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WELL-POSEDNESS AND ASYMPTOTICS OF A COORDINATE-FREE MODEL OF FLAME
FRONTS

DAVID M. AMBROSE, FAZEL HADADIFARD, AND J. DOUGLAS WRIGHT

ABSTRACT. We investigate a coordinate-free model of flame fronts introduced by Frankel and
Sivashinsky; this model has a parameter a which relates to how unstable the front might be. We
first prove short-time well-posedness of the coordinate-free model, for any value of @ > 0. We
then argue that near the threshold a = 1, the solution stays arbitrarily close to the solution of the
weakly nonlinear Kuramoto-Sivashinsky (KS) equation, as long as the initial values are close.

1. INTRODUCTION

The Kuramoto-Sivashinsky equation,

(1.1) ft+%ff+(a_1)fxx +4fxxxx:0r

is a weakly nonlinear model for flame fronts [21], [30]. Frankel and Sivashinsky have shown that it can
be formally derived from coordinate-free models [14] of flame propagation. In such a coordinate-free
model, the normal velocity of the front is specified in terms of intrinsic geometric information such as
curvature and arclength. One such model put forward by Frankel and Sivashinsky is

1 1
(1.2) Veo=1+(a—-1x+ (1 + Eaz)Kz + (2a+5a2 - 5(13)1(3 + az(a+3)1<ss,

where V,, is the normal velocity of the front, «x is the curvature of the front, s is arclength, and «a is a
parameter measuring instability of the interface. Frankel and Sivashinsky perform asymptotic analysis
of (IL2) in the case a = 1, finding the simplified coordinate-free model

(1.3) Vy=1+(a—-1x+4xg;,.

As discussed by Brauner et al. [9], there are two primary destabilization mechanisms for premixed
gas combustion: hydrodynamic instability (stemming from thermal expansion of the gas), and thermal-
diffusive instability. The derivation of the models and (L3) in [14] starts from a constant den-
sity flame model, neglecting thermal expansion of the gas. Thus these are models exploring thermal-
diffusive instability. This instability generates cellular structures which may be modeled with free inter-
face problems [10], [I1], and models such as and (L.3) give the velocity of this interface. In addition
to [14], coordinate-free models for flame front propagation have been developed in and [I5]. Some
analytical studies have been made of these models, such as studying a quasi-steady problem [7], [8].

The Kuramoto-Sivashinsky equation as given in (I.T) is a form of the more general Kuramoto-Sivashinsky
equation

1
(1.4) <pt+§|v¢|2 =—c2A’u-ciAu,

in the case of one spatial dimension. The two linear terms on the right-hand side play different roles,
as the fourth-order term is stabilizing and makes the problem well-posed, while the second-order term
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is destabilizing and can lead to growth of solutions. The interaction of the nonlinear term on the left-
hand side with the linear terms leads to rich and highly nontrivial dynamics, especially given the lack
of a maximum principle for the equation owing to its fourth-order nature. (We mention that there are
versions of the coordinate-free models such as available in higher dimension as well [15].)

The Kuramoto-Sivashinsky equation has been widely studied over the years, with global existence
of solutions and stability of the zero solution both established in one spatial dimension [18], [27], [31].
Detailed estimates have been developed in one spatial dimension for the dependence of the solutions
on the size of the periodic domain [16], [I7]. Many results for the Kuramoto-Sivashinsky equation in
one spatial dimension rely on structure not present in higher-dimensional problems, especially that an
estimate for the L? norm of the first spatial derivative of the unknown is available. In higher dimensions
this estimate is not available, and there are fewer results. If the right-hand side of (I.4) is modified to
instead be C%Au + c% u, then a maximum principle is available and this structure may be used to find
some global existence results [18], [25]; the equation is then known instead as the Burgers-Sivashinsky
equation. Larios and Yamazaki have also leveraged this structure for a system which blends features
of the Kuramoto-Sivashinsky and Burgers-Sivashinsky models [23]. For the full Kuramoto-Sivashinsky
equation in two spatial dimensions, Sell and Taboada have proven global existence of solutions in thin
domains [29], and the first author and Mazzucato have shown global existence in the absence of linearly
growing modes (which happens when the domain is a sufficiently small torus) [3]. Additional results for
the Kuramoto-Sivashinsky equation on thin domains may be found in [5] and [26].

The distinction between known behavior in one spatial dimension and two spatial dimensions indi-
cates that the structures present in (ILI) used to demonstrate, for example, global existence of solutions
are perhaps a bit delicate and may not be present in closely related systems. Indeed, while Frankel and
Sivashinsky have formally derived (IT) from the coordinate-free models and (L.3), the authors are
unaware of any analytical theory for these relationships. While the question of global existence of so-
lutions for the coordinate-free models remains open, we demonstrate short-time well-posedness here,
focusing on (L.3) for simplicity, and show rigorously the connection between solutions of (I3) and (L.).

There is a long history of demonstrating that weakly nonlinear models serve as valid approximations
for more fully nonlinear models; a key example of such work is the proof that the Korteweg-de Vries equa-
tion is a good approximation of the irrotational Euler equations with a free surface [6], [28], . For more
such works in the theory of water waves, the interested reader might consult the book of Lannes and the
references therein [22]. While the Kuramoto-Sivashinsky equation is a widely studied weakly nonlinear
model for the propagation of flame fronts, the authors are unaware of any prior proofs of its validity in
approximating more highly nonlinear models. The result in the literature most similar to the present
work appears to be the main result of [9], in which solutions of the Kuramoto-Sivashinsky equation are
shown to remain close to solutions of another weakly nonlinear model; this weakly nonlinear model is
derived from coordinate-free models similar to (I.2), but also incorporating temperature effects.

As we will first prove well-posedness of the initial value problem for the coordinate-free model given
by (L3), we first convert it into an evolutionary problem, which requires setting coordinates. We do so
with an eye towards our approximation theorem, and so not making the most general possible choice.
As the approximation theorem we prove is for the Kuramoto-Sivashinsky equation, and the flame front
in the Kuramoto-Sivashinsky equation is parameterized as a graph over the horizontal coordinate, x, we
thus make this choice of frame for the coordinate-free model. We make the relevant calculations in the
following Section [Tl

This choice of restricting (I3) to the case of a graph over the horizontal coordinate is not a limitation
on our well-posedness theory; indeed it would be no more difficult to treat (L3) for flame fronts which
could have multi-valued height or which might be closed curves. To treat such scenarios, the parameter-
ization of the curve could be set using tangent angle and arclength, as was done for interfaces between
fluids in the numerical work of Hou, Lowengrub, and Shelley [19], [20]. The formulation of Hou, Lowen-
grub, and Shelley was subsequently used by the first author and collaborators a number of times to prove
well-posedness of initial value problems in interfacial fluid mechanics, for example in the works [2], [4],
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[24]. The advantage of the tangent angle and arclength formulation is that these are naturally related to
the curvature, and the curvature of the front is what appears on the right-hand sides of and (L3).
The first author and Akers have implemented numerical methods to compute the propagation of fronts
using the angle-arclength formulation for the models and (L.3) using further ideas from in the
preprint [I].

1.1. Reformulation: Setting coordinates. In order to compare the equations (II) with that of (I2), we
need to have a more convenient form of the equation (L2), i.e. change the coordinates in (IZ) from (s, #)
to (x, 1). Clearly we need to rewrite V,, and x5, in the new variables.

Function V,;: For any curve (x(8, 1), y(B,7)) we can write the motion as a combination of the normal

vector n = gﬁ :;’j ;I and the tangent vector T = |E xﬁ iZ Furthermore, we have the following decomposi-
tion of (x, y);
(1.5) Ve=Vy-n+Vp T,

where V}, is as it is defined above, and V; is related to the choice of the parameters. As it is mentioned
above, our model covers the case of (x, y) = (x, f (x)) and x; =0 (i.e. x = B), therefore

YxVn

_\/1+yx \/1+yx

We can use the above to find y;. Indeed,

=0=>Vy=—y,V,

-V, o Ve —(1+y2)-V,

\/1+yx \/1+yx_ \/1+y)26

This clearly suggests that
— Vi

\/1+y?c.

=—\/1+y2-V,.

(1.6) V=
Function «¢¢: Note that % =4/1+ y%, therefore

dk dx ds dx
o 1492
dx ds dx ds T x

d*x d (dx d’c ds dx .y
-— = V1t Y2 =— — /142 + — 2225
dx? dx(ds +yx) ds? dx AT

1+y,26

and consequently,

d? d
= _K.(1+y)26)+_K.yxyxx

ds? dx 1+y?

