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Abstract

We develop a random batch Ewald (RBE) method for molecular dynamics simu-
lations of particle systems with long-range Coulomb interactions, which achieves an
O(N) complexity in each step of simulating the N-body systems. The RBE method is
based on the Ewald splitting for the Coulomb kernel with a random “mini-batch” type
technique introduced to speed up the summation of the Fourier series for the long-range
part of the splitting. Importance sampling is employed to reduce the induced force vari-
ance by taking advantage of the fast decay property of the Fourier coefficients. The
stochastic approximation is unbiased with controlled variance. Analysis for bounded
force fields gives some theoretic support of the method. Simulations of two typical
problems of charged systems are presented to illustrate the accuracy and efficiency of
the RBE method in comparison to the results from the Debye-Hückel theory and the
classical Ewald summation, demonstrating that the proposed method has the attrac-
tiveness of being easy to implement with the linear scaling and is promising for many
practical applications.

Key words. Ewald summation, Langevin dynamics, random batch method, stochas-
tic differential equations
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1 Introduction

Molecular dynamics simulation is among the most popular numerical methods at the molec-
ular or atomic level to understand dynamical and equilibrium properties of many-body parti-
cle systems in many areas such as chemical physics, soft materials and biophysics [9, 18, 17].
However, the long-range interactions such as electrostatic Coulomb interactions pose a ma-
jor challenge to particle simulations, as one has to take into account all pairs of interactions,
leading to O(N2) computational cost per iteration for naive discretizations, which is not
only computationally expensive but also less accurate considering the presence of boundary
conditions in the simulation box. A lot of effort in literature has been devoted to computing
the long-range interactions efficiently, and widely studied methods include lattice summa-
tion methods such as particle mesh Ewald (PME) [10, 15] and particle-particle particle mesh
Ewald (PPPM) [38, 13], and multipole type methods such as treecode [2, 14] and fast mul-
tipole methods (FMM) [21, 22, 50]. These methods can reduce the operations per step to
O(N logN) or O(N), and have gained big success in practice, but many problems remain
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to be solved as the prefactor in the linear scaling can be large, or their implementation is
nontrivial, or the scalability for parallel computing is not high.

The mainstream packages [7, 49, 25] for all-atom molecular dynamics simulations mostly
use Ewald-type lattice-summation algorithms which are originally proposed by Ewald [16,
11]. This type of methods split the Coulomb kernel into a rapidly decaying function in
the real space and a smooth function. The cutoff scheme is introduced for the first part
in the real space. The smooth part is approximated by the Fourier series expansion. The
classical Ewald achieves an O(N3/2) complexity to sum up all interactions. When the cutoff
radius is independent of N and the Fourier series is accelerated by the fast Fourier transform
(FFT) with an interpolation to distribute charges on lattices, one obtains the PME method
which achieves an O(N logN) complexity. The state-of-the-art development of the Ewald-
type algorithm includes an optimized choice of volumetric decomposition FFT scheme for
large systems on massively parallel supercomputers [31] and efficient methods for Coulomb
interactions without full periodicity [20, 42].

In this work, we propose a random batch Ewald (RBE) method of particle systems with
Coulomb interactions which enables an O(N) Ewald method for fast molecular dynamics
simulations. The “random mini-batch” idea, namely using the sum over a small random
set to approximate some big summation, has its origin in the stochastic gradient descent
(SGD) method [44, 6]. This type of ideas have been developed into different methods
such as the stochastic gradient Langevin dynamics for Bayesian inference [48], stochastic
binary interaction algorithms for the mean field swarming dynamics [1], the random batch
method for interacting particle systems [29], and random-batch Monte Carlo simulations
[36]. Though the specific implementations are different for different applications, these
methods are intrinsically Monte Carlo methods for computing the big summation involved
in the dynamics, and the convergence can be obtained due to a time averaging effect [29],
obeying the law of large numbers in time.

The RBE method uses the same idea of random minibatch. The new design being
different from previous work is that the minibatch is built into the Ewald summation and
sampled from the Fourier space. We take a cutoff radius in the real space such that the
particles within the radius is of order one, and sample p = O(1) frequencies in the Fourier
expansion of the smooth part of the Ewald splitting. These p frequencies are chosen into the
minibatch for the force calculation. The advantages of this approach are threefold. First,
the short-range part of the force remains exact and thus the variance of the force can be
significantly reduced. Second, the short-range repulsive force due to the van der Waals
interaction can be naturally introduced to avoid unphysical configuration. Third and the
most important, the importance sampling can be used in the Fourier space in building the
minibatch such that the force variance can be further reduced. These strategies combined
lead to a simple and efficient RBE method for molecular dynamics, as shown in our numerical
examples for calculating typical properties of electrolytes.

The rest of the paper is organized as follows. Section 2 is devoted to an introduction
to the setup and the classical Ewald summation, which forms the basis of our method. In
Section 3, we introduce the methodology of the RBE and give its detailed implementation.
We also provide some theoretic evidence on why the method works and can be efficient. In
Section 4, we test the RBE on two typical problems to validate the method. Conclusions
are given in Section 5.

2 Overview of the Ewald summation

In this section, we introduce the setup and notations to be used later. Then, we give a brief
review of the classical Ewald summation [16, 11].

To approximate electrostatic interactions between charges in an electrolyte of big extent,
one often uses a simulation box with periodic boundary conditions (PBCs) [18] to mimic the
bulk environment of the electrolyte. Without loss of generality, we consider a cubic box with
the edge length L so that the volume of the box is given by V = L3. During the simulation,
one calculates interactions of N numerical particles (not necessarily the physical particles)
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inside the box with positions ri and charge qi (1 ≤ i ≤ N) satisfying the electroneutrality
condition

N∑

i=1

qi = 0. (2.1)

Then, one evolves the particles according to Newton’s equations

dri = vi dt,

midvi = Fi({ri}) dt+ dηi,
(2.2)

where dηi represents the coupling with the environment (heat bath) (see Section 3.3).
The forces are computed using Fi = −∇ri

U , where U is the potential energy of the
system. Let rij := rj − ri and rij = |rij | be the distance. The potential energy of the
system due to Coulomb interactions with PBCs can be written as

U =
1

2

∑

n

′
N∑

i,j=1

qiqj
1

|rij + nL| , (2.3)

where n ∈ Z
3 ranges over the three-dimensional integer vectors and

∑′ is defined such that
n = 0 is not included when i = j. Due to the long-range nature of the Coulomb potential,
this series converges conditionally. Hence, directly computing the interaction energy (2.3)
and the corresponding interaction forces using a cutoff approach is less accurate, and one
shall introduce more advanced techniques to sum up the infinite series.

