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Hausdorff Continuity of Region of Attraction Boundary Under Parameter
Variation with Application to Disturbance Recovery

Michael W. Fisher and Ian A. Hiskens

Abstract. Consider a parameter dependent vector field on either Euclidean space or a compact Riemannian
manifold. Suppose that it possesses a parameter dependent initial condition and a parameter de-
pendent stable hyperbolic equilibrium point. It is valuable to determine the set of parameter values,
which we call the recovery set, whose corresponding initial conditions lie within the region of at-
traction of the corresponding stable equilibrium point. A boundary parameter value is a parameter
value whose corresponding initial condition lies in the boundary of the region of attraction of the
corresponding stable equilibrium point. Prior algorithms numerically estimated the recovery set by
estimating its boundary via computation of boundary parameter values. The primary purpose of
this work is to provide theoretical justification for those algorithms for a large class of parameter
dependent vector fields. This includes proving that, for these vector fields, the boundary of the recov-
ery set consists of boundary parameter values, and that the properties exploited by the algorithms
to compute these desired boundary parameters will be satisfied. The main technical result which
these proofs rely on is establishing that the region of attraction boundary varies continuously in an
appropriate sense with respect to small variation in parameter value for this class of vector fields.
Hence, the majority of this work is devoted to proving this result, which may be of independent
interest. The proof of continuity proceeds by proving that, for this class of vector fields, the region
of attraction permits a decomposition into a union of the stable manifolds of the equilibrium points
and periodic orbits it contains, and this decomposition persists under small perturbations to the
vector field.

1. Introduction. This work is motivated by physical and engineered systems that possess
a stable equilibrium point (SEP) representing desired operation, and a parameter-dependent
initial condition (IC) which represents a parametrized, finite time disturbance. As an example,
consider a power system subject to a lightning strike on a particular transmission line. In such
applications, it is important to understand whether the system will be able to recover from the
disturbance to the desired SEP. This setting is well described by a parameter dependent vector
field, on either Euclidean space or a compact Riemannian manifold, possessing a parameter
dependent IC. The IC of interest is the system state when the disturbance clears; for the power
system example, this is the system state at the moment when protection action disconnects the
lightning-affected transmission line. The system will recover from the disturbance if and only
if this IC lies in the region of attraction (RoA) of the desired SEP. As the parameter values
of physical systems are uncertain and time-varying in practice, it is particularly valuable to
determine the set of parameter values for which the system is able to recover to this SEP, which
we call the recovery set and denote by R. We call a parameter value whose corresponding
IC lies in the boundary of the RoA of the corresponding desired SEP a boundary parameter

value, because we will show (see Theorem 4.26) that ∂R often (in a precise sense defined in
Section 4.2) consists entirely of boundary parameter values. Prior algorithms were developed
to determine or approximate R by numerically computing boundary parameter values [5, 7].
The primary objective of this work is to provide a theoretical foundation for those algorithms
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for a large class of parameter dependent vector fields.
Consider a particular boundary parameter value p∗. Let a critical element refer to either

an equilibrium point or a periodic orbit. Suppose the orbit of the IC corresponding to p∗

converges to a critical element in the boundary of the RoA of the corresponding desired SEP.
Then the amount of time the trajectory corresponding to p∗ spends in any neighborhood
of this critical element is infinite. By continuity of the flow, it seems reasonable to expect
that as parameter values approach p∗, the time that the corresponding trajectory spends in
this neighborhood diverges to infinity. Hence, to compute boundary parameter values, the
algorithms begin by identifying a special critical element in the boundary of the RoA, which
we call the controlling critical element, place a ball of fixed radius in state space around that
controlling critical element, and vary parameter values so as to maximize the time that the
system trajectory spends inside this ball. As the time in the ball increases, the goal is that
the parameter value will be driven towards ∂R (preferably the point in ∂R that is closest
to the original parameter value). Building on this idea, algorithms have been developed to
numerically estimate R either by tracing ∂R directly for the case of two dimensional parameter
space, or by finding the largest ball around an initial parameter value in R that does not
intersect ∂R.