In other words,
d*x 1 d* YxYxx dx

1.7 - =
(1.9 ds>  1+y2 dx? (1+y2)2 dx

Now we insert (LL6) and (I.7) into (I.2) and get the following equation

(@=1)Yux ( 1 2) Vi ( 1 3) Vi a®(a+3) | d’x
e (142 )| L 420 +5a% - 30 + +
Vi 1+)3 2 1+y2)2 A+yD* /1492 Tda?

(1.8) +m:a2(a+3)yx.x.%,

y(x,0) = yo(x).
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where,
@ _ Yaxx 3yx- (J/xx)z
dx 4y (+phi ]
d*x _ YVxxxx 3(yxx)3 +9Yx VxxYxxx 15(yx)2(J/xx)3
.2 3 5 + 7
dx (1+y2)? 1+ y2)2 1+ y2)2

In section2.TJwe recall some definitions, standard estimates from Harmonic analysis, as well as a form
of Gronwall’s inequality which fits our Grnonwall’s type inequalities. In sectionBlwe present the existence
of the solution of the equation (I8) in H*. In other words, sectionBlcovers the proof of Theorem2.3} This
is done via an approximate equation. Finally, in section[@we present a proof of Theorem[2.4l This is done
via a coordinate scaling, where the scaling has been chosen carefully.

2. PRELIMINARIES

2.1. Fourier series, function spaces and mulitpliers. We will consider periodic function spaces, al-
though this is not essential. A sufficiently regular function f on a periodic interval may be written with
its Fourier series,
fx) =Y f(pe?~.
peZ
Consequently, since —/A\f(p) = |pI2f(p), we define the operators V| := (~A)*2,a > 0, via its action on
the Fourier side W(p) =pl*f(p).

1
The L spaces are defined by the norm || f|lzr = ( J1f )P dx)p. For p € (1,00), the Sobolev spaces

are the closure of the Schwartz functions in the norm || fllyyxp = | fll2r + X<k 10% f 1l 1», while for a non-
integer s one takes

1 lwsr =1 =AY"2 Flly ~ 1 f e + 1VIE flle.

The Sobolev embedding theorem states || fl.»(r1) < CIlIVI* fll La(71), where 1 < p < g < co and % - % =,

with the usual modification for p = oo, namely || f | oo (71) < Csll fllwsacrry, $ > %. Another useful ingredi-
ent will be the Gagliardo - Nirenberg interpolation inequality,

VI Flle < VI FISIVIZ FILEP,

where s=0s; + (1-0)s, and % :%4_%'

Throughout this work we make use of a particular version of mollifier operators_#°, 0 < § << 1, which
represent the truncation of the Fourier series, zeroing out modes with wave number larger than %. We
frequently use the following two essential properties of the mollifiers, which can be easily proved in a
straightforward way using the Hausdorff-Young inequality, or alternatively the Plancherel theorem,

@2.1) 120 £l s IF N s
C
2.2) 1220 fll 12 AL

Note that the operator _#° is both a self-adjoint operator and a projection, i.e. #°( #°f)= _#°f. More-
over, it commutes with the derivative operator, £°0f =0_#°f.

IA

IN

2.2. Gronwall’s inequality. We need the following two versions of the Gronwall’s inequality:

Lemma 2.1. Let the functions x, a, b, and k be continuous and nonnegative on the interval J = [a, f], and
let n be a positive integer (n = 2). Assume 7, is a nondecreasing function. If

t
(2.3) x(t) < a(p) +b(t)f k(s)x"(s)ds, te],
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then
¢ a1
2.4) x(f) < a(r){l —(n- 1)[ k(s)b(s)a"‘l(s)ds}"’l, a<t<pfn
a
where 3, is given by
t
(2.5) Bn= SUp{t €J:(n- l)f k(s)b(s)a™ (s)ds < 1}.
a
Lemma 2.2, Fixt, andT, > 0. Assume the function E(t) satisfies the relation
d m
2.6) —E(0 < ak(n) +,[3E2(t)+€”(E(t)) ,
where0 <e <<1,n=0,and m = 1. Then thereexists E. ande, sothatforanyE(0) = Ey< E, and0<e<e€,
2.7 sup |E(f)|=T..
0<7<T,

Both of these versions of Gronwall’s inequality are known. Here we give our own proof for Lemmal[2.2]
One can find the proof of Lemmal2.Tlin Theorem 25].

Proof. In order to prove Lemma 2.2 fix T, and let E(;) be the first time at which E(ty) = T, (if for all
t >0, E(ty) <T. then let #, = oo, in which case the proof is completed). Hence, for any ¢ € [0, #y] we have
E™ <T"™ 1E. Therefore,

2.8) %E(t) < (a+ﬁr* +e”r;"‘1]E(t).
Now we apply the routine Gronwall’s inequality to this relation, and we get, for any ¢ € [0, £;]
2.9) E() < exp ((a + BT, +€" T t)Eo.
At t = ty, we have E(ty) =TI, hence
T, <exp ((a + BT, +e"r;”‘1)t0)150,

which implies

()
fo= 2 =: 79T+, Eo, €).
a+ P, +errh-1
Note that 7¢(I'«, Ep,€) is decreasing with € and with E,. What we have shown so far asserts thatif 0 < ¢ <
To (r* ’ EO) 6)» then

(2.10) E(1)<T,.
Now fix a time t,, and ', as well ase < 1:=¢€,, and solve 7¢(I'«, Ey,€) = t. for E,, namely
2.11) E. :F*exp((a+ﬁr* +e”r;"‘1)r*).
Now we claim that with t,,T", and E, as above, then if Ey < E, and € < 1 we have
(2.12) sup |E(D)|=<T..

0<7<T,

Indeed, by we have E(t) <T, for 0= t < 7¢(T'«, Ep,€). Since 1¢(T., Ey,€) is decreasing with respect
to Ep and €, we know

t* = TO(F*;E*; ]-) = TO(r*rEO;e)-
Thus
{t:0st=stlc{r:0<st=<719[, Epy,€)},
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and we get
(2.13) sup |E(f)|=T..

0<T<T,

0

2.3. Main Result. As it is mentioned before we pursue two main goals in this article. First we aim to
prove the well-posedness of the initial value problem associated to (I.8). This is the content of Theorem
23] Our second goal is to show that the solution to equation (L.8) stays close enough to the solution of
the equation (LI, in a sense to be made precise. In Theorem[2Z.4lwe present the related result.

Theorem 2.3. Let y(0) € H® be given. Then there exists a time T = T(||y(0)|l4) and a function y €
C([0, T1, H®) which satisfies (L8), and the initial condition y(-,0) = y(0).

Theorem 2.4. Fixt. >0 andl, > 0. Then thereexistsc, and E.. so that whenever0<e <e, and ||Uy(:) || g+ <
E., the following hold:
Let y(x, t) be the solution of witha—1=¢, and

(2.14) y(x,0) = eUp(Vex).
Let U(¢, 1) be the solution of the Kuramoto-Sivashinsky equation

1

(2.15) 0,U+E(0§U)2+0§U+40§U:0,

withU(&,0) = Uy(é). Then

(2.16) sup |y, 0+ t—eU(Ve- ez <T el
O<t<Z—§‘

The proofs of Theorems[2.3]and 2.4l are presented in Lemmal[3.4land Remark[4.4] respectively.

Remark 2.5. For simplicity in our calculations, we choose the initial data of the equation (2.15) to be
(2.14). Our proofs, however, indicate that any other initial data close enough to % Yo(%) leads to the same
result. See the proof of LemmalZ.3]

Remark 2.6. The time interval presented in Theorem 23] increases for a smaller || y(0)||g+. In fact T <
Cln (1 + W), for some positive m to be defined in the sequel.
4

3. EXISTENCE OF THE SOLUTION

The first step toward the completion of the argument is to show that the equation (I.8) has an unique
solution in some Sobolev spaces, over a time interval [0, T], with T to be determined. The proof follows
the energy method. To that end, we first introduce approximate equations, where the approximation are
introduced via a multiplier operator #°. We next use the Picard Theorem to find that the approximate
equations admit unique solutions in some Sobolev spaces over a time interval [0, Ts]. This T might
be small (i.e., this time depends badly on the approximation parameter §). Therefore, in an attempt to
increase Ty, we prove bounds on the solution which are uniform with respect to 6. Once the uniform
bounds are in hand, since norms of the solutions of the approximate equations are not increasing fast,
the solutions may be continued to a time interval [0, T'], where T can be taken to be independent of §.
Finally, with solutions existing on a uniform time interval, the limit may be taken as 6 vanishes, and this
limit can be seen to satisfy the correct initial value problem.