The idea of the classical Ewald summation is to separate the series into long-range smooth
parts and short-range singular parts. The conditional convergence due to the long-range,
but smooth, parts can be dealt with from the Fourier side. To describe the details, one first
introduces the error function

erf(x) :=
2√
π

∫ x

0

exp(−u2)du

and the error complementary function is erfc(x) := 1− erf(x). Clearly, the Coulomb kernel
can be written as

1

r
=

erf(
√
αr)

r
+

erfc(
√
αr)

r

for any positive constant α, and the potential energy (2.3) can be decomposed as U := U1+U2

with

U1 =
1

2

∑

n

′
∑

i,j

qiqj
erf(

√
α|rij + nL|)

|rij + nL| , (2.4)

U2 =
1

2

∑

n

′
∑

i,j

qiqj
erfc(

√
α|rij + nL|)

|rij + nL| . (2.5)

The sum in U2 now converges absolutely and rapidly, and one can truncate it to simplify the
computation. The sum in U1 still converges conditionally in spite of the charge neutrality
condition, but since the kernel is smooth, the summation can be treated nicely in the Fourier
domain. Define the Fourier transform:

f̃(k) :=

∫

Ω

f(r)e−ik·rdr,

with k = 2πm/L and m ∈ Z
3. The inverse transform gives f(r) = (1/V )

∑
k f̃(k)e

ik·r.
Then, U1 is expressed as (see [18, Chap. 12]),

U1 =
2π

V

∑

k 6=0

1

k2
|ρ(k)|2e−k2/4α −

…
α

π

N∑

i=1

q2i , (2.6)
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where k = |k| and ρ(k) is given by

ρ(k) :=

N∑

i=1

qie
ik·ri , (2.7)

which can be viewed as the conjugate of the Fourier transform of the charge density. The
divergent k = 0 term is usually neglected in simulations to represent that the periodic
system is embedded in a conducting medium which is essential for simulating ionic systems.

By inspection of the expressions above, we may take truncations in both the real and
frequency domains. In particular, picking the real space and the reciprocal space cutoffs

rc := s/
√
α, kc := 2s

√
α, (2.8)

one then has (see [32])

U =
2π

V

∑

0<k≤kc

1

k2
|ρ(k)|2e−k2/4α −

…
α

π

N∑

i=1

q2i+

1

2

∑

|rij+nL|≤rc

qiqj
erfc(

√
α|rij + nL|)

|rij + nL| +O
Ç
Qe−s2

s2
(

s√
αL3

)
1

2

å
=: ‹U1 + ‹U2 +O(·), (2.9)

where Q :=
∑N

i=1 q
2
i ,
‹U1 is defined by the sum of the first two terms, and ‹U2 corresponds to

the third term. The density of particles in the real space ρr and density of frequencies ρf
in the reciprocal space are given respectively by

ρr =
N

L3
, and ρf =

Å
L

2π

ã3
. (2.10)

The number of interacting particles to be considered for a given particle is thus

Nr :=
4π

3
r3cρr =

4πs3N

3
√
α
3
L3

,

yielding total pairs Np = (4π/3)s3N2/(
√
αL)3. The number of frequencies to be considered

is Nf = (4π/3)k3cρf = (4/3π2)(sL
√
α)3. The total work to compute ‹U1 is thus Tf ∼ NfN

since the computation of ρ(k) needs O(N) operations. The total work to compute ‹U2 is
Tr ∼ Np. In the usual Ewald summation, one needs to balance these two parts of works,
thus Np ∼ NfN . Hence

√
α ∼ N1/6/L is chosen to balance the costs between the real

and frequency domains. This then yields the total number of pairs Np = O(N3/2), and the
number of frequencies to be considered is given by Nf = O(N1/2) so that the complexity in
the frequency part is Tf = O(N3/2). Hence, the total complexity per iteration is O(N3/2)
for the energy computation.

The computation of force can be done directly using

Fi = −∇ri
U = −

∑

k 6=0

4πqik

V k2
e−k2/(4α)Im(e−ik·riρ(k))

− qi
∑

j,n

′qjG(|rij + nL|) rij + nL

|rij + nL| =: Fi,1 + Fi,2, (2.11)

where we recall rij = rj − ri, pointing towards particle j, and

G(r) :=
erfc(

√
αr)

r2
+

2
√
αe−αr2

√
πr

.

Note that the force Fi,1 is bounded for small k. In fact, k ≥ 2π/L, so V k is not small.
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Again, we are going to take the truncations as shown in Eq. (2.8). With the choice√
α ∼ N1/6/L, there are Nf = O(N1/2) frequencies to consider. Note the ρ(k) computed

can be used for all i, so the complexity for computing the forces Fi,1 for all i = 1, · · · , N
is O(N3/2). Since there are O(N1/2) particles to consider for each i, the complexity for
computing the forces Fi,2 for all i = 1, · · · , N is also O(N3/2). The total complexity per
iteration is thus O(N3/2).

It is remarked that the PPPM [38, 13] is a fast way to compute the Ewald sum using
the FFT. The PPPM chooses parameter α such that

√
α ∼ N1/3/L. Using the cutoffs (2.8),

the number of frequencies to be considered and the number of particles in real space for a
given particle are given respectively by

Nf = O(N), and Nr = O(1). (2.12)

Hence, to compute the force, the complexity corresponding to the summation of all frequency
components is O(N · Nf ) = O(N2) in the direct Ewald summation. To speed up the
summation in the Fourier space, one meshes the simulation box, assigns charges on the grid
by interpolation and then takes advantage of the FFT to obtain ρ(k) so that the potential
can be computed with O(N logN) complexity. The potential and forces at the particle
locations are then obtained by further interpolation and some numerical difference schemes.
Hence, the complexity per iteration is O(N logN) for the PPPM.

3 The random batch Ewald

We now aim to develop the stochastic molecular dynamics using the idea of random mini-
batch. The implementation of mini-batch (i.e., finding suitable cheap unbiased stochastic
approximation) depends on the specific applications. For interacting particle systems in [29],
the strategy is the random grouping of particles. By inspection of the Ewald summation
((2.9) and (2.11)), we found that e−k2/(4α) is summable so that it can be normalized to
form a probability distribution. Hence, this allows us to do the importance sampling in
the Fourier space. This leads to a random batch strategy for the simulations of molecular
dynamics.