The main technical challenge behind the theoretical justification of these algorithms is to
show that the RoA boundary varies continuously in an appropriate sense under small changes
in parameter values (see Corollaries 4.23-4.25). To illustrate this point, Example 3.1 shows
that when the boundary of the RoA does not vary continuously about a particular parameter
value, then it is possible for the ICs to “jump” over the RoA boundary. In this case, ∂R may
not consist of boundary parameter values and, in fact, its possible that boundary parameter
values may not even exist. The former implies that computation of boundary parameter
values may not provide an accurate estimate of ∂R and hence of R, and the latter implies
that any attempt to compute boundary parameters must fail since they don’t exist; both are
problematic for the algorithms [5, 7] mentioned above. Furthermore, discontinuity of the RoA
boundary implies that there may not exist a controlling critical element in the RoA boundary
with the property that as parameter values approach boundary values, the time the trajectory
spends in a ball around the controlling critical element diverges to infinity. Hence, even if
boundary parameter values exist, the strategy employed by the algorithms in [5, 7] may be
unable to compute them. Therefore, establishing continuity of the RoA boundary for a large
class of parameter dependent vector fields is crucial for motivating such algorithms.

The stable manifold of a critical element is the set of initial conditions in state space which
converge to that critical element in forward time. The approach that is used to establish
continuity of the RoA boundary is to show that at a fixed parameter value the RoA boundary
is equal to the union of the stable manifolds of the critical elements it contains, and that this
decomposition persists for small changes in parameter values, for a large class of parameter
dependent vector fields (see Theorem 4.22). Earlier work [2] reported this decomposition
result for a large class of fixed parameter C1 vector fields on Euclidean space. However, their
proof relied on a Lemma [2, Lemma 3-5] which has been disproven [3]. Therefore, we begin
by providing a complete proof for a fixed parameter RoA boundary decomposition result, and
then focus on our main goal of extending this work to a parametrized family of C1 vector fields
on either Euclidean space or a compact Riemannian manifold. Finally, continuity of the RoA
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boundary is then used to establish the existence of a controlling critical element possessing
the properties that the time spent by the trajectory in a neighborhood of the controlling
critical element is continuous with respect to parameter values and diverges to infinity as the
parameter values approach ∂R, thereby providing justification for the prior algorithms [5, 7].

The paper is organized as follows. Section 2 presents relevant background and notational
conventions. Section 3 provides an example motivating discontinuity of the RoA boundary
and the negative implications this can have. Section 4 presents the main results, focusing
on parameter dependent vector fields and controlling critical elements, although results for
parameter independent vector fields are also included. A simple example is provided to illus-
trate the main theorems. Section 5 proves the boundary decomposition results for the case
where the vector field is parameter independent. Section 6 builds on that foundation to prove
persistence of the boundary decomposition and continuity of the RoA boundaries for a large
class of parameter dependent vector fields. These boundary continuity results are applied in
Section 7 to prove the existence of a controlling critical element with the properties that mo-
tivate the algorithms of [5, 7]. Finally, Section 8 offers some concluding thoughts and future
directions.

2. Notation and Definitions. If S is a subset of a topological space, we let S denote
its topological closure, ∂S its topological boundary, and int S its topological interior. If
f : A → B is any function and S ⊂ A is any subset of A, f |S denotes the restricted function
f ′ : S → B defined by f ′(s) = f(s) for all s ∈ S. For a set S contained in a metric space K,
define the r-neighborhood of S, denoted Sr, to be the set of x ∈ K such that for each x there
exists y ∈ S with d(x, y) < r. Let {xn}

∞
n=1 be a sequence. Let {nm}∞m=1 be any collection of

positive integers where we require that m′ > m implies that nm′ > nm to ensure the ordering
is preserved. Then any subsequence of {xn}

∞
n=1 can be written as {xnm}

∞
m=1 for some choice

of {nm}∞m=1. Let K be a nonempty, compact metric space. Note that compact Riemmanian
manifolds are compact metric spaces, so they are also covered by the following discussion.
Let C(K) be the nonempty, closed subsets of K. Let X,Y ∈ C(K). We define the Hausdorff
distance dh by

dh(X,Y ) = inf{r ≥ 0 : X ⊂ Yr, Y ⊂ Xr}.

Then dh is a well-defined metric on C(K) [10, Section 28] and we say a sequence of sets
An ∈ C(K) converges to A ∈ C(K), denoted An → A, if limn→∞ dh(An, A) = 0. For A,B
subsets of a metric space with metric d, define a set distance dS by dS(A,B) = inf{d(a, b) :
a ∈ A, b ∈ B}. Then if A is compact, B is closed, and d(A,B) = 0, A and B must have
nonempty intersection. As noted earlier, any Riemannian manifold is also a metric space, so
this set distance is well-defined on Riemannian manifolds.

