

N∑

j=1

E
Q̂j [−Xj|G]−HG (X) ,

where the last equality is obtained by direct computation using (51) and (75). Hence α1(Q̂) ∈

L1(G), Q̂ ∈ Q1
G and

HG(X) ≤
N∑

j=1

E
Q̂j [−Xj|G]− α1(Q̂). (76)
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Notice that when BG = DG then CG ∩ (L∞(F))N = DG ∩ (L∞(F))N . The Theorem is proved once

we show the following chain of inequalities:

ρG(X) = ρ∞G (X) := ess inf





N∑

j=1

Y j | Y ∈ DG ∩ (L∞(F))N , EP [U (X + Y )|G] ≥ B



 (77)

≤
N∑

j=1

Ŷ j = HG(X) (78)

≤
N∑

j=1

E
Q̂j [−Xj|G]− α1(Q̂) ≤ ess sup

Q∈Q1
G




N∑

j=1

EQj

[
−Xj

∣∣G
]
− α1(Q)


 = ρG(X). (79)

The equalities in (77) and the last equality in (79) follow from Theorem 5.4. By direct computation,

Ŷ satisfies: Ŷ ∈ (L∞(F))N ,
∑N

j=1 EP

[
− exp

(
−αj

(
Xj + Ŷ j

))∣∣∣G
]
= B,

∑N
j=1 Ŷ

j = HG(X) ∈

L∞(G). Hence Ŷ satisfies the constraints of ρ∞G (X), which proves the inequality (and the equality)

in (78). The first inequality in (79) is shown in (76), while the second one is a direct consequence

of Q̂ ∈ Q1
G .

A.5.2 Proof of Theorem 6.3

Equation (56): we start observing that a straightforward computation yields

Ŷ k (G, X) = Ŷ k (H, X) +
1

βαk
(ρG (X)− ρH (X)) ∀ k = 1, . . . , N . (80)

We also have, recalling
∑N

j=1 Ŷ
j (G, X) = ρG (X) and fixing k, that

Ŷ k
(
H, −Ŷ (G, X)

)
= Ŷ k (G, X) +

1

βαk

(
−ρG (X) + ρH

(
−Ŷ (G, X)

))
+

1

βαk
A−Ak

Eq.(80)
= Ŷ k (H, X) +

1

βαk
(−ρH (X))+

1

βαk

(
ρH

(
−Ŷ (G, X)

)
− ρH (0)

)
+

1

βαk
(ρH (0) +A)−Ak .

It is then enough to show that ρH

(
−Ŷ (G, X)

)
= ρH (X)+ρH (0), since Ŷ k (H, 0) = 1

βαk
(ρH (0)+

A)−Ak. A direct computation yields

ρH

(
−Ŷ (G, X)

)
= β log

(
−
β

B

)
−A+ β log


EP


exp


−

1

β


−

N∑

j=1

Ŷ j (G, X)





∣∣∣∣∣∣
H






Eq.(55)
= β log

(
−
β

B

)
−A+ β log

(
−
A

β

)
+

+ β log

(
EP

[
exp

(
β

β
log

(
−
β

B
EP

[
exp

(
−
1

β
X

)∣∣∣∣G
]))∣∣∣∣H

])

= ρH (0)−A+ β log

(
−
β

B
EP

[
EP

[
exp

(
−
1

β
X

)∣∣∣∣G
]∣∣∣∣H

])
.

Hence we have

ρH

(
−Ŷ (G, X)

)
= ρH (0) + ρH (X) . (81)
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Equation (57): we have by (53) and using (55) that

dQ̂k

dP
(G, X)

dQ̂k

dP

(
H, −Ŷ (G, X)

)
=

exp
(
−X

β

)

EP

[
exp

(
−X

β

)∣∣∣G
]

exp
(

ρG(X)
β

)

EP

[
exp

(
ρG(X)

β

)∣∣∣H
] . (82)

We now see, just using (55), that

exp

(
ρG (X)

β

)
=

(
−
β

B

)
exp

(
−
A

β

)
EP

[
exp

(
−
X

β

)∣∣∣∣G
]
,

EP

[
exp

(
ρG (X)

β

)∣∣∣∣H
]
=

(
−
β

B

)
exp

(
−
A

β

)
EP

[
exp

(
−
X

β

)∣∣∣∣H
]
.

Direct substitution in (82) yields

dQ̂k

dP
(G, X)

dQ̂k

dP

(
H, −Ŷ (G, X)

)
=

exp
(
−X

β

)

EP

[
exp

(
−X

β

)∣∣∣H
] Eq.(53)

=
dQ̂k

dP
(H, X) .

Equation (58): by definition (54) and using the fact that

EP

[
dQ̂k

dP

(
H, −Ŷ (G, X)

)∣∣∣∣∣H
]
= 1 ∀ k = 1, . . . , N

we have

âk (H, −â (G, X)) = EP

[
Ŷ k (H, −â (G, X))

dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]
= E + F +G+H

where

E := EP

[
−
(
−âk (G, X)

) dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]
,

F := EP


 1

βαk

N∑

j=1

(
−âj (G, X)

) dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣∣
H


 ,

G := EP

[
1

βαk
ρH (−â (G, X))

dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]
,

H := EP

[(
1

βαk
A−Ak

)
dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]
=

1

βαk
A−Ak .

We now work separately on each of the above random variables:

• considering E, by (54), observing that dQ̂k

dP (H, −â (G, X)) ∈ L∞(G) and using the fact that

ρH (X) ∈ L∞(H) we get

E = âk (H, X) +
1

βαk
EP

[
ρG (X)

dQ̂k

dP
(H, X)

∣∣∣∣∣H
]
−

1

βαk
ρH (X) . (83)
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• We now move to F . First, computing dQ̂k

dP (H, −â (G, X)) we get

dQ̂k

dP
(H, −â (G, X)) =

EP

[
exp

(
−X

β

)∣∣∣G
]

EP

[
exp

(
−X

β

)∣∣∣H
] . (84)

After some additional tedious computation we obtain

F = −
1

βαk
EP

[
ρG (X)

dQ̂k

dP
(H, X)

∣∣∣∣∣H
]
. (85)

• To compute G, we first see that ρH (−â (G, X)) = ρH

(
−Ŷ (G, X)

)
. We can thus exploit

(81) to see that ρH (−â (G, X)) = ρG (0) + ρH (X). Using also (84) we get

G =
1

βαk


ρH (0) + EP


ρH (X)

EP

[
exp

(
−X

β

)∣∣∣G
]

EP

[
exp

(
−X

β

)∣∣∣H
]

∣∣∣∣∣∣
H






ρH(X)∈L∞(H)
=

1

βαk
(ρH (0) + ρH (X)) .

(86)

• Recalling (54) we have âk (H, 0) = H + 1
βαk

ρH (0) hence

H = âk (H, 0)−
1

βαk
ρH (0) . (87)

More detailed computations can be found in [22], proof of Theorem 3.5.8. Summing (83), (85),

(86), (87) most terms simplify and we get

âk (H, −â (G, X)) = E + F +G+H = âk (H, X) + âk (H, 0) k = 1, . . . , N .
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[36] H. Föllmer and C. Klüppelberg. Spatial risk measures: local specification and boundary risk.

In Stochastic analysis and applications 2014, volume 100 of Springer Proc. Math. Stat., pages

307–326. Springer, Cham, 2014.
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