3.1 The algorithm

Let us consider the factor e−k2/(4α) within the first term in Eq. (2.11). Denote the sum of
such factors by

S :=
∑

k 6=0

e−k2/(4α) = H3 − 1, (3.1)

where

H :=
∑

m∈Z

e−π2m2/(αL2) =

 
αL2

π

∞∑

m=−∞

e−αm2L2

, (3.2)

Here, S is the sum for all three-dimensional vectors k except 0. The number H is the
one for one-dimensional sum. The second equality in Eq. (3.2) is obtained by the Poisson
summation formula [3, 12]. Eq. (3.2) can then ben simply truncated at m = ±1 to obtain
an approximation,

H ≈
…

αL2

π
(1 + 2e−αL2

)

using the rapid convergence of the series as typical setup in our simulations holds αL2 ≫ 1.
One can improve the accuracy by using more terms if needed. Then, we have the exact
expression for the probability

Pk := S−1e−k2/(4α), (3.3)
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which, with k 6= 0, is a discrete Gaussian distribution and can be sampled efficiently as
detailed below.

We apply the Metropolis-Hastings (MH) algorithm (see [24] for details) to sample from
the discrete distribution

P(m) ∼ H−1e−(2πm/L)2/4α. (3.4)

Doing this sampling procedure for three independent experiments will generate the com-
ponents ki (i = 1, 2, 3) of k as k = 2πm/L. The samples with k1 = k2 = k3 = 0
will be discarded. In the MH procedure, the proposal m∗ is generated by first drawing
x∗ ∼ N (0, αL2/(2π2)), the normal distribution with mean zero and variance αL2/(2π2),
and one then sets m∗ = round(x∗), which is accepted with probability q(m∗|m) in the MH
algorithm, and clearly the probability is given by the following explicit expression,

q(m∗|m) =

∫ m∗+1/2

m∗−1/2

…
π

αL2
e−π2x2/αL2

dx

=





erf

Ç
1/2√
αL2/π2

å
m∗ = 0

1

2

ñ
erf

Ç
|m∗|+ 1/2√

αL2/π2

å
− erf

Ç
|m∗| − 1/2√

αL2/π2

åô
m∗ 6= 0.

(3.5)

Since P(m∗) ≈ q(m∗|m), the acceptance rate is very high, which leads to small errors in this
sampling procedure. In practical implementation, one can precompute q(m∗|m) ≡ q̄(m∗)
for a large enough range of m∗ values to speed up the sampling procedure.

We now consider the calculation of the forces in Eq. (2.11) using the random mini-batch
strategy. At each step, one picks a batch size p, which is of O(1), and draws p frequencies
kℓ, 1 ≤ ℓ ≤ p, i.i.d. from the discrete distribution Pk by the MH sampling method above.
The force Fi,1 in (2.11) is then approximated by the following random variable:

Fi,1 ≈ F ∗
i,1 := −

p∑

ℓ=1

S

p

4πkℓqi
V k2ℓ

Im(e−ikℓ·riρ(kℓ)). (3.6)

In the molecular dynamics simulations, we use this stochastic force F ∗
i,1 which is unbiased

for the force calculation to replace Fi,1. The resulted molecular dynamics is a much cheaper
version of the Ewald summation, and we call this stochastic method the Random Batch
Ewald (RBE).

Of course, we need to update the p samples after each time iteration. Suppose we have
picked a step size ∆t and defined the time grid tn = n∆t. Then, we renew the batch of
frequencies at each time grid point tn. In real simulations, one will also add the van der Waals
potential such as the Lennard-Jones potential so that positive and negative charges will not
merge. The force on each particle is then calculated by summing up the contributions of real
and Fourier parts, and the Lennard-Jones force (and other forces such as chemical bonds if
any). Then, one integrates Newton’s equations (2.2) to obtain the position and velocity of
the particle in the next time step. Algorithm 1 shows one possible such molecular dynamics
method using the RBE with some appropriate thermostat coupled to a heat bath (see Section
3.3 for discussions).

Algorithm 1 (Random-batch Ewald)

1: Choose α, rc and kc (the cutoffs in real and Fourier spaces respectively), ∆t, and batch
size p. Initialize the positions and velocities of charges r0

i ,v
0
i for 1 ≤ i ≤ N .

2: Sample sufficient number of k ∼ e−k2/(4α), k 6= 0 by the MH procedure to form a set K.
3: for n in 1 : N do

4: Integrate Newton’s equations (2.2) for time ∆t with appropriate integration scheme
and some appropriate thermostat. The Fourier parts of the Coulomb forces are computed
using RBE force (3.6) with the p frequencies chosen from K in order.

5: end for
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In the case of the leapfrog scheme (equivalent to velocity-Verlet method) and the An-
dersen thermostat, the loop step in Algorithm 1 is as follows.

(1) Choose p frequencies from K without replacement; calculate real and Fourier parts of the
electrostatic Coulomb force using RBE (3.6), and other forces such as the Lennard-Jones
forces.

(2) Update the position and velocity of each particle using the following scheme for n ≥ 1

v
n+1/2
i = v

n−1/2
i +

1

mi
F n
i ×∆t,

rn+1
i = rn

i + v
n+1/2
i ×∆t.

(Here, v
1/2
i can be obtained via the Euler scheme.)

(3) Update the velocity v
n+1/2
i of each particle with probability ν∆t by resampling vi from

the normal distribution N (0, I3T/mi).

We now analyze the complexity of the RBE method per time step. Similar to the
strategy in the PPPM, we may choose α such that the time cost in real space is cheap and
the computation in the Fourier space is then accelerated. Compared to the PPPM, the only
difference is that the PPPM uses FFT and the RBE uses random mini-batch idea to speed
up the computation in the Fourier space. Hence, we make the same choice,

√
α ∼ N1/3

L
= ρ1/3r ,

which is inverse of the average distance between two numerical particles. The complexity for
the real space part is O(N ·Nr) = O(N). Using the random batch approximation (3.6) which
is a certain Monte Carlo method for approximating the force, the number of frequencies to
be considered is then reduced to

Nf = O(p). (3.7)

If we choose the same batch of frequencies for all forces (3.6) (i.e., using the same kℓ,
1 ≤ ℓ ≤ p for all F ∗

i,1) in the same time step, since the computed numbers ρ(kℓ) can
be used for all particles, the complexity per iteration for the frequency part is reduced to
NfN = O(pN). This implies that the RBE method has linear complexity per time step if
one chooses p = O(1).