We define y° to be the solution of the following initial value problem:

6,0 5 2 5 \3
A a 02 G | (L)t | ST |+ [ea et -3 5 |
(3.1) +a2(a+3)j5[W-‘§§]+j5[ /1+(j5y§)2]:az(a+3)j5[(j5y§)-x5~‘z—’f],
¥ (x,0) = £ yo(x),
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where
6y k0 = TV
(1+(j5y§)2)§
3.3) d_K6 _ IV f‘s 0)-(#£2y%,)?
dx (1+(j5y§§)2)z 1+ (g9y%)?):
(3.4) L. L Voxx 32V +9L0 YD L0V (IO V) 15(f5 02 (#9y0 )3
dx? (1+(29y%)?)z 1+ (g29y%)2)8 1+ (010)%)

We now present the first step toward the existence argument. We show that the equation (3.I) admits a
solution up to a small time Tj.

Lemma 3.1. Let y(0) € H® be given. For any 8 > 0, for any s = 0, there is a time Ty and a function y° €
CY ([0, Ts1, H®) that satisfies 31, as well as y°(-,0) = _#°y(0).

Proof. Since the initial data is mollified, it is in any Sobolev space. With the abundance of mollifiers
present on the right-hand side of the evolution equation, it is not difficult to demonstrate that the rele-
vant operator is a Lipschitz map. The Picard Theorem applies, leading to the conclusion of the theorem.
We omit further details. U

The next two lemmas concern some uniform bounds on the solution of the equation (3.I). In the first
lemma we prove an H* bound, and we then use it in the subsequent lemma for a H°> bound.

Lemma 3.2. Assume y° is the solution of the equation (IL8). Then there exists T = T(a) and C = C(yp, @),

In(1+—L—
( nyouzf)

independent of 0, so that forany0 < t < y

(m andy to be defined later),

dx<C

sz L)+ 08 2°))
(3.5) sup [y Ml + 50
0<t<T (1+(f yx)2)2
Proof. During the proof, we assume that || y° 12, + 1105 0 I7, > 1, otherwise there is nothing to prove.

In order to prove this lemma, we combine two energy estimates, one on ||y°| 2, and the other one on
10%5°1,2. Indeed,

1 °ye
(3.6) Eat”ya”%z+(05—1)f(f5y5)' [w]dx

1+(j5 5)2
1 zf 560 sl (FYo)? f 1 d*«x®
+1+—-«a ( B _— dx+a(a+3) ( . dx
| 2 )t [(1+(f5 5)2)2] s \/1+(;é5y§)2 dxz]

1 Y2}
5.8y [/ 5 602 2_ 2,8 0,0y, | L Ixx
+f(j %) [ 1+( 2% 2°y%) ]dx+(2a+5a 306)[(f ) [(1+(j5y§)2)4]dx
) 5.0 5.5, o AK°
=a (a+3)f(j y)-[(j Vi) Ko dx]dx'

We use integration by parts to arrive at a more convenient form for this expression.
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Ly
e iE B
Indeed, when we substitute from (3.4) into the fourth term on the left-hand side of 3.6), we find

The first term we simplify produces a useful term in the left hand side of (3.6), namely [

220 (Vo)
1+ (29y%)2)2

)

[ ! . Kz]dxzaz(a+3)
/1+(f6 5)2 dx

22y (20y3.)?

(1+(29y%)2)3

20y ( 20 y0E 20 Y03

(1+(Z0y2)2)4

az(a+3)f(j5y5)

(f5y5>(f5y§)(fﬁyxx)(fﬁyxxx

dx-9a*(@+3
xodetlatd) 1+ (29y%)2)3

—3a2(a+3)

+15a2(a+3)f (

The term we wish to draw out can now be found after integrating by parts twice:

L2V I Ve _ [ IOV (IOVD IOV (00D (L) IO Ve
(L+(F0y?? (L+(20yD?)? (L+(Z£0y?3

_ f SOy (IO I (IO (e (Ve
(1+ (20 yD?)? 1+ (2003 1+ Z0yD?)3

Our conclusion is

(#£2y5,)?
(1+(g9y%)2)2

2.6
! ~6;K2]dx:a2(a+3)f
/l‘f‘(fd 5)2 X

22y (#0y5,)?

az(a+3)f(j6y6)- [

(£2y%)-(£2y0)3

—4a®(@+3 dx-3a*(@+3
wla+s) (1+(g° x)2)3 ¥osatlary (1+ (g0 x)2)3
5.8\, ( @60\, ( @b 5 5,0V, ( @b ,042 5
—5a2(a+3)f(j y) (ag yx) (ag yxx)(ag yxxx dx +15a2(a+3)f(j y) (ag ) (ag yxx
(1+(29y9)?)3 1+ (Z9y2)2)4

For the right-hand side of (3.6), we substitute from (3.3), finding

L0902y (#2058 (fayxxx
1+ (29y%)2)3
22y (£2y% (#0y0)°
(1+(j5 x)2)4

2 5.6\ [ go.50 5. AK° 2 (
Pa+3) [ (£ [0y« ax = a3y

— 3a2(a +3)

We also rewrite the fifth term on the left-hand side of as

)1+
[ty oy ax= | dx.
1+ Z0y0)?
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With all of these considerations, (3.6) now may be written as

5 \2 0,0 5
3.7 l6t||y‘5|| +ta (a+3)f¢x)dx:—(a—l)f(j V)PV dx+
(1+(#0y9)2)2 1+ (2992

2%y% 1+(j5 5.0y ( g6
f )dx+3a2(a+3)f(j V) Iy’

1+(j()‘ (1+(j5 x)2)3
2 4é 88\ ( g0\ ( @b 6
+4q (a+3)f( ) (j yxx dx+6a2(a+3)f(j J/) (j yx) (ag yxx)(og yxxx
1+ (Z0y)3?)?3 A+(Z20y03?)?
6,0 6 ,,01\2 o 6,,0y. 5 \2
_15a2(a+3) (ag ) (ag yx)5 (ag yxx _(1+1a2)f[(j J/) (agyxxs) dx
1+ (£2y2004 2 1+ (£%y0)?)>
5.6y 513
(2a+5a f[ 7y (”iyxx) ]dx
(1+(Z0y9)%)*

All the terms on the right hand side are controlled by terms of the form of C (ll 0 I, + 6% y° ||Zz), where
2 < a < 4. Overall, we have the following simplified inequality:
I3’

(3.8) Ls 15012, + @ (a+3)f—
’ 2 ey (1+(j6 6)2)2

dx = (1712, +1050°1%:)+ (171, + 1935°13.).

This is straightforward to see (it mainly consists of counting derivatives) and we omit further details of
the proof of (3.8).

We now turn our attention to the rest of the energy estimate. We take four spatial derivatives of (3.1),
and then find its inner product with 9% y°

6
(3.9) —thla VU3 +(@- 1)[(;504 4[ (fjﬁx%)z]dﬁ
2 2.0
+(1+1“2)f(f604y5) 04[ (£ Y3 ]dx+a(a+3)f(j504y5) 04[ 1 d*x ]dx
2 (1+(20y0)?)?

\/1+(j5y§)2‘ dx*
5 \3
f(j504y5) 04[\/1+(j5y§)2]dx+(2a+5a f(j5 1y9).0 —(jy”) ]dx

(1+(j5 5)2)4
)
:az(a+3)f(j564y5) 04[(j yx)~1<6~%]dx.