Let J be a topological space. For p ∈ J , we say that p has a countable neighborhood basis
if there exists a countable collection {Un}

∞
n=1 of open sets in J that contain p such that for

any open set U ⊂ J which contains p, there exists an n such that Un ⊂ U . Then we say that
J is first countable if every point p ∈ J possesses a countable neighborhood basis. If J is first
countable, S is any topological space, and f : J → S is a function, then f is continuous if and
only if for every convergent sequence {pn}

∞
n=1 in J , say pn → p, f(pn) → f(p). Let J be a

first countable topological space and let F : J → C(K). We say that the family {Ap}p∈J is a
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Hausdorff continuous family of subsets of K if there exists F : J → C(K) such that F (p) = Ap

for p ∈ J and F is continuous. Since J is first countable, F is continuous if and only if for
every p ∈ J and every sequence pn ∈ J with pn → p, F (pn) → F (p).

We consider another notion of convergence on C(K). Let An ∈ C(K) be a sequence of sets.
Define lim infn→∞An to be the set of points x ∈ K such that there exists a sequence {an},
with an ∈ An for all n, such that an → x. Define lim supn→∞An to be the set of points x ∈ K
such that there exist {anm} with anm ∈ Anm a subsequence of {An}, such that anm → x. Both
lim supn→∞An and lim infn→∞An are closed [10, Section 28] and lim supn→∞An is nonempty
since K is sequentially compact, so if lim infn→∞An is nonempty then both are elements of
C(K). By definition, lim infn→∞An ⊂ lim supn→∞An. If lim supn→∞An ⊂ lim infn→∞An

then we say the limit exists and limn→∞An = lim supn→∞An = lim infn→∞An. By state-
ment V of [10, Section 28], since K is compact, if lim supn→∞An = lim infn→∞An =
limn→∞An =: A then limn→∞ dh(An, A) = 0. Thus, if there exists F : J → C(K) such
that for every p ∈ J and every pn → p, lim supn→∞ F (pn) = lim infn→∞ F (pn) = F (p), then
limn→∞ dh(F (pn), F (p)) = 0 so {F (p)}p∈J is a Hausdorff continuous family of subsets of K.

Let M = R
n and let C(M) be the closed, nonempty subsets of M . The standard Hausdorff

distance is not well-defined for unbounded sets, so instead consider the one-point compactifica-
tion of M , R

n∪{∞} ∼= Sn, where Sn is the n-sphere. Equip Sn with the induced Riemannian
metric from its inclusion into R

n+1, and let its associated distance function be the desired met-
ric on M ∪∞. Then, since Sn is a compact, nonempty metric space, the Hausdorff distance
is well-defined for all closed, nonempty subsets of Sn. Let C(M) = {A ∪ {∞} : A ∈ C(M)}.
Then all sets in C(M) are closed and nonempty, so the Hausdorff distance is well-defined on
C(M), and the metric topology it induces on C(M) is called the Chabauty topology. From the
discussion above regarding Hausdorff continuity, it follows that if there exists F : J → C(M)
such that for every p ∈ J and every pn → p, lim supn→∞ F (pn) = lim infn→∞ F (pn) = F (p),
then dh(F (pn), F (p)) → 0 so {F (p)}p∈J is a Chabauty continuous family of subsets of M .

Let M be a Riemannian manifold. For each x ∈ M , let TxM denote the tangent space
to M at x. Then the tangent bundle is given by TM = ⊔x∈MTxM , where ⊔ denotes the
disjoint union1. Note that TM is naturally a manifold with dimension twice that of M . Let
the zero section be the subspace of TM consisting of the zero vector from each tangent space
TxM over x ∈ M (note that it is naturally diffeomorphic to M itself). Note that a function
f : M → N , where M and N are C1 manifolds, is a submersion if dfy is surjective for every
y ∈ M , where dfy denotes the differential of f at y. Let X ⊂ M and i : X → M be the
inclusion map, so i(x) = x for all x ∈ X. We say that i is a C1 immersion if it is C1 and
for every y ∈ X, diy is injective. Then we say X is an immersed submanifold if i is a C1

immersion. Let TXM = ⊔x∈XTxM denote the tangent bundle of M over X. Consider a pair
of C1 immersed submanifolds X and Y . We say that X and Y are transverse at a point
x ∈ X ∩ Y if TxX ⊕ TxY spans TxM . Then we say that X and Y are transverse if for every
x ∈ X∩Y , X and Y are transverse at x. Note that if X and Y are disjoint, they are vacuously
transverse. A C1 disk is the image of i : B → M where B ⊂ R

m is a closed ball around the
origin in some Euclidean space R

m, and i is a C1 immersion. A continuous family of C1 disks

1If {Dx}x∈S is a family of sets Dx parametrized by x ∈ S for some set S, then the disjoint union of the
family is ⊔x∈SDx =