3.2 Consistency and stability

In this subsection, we provide some theoretic evidence for the consistency and stability of
the RBE algorithm in order to demonstrate its validity.

According to Eq. (3.3), we find that the long wave (low frequency) modes are more likely
to be chosen in the random approximation. Since the long wave modes are more important
for the periodic effects, this importance sampling strategy could be more effective compared
with the uniform sampling across the modes considered. This importance sampling strategy
could also possibly reduce the variance so that the random method is more stable. We now
provide some theoretic evidence to explain why this method works.

We define the fluctuation in the random batch approximation for the Fourier part of the
force on particle i by,

χi := F ∗
i,1 − Fi,1. (3.8)

The expectation and variance of the fluctuation can be obtained by direct calculation, which
is given by Proposition 1.

7



Proposition 1. The fluctuation in force χi has zero expectation,

Eχi = 0, (3.9)

and that the variance is,

E|χi|2 =
1

p

Ñ
∑

k 6=0

(4πqi)
2S

V 2k2
e−k2/(4α)|Im(e−ik·riρ(k))|2 − |Fi,1|2

é
. (3.10)

The first claim in Proposition 1 implies that the random approximation is consistent or
unbiased,

EF ∗
i,1 = Fi,1, (3.11)

where E means expectation in probability theory (or the ensemble average in the physics
community). The second claim says that

E|χi|2 .
1

p

S

V
U1 =

1

p
ρrU1.

If the density ρr = N/V is not very big, we expect our stochastic algorithm to work well.

Since for k ≫ √
α, the factor e−k2/(4α) is very small and contributes little to the variance

in (3.10). Let us now consider the terms with k .
√
α. In the dilute solution regime where

the Debye–Hückel (DH) theory (see [34], and also Appendix A) is applicable, we expect
that |Im(e−ik·riρ(k))| ≈ 0. That means the variance is nearly zero. Of course, due to
the deviation from the Debye–Hückel theory by thermal fluctuation, this cannot be zero.
We expect that |Im(e−ik·riρ(k))| does not change too much by the thermal fluctuation for
k ≪ a−1 where a is the diameter of the ions (see Appendices A–B). Clearly, if

√
α ≪ a−1,

the frequencies we consider then satisfy k ≪ a−1. We then can safely bound

|Im(e−ik·riρ(k))| ≤ C.

In Appendix B, it is computed under this assumption that

E|χi|2 .
1

p
ρ4/3r , (3.12)

which verifies that the variance of the random force is indeed controlled if the density is not
big.

The following result indicates that random mini-batch methods can be valid for capturing
the finite time dynamics (we take the Langevin thermostat for illustration and see Section
3.3 for discussions).

Theorem 1. Let (ri,vi) be the solutions to

dri = vi dt,

midvi = [Fi({rj})− γvi] dt+
»
2γ/βdWi,

where {Wi} are i.i.d. Wiener processes. Let (r̃i, ṽi) be the solutions to

dr̃i = ṽi dt,

midṽi = [Fi({r̃j}) + χi − γṽi] dt+
»
2γ/βdWi,

with the same initial values as (ri,vi). Suppose that the masses mi’s are bounded uniformly
from above and below. If the forces Fi are bounded and Lipschitz and Eχi = 0, then for any
T > 0, there exists C(T ) > 0 such that

E

[
1

N

∑

i

(|ri − r̃i|2 + |vi − ṽi|2)
]
≤ C(N, T )

√
Λ∆t,

where Λ is an upper bound for maxi(E|χi|2).
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Similar proofs for interacting particle systems can be found in [30, 35, 36], and we omit
the proof for the claims here. The constant C(N, T ) can be made independent of N in the
mean field regime [30]. Clearly, due to the assumption that Fi is bounded and Lipschitz,
the claims above are not helpful for our problem. Anyhow, it can give us some insight
how random batch type methods work. Clearly, for a given configuration, a force computed
using the RBE is a random approximation to the true force. A single-step evaluation of
such random force definitely has no accuracy compared to the true force. The intuition
why such methods work is that the effects of random forces accumulate in time. Since the
random forces are unbiased, the random errors will roughly cancel out over time. This “law
of large numbers” type mechanism in time then makes the random method work. The error
bound above is the square root of variance multiplied by ∆t, which is the typical error
bound given by central limit theorem. Hence, our method is not aiming at computing the
forces correctly for a fixed configuration. Instead, we attempt to obtain the evolution of the
configurations and the equilibrium distribution with an acceptable error control. We use
the RBE method only to speed up MD simulations and obtain configurations, and then use
these configurations to compute the true energies, stress tensor (and pressure) using their
definitions, without random batch approximation.

A question that may arise is whether one should wait for too many iterations before
the “law of large number” mechanism takes effects to capture the long time properties (i.e.
whether the random batch type methods will delay the mixing time for the equilibria too
much). In [30, 36], it has been shown that when some external confining fields are present,
the mixing time for convergence to the global equilibrium with random batch is roughly the
same as the one without random batch, as the error controls are uniform in time. When
there are no helping external fields such as the cases we are considering here in a periodic
box, whether random batch will delay the convergence to the thermal equilibrium is still a
theoretically open question. However, when heat bath is present, if the number of particles
or modes is statistically large so that a few of them can capture the significant statistical
properties, the few chosen representatives may give the correct statistical properties and the
random batch methods may capture the correct macroscopic quantities without looping for
too many iterations. Hence, we believe the RBE method can capture the long time statistical
properties for the many-body systems in contact with heat bath, without increasing the
iterations of simulation too much.

As we have seen, the variance of the fluctuation is always multiplied by the step size ∆t in
the error estimates:

√
Λ∆t for the error of trajectories or Λ∆t for the distributions (see [30]

for the weak error estimates regarding first order systems). Hence, the variance somehow
measures the stability of the random methods and the boundedness of E|χi|2 is important
for the convergence of the random algorithms. Though the variance is controlled for the
RBE, rigorous proof for this method is challenging as the field Fi,2 is singular. Building in
van der Waals potential into the system can prevent the particles getting too close so the
singularity of Fi,2 might not be seen, but the rigorous justification of convergence could still
be very hard. We will leave the rigorous mathematical analysis for future exploration.