As before, for the fourth term on the left-hand side of (3.9), we substitute from (3.4):

6,0
d +3f 666 i j YVxxxx d
] x=a*(@+3) | (f [—(1+(j5y§§)2)2] x

L2y 220022y

az(a+3)f(j5a§y5)-a4[

/l‘f‘(fd 5)2 dx

52 (fﬁJ’xx 2 5465y A2
X[W]dx—9a ((X-f-?))f(f axy )6x[

) )
j ) (j yxx ]dx
(1+(Z0y2)2)4

536
-3a (a+3)/(j 0,y 1+ 0y

+15a (a+3)f(j566 5).9 [

] x
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We expand the first term on the right hand side of the above equality as follows:

6,0 676 ,,012
a (a+3)f(j564 i[(lggﬂ]dx:az(a+3)fw—xy)dx

(#0y0)2)2 (1+(#0y0)2)2
Sve 40,0 5450
2 56,0 x)(j yxx)(j 0 y)
_4a (a+3)f(j Sy )[ TR ]dx
(jﬁyﬁ)(j(?yﬁ )(j5a4y5)
—4 2 3f 56)6c 56 X XX d
a“(a+3) | (£°03)7) [ (1+(j5y§)2)3 ] X

Integrating by parts twice, and using (3.3), we also have the formula

dic® Loy LY 2%y8
2 54 .0 4 o _ 2 5 A6 ..0\72 X XX xxx
a (a+3)f(j 0y%)-0 [(f )k .—]dx—a (a+3)f(j 3% y%)0 [ TLE
o 2 )
20y (£2y2) ]dx

1+ ( g0y

—3a2(a+3)f(j5a§y5)62[

Therefore the identity (3.9) becomes the following:

(3.10) —atna y ||L2+a2(a+3)f%
o [ [ L (144 [t 2|
+4a2(a+3)f(jaa§ya)[(jc?ya(i;/g;)g(i:&yﬂ]dx
+4a2(a+3)f(jaa§ya)a[(f5y52(i;/§;)g(iza4y5)]dx
—f(j56§y5)~5§[ 1+ (70 Y2 | dx— (2a+5a - f(f 9 %]m

o 6.0 o o
5 A6 2 ag yxx 2 5460 2 (ag yx)(j yxx)(ag yxxx

sotary [0 & T e ontas [ s o S
(YD (L8’
(l‘f‘(fd 6)2)4

—18a2(a+3)f(j50§y5 x[ ] X=Ji+ o+ +]o.

We claim that we can reduce the right hand side of this equality into a manageable form. In fact we will
show that, for some m > 2 and C; small enough,

(jﬁagyﬁ)Z

3.11 +-eo 4 I SC/—
( )|]1 9| 1 A+ (g0

dx+Co(1Y° 12, +1955° 1%, ) + G (11 +1055°173)-

To prove this, we find bounds for each of the terms Ji,---, J9. Instead of demonstrating the full bound
for every single integral, we focus on the most singular part of each of Jj,---, Jo, with these most singular
parts being the terms with the highest derivatives when distributing spatial derivatives according to the
product rule. We will label collections of the less singular terms as G(t), which stands for good terms.
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We begin with J;, estimating its most singular term by means of Young’s inequality:

|11

oy, ooty
'(a_l)f(ag(saiy%.ai[%]dﬂ < |(a’—1)f(j60§y6)- [%]dxh&t)
1 #0950 2

ﬁ|‘1+(ag5j,/§)2

We proceed similarly for the most singular term in J» :

L FCIFO0Y I + GO,

A 6)]dx| LG8

5 \2 546 ,,0 572 .0 5 A4

’(1_,_1“2)[(}506}/5).62[ (Vi) ]dx’sC’ (F°0:y7) [(F20:y°)(F 0Ly
2 T 1 (89022 1+(,29)3) 1+(#9y%)2
1 ” 2008 y°

2
— +G(1).
100111 4 (g9 y2)2 T

' |ty | sty

We now use the Sobelev as well as Gagliardo-Nirenberg inequalities to control ||_#282y° || :

1 3 5
1055 o < 1IVI20%° N2 < 115,103 °11%,.
This then implies

2

PR R i

10011+ (7822
728y |
L+ (70y3)?
We turn our attention to estimating J3; to begin, we have
ERRICHNEDD
(L+(£0yH°
(205" [ (0¥ (2080 (0050

3 54,2
+ (I 120055015 ) 105312, + G

12

1

- 64 o)
100 xy

4 4
L2 + L2)+G(t).

+c(”y5

12

sl = |4c?@+3) f (#968yP)

dx‘

C dx|+ G(1)

1+ (F0y2)? 1+ (F0y2)?
2
F008y°
L+ (20y9)?
(L0y3)
A+2oy0»? | ~
We turn our attention to bounding || #°0%y° ||, and || #°33y°|I2, as follows. We use the Sobelev in-
equality as well as the Gagliardo-Nirenberg inequality, finding

1

2
— + G(1).
100 L? (2)

o TRl N P

12

Here we have used the fact that

1 3 5
(3.12) 1,2°0%3° I < 11L2°1VI20%)° 12 < 10112, 1935011,
Moreover,

£008y° ;

1045212, 11 + (20 Y002
L+ (20y2)? Yl Vel e

1 1
1703512 < 12285y 112,103 112, < C|
and also,

1 5 342
11+ 2y D2 < 1412798 1 < 14 120V, < 1+ (122010 2000y )
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We may thus conclude our bound for J3 :

1 566 0 2 566 0
Bl = — L2 L0, 1040, + € + Gl

100 1+(j5yx)2 12 1+(j6Yx2
2 F00% 2 514 At 06

< —|| = C 0 C+G(t
00| T g8z * OV 11081+ €+ Gl
2 6560 2

= Z|LEX_| o1y i+ 10ty 1) + 6o,
100117 + (g0 y9)2 12

Note that above we used the assumption that ||y5II§2 + IIG‘}C y‘slli2 = 1 (otherwise there would be nothing

to prove), and consequently C < (lly 19+10 y‘slli(z’).
We estimate J, similarly to how we estlmated J3:

_ lag? 526804 L VDI V2L )
il = faa (“+3)f(j 02| 1+ (g0 5)2)3 Jax]
66 5,0 9 56
'f (j 5) j yx)(j yxxg(j xY ]dx|+G(t)
1+( 20 )2 (1+ (20 )22
005y 12

100 || 1+(j5y5)2 (”y || +||a ||i(2))+G(t).

We next consider J5, beginning as follows:
ot 2L o
1+ (Ggﬁ 5)2

c'ﬂfaﬁ ). [(j5 AR ]dx|+G(r)

| /51

<
Vo
2
033 5,0\2112
= 100”“(%5 5)2 +CIL YD (P00 \/WIILﬁG(t)
01912 843 5109212
< T ”1+(j5 o PR T O 1+ (22122 12 + GLO).

By the Sobelev and Gagliardo-Nirenberg inequalities, we have

1
Joroso],. <[], <|
as well as
ooz 561\ Lose ) 515 1At Ss )
Vi+oy2|  =c(i+1, 7)) =c(t+19I2)81) =1+ 1y 15100015 -
L
Moreover,

3
1223392 = 1P 1108901,

We may then conclude our bound for J5 as

o LI a0t 1+ G
5 =~ 100 1+(j5 5)2 1?2 L?
F00% 2 54 4 64 516 4 66
= — ||1+(j(S 72 O #1007+ Oy 14 10371+ GO
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We begin the estimate for J; similarly to how we estimated /3 above:

| Je!

L1+ (g0y0)2)4

| f (7°9%y°) _[(f5Y§x)2(f504y5)
1+ (j5 yﬁ?)z) 1+ (29y9)2)3

m” 1+(f5 6)2

(2a+5a2 - %az")f(j@agy@) .0 [M]dx’

]dx' LG

|00+ G,
We then make use of relation (3.12), finding
[ v02 2380 ] <1 It I < (10N + 1220 I )

Therefore, we have the conclusion

2

e
100 1+(f5 5)2

el L+ (1718 + 120" 15, ) + G,

We estimate J, as follows:

676 ,,0 b
1J71 = 3a2(a+3)f (J70:)") .92 L0y’ dx
L+ (2002 T+ (20022
g 8,0 \2( 7044 0
-clf < %) |20y 200%y°) dxl+ 6o
1+(j5y (1_,_(}5 5)2)2
556 50 \2( gdgh o
(3.13) 5%0 s ;Y5 20y%) (;ﬁ 2xzy) o
1+ (£0y2)? | 12 A+£99%2 |
2
| _ g0y 5.8 12 1 gbat o)
vl | ey S C{IZ° il il £705 Y 2| +G(2)
100 |1+ (2222 [ )
2
1 j(sagy(s ( 5 3 1.5 5 4 54 5.2
=700 ClIy 0%y ”82) l 0Ly ” » + G(D).
100 | 1+ (_g9y2)2 o L | 17 I
Our conclusion for J7 is then
1 j(’)‘aﬁ ) 2 . 5
712 506 | 1y oy |, (115410 + G,

For Jg, we begin with the following estimate:

) ) )
" 22y 2%y 2%50,) ] dx‘

0la®(a )f(;é ¥%)-0 [ L2 B

8 6735,,0
f(j(sae [ WY (F25°Y)

dx

IA

+ G(1).
(1+(Z0y2)2)3 @

The integral on the right-hand side is similar to /3, and we handle it in the same way.