⋃
x∈S

(x,Dx).
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is a parametrized family {Dx}x∈S where S is a topological space, Dx is a C1 disk for each x,
and {Dx}x∈S is a Hausdorff continuous family. Suppose that A is a C1 immersed submanifold
of B, which is a C1 immersed submanifold of C. By the tubular neighborhood theorem [16,
Theorem 6.24], there exists a C1 continuous family of pairwise disjoint disks {D(x)}x∈B in
C centered along B and transverse to it such that their union is an open neighborhood of
B in C. Taking the restriction {D(x)}x∈A gives a C1 continuous family of pairwise disjoint
disks in C centered along A and transverse to B. If F : M → N is a continuous and injective
map between manifolds M and N of the same dimension, then by invariance of domain [9,
Theorem 2B.3], F is an open map, which means the image under F of every open set is open.

Let V be a C1 vector field on a Riemannian manifold M . An integral curve γ of V is a
map from an open subset U ⊂ R to M such that for every t ∈ U , d

dt
γ(t) = Vγ(t). A flow is a

map φ : U ×M → M , where U ⊂ R is open, such that for any x ∈ M , φ(·, x) is an integral
curve of V . For any C1 vector field V on a Riemannian manifold M , there exists a C1 flow φ
[16, Theorem 9.12]. We say that V is complete if it possesses a flow φ defined on R×M . For
T ∈ R, we let φT : M → M by φT (x) = φ(T, x). Then φT is a C1 diffeomorphism of M for
any T since φ is C1 and φ−1

T = φ−T .
If M and N are Riemannian manifolds which are at least C1, Let C1(M,N) denote the

set of C1 maps from M to N . There are two common topologies that C1(M,N) can be
equipped with: the strong and weak C1 topologies. Full definitions of these are available
in [11, Chapter 2], but the properties of these topologies which are most important for this
work are summarized below. The purpose of introducing these topologies is to provide a
framework for careful consideration of perturbations to vector fields, and to be able to define
a continuous family of vector fields in a suitable way. We will typically equip C1(M,N) with
the weak topology, denoted C1

W (M,N). A major benefit of the weak topology is that it has
a complete metric, which we denote dC1 and refer to as C1 distance. If V is a C1 vector
field on M then V ∈ C1(M,TM). A pair of C1 vector fields V,W on M are ǫ C1-close if
dC1(V,W ) < ǫ, where dC1 is the C1 distance on C1(M,TM). A (weak) C1 perturbation
to the vector field V is a vector field W such that V,W are ǫ C1-close for sufficiently small
ǫ > 0. A parameterized family of C1 vector fields {Vp}p∈J on M is (weakly) C1 continuous
if the induced map J → C1

W (M,TM) that sends p to Vp is continuous. Note that this
implies that V : M × J → TM × TJ defined by V (x, p) = (Vp(x), 0) is a C1 vector field on
M × J . In the case of M compact, the strong and weak topologies on C1(M,N) coincide.
For M noncompact, a strong C1 perturbation to a vector field only involves changes to that
vector field on a compact set, whereas a weak C1 perturbation to that vector field could have
changes that are unbounded. For example, [1, Example 19-1, p. 359] shows that under weak
C1 perturbations to the vector field, a new equilibrium point can appear arbitrarily close to
infinity (the equilibrium point “comes in from infinity”). This is not possible under strong C1

perturbations to the vector field because for any strong C1 perturbation there exists an open
neighborhood of infinity on which the vector field remains unchanged by the perturbation.
Hence, weak continuity of vector fields is a weaker assumption than strong continuity.

There is a notion of a generic C1 vector field, which is meant to represent typical behavior,
similar to the idea of probability one in a probability space. If a property holds for a generic
class of C1 vector fields, it is therefore considered to be typical or usual behavior. As there exist
many pathological C1 vector fields, it is often advantageous to restrict attention to certain
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classes of generic C1 vector fields when possible, and to prove results for generic vector fields
that often would not hold for arbitrary vector fields. We follow this approach here. In a
topological space M , a Baire set [17, Section 48] is a countable intersection of open, dense
subsets of M . A topological space M is metrizable if there exists a metric on M whose metric
topology corresponds with the original topology on M . It is completely metrizable if the
resultant metric space is complete. The Baire category theorem states that if the topology
on M is completely metrizable, then every Baire set in M is dense. By the discussion above,
C1(M,N) is a complete metric space for M and N under consideration here, so every Baire
set will be dense. Suppose P is a property that may be possessed by elements of a topological
space M . Then P is called a generic property if the set of elements in M which possess the
property P contains a Baire set in M . So, a property of vector fields is generic (with respect
to the weak topology) if the subset of vector fields in C1

W (M,TM) that possess this property
contains a Baire set.