3.3 Discussion on the thermostats

To couple with the heat bath so that the temperature is preserved near the desired value,
typical ways include the Andersen thermostat and the Langevin thermostat. Another ther-
mostat used in molecular dynamics in a deterministic approach is the famous Nosé-Hoover
thermostat [18, Chap. 6].

In the Andersen thermostat, one assumes the collision frequency between the particle
and the heat bath is ν. Then, the time between two collisions for a particular particle
satisfies the exponential distribution. Hence, the probability that a particle does not collide
with the heat bath during [tn, tn + ∆t) is 1 − exp(−ν∆t) ≈ ν∆t. Hence, in the Andersen
thermostat, at each time grid tn, for each particle one resets the velocity with probability
ν∆t. The new velocity is sampled from the Maxwell distribution with temperature T . In
Eq. (2.2), dηi corresponds to such resetting noise to model the collision. It is this new
velocity that guarantees the correct temperature. Of course, the larger ν is, the better the
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temperature can be kept around the desired value. However, too large ν value will bring
some unphysical effects [41, 27, 18].

In the Langevin thermostat, the interaction with heat bath is added into the equation
directly:

midvi = (Fi − γvi)dt+
»
2γ/β dWi.

In other words, in (2.2), dηi = −γvidt +
√
2γ/β dWi. The term −γvidt is the friction

and
√
2γ/β dWi is the thermal noise or the fluctuation, both arising from the collision with

the heat bath. The fluctuation-dissipation relation requires the strength of the noise to be√
2γ/β so that the system can tend to the correct temperature T = β−1 (the Boltzmann

constant kB is taken to be 1 for the reduced units). As in the Andersen thermostat, increasing
γ can keep the temperature of the system around T better. However, since the temperature
enters in through the dynamics, the Andersen thermostat seems to behave better for the
temperature control than the Langevin dynamics.

The Nosé-Hoover thermostat uses a Hamiltonian for an extended system of N particles
plus an additional coordinate s ([41, 27]):

HNH =

N∑

i=1

|pi|2
2mis2

+ U({ri}) +
p2s
2Q

+ L
ln s

β
.

Here, pi = mivi is the momentum of the ith particle. The microcanonical ensemble cor-
responding to this Hamiltonian reduces to the canonical ensemble for the real variables
p′
i = pi/s. Hence, one may run the following deterministic ODEs, which are the Hamilton

ODEs under HNH in terms of the so-called real variables,

ṙi =
pi

mi
,

ṗi = −∇ri
U − ξpi,

ξ̇ =
1

Q

(
∑

i=1

|pi|2
mi

− 3N

β

)
.

The time average of the desired quantities such as those in (4.3) will be the correct canon-
ical ensemble average. As one can see, when the temperature of the system, defined by∑N

i=1 mi|vi|2/(3NkB), is different from T , the extra term −ξpi will drive the system back
to temperature T , and thus it may give better behaviors for controlling the temperature.

As we have seen, the random batch approaches will bring in extra variance term. Hence,
there is numerical heating effect that increases the temperature by Λ∆t. Due to this reason,
the RBE is not suitable for long time simulation under NVE ensemble if without an appro-
priate conservation scheme for time integration, but it should be good for NVT (as we do in
this paper) and other simulations with thermostats. To reduce this artificial temperature,
one may on one hand reduce Λ by using bigger batch size or carefully designed importance
samplings. The RBE proposed in this work is an importance sampling approach. Also,
one may mimick the simulated annealing idea [46, 26, 28] to decrease ∆t, which has also
been used in the stochastic gradient Langevin dynamics. On the other hand, using suitable
thermostat may drive the temperature back to T better. In principle, the Nosé-Hoover is
the most effective for preserving temperature. If the frequency ν is chosen suitably in the
Andersen thermostat, the temperature can be preserved well too. As we see below in Section
4, if ν and batch size p are slightly bigger and the simulated annealing approach is used, the
Andersen thermostat is already enough for the numerical examples we consider. Due to the
simplicity, we adopt the Andersen thermostat in this paper to illustrate that the RBE works,
while leaving the Nosé-Hoover thermostat for our future development for large systems.

4 Application examples

In this section, we consider two typical application examples to validate the accuracy and
efficiency of the proposed method. The first example is the charge distribution in terms
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of charge-charge correlation functions in an electrolyte solution with the primitive model
where the DH theory can be used to provide a theoretical prediction. The second example
is a much harder example with many different species of ions (including a macroion) where
charge reversal phenomenon for electric double layer near the surface of a colloidal particle
is studied. Both examples indicate that the proposed method is effective and efficient.
The calculations are performed in a Linux system with Intel Xeon Scalable Cascade Lake
6248@2.5GHz, 1 CPU core and 4 GB memory.

4.1 Charge correlation functions in electrolyte

In this example, we consider a pure electrolyte monovalent binary ions. The primitive model
of the electrolyte is employed, which describes the solvent as mobile ions of uniform sizes
embedded in a medium of constant permittivity under a given temperature. The total
potential energy of the system is composed of the Coulomb interactions and the short-range
van der Waals interaction. The latter is modeled by the shifted Lennard-Jones potential
expressed as:

VLJ(r) =




4ǫ

ï( σ

r − roff

)12 −
( σ

r − roff

)6
ò
+ Vshift, if r − roff < Rc

0, otherwise,
(4.1)

where roff = (di + dj)/2 − σ and di and dj are the diameters of two particles respectively,
and σ is a positive constant. Vshift is taken such that the potential becomes zero when
r − roff = Rc.

All the quantities are provided in reduced units (see [18, sec. 3.2]). The diameter of each
ion is chosen as di ≡ 0.2, the reduced temperature is T = 1.0 and the reduced dielectric
constant is ε = 1/4π so that the electric potential of a charge q is given by φ(r) = q/r. For
the Lennard-Jones potential in this example, we choose the parameters as σ = 0.2, Rc = 4.0
and ǫ = 1. We fix the particle density to be constant N/L3 = 0.3. Correspondingly, the
inverse Debye length in the Debye–Hückel theory (see Appendix A) is κ ≈ 1.9416. We run
molecular dynamics simulations to prepare the configuration samples and by taking average
of these samples to obtain the charge distribution in terms of charge-charge correlation
functions,

ρ(r) = g++(r) − g+−(r), (4.2)

where g++ and g+− are cation-cation and cation-anion pair correlation functions between
ions. By the Debye-Hückel theory, the radial distribution of net charge satisfies the following
linear relation,

ln(r|ρ(r)|) ≈ −1.9416r− 1.1437, r ≫ 0.2.