13
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This brings us to the final term to estimate, Jy; for this, we have the following:

) )
CRHEC N N
1+ (29y2)2)4

ol

18a (a+3)f(j506 )02

036y 50V2( g0 18 \2( g0k,
< 5) ' ANk J/xx)6 oY) dx|+G(1)
L+(F0ye)? 1+ (2003
2
L j56 5.8 \2( g6Ah 0
1+(j5 5)2 C”(j Vix) (Gg 0 )Y )” + G(1).
Here we have used the fact that % < 1. The last inequality is similar to (3.I3), and we proceed
in the same way to get
S8y 2

[Jol

06 0 A4
o Hlﬂjﬁ 72 | O 1+ 1700 I+ G

Putting the above together leads to the relation (3.I1), which we had been aiming to prove. We now
may add (3.8) and (3.11), finding
(F003y°)° +(F°03y°)?
(1+(Z£0yD2)?
This inequality clearly implies a uniform bound (uniform with respect to &) for the function y°(x, t) in
the space H* until a time T = T(a, || Yoll ga). We will study the size of this time interval [0, 7] in a bit more

detail, and to this end we define 1(r) = [y’ 1, + 103 y° |12,. We also fix Co with y = Cp.
We may then say

1
S0: (1915 +188y°1,) + dx = Co (Y712, +10%5°1%,) + Cr (17178 +105°17%).

t
I(t) < e’ 1(0) + f " =9717 (s)ds.
0

We use Lemma2.I]to see that I(#) remains bounded as long as ¢ € [0, Bx], where

m = I —Cyspys F-Dys

(3.14) i sup{r.(2 1)[0 e Crse [(1(0)) 3 ]ds<1}

A simple calculation then shows that we have guaranteed existence of our solutions over the interval
In{1+ i :)

(3.15) 0<ir< y .

Clearly, this bound for the time of existence depends on the initial values; that is if the value 1(0) =
1yoll2, + 1103 yoll7, stays small, the time interval is large. Note that we will take this 7 > 2 and y to be fixed
throughout the sequel. U

Lemma[3.2] provides a uniform bound in H* for the solutions of the approximate equations @.I). Al-
though this is a good and useful estimate, as we are aiming to show the existence of classical solutions,
we need a little more. In what follows, we will pass to the limit of solutions of the approximate equa-
tions (3.J) to find solutions of the original equation (L.8). In order to do this, we need to have at least the
continuity of the function F(y?), where F(y?) denotes

(3.16) ¥ =F@0),

with y? determined from BI). To guarantee continuity of this function, one approach is to prove an H°
uniform bound. This clearly means 8%y is continuous and hence the function F(y°) is continuous as
well. The following lemma concerns the appropriate bound.
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Lemma 3.3. Let y° be the solution of (IL8). Then there exists T = T (&) and C = C(y, @), independent of

In (1+%)
ol

6, so that forany0 < t < 5 ,

01.2°y")?

(3.17) g 25+f— <
sup [y 1% A+ (00 X

0<t<T

Proof. We take five spatial derivatives of equation @.I). Then its inner product with the function 05 0
leads to the following identity:

1 5 5 5 A5 5 (ag(syxx
(3.18) Ethlaxy ”L2+(a l)f(j a [1+(j5 5)2]dx+

\/m dx ]dx+f(j505y6) OS[W]dJH
e

2 A5 5 (jyxx)?)
+(2a+5a - = f(j 0 W]dl’

+ az(a+3)f(j5a§y5)~a5[

= d(a+3) f (j50§y5)~6§[(j5j5y§)-x5-ﬁ]dx.
For a more convenient form of this identity, we simplify some of these terms. To begin, we have

1

9 64,0 64,0 6,0
~3a (a+3)f(j565 g[—f Yaxl ]dx+9a2(a+3)f(j5a§y5)-ai[(f LIS Vel T Yo
1+ (20028 1+ (20028

]dx @ (a+3)f(j565 5[&](136

2 3f 565 0 '65
a“(a+3) [ (£70;)) x[ % (1+( 20y

o o
L2y 70y%)} ]dx

2 6 A5 6
+15a (a+3)f(f 0y") x[ (1+ (#0y2)2)s

The first term in the right hand side of this relation is

00 857 592
az(a+3)f(j55§y5).ai[M]dx:az(a+3)f(f—xy)dx_
L+ (PO ye)? 1+ (20)0?

(£%3%y%)( 2%y (2,
(1+(29y%)2)3
) ) )
i[(ja ) (#0%y )(yxx]dx
(1+(Z0y2)2)3

—4a2(a+3)f(j56§y6)-

~4a (a+3)f(j567

We next rewrite another term appearing in (3.18):

f(f605y6) as[m]dx f(agl?a? 5y. 03[ 1+ (g% g9y0)2 ]dx-

1+ (70 7093
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Finally, another term in (3.I8) can be written as follows:

dx®
2 5735.,0 5 0 70,0 o
a (a'f‘?))f(f 03y") 05| (£ 27yy) k" dx]dx (1+(j6 5)2)3

2 0 A7 6
- 4a (a+3)f(f axy x[ (1+(j6 5)2)4

One can put in more effort and simplify other terms for a more convenient form, but we avoid long
calculations and work with the following simplified version, as it is enough for our purpose:

5 76,0 0 @0 o
4f(jda;y6)'a§c[(j j yx)(j j yxx)(j yxxx] x

o 2 0
(2% ) (jyxx ]dx

2 (#0071
(319) —GtIIG y ||L2+af (a+3)fm X
o o o o
6 A7 3 j yxx Y 5 j a )(j )(yxx
<la—1l- |f(;é oy [1+(j6 5)2]dx'+4a (a+3)'f(j oy (1+(j6 e dx|
547 52 (f%x 6)(f6J/x)(J’xx 547 Ps (f6Yxx
+4a (a+3)|f(j 6 x[ (1+(j5y6)2)3 ]d |+3(X (a+3)|f(j 6 x[w]d.x,"

[f DL RIL Vo) ] |
(1_,_(}5 6)2)3 *

(5)(5xx 1+ (g0 y0)2

{1+(j‘;j§;;)4 x|+‘f(j5a7y5) 03[ ::ig;/ 6)2]d |

oo gl forroat il e i vse ) [l 00

+10a (a+3)|f(j507

+18a2(a+3)|f(j5a§y5 GH|

=L+ -+ I+ Ig+ Iy,

We will omit most details of the estimates of these terms, as the proof is similar in many respects to the
previous lemma. For those details that we do show, in order to control I3, - - - Ig we will focus on the worst
term in each of them. In fact, the worse terms are the ones that the derivative behind the fractions hit
the highest degree in the numerator. Note that as long as we restrict the time interval to the interval in
(I5), LemmaB2lalready provides us with H* bounds, and hence, for a = 0,1,2,3, there is a constant C
so that,

(3.20) 10%y° |l 1 < C.

Therefore, any term of this kind which comes up in the estimates is easily bounded by a constant C.
Moreover, an application of the Gagliardo-Nirenberg inequality and Lemmal[3.2]lleads to

(3.21) 102yl < €oll0%y° Nl 12 + Cll Yol 2

where in our future calculations, the constant ¢y will be chosen in a way that the seventh derivatives on
the right hand side could be absorbed in the left hand side (as is frequently done in energy estimates for
parabolic equations). This incurs the expense of a potentially large constant C > 0 on the term ||| 2.