An equilibrium point xe ∈ M is a singularity of the vector field, i.e., V (xe) = 0. A
periodic orbit X ⊂ M is an integral curve of V where there exists T > 0 such that each point
of X is a fixed point of φT . For each point x ∈ X, there exists a codimension-one embedded
submanifold S transverse to the flow, called a cross section, and a neighborhood U of x in S
such that the Poincaré first return map τ : U → S is well-defined and C1 [12, Page 281]. We
call X ⊂ M a critical element if it is either an equilibrium point or a periodic orbit.

A set S ⊂ M is forward invariant if φt(S) ⊂ S for all t > 0. It is backward invariant if
φt(S) ⊂ S for all t < 0, and invariant if it is both forward and backward invariant. Note that
critical elements are invariant.

Let xe be an equilibrium point. Then xe is hyperbolic if d(φ1)xe is a hyperbolic linear
map, i.e. if it has no eigenvalues of modulus one. It is stable if every eigenvalue of d(φ1)xe has
modulus less than one. If X is a periodic orbit then let x ∈ X, S a cross section centered at x,
U a neighborhood of x in S, and τ : U → S the C1 first return map. Then X is hyperbolic if
dτx is a hyperbolic linear map.

If X ⊂ M is a hyperbolic critical element then it possesses local stable and unstable man-
ifolds [14, Chapter 6], W s

loc(X) and W u
loc(X), respectively, such that φt(W

s
loc(X)) ⊂ W s

loc(X)
and φ−t(W

u
loc(X)) ⊂ W u

loc(X) for all t > 0. Furthermore, the local stable and unstable mani-
folds are chosen to be compact. The stable and unstable manifolds of X are then defined as
W s(X) =

⋃

t≤0 φt(W
s
loc(X)) and W u(X) =

⋃

t≥0 φt(W
u
loc(X)), respectively. By [14, Chapter

6], W s(X) consists of the set of x ∈ M such that the forward time orbit of x converges to X,
and W u(X) consists of the set of x ∈ M such that the backward time orbit of x converges to
X. Note that they are invariant under the flow. If X is a hyperbolic periodic orbit and S is a
cross section of X with C1 first return map τ , it is often convenient to consider W s

loc(X) ∩ S
and W u

loc(X)∩S. Then τ(W s
loc(X)∩S) ⊂ W s

loc(X)∩S and τ−1(W u
loc(X)∩S) ⊂ W u

loc(X)∩S.
Hence, we abuse notation and let W s

loc(X) refer either to W s
loc(X) as defined above or to

W s
loc(X) ∩ S for some cross section S of X. The distinction should be clear from context.

Define the notation W u
loc(X) analogously.

Let X be a hyperbolic critical element with (W s(X) − X) ∩ (W u(X) − X) 6= ∅. Then
the orbit of each x ∈ (W s(X) − X) ∩ (W u(X) − X) is called a homoclinic orbit. If, in
addition, W s(X) and W u(X) have nonempty, transversal intersection, then the orbit of each
x ∈ (W s(X) − X) ∩ (W u(X) − X) is called a transverse homoclinic orbit. Let X, Y be
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hyperbolic critical elements with (W s(X) −X) ∩ (W u(Y ) − Y ) 6= ∅. Then the orbit of each
x ∈ (W s(X) −X) ∩ (W u(Y ) − Y ) is called a heteroclinic orbit, and it is called a transverse
heteroclinic orbit if the intersection is transverse. Let X1, ...,Xn be a finite set of hyperbolic
critical elements with Xn = X1. If (W s(Xi) − Xi) ∩ (W u(Xi+1) − Xi+1) is nonempty and
transverse for each i ∈ {1, ..., n− 1}, then we call {Xi}ni=1 a heteroclinic cycle. If X1,X2, ... is
a sequence of hyperbolic critical elements with (W s(Xi)−Xi)∩(W u(Xi+1)−Xi+1) nonempty
and transverse for all i, then we call {Xi}∞i=1 a heteroclinic sequence.