Here, due to the setting of the Lennard-Jones potential, we roughly have the parameter a
in Appendix A as

a =
1

2
(d1 + d2)− σ + σ = 0.2,

and the formula above should be accurate for r ≫ a.

α rc nc steps Time (s)
Ewald 0.12 8.0 7 1e6 6067
PPPM 0.55 4.0 15 1e6 3120
RBE 0.55 4.0 p = 10 1e6 1267

Table 1: Parameters and computational time for the Ewald, PPPM and RBE results with
N = 300. The RBE samples from all frequencies and it shows p value in the nc column.

In the first numerical experiment, we take the length of the periodic box to be L = 10.0,
and the number of monovalent ions N = 300 so that n+1 = n−1 = 150. The Andersen
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thermostat is adopted with frequency ν = 3. The parameters are chosen as in Table 1,
where the nc column for RBE lists batch size p as no frequency cutoff is introduced. The
parameters are chosen so that the estimated relative force errors for the Ewald method and
PPPM are about 10−4 by [32] (the parameters are set automatically in LAMMPS software).
As discussed already, we choose the same α value for the RBE as that in the PPPM. The
batch size p in the RBE is chosen through a convergence test and p = 10 gives comparable
results already. The results by the RBE, classical Ewald and PPPM methods in comparison
with those predicted by the DH theory are shown in Fig. 1. It shows that the error by the
RBE is comparable to those by the Ewald and PPPM methods. As Table 1 indicates, the
computational time of the RBE is about 1/5 of that for the Ewald method, 2/5 of that for
the PPPM method to achieve comparable results in spite that the system size is not very
large.
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Figure 1: Charge density predicted by simulations using the RBE, classical Ewald and
PPPM methods for L = 10 and N = 300.

We also compute fluctuations of the potential energy (per particle) Epot and pressure P
for the three methods to validate the correctness of the configurations. These two quantities
are defined by,

Epot =
1

N
(ECoul + ELJ),

P =
2

3V

(
N∑

i=1

1

2
miv

2
i − vir

)
,

(4.3)

where vir = (1/2)
∑

i<j rij · Fij is the virial and ECoul is calculated as (2.9). Pressure is
calculated by using Clausius virial theorem with kinetic energy and virial tensor. We recall
rij = rj − ri, and Fij is the force of particle j acting on particle i. The potential energy
per particle and the average pressure are calculated in LAMMPS using the virial formula
[8]. In Fig. 2, the data of every 100 time steps are plotted for the time up to t = 2000. We
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Figure 2: Potential energy per particle and pressure by simulation time using the RBE,
classical Ewald and PPPM methods for L = 10 and N = 300.

calculate the average data of these quantities, Epot and P . The relative errors of the RBE
compared to the PPPM are both less than 1%.

We increase the size of the system while keeping ρr = N/L3 = 0.3 constant to measure
the accuracy as well as the computational time. In particular, we choose N = 300, 600, 1200
and 2400, respectively, and the length L is computed correspondingly. In Fig. 3, we show
the simulation results for the charge distribution with p = 10 for the RBE method. Clearly,
the simulation results of the RBE method still agree well with the DH theory for larger r.
Particularly, in the embedded subplot we can observe that the linear relation holds up to
the error tolerance e−7 ≈ 9.1× 10−4, which confirms the accuracy of the RBE method.

α rc nc

N = 100 0.55 4.0 10
N = 300 0.55 4.0 10
N = 1000 1.1 3.0 13
N = 4000 2.5 2.0 18

Table 2: Parameters for PPPM and RBE, where the RBE method does not have nc.

Next, we compute the relative accuracy of the potential energy for the RBE method
against the PPPM for different densities. In particular, we fix L = 10 and consider
N = 100, 300, 1000 and 4000, respectively (correspondingly, ρr = 0.1, 0.3, 1.0 and 4.0).
The parameters used in the calculations are shown in Table 2. Note that the RBE method
does not have nc parameter and instead we choose the batch size p = 10, 20, 50 and 100,
respectively. The time step is again ∆t = 0.002. The potential energies are computed using
104 configurations after equilibrium, sampled every 100 steps. The results are shown in Ta-
ble 3. Clearly, if we increase the density, we need to use larger batch size to get acceptable
accuracy. The RBE with fixed batch size p will have bigger error if the density is increased.
Anyhow, even when ρr = 4.0, using p = 100 seems enough to get acceptable results.

ρr p = 10 p = 20 p = 50 p = 100
0.1 0.15% 0.13% 0.13% 0.08%
0.3 0.10% 0.08% 0.04% 0.09%
1.0 0.66% 0.18% 0.11% 0.04%
4.0 7.83% 2.38% 0.71% 0.31%

Table 3: Relative error of potential energy for the RBE method against the PPPM method
with different densities and batch sizes.
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Figure 3: Charge density simulated by the RBE method with increasing system sizes for
constant density. The batch size is p = 10 for all N .

Lastly, we compare the efficiency for the classical Ewald, PPPM and RBE methods.
In Fig. 4 the computational times for the three methods are shown for system size up to
N = 106, where the solid lines present the linear fitting of the data in log-log scale. The
results agree with the fact that the complexity per time step for the Ewald summation
is of O(N3/2), while the complexity per time step for the RBE is only of O(N)) and the
complexity per time step for the PPPM method is a little larger than O(N). The cost of the
RBE is small even when one chooses batch size p = 100. The RBE has the best efficiency
over a whole range of particle numbers, clearly demonstrating the attractive performance of
the algorithm. We remark that a systematic study of the efficiency of the method will be
performed in our next work for large-scale all-atom systems, in particular, the comparison
with the performance of the PPPM.

4.2 Charge inversion in salty environment

When a highly charged colloid in a solution that contains multivalent counterions, its charge
can become overcompensated due to the strong ion correlation between counterions, leading
to the charge inversion (or charge reversal) phenomenon. The many-body phenomenon has
attracted much attention in the past decades from both experimental [4, 43], theoretical and
simulation studies [23, 5, 40, 47, 33, 19], since the charge inversion implies that the effective
charge of the colloid-microion complex is abnormally inverted, opposite to the common
intuition of understanding from the traditional Poisson-Boltzmann theory.