(1 + (j()‘ 5)2)4

|+
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We will start with the term I;, and as mentioned above we only present the bound for the worst term
in the expansion of I :

e I I L R R e I e
e \fii;’%iéiz ; H““T Lz-(Hff’iﬂLﬁG>

s o|{Z2 | (o | o], o [LZ B oty

= sl

01+ (goyp2 i
We omit the details for I», but reach the same conclusion as for I;.
The estimate for I3 has an interesting feature which we mention. To begin, we have

. [ (2905 (22D (2 ] dx|

I = |a (a+3)|‘f(f507 (1+(#0y9)2)3
(220510 ( 2%y (32,
< C'f(f‘saiy(s)'[ S0 {(syzsy Jax| +
1+(Z2%y)%)

The integral on the right hand side of this may be controlled as desired. The interesting feature men-
tioned above has to do with an estimate of a lower-order term from the collection G, namely

|f(j567y5)_[(fﬁaiyl?)Z(jfsyﬁz)]dx’

< 1220 120.2°05 51121 2003y Nl 1o
(1+(20y%°
2
1| g%y 5. 52
+C
10| 1+ ( g0y 5)2 127l
1| 200l :
1() 1+ (j()‘ 5)2
in which we have used (3.2I) and Lemma[3.2]
Omitting further details, we have the conclusion
SO+ [ Lol
2 1+2% 5 9)2)?
where C is a positive constant and satisfies Cy <4 — E' This clearly finishes the proof. U

Now we are ready to present the existence of the solution to the initial value problem for (I8) in the
Sobolev space H°.
Lemma 3.4. Forall0< < )—l,ln (1 + W) there exists a function y € H® that solves the equation (L8),
4
with initial data y(-,0) = yy € H°. Moreover, there is a constant C = C(yy, @) so that

(3.22) sup llyllys <C.
0<t<T

Proof. In Lemma[BZ2lwe have shown that {y°}- is a uniformly bounded and continuous family of func-
tions defined on Rx [0, T] in the Sobolev space H°. Hence, an application of the Banach-Aloaglu provides
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asubset {y°/}; and a function y € H® so that y%/ — y in H°. We claim that this y € H° solves the equation
(L8). Indeed, for all § > 0, the integral representation of the solution to the equation (3.I) is in hand,

t
(3.23) Yo, ) = y2(x) + fo F(y2)(x,s)ds.

where F(:) is defined in (3.I6). The integrand in the right hand side consists of continuous terms with
functions 85)°, 0 < s < 4 within. Therefore in (3.23), there is no difficulty in passing to limit on the
subsequence § ;. Since y%i — y as j — oo, that means

t
(3.24) y(x, 1) = yo(x) +f F(y)(s)ds.
0
This immediately implies that (3.24) satisfies the equation (L.3). O

4. ASYMPTOTICS

In this section we show that, in a special scaling limit, solutions of the system (I.8) and solutions of the
KS equation shadow one another over a time period dependent on initial values of both equations.
To begin, we fix an 0 < € < 1 and assume

a=1+e.

Then we use the change of variables
(4.1 (€7 = (e x,e?), yx, 1) =ed(ex,e*t) 1.
A straightforward calculation transfers the equation (I.8) into new variables as follows,

(@—1Dyxx 63(1)55
1+y? 1+€3(®;)?

Vi= €3<DT -1, yx= €%®¢,

V1+002 =1+ @2,

1 . ﬂ B 63(135555 B 366((1355)3 +9€6(D§(D§5(D§5§ N 1569((135)2((1355)3
2~ 2 3 1
14y2 4% (1+€20p?) (1+ €20p?) (1+ €20p?)
also,
y IR VaYaxYax 3(y2)* (yax)® oo PePeePece 3¢9 (D)% (D)’
o = =
dx (1+y2)3 (1+ y2)* 1+ @))% (1+e3(@p)?)4
Then
3 3 6
3 € Pe; 2 € Deeg 3w 2 €D D Degg
ed, + ——+a“(a+3)——————+/1+e>(P)*-1=10a"(a +3) ———————=
’ 1+€3(Dg)2 ( )(1+€3(®§)2)2 (@) ( )(1+€3(<D,5)2)3
6 3 9 3 2 4 2
€ (D¢e) €7 (Dge)” (Dg) 1 €*(Dgg)
B TP L P T  h R PEBLLL l
(1+e€ ((I)g) ) (1+e€ ((I)f) ) 2 a +€3((D5)2)5
1 €8 (@)
- (2a+5a2——a3)#.
37 )1 +e3@)2)*
This leads to
2 Degee D¢ (@¢)? 2 DD D
(DT +a ((X"l‘?)) (1+e3((1)§)2)2 = _1+e3((1)§)2 — 1+\/W + 10« (0!+3)W+
2 S@e)® o o @) (@9)* 1.2) €@
4.2) 302 (@ +3) ety — 1802 (@ +3) G g — (1+ 3@ )—(1%3@5)2)%
63@&)3

— 2_1,3)_ @)
(2a+5a 3 )(1+€3@{)2)4.
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In the above, if we pute =1 and a = 1 we arrive at
1.2
Pr +4Pesee = ~Peg — 5P

which is just (Z.I5) with a new variable name. It is worth noting that putting f(x, t) = eU(v/€x,€>t) trans-
fers (II) into equation (2.15) as well. The point of this section is to make a rigorous the comparison of
solutions of (4.2) to those of (2.15) when € is small.

4.1. Some apriori estimate for the function ®(¢, 7). We now turn our attention to some bounds for the
solution ® of (£.2) in Sobolev spaces. Specifically we have the following lemma:

Lemma 4.1. Fixt, andT .. Then there exists constants E, and €, so thatif||®(0)|l g+ < E. and0 <e <€,
and if|la—1| =¢, then
4.3) sup [[OT) |zt <T..
0<7<7,
Before the proof, note that this lemma tells us that after unraveling the scaling from (@I) to go from ®

back to y, we find that the solution y(x, ) exists on the time interval [0, 7. /€?], far longer than the times
of existence we found in the previous section.

Proof. The proof goes by adding up two energy estimates together, one on ||®| ;2 and the other one on
|03®]l ;2. We first multiply the equation into @ and take the integral to get the following energy
estimate:

e @ f D(D¢)?

1+€3(§b§)2 1+ /1+€3(q)€)2

1 D¢
G0N+ @@ Il = - [

D (D)2 DD, Dy Dy Des)?(Dg)°
B (1+1a2)€f($)5d5+10a2(a+3)63 s de+da’ (@ + 3¢’ %d"t
2 (1 +€e3(@p)?2)2 (1 +e’(Pe)”) (1+€°(Pe)?)
DD Dy (Do)
3.2 et St 1 2 s [ 0®
e (“+3)fq)'ffa*‘[(1 +€s(®s)2)3]d"r+3“ @9 ) Troor ™
_ 2_1 3)3 @)’ 6 ((fo)3(®f)2_®
(2a+5a? - Za®)e oot 180 @ e | e i

= h+Dbh+I+14+ 15+ g+ 17+ Ig+ Iq.
Above we made a simplification on one of the integrals using integration by parts,

o0 ) (0 D)2 3 [ (@) (@)? 5 PO D¢
————sd{= | —F——=d¢—4c’" | —o———=d¢—4e” | Ol | 553 |-
(1+€3(¢pe)?)? (1+€3(pg)?)? (1+€3(¢pe)?)3 (1+€3(®)?)3

Although this energy estimate is already in a nice form, and we can run the argument, we are still able to

simplify the left hand side, which itself reduces many calculations. In fact we make use of the bounds in
Lemma[3.4] and the scaling (4.1)

1 1
4.0 e Ml Fevewdl

for some Cy > 0 fixed. Therefore, the above energy estimates turns into,
1
4.5) SOOI, + Ca® (@ +3)| 0l = |+ b+ I+ a4 T+ To+ 1+ T

We now try to find a proper bound for the right hand side of this equality.
Estimate for I;:

1 1
| 1|—|f1+ g7 1] = IR0z < 1912 1911001 ) < 101, + 10" 01
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Estimate for I,:

O(D;)?
= |[ :

1
1+ /1+e3@0)2 s ”1+\/WHU’°

7 1 3 142
< cliolLi0lL)(1e1%10t0l%) < c(1o1, + 100l2.) + C(1o1L + 19te1L,).

1
D] o 1D, < CHIVIZ D 12 [ g [5,

Estimate for I5:

Bl = e el [ D(0g) dé| < el®l gl | ————
(1+€3(<D5)2)2 (1+e3(Dg)?)z 'L
< e||<1>||Lz(||d>||§2||a4<1>||§2)2sce(||<1>||§2+||a4<1>||§2)
< (1012, + 19" 012,) + Ce* (1o, + 10" @I, ).
Estimate for I,:

DD Dy Dy

1
i 6a2a+3€3|f—d S et M P L P L P Lo
I @3] | G- mgons 1 =€ | Trm@oms | 101 1019l

1 1
< CENIVIZO 2 llIVIZ Ol 2| Deell 2 | el 2
< 3(1)%64(1)% (I)%a4q)% (-D%a4q)% (I)ia4q)%
< cé(lonL1atonl, ) (1012, 15t ) (1012, 10kl ) (1e1, 1ot ,
<

ce(Iolf, + 19t

Estimate for I5:

DD Deg
IIs] < 4e’a*(a+3) f@ 0 ~—|dé
5 | 3 g“[(1+e3(c1>§)2)3] ’

< Ce® Dl 2 Pl 2 1D oo l| D | oo |I7€3(q)§)2 Il o

IN

Ce D¢l 2 1 Degell 2 1V 12 Dl 2 1V D e
3 1 4 1 1 4 3 7 4 1 5 4 3
e (117 1atelz, ) (1o il L ) (1o1%. 101, | (1o, 16" e,

IN

IA

ce® (113, + 19¢@.).