Let X be a hyperbolic critical element. If X is an equilibrium point, let B = W u
loc(X), let

D be a C1 disk in M such that D has nonempty, transversal intersection with W s(X), and
let f = φ1 be the time-one flow. If X is a periodic orbit, let B = W u

loc(X) ∩ S, where S is a
cross section of X, let D be a C1 disk in S such that D has nonempty, transversal intersection
in S with W s(X) ∩ S, and let f be the C1 first return map defined on an open subset of S.
Suppose dim D ≥ dim B, and let q ∈ D ∩W s(X). Let fn = f ◦ f ◦ ... ◦ f denote composition
of f with itself a total of n times. Then the Inclination Lemma, otherwise known as the
Lambda Lemma, states [18] that for every ǫ > 0 there exists n0 > 0 such that n ≥ n0 implies
a submanifold of fn(D) containing fn(q) is ǫ C1-close to B. For convenience, we often omit
the submanifold qualifier and implicitly redefine (shrink) D so that fn(D) itself is ǫ C1-close
to B.

Let V be a C1 vector field on a Riemannian manifold M with corresponding flow φ. A
point x ∈ M is nonwandering for V if for every open neighborhood U of x and every T > 0,
there exists t > T such that φt(U) ∩ U 6= ∅. Let Ω(V ) denote the set of nonwandering points
for V in M . If y ∈ M , define its ω-limit set to be the set of points x ∈ M such that there
exists a sequence ti → ∞ with φti(y) → x. If γ ⊂ M is an orbit, define its ω-limit set to be
the ω-limit set of any y ∈ γ, and note that this is well-defined because all points on an orbit
share the same ω-limit set. Define the α-limit set of an orbit analogously, for ti → −∞. Write
ω(γ) and α(γ) for the ω-limit set and α-limit set, respectively, of the orbit γ. Then V is a
Morse-Smale vector field if it satisfies:

1. Ω(V ) is a finite union of critical elements.
2. Every critical element is hyperbolic.
3. The stable and unstable manifolds of each individual and all pairs of critical elements

have transversal intersection.
By [20, 15], Assumptions 2 and 3 are generic, whereas Assumption 1 is not. Note that Morse-
Smale vector fields were defined for compact Riemannian manifolds M [19]. We will see in
Section 4.1 that an additional assumption (Assumption 4.2) is necessary for M = R

n.
Let J ⊂ R be an open interval representing parameter values and fix p0 ∈ J . Let Jr =

{p ∈ J : |p − p0| < r} and Jr = {p ∈ J : |p − p0| ≤ r}. For Q ⊂ J , let MQ = M × Q
and let Mp = M{p}. Let {Vp}p∈J be a C1 continuous family of vector fields on M . Suppose
Xp0 is a hyperbolic critical element of Vp0 for some p0 ∈ J . Then for J sufficiently small,
p ∈ J implies there exists a unique hyperbolic critical element Xp of Vp which is C1-close
to Xp0 [12, Chapter 16]. This defines the family {Xp}p∈J of a critical element of the vector
fields {Vp}p∈J . To avoid ambiguity, we reserve the phrase “family of a critical element” to
refer to the family obtained from a single critical element as the parameter value p varies over
J . In particular, this implies that for each fixed parameter value p, the family of a critical
element will possess exactly one critical element of Vp. Throughout the paper, for a fixed
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parameter value p ∈ J , it will sometimes be convenient to think of a critical element Xp as
being a subset of M , and sometimes as a subset of M × J . Therefore, we abuse notation and
let Xp denote a critical element of Vp, where sometimes we consider Xp ⊂ M and sometimes
we consider Xp ⊂ M × {p} ⊂ M × J . The distinction should be clear from context. For
Q ⊂ J , we write XQ =

⋃

p∈QXp ⊂ M × J . We write W s(XQ) = ⊔p∈QW
s(Xp) ⊂ M × J , and

W u(XQ) = ⊔p∈QW
u(Xp) ⊂ M × J .

3. Motivating Example.

Example 3.1 (Lack of Hausdorff Continuity of Boundaries).
We show that every smooth manifold M possesses a family of smooth vector fields which

is continuous with respect to the strong C∞ topology and such that the vector fields have a
family of stable equilibria whose boundaries of their regions of attraction are not Hausdorff
continuous. As the strong C∞ topology is the most restrictive of the standard Cr topologies,
this implies that even such a high degree of regularity is not sufficient to prevent a lack of
Hausdorff continuity of the boundaries. We define the family of vector fields such that they
are supported within a single chart, and then extend them trivially to the entire manifold
M by declaring them to be zero outside this chart. So, it suffices to consider M = R

n. Let
h(a,b) : [0,∞) → [0, 1] be a smooth bump function with h−1

(a,b)(1) = [0, a] and h−1
(a,b)(0) = [b,∞).

Let p ∈ R, e1 denote the first standard basis vector, and define, for x ∈ R
n,

Vp(x) = −xh(0,1.5)(|x|) + ph(2,3)(|x|)e1.