We follow the setup of Lenz and Holm [33] and consider a highly charged colloid in a
solution of asymmetric 3:1 salt with additional 1:1 salt. The colloid has a spherical geometry
of diameter d0 = 100Å with a point chargeQ0 = −300e0 at its center. Here e0 = 1.6×10−19C
is the elementary charge. It is placed at the middle of a cubic box with the PBC. The side
length of the periodic box is set to L = 225.8Å (the volume corresponds to a spherical cell
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Figure 4: CPU time per step for the classical Ewald and RBE methods with increasing N .

of radius R0 = 140Å). Initially, a total of 200 trivalent counterions, 300 + nsalt monovalent
coions and nsalt monovalent counterions are randomly distributed within the box. These ions
have uniform size with a diameter of 4Å. Clearly, the system satisfies the charge neutrality.
The trivalent counterions correspond to the concentration of c(+3) = 30 mM (i.e. milli mole
per liter).

In this example,we implement the methods by the self-written molecular dynamics code
with C++. We focus on the accuracy comparison and investigate if or not the RBE can get
the correct results with less effort for this relatively complicated many-body phenomenon.
Due to the strong charge of the colloid, we take the classical Ewald results as the reference
solution. In the simulations, we consider two concentrations for the additional 1:1 salt,
i.e., csalt = 0mM and csalt = 196mM, where the latter case corresponds to the number of
particles nsalt = 1300 for each ionic species. The temperature is set to the room temperature
T∗ = 298K, and the Bjerrum length ℓB is determined by ℓB = e20/(4πε0εrkBT∗), where
εr = 78.5 is the relative dielectric constant of water and ε0 is the vacuum permittivity,
resulting in ℓB = 7.1Å. The van der Waals interaction is again taken to be part of the
Lennard-Jones potential (4.1), where Rc = 21/6Å, σ = 1Å and ǫ = 1kBT∗. Note that roff
is different for different pairs, e.g., roff = 52Å between the colloid and an microion, and
roff = 4Å between microions.

To do simulations, we scale all lengths by L∗ = 1Å, temperature by T∗ = 298K, and
masses by m∗, the mass of ions which are assumed equal. Then, other quantities can be
scaled correspondingly: the energy is scaled by kBT∗, the velocity by (kBT∗/m)1/2, and
time by L∗(m∗/kBT∗)

1/2, etc.. Consequently, in these reduced units, the room temperature
becomes T = 1, and the Coulomb interaction between two point charges i and j is given by
Uij = ℓBqiqj/rij where ℓB is the scaled Bjerrum length with value 7.1. After we computed
the forces using formulas in Section 2 or in Section 3, we should multiply the results with
ℓB = 7.1 to get the Coulomb forces for this example.

The molecular dynamics simulations are all performed with the Andersen thermostat,
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with 1e5 steps for the burn-in phase and 6e5 steps for the sampling to compute ensemble
averages. In the burn-in phase, we choose time step

∆tn = 0.01/ ln(1 + n),

where n is the number of time steps motivated by the simulated annealing mentioned above.
In the sampling phase, we choose ∆t = 0.002. The collision frequency ν = 10 for csalt =
0 mM, and ν = 1 for csalt = 196 mM. The reason to use smaller frequency for csalt = 196 mM
is to decrease the artificial diffusion effect introduced by the Andersen thermostat.
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Figure 5: Integrated charge against the distance r from the colloid center when csalt = 0 mM
(left) and 196 mM (right): comparison of the Ewald and RBE methods.

α rc nc Time (s)
Ewald (c = 0 mM) 0.0014 90.0 8.7 16698
RBE (c = 0 mM) 0.0072 40.0 p = 100 1167

Ewald (c = 196 mM) 0.0014 90.0 8.7 137217
RBE (c = 196 mM) 0.0072 40.0 p = 100 15258

Table 4: Computational time per 1e5 simulation steps. The RBE samples from all frequen-
cies and it shows p values in the nc column.

The settings and running time are shown in Table 4. Clearly, the time consumption of the
RBE method is much less (about 1/10 of that for the Ewald method), so the proposed RBE
is efficient. The integrated charge distribution, the total charge within the radial direction
distance, against the distance r from the colloidal center is plotted in Fig. 5. Regarding
the effectiveness, as can be seen from the figure, the RBE can capture the charge reversal
phenomenon correctly and obtain acceptable simulation results. As discussed in Proposition
1 and Section 3.3, the force approximation is unbiased, but the randomness results in positive
variance leads to numerical heating and systematic error for the equilibrium distribution.
As can be seen in Fig. 5, the overcharging effect is weakened for small batches due to
this numerical heating. The RBE method converges after p & 100 and this systematic
error is negligible for the system considered here. The inverted charge (maximum of the
curve) by the RBE when p & 100 is in agreement with the Ewald summation and the
literature result [33]. This agrees with the discussion above in Sections 3.2–3.3. Since ν is
smaller for csalt = 196 mM, the ability of temperature control is reduced and the numerical
heating is more obvious for small p values (like p = 20). To resolve this, one may consider
subtracting the effective temperature due to the random batch from the desired T value, or
using better thermostat such as the Nosé-Hoover thermostat. These issues will be explored
in our subsequent work.
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The charge densities of different kinds of ions are shown in Figs. 6 and 7, for c = 0 mM
and c = 196 mM, respectively. Clearly, the RBE method can compute the densities correctly
with acceptable accuracy. Again, larger batch size results in smaller errors. Anyhow, the
simulation results seem to be acceptable here for all batch sizes. For these small systems, the
Andersen thermostat can already do a satisfactory job, and other temperature preserving
techniques can be considered for applications with large systems.
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Figure 6: Contribution of different ion types to particle density ρ when csalt = 0 mM.

Overall, according to the two numerical examples above, we find that the RBE method
is both accurate and efficient: it can correctly capture the desired physical phenomena while
saving the computational time significantly. We also expect the RBE easy to parallelize, and
to have good compatibility with a large number of cores. This will be tested in our subse-
quent work. The extra noise introduced by the random batch can introduce some noticeable
numerical heating. One may resolve this by increasing the batch size p or decreasing the time
step size to decrease the variance. Some more advanced techniques include subtracting the
effective temperature increase or use better thermostats like the Nosé-Hoover. Systematic
studies of these will be in our subsequent work, too.