Estimate for I;:

|76

(@e)* (De)? !
, s| [ (@) (@) 3fl— =~
4a°(a+3)e |f (1+€3(¢5)2)3d5’ = ” (1+€3(D)?)3

1 1 1,2 5 342
< CENPILIIVIEDNZ, = Ce (101210012 ) (1012, 10012, ) < e (1013, + 16"l ).

(AL

A

Estimate for I;:

(@)D 1
2 3 s 3\ - e .
sala e |f (1 +€3(pe)?)? d€| =ce ” (1+€3(CI>§)2)3 ”L‘””(D& AL

13 1 A 1
ceIVIF oI vl = e (o d 10012 ) (1015, 10'01%,) < ce* (1o, + 1%, ).

|76

IA



WELL-POSEDNESS AND ASYMPTOTICS OF A COORDINATE-FREE MODEL 21

Estimate for Ig: Similar to I.
Estimate for Ig:

(@)% (De)*D
(1+€3(pe)D)*

63((1)()2
| |

3 3
T 3o D, Dl oo
(1“3@5)2)4)]”0(6 LRTALIIN

7 1
cENVIF oI vl = e (o d 1tond ) (101F,10te1%,) < ce* (1o, + 1ot ).

18a2(a’+3)€6|f dé' <C

IA

Overall, the energy estimates (4.5) is transfered into

1
(4.6) S 01017, = C(10N3: + 10} 015 ) + C(IN: + 15E0] ).

As it was mentioned before, our argument is based on a combined energy estimate. For the other term

in the energy estimate, we take 4 times derivative of the equation (4.2), and then find the inner product
of the resulting equation with 6;®,

4

1 ot
4.7) Eatuagcpniz+o¢2(oc+z>,)fa4 [ 10t PdE = fa“

4
(1+€3(@)?)? I0;®ds

3((1) )2

2 RGN
f 04 (@0 10}0d¢ +10a% (a +3)¢° f [ Bt L 5‘253]023@615
1+€3((D )2 (1 +e>(he)?)

(@ge)?

(‘Dgr)g(q)g)z
2 3 4 2 6 | A4 ¢
+ 3a“(a+3)e f 5[(1+€3(¢ )2)3]0543015—1804 (@ +3)e fag[

(1+63(¢?)?
_ 4 s€) 4 1 a3 3[ 4 (P 4
(145 S faé[meg@ )2)2]0 ®d¢ - (2a+5a” - 2o’ aé[i(lﬂg(q) )2)4]0 ®de.

Although we can simplify most of the terms in this relation, we let most of them in the current form, as
they are easily bounded in the current form. However,

]agapds

6‘; 4 2 (agq))z
a (a+3)f m]agﬁbdé—a (a+3)fmdf
6 5
(050) (03D D g ¢ e

32 3 2 6 (A% Rt Bt 1
ea (‘”3)[ (re@ons e (‘”3)/(0 PO @)06[(1%3(@ 72 4

Then, the energy estimates (4.7) turns into

(03 ®)? P
4.8 64<D + +3 f— =—f66<1>-6% — % g
4.8) t|| Iy +a*@+3) | s ; g[1+€3@6)2] ¢

- fagcp-ag[ (@° ]d{ (1+ a? fa% 9’ %]ds

+1/1+€3(Dg)? (1+€3(@:)2)?

O Dy D D)3
v sata+ e [0 o U twag st @+ et [ oo S ag

(1 +€3(pe)2)3 (1+€3(pe)?)3
(05D) (0°D) (@) (D) &) (De)
2 3 ¢ S 2 3 6 4 (8
+ 4da“(a+3)e f (1+€3((D§)2)3 dé+4a”(a+3)e f(0€¢)(0 @)ag[w] dg

_ o 1 3 3[ 6, . (P f 6 (@)% (@r)?
(2a+5a sa)e 3% 05[7(1%3@ )2)4]d§ 1802 (e +3)e® | 3o 5[7(“63(%)2)4]615

= N+t
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As we argued in (£.35), we work with a simpler version of this energy estimate
4.9 L1001, + Coa®a+3) [ 10501 2de = |-+
(4.9) S 0103 @I%, + Coa @ +3) [ 1000l 2de < |y o

As it is stated before, in each term we present the bound for the worse part of the integral, and that hap-
pens when in the integrand, the two derivatives hit the highest degree in the numerator of the fraction.
We denote the rest of the terms G(7) which letter G stands for good terms. One type of such (good) terms
arises when derivatives hit the denominator. Any time a derivative is applied to the denominator, which

3 r
is of the form L it multiplies the integrand in —2¢2%
(1+63(c1)€)2) (1+€3 @:)2)

in the following way,

— . These kind of terms are controlled

3 3
€ (ng)gg €2 (Dg

3
2

3 3 5 3 3 5
3 3 3 3 4
=€ |Lmll‘1>eellm < Ce? | Dgell o < Ce?[||VI2 Dl 12 < Ce? | D] 2, 1 0* @ E,.

|L°° a+1

1 +e3(®§)2)a+1 (1+e3@2)

Although this might increase the power of ||®||;> and [|0%®||;2 in our final calculations, it also adds the
power € in front of every such terms, which fits our Gronwall’s inequality (2.2). For the rest of the proof,
we ignore the good terms G(7), and in each integral in (4.38), we present the proper bound for the worse
term.

Estimate for J;:
il = |f06®.62[i]d6|SC||04®"L2”06(D||L2 ;” GO
Coa?(a+3)
Estimate for /,:

)2
= | oo —Z]ae| 1ot S TN e
+1/1+€3(Dg)? 1+\/W L
3 5 s . .
< ||0?<D||L2|||V|§<D||L2||0§®||Lz < ”agq)”LZ(”q)”zz”ag(D”zz)(||‘D||zz||0§®|Izz) G

Coa®(@+3) 6. » e \
s S 1080l +C(19g@i 101 + 6.
Estimate for J3:
: (Pee)” 6 4
sl = (1+-a%|e faﬁq>.az ———> | d&| < Cel| 02D 12| Dge | 1= 105 @ 12 + G(T)

IA

5 3 5
Cell oSl 2 IIVIF @Il 2 15E@1 2 + G(1) < Cellofl 2 (101, 192, ot @l 2 + Ga)

Coa?(a+3)
100

105012, + Ce* (I, + o'l L, ) + Gr).



WELL-POSEDNESS AND ASYMPTOTICS OF A COORDINATE-FREE MODEL
Estimate for J;:
(OFZOFF0)
_ 2 3 6 2 §FECHEE 31 A6 5
Jal = 6a’(a+3)e ﬂfagb-af [W]dfﬂ < @ 108D] 2 | el 1 D1 1030 12 + G(T)

3 5
< 103N 2V Dl 12 V]2 @l 12110301112
3,46 5 1AtDIs S 12413 V1At E 1482
< 1080l (101 1¢1%. (101810017, ) (Iatel 2. 1061 %, ) + G
3 3 Coa?(a +3)
< Moo, (1002 19}02,) + G < OTHG?@H%Z +e2(j)f, 19018, ) + Gir)
Coa®(@+3) 62 1 10, 1 A4 10
= Ikl +e (1ol + 1gol ) + 6.
Estimate for Js:
2 3 6. A2 (Dgg)°
/5] = 3a (a+3)e|f6€<ba€[m]d5'
1
3 6 4 2
< ¢ ”WHLOO||agq>||Lz||afd>||Lz||<I>gg||Lm+G(r)
Coa?(@+3) 5. 6( 1116 4506
= S ogol, + Ce(11f, + 1otelf,) + Gir)
Coa?(a+3)
< "Tuagqn@ﬁc(ncpniz+||a§q>||§2)+C612(||<1>||§9+||6§<I>II}9)+G(T)-

Now we have use relation
Estimate for J5:

(03D (92P) (@) (D)

¢
sl = 4a2(a+3)63'f
i (1+€3(@;)2)3
= C€3”;H 102011 12 19201 2 e Nl 5= | P [l 120 + G (7)
B (1 + &3 (@23 ' ¢TI I
3 A6 5 5 3
< Ce ||(35(I)||L2||(3€(I)||L2|||V|2(I)||L2|||V|2(I)”L2
398 4pIE 1382 8 1A% g 43
< Ce ||a£q>||Lz(||agq>||§2||a€q>||;2)(||q>||;2||a€q>||;2)(||q>”zz”55(1,”22)+Gm
5 3 Coa?(a+3)
3 A6 4 0 6 2 12 10 4 10
= CEIROI(191,:10}01,,) + 6 = =1l + < (1012 10;0138) + 6o
Estimate for J;:

|J7

(D) (De) ] '
(1+€3(¢pe)?)3

3

168302 (a +3)Ua§q>-a§q>ag- |

IA

3
Ce? 031 2107l | P11 I +G(D)

I S
+€3(D¢))?)3

IN

1 z
Ce 0Ll 210412 11 E, 1021, ) + Gl)