Then {Vp}p∈(−0.2,0.2) is continuous with respect to the weak C1 topology. In fact,
{Vp}p∈(−0.2,0.2) is also continuous with respect to the more restrictive strong C∞ topology,
so {Vp}p∈(−0.2,0.2) varies as smoothly as might be desired. Furthermore, for p ∈ (−0.2, 0.2),
the vector field Vp is unchanged outside a fixed compact set. Nevertheless, despite the smooth-
ness of {Vp}p∈(−0.2,0.2) and the fact that variations are restricted to a fixed compact set, this
family of vector fields exhibits discontinuity in the boundaries of the regions of attraction of
a family of stable equilibria.

For each p, Vp has a stable equilibrium point near the origin, call them {Xs
p}p∈(−0.2,0.2).

The case of n = 1 is illustrated in Fig. 1, which shows the vector field Vp for a few values
of p. For p = 0.1, the vector field is positive for x ∈ (−3,Xs

0.1), driving initial conditions
in this range towards Xs

0.1, and is negative for x greater than Xs
0.1 but less than about 1.1,

driving these initial conditions towards Xs
0.1 as well. So, W s(Xs

0.1) ≈ (−3, 1.1) consists of
a line segment and ∂W s(Xs

0.1) ≈ {−3, 1.1} consists of the two points on the boundary of
the line segment. In fact, for any p ∈ (0, 0.2), W s(Xs

p) will be a line segment that includes
(−3, 0), and ∂W s(Xs

p) will consist of the two points on its boundary, one of which is {−3}.
For p = −0.1, the vector field is negative for x ∈ (Xs

−0.1, 3), driving initial conditions in this
range towards Xs

−0.1, and is positive for x less than Xs
−0.1 but greater than about -1.1, driving

these initial conditions towards Xs
−0.1 as well. So, W s(Xs

−0.1) ≈ (−1.1, 3) consists of a line
segment and ∂W s(Xs

−0.1) ≈ {−1.1, 3} consists of the two points on the boundary of the line
segment. In fact, for any p ∈ (−0.2, 0), W s(Xs

p) will be a line segment that includes (0, 3), and
∂W s(Xs

p) will consist of the two points on its boundary, one of which is {3}. Now consider
the case where p = 0. By analogous reasoning to the above, based on the sign of the vector
field, W s(Xs

0) = (−1.5, 1.5). So, ∂W s(Xs
0) = {−1.5, 1.5}. But, we saw that as p approaches

8
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Figure 1. The graph of Vp for p = 0.1 (green dashed), p = 0 (blue solid), and p = −0.1 (red dot-dashed).
This figure originally appeared in [6].

Figure 2. The disjoint union of the regions of attraction of the family of stable equilibria of the vector fields
{Vp} over p ∈ [−0.1, 0.1] (blue). The region of attraction of the stable equilibrium point of V0 is shown in red.
Then ∂W s(Xs

0) consists of the two points on the boundary of this red line segment, while ∂W s(Xs
J )∩ (R × {0})

is equal to the union of the cyan line segments together with the end points of the red line segment. One family
of initial conditions (yellow) begins inside the regions of attraction and passes through one of their boundaries
as p is increased. Another family of initial conditions (green) begins inside the regions of attraction and passes
outside without passing through one of their boundaries. This occurs because the boundaries of the regions of
attraction fail to be Hausdorff continuous at p = 0. This figure originally appeared in [6].

zero from above, ∂W s(Xs
p) contains the point {−3}, and as p approaches zero from below,

∂W s(Xs
p) contains the point {3}, neither of which are contained in ∂W s(Xs

0) = {−1.5, 1.5}.
Hence, the family {∂W s(Xs

p)}p∈(−0.2,0.2) is Hausdorff discontinuous at p = 0 from both above
and below.

Fig. 2 illustrates this more clearly, by showingW s(Xs
p) and ∂W s(Xs

p) for p ∈ (−0.1, 0.1), as
well as ∂W s(Xs

(−0.1,0.1)). Let M = R and let J = (−0.1, 0.1). Then for p ∈ J with p 6= 0, Fig. 2

plots W s(Xs
p) ⊂ M×{p} ⊂ M×J in blue. And at p = 0, W s(Xs

0) ⊂ M×{0} is shown in red.
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For p > 0, W s(Xs
p) includes (−3, 0), so ∂W s(Xs

p) contains {−3}. For p < 0, W s(Xs
p) includes

(0, 3), so ∂W s(Xs
p) contains {3}. However, for p = 0, W s(Xs

0) = (−1.5, 1.5), so ∂W s(Xs
0) =

{−1.5, 1.5}, which does not contain {3} nor {−3}. Thus, as discussed above, {∂W s(Xs
p)}p∈J is