5 Conclusions

In summary, we have developed a novel molecular dynamics method for particle systems with
long-range Coulomb interaction using a RBE method which needs only O(N) operations in
each step. The RBE method benefits from a random mini-batch idea for the calculation
of the force component in the Fourier series together with an importance sampling for the
Fourier modes. We have shown that the algorithm is accurate and efficient by calculating
the correlation functions between ions and the charge inversion near the colloidal surface
by using two application examples and demonstrated the promising properties for broader
applications of the algorithm. Besides the Coulomb systems, the RBE method can be
extended to solve other many-body problems such as celestial bodies and complex networks
where the long-range interactions also play important roles.

It is remarked that our exploration of the RBE method so far is limited to a few aspects
and there are much more work to do in the future. If the system is partially periodic in
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Figure 7: Contribution of different ion types to particle density ρ when csalt = 196 mM.

some directions with Directlet or dielectric interface conditions in other directions (e.g., the
slab geometries), we believe the extension of our method is straightforward by introducing
techniques developed for such problems (see [45, 37, 39] and reference therein). In this work,
we have compared the RBE with the classical Ewald summation, and this is actually not
fair for the demonstration of the CPU time. More reasonable comparison should be done
through the PPPM which is used in many implementations, and this comparison should be
performed systematically in addition to the demonstration on the scalability performance
in parallel computing. Also, the simulations of this work are based on the primitive model
of solvent. This model is simpler by treating water as a continuum medium. This model is
very good for the aim of numerical tests of electrostatic algorithms, but the implementation
for all-atom simulations shall generate much broader interest for practical uses. All these
issues shall be studied in our subsequent works.
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Appendix

A The Debye–Hückel theory

Consider an electrolyte solution with N ions contained in the cubic box with PBCs, which
are idealized as hard spheres of diameter a and carrying charge ±q. The numbers of anions
and cations are both N/2 to meet electroneutrality condition. Let us fix one ion of charge
+q at the origin r = 0 and consider the charge distribution around it.
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Inside the region 0 < r < a there are no other ions, so the electrostatic potential
satisfies the Poisson equation ε∇2φ = −qδ(r) in this regime, where ε is the permittivity
of the solution. Outside this region, the charge of the jth species can be described by the
Boltzmann distribution: ρj(r) = qjρ∞,je

−βqjφ where j = ± and q± = ±q, and ρ∞,+ =
ρ∞,− = N/(2V ). Hence, when r > a:

−ε∇2φ = qρ+e
−βqφ − qρ−e

βqφ ≈ βq2ρφ, (A.1)

which is the linearized Poisson-Boltzmann equation. By introducing the parameter κ and
Debye length λD by

κ ≡ λ−1
D =

 
q2ρ

εkBT
, (A.2)

the solution of the Poisson equation can then be found to be:

φ(r) =





q

4πεr
− qκ

4πε(1 + κa)
, r < a,

qeκae−κr

4πεr(1 + κa)
, r > a.

(A.3)

Hence, the net charge density for r > a is given by

ρ(r) = −ε∇2φ(r) = −κ2εφ(r). (A.4)

Obviously, ρ(r) < 0 around the positive charge and

log(r|ρ(r)|) = −κr + log

Å
κ2q exp(κa)

4π(1 + κa)

ã

is a linear function of r. The charge density around a negative charge is similarly discussed.

B Variance of the random force under the Debye–Hückel

approximation

We consider approximating the charge net density using the Debye–Hückel approximation
to estimate,

Im(e−ik·riρ(k)) = Im

Ñ
∑

j:j 6=i

qj exp(ik · (rj − ri))

é
. (B.1)

We fix the ion qi at the center. For r ≥ a, if we use the charge density ρ given by (A.4)
and (A.3) to compute this quantity, we get

∑

j:j 6=i

qj exp(ik · (rj − ri)) ≈
∫

R3\B(ri,a)

ρ(r)eik·r dr

= −qi
κ2eκa

2(1 + κa)

∫ ∞

a

∫ 1

−1

r2
e−κr

r
cos(krz)dzdr

= −qi
1

1 + κa

[κ
k
sin(ka) + cos(ka)

]
/

Å
1 +

k2

κ2

ã
.

(B.2)

This term is clearly real and the imaginary part is zero. If one uses the DH theory to compute
ρ(k), one may get something bizzard in mathematics. Using the same approximation leads
to,

e−ik·riρ(k) ≈ qi

ß
1− 1

1 + κa

[κ
k
sin(ka) + cos(ka)

]
/

Å
1 +

k2

κ2

ã™
.

This means ρ(k) ≈ qie
ik·rig(k) where g(k) is independent of i. The left hand side does

not depend on i while the right hand side does. This clearly comes from treating all other
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particles except i using the continuum approximation, and i is not special in ρ(k). In spite
of the bizzard result for computing ρ(k), we believe that the approximation makes sense
when one focuses on computing quantities associated with particle i, and k ≪ a−1. When
k ≪ a−1, the formula in (B.2) implies that Im(e−ik·riρ(k)) = 0. This is understandable: in
the equilibrium, provided that all other charges are distributed accurately by the continuum
approximation, the net force is zero. In practice, there is thermal fluctuation, and this cannot
be zero, but it should be bounded by some number related to the temperature. Moreover,
the magnitude of the integral on the right hand side is controlled by a bound uniform in k
(recall | sin(ax)/x| ≤ a) and we believe this result by continuum approximation can reflect
the true magnitude of ρ(k). Hence, when k ≪ a−1, it is safe to bound Im(e−ik·riρ(k)) by a
constant.

Now, if
√
α . a−1, we can then set |Im(e−ik·riρ(k))| ≤ C in computing (3.10). When

k &
√
α, we do not assume the bounds on |ρ(k)|2, as such terms will be dominated by

e−k2/(4α). With
√
α ∼ ρ

1/3
r , one will have S ≈ (αL2/π)3/2 ∼ N by (3.1)–(3.2) so that

E|χi|2 =
1

p

Ñ
∑

k 6=0

(4πqi)
2S

V 2k2
e−k2/(4α)|Im(e−ik·riρ(k))|2 − |Fi,1|2

é

.
1

p

(4πqi)
2S

V 2

∫ ∞

2π/L

Å
L

2π

ã3 4πk2

k2
e−k2/4αdk

≈ 8q2

p

S

V

√
απ ∼ 1

p
ρ4/3r .

(B.3)
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