Coa?(a+3)
100

IN

103012, + Ce* (1@l + 10t @1, ) + G,

23
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Estimate for Jg: Similar to Js.
Estimate for Jg:

/ol

(@¢e)3 (@g)?
2 6 61 . A2
18a“(a +3)e |f65<I> 65[—(“_63(%)2)3

5 3
< Ce®IOYD 2 10; @Il 21 IVIZ D7 V2 @I, + G(x)

| dé| < Ce®la%el 2 10t 2 1Dgc e D + Gi)

3 5,2 5 3,2
< cclofol zlofl (1012 10l ) (101510t ) + G

Coa?(a+3)
= o, + (1002 + 10f@12) + G,

Therefore, we can summarize the energy estimates (4.8) in the following form

1
(.10) 2310}l < CIPIF, + 1005, | + (10U: +15E@IS. ) +€*(12U}2 + 15E@1}2) + Ger).
At this point we combine both energy estimates (4.6) and (4.10)

1
soi(1015, + 1ot ) = cliei?, + 1tel?,) + e, + 1ol ) + ce™ (101} + 15¢01}2) + ).

Note that G(7) is also bounded by a combination of the terms in the form of e“(ll(IDIIIL’2 + ||6:§<1>||1L72). We

define E(t) = ||(I>||i2 + ||6§(I>||iz. Then this inequality is clearly in the form of the Gronwall’s inequality in
Lemmal2.2] and it finishes the proof. 0

4.2. Asymptotics. In this section we show that the solutions of the scaled equations and stay
close up to a time 7.. In the previous section established the existence of the solution of the equation
in H* on a time interval [0,7.], under some restrictions. We also recall an important result of the
global boundedness of the function U(¢, 7) in any Sobolev spaces. This result is proved by Tadmor [31].

Lemma 4.2. The (KS) equation 2.15) with the initial value Uy € H* admits a global smooth solution
(4.11) U, 1) e H.

Lemma 4.3. Fixt. >0 andT. >0 and take E. and e, as in Lemmal4.1l Assume that | ®(0)| y: < E. and
0O<e<e,. Let U, 1) and ©(&,T) be the solutions of the equations and respectively, where we
assume |U(0) —®(0)||;2 <e€. Then

4.12) sup (1) = U]z <Tsye.
1e(0,74]

The constantT ... > 0 does not depend one.

Remark 4.4. Lemmal4.3]leads directly to Theorem [Z4] Here is the calculation. Recalling that y(x,1) =
e®d(y/ex,e?t) — t. we have

sup lly(, )+ t—-eUWe,e*Dlz= sup el®@We,e*t)—UWe,e* D)z
0<t<T(/€? 0<t<Tg/€?

(4.13) = sup (1) -UCT) 2

0<T<T)

<Ce™*,

This is the concluding estimate in Theorem[2.4] In the above we used the change of variables relation
If @)z =a 21 £ 2 for @ > 0.
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Proof. From the equations (Z.15) and (4.2) we construct the equation for the quantity v = ® — U. Indeed,
since for @ =€+ 1, a®(a +3) = 4 +€(e + 3)?, we have

0/ @-U) + 4[(1;2;) -~ Ugeee) + [T+ @2 - 1——(Ug)]+(a—1)[1+ S U

EDeDeeDesr - @)’ €5 (D)3 (D)2
7(1+ 3 (@0p)2)3 +3a (oc+3)7(1+€3(q)(§)2)3 18a (oc+3)7(1 63(®g)2)4
- 1a2) €( @) e*(@¢e)° D

S e e(e+3)° .
1+ @2} (re@ght (1+e2@p2)

= 10a%(a+3)
- (2a+5a2 - l053)
3

Then we can simplify it in the following form

dv + 4[ Vegge Ve (P + Us) ] [ Ve ]

1 +€3(<D,5)2)2] | (V1+ed@p2)+ (1+ Swe?)” ! +63(0p)?
Zes(iqf;&igﬂ] 1 Al s o0 e
¢

Haery (V1+e @)+ 1+ 5 wp?) 1+e3(@)?

Bq) I )) 3 16)) 3 6 (0] 3 10)) 2
1002 (a+3) PP o2 gy COLT g0, 4)C P (@O
(1+€3(Dg)?)3 (1+€3(Dg)?)3 (1+€e3(De)?)*
[6) 2 3 16)) 3
_ (1+1a2)&)5 6(3 ff)“_
2 T (1+e3(@p)?)2 (1+e3(@p)?)

az(a+3)[

+

- ! _ Paee
(a0 - 3a’) ey 1 +€3(®¢)2)2’

with the initial condition v(¢,0) = 0. The presence of at least one € in the right hand side of this relation,
as well as the H* bounds for both U(¢,7) and ®(¢,7) makes the right hand side very convenient. For
future calculations we give the right had side a name, say eF (¢, 7). It is not very difficult to see that for
any time 7 € [0, 7] we have

(4.14) IFll;2 <C.
Now we find the inner product of the above equation with v,

Ve ((Dg + Ug)

V1+e@p2)+ (145 Wp?)

(4.15)%(,1“1,”%2 N az(a+3)fv.[L)2]d§=—fy-[( | e

(1+ €3 (@2

- [ lmsaglse [ rena
Then,

f,,.[ S f (vge)? d
3 2)2
(1+e3(q> )2 (1+€%(®e))

20D D + VDD + U(Dep)? + vDDe V(®@g)? (@ge)?
_4€3f1}€€[ ¢PePee + Ve D Deg & ¢ s€s]d€+24 f [ & e

(1+e3(Dg)?)3 (1+€e3 (D))

Considering the relation (@.4), we can present a lower bound for the major part of this equality, i.e,

( 56)2 2
(4.16) | T @R e = vl
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Therefore the energy estimate (4.I5) turns into,
l/g . ((I)g + Uf)

V1+e@e?)+(1+5 W)

3 Zl}rq) (Dgg + l}rq) (Dgg + I/((Dgg) + vd; (Dggg
fv [71%3(@ )2]d€+4a (@+3)e fufg[ @) dé

V(@)% (Deg)?

(1+e3(Dp)?)4

1
S0Vl + az(a+3)llv5§||%2:—fy.[( |a¢

+ 24a3(a+3)e6f [ ]df+e/v-F(f,t)dfzKl+K2+K3+K4+K5.

Now we find proper bounds for the right hand side of this relation.
Estimate for K;: Considering the relation vv; = 9:(v?) we have

K| 'f Ve (D + Uy) ]d{' 'fl’ 05[ (D¢ + Up) ]d§|

Ve @)+ (145 we?) 1+y/e@p2) + (145 WUp?)

O+ U,
snvniz | <.
(,/1+e3(®5)2)+(1+%(Ug)2) L
Estimate for K>:
1 2
Kel=| [ v 3@ T 46| = CIviE + g el
Estimate for K3:

|K3]

IN

Zl}g(bgq)rg + l}g(I)gq)rg + U((Drg)z + U(I)gq)rgr
cel| [ ve : S ] de| < Cegellz Uvlze + gl )
‘ A+ @) ‘

1 2 611,112 6
< mllv&rllewLCe [vlly. +Ce”.

Note that all the terms ng), 1 < s <3, are bounded (since ® € H%).
Estimate for K:

V(@)% (Pee)”
Kal = Ce¥| [ wee[ S5 28 de] < Celllveela vl = mos vl + Cel2 o,

(1+e3(Dp)?)4 100

Estimate for Ks5:
|Ks| < Ce|f v-F@E1)d¢| < Cel FC, 7l 2 vl 2 < Cllwl, + Ce?.

Overall, the energy estimate (4.15) turns into

2 2 2
Oclvlif: + Cllvgell . = Cillvllge + Cae®,

I

L2
or

2 2 2

0: V12, = CrlvllE, + Ca€.

Then, , we take integral from both sides,

T
o113, < eSO lv)13, + Caoe? f e“T9ds = O w07, + ar_1].
0

e

Finally, we restrict ourself to T < 7, 79 = O(1), as well as || v(0) || ;2 < €, and complete the proof. U
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