Hausdorff discontinuous at p = 0 from both above and below. Now consider ∂W s(Xs
J). First

note that ∂W s(Xs
J) contains ⊔p∈J∂W

s(Xs
p), so for each p ∈ J it contains the two points of

∂W s(Xs
p). However, as ∂W

s(Xs
J ) is obtained by taking the topological boundary of W s(Xs

J)
in M × J , it also contains the cyan line segments shown at p = 0, which are [−3,−1.5]
and [1.5, 3]. Hence, ∂W s(Xs

J ) ∩ (M × {0}) contains the line segments [−3,−1.5] and [1.5, 3],
whereas ∂W s(Xs

0) = {−1.5, 1.5} consists only of two points. In particular, ∂W s(Xs
J) is strictly

larger than ⊔p∈J∂W
s(Xs

p). For a large class of families of C1 vector fields, Theorem 4.22 shows
that ∂W s(Xs

J ) = ⊔p∈J∂W
s(Xs

p), and Corollaries 4.23-4.24 show that {∂W s(Xs
p)}p∈J varies

Chabauty or Hausdorff continuously, respectively.
From a practical perspective, we consider an initial condition yp which is a C1 function

of parameter p and represents the system state after a finite time, parameter-dependent dis-
turbance. In order to prove Theorem 4.31, which provides theoretical motivation for the
prior algorithms of [5], it is essential that there exists a boundary parameter value p∗ such
that yp∗ ∈ ∂W s(Xs

p∗). Suppose for some values of p that yp ∈ W s(Xs
J ), so the system re-

covers from the disturbance, and for other values of p that yp 6∈ W s(Xs
J ), so the system

does not recover from the disturbance. Then since yp is continuous in p, yJ is connected, so
there must exist at least one p∗ such that yp∗ ∈ ∂W s(Xs

J). However, as this example shows,
yp∗ ∈ ∂W s(Xs

J) does not necessarily imply that yp∗ ∈ ∂W s(Xs
p∗) as is required for the proof

of Theorem 4.31. In particular, Fig. 2 shows two families of initial conditions yJ : a yellow
family of initial conditions which does pass through ∂W s(Xs

p∗) for some parameter value p∗,
and a green family of initial conditions which does not pass through ∂W s(Xs

p) for any p ∈ J
but passes through ∂W s(Xs

J ) via one of the cyan line segments. Hence, this example shows
that when the assumptions required by Theorem 4.22 are not met, the conclusions of that
theorem may not hold and, as a result, the conclusions of Theorem 4.31 may not hold either.

The discussion above generalizes to arbitrary dimension n. An example which shows that
it is possible for a new nonwandering point to enter the RoA boundary under arbitrarily small
perturbations, even if the vector field is globally Morse-Smale before the perturbation, is given
in [4]. In that example, a strong C1 continuous family of Morse-Smale vector fields on R

2 has
a new equilibrium point enter the boundary of the RoA for p arbitrarily close to p0, and the
RoA boundary is Chabauty discontinuous at p0. This motivates the need for Assumption 4.16
in Section 4.2.

4. Main Results.

4.1. Vector Field is Parameter Independent. The primary motivation for presenting the
results of this section for parameter independent vector fields is to provide a foundation for,
and to improve the clarity of presentation of, the results for parameter dependent vector fields
in Section 4.2. However, the main result here (Theorem 4.11) may also be of some independent
interest as it provides a complete proof for parameter independent vector fields of a result for
which earlier proofs [2] are incomplete.

Let V be a complete C1 vector field on M , where M is either a compact Riemannian man-
ifold or R

n. Let Xs be a stable equilibrium point of V . We make the following assumptions.
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Assumption 4.1. There exists a neighborhood N of ∂W s(Xs) such that Ω(V ) ∩N consists

of a finite union of critical elements; call them {Xi}i∈I where I = {1, ..., k}.

Assumption 4.2. For every x ∈ ∂W s(Xs), the forward orbit of x under V is bounded.

Assumption 4.3. Every critical element in ∂W s(Xs) is hyperbolic.

Assumption 4.4. For each pair of critical elements in ∂W s(Xs), say Xi and Xj , W s(Xi)
and W u(Xj) are transversal.

Remark 4.5. Assumptions 4.1,4.3, and 4.4 ensure that V is Morse-Smale along
∂W s(Xs).

Remark 4.6. Assumption 4.2 is necessary in the case M = R
n since Morse-Smale vector

fields were defined on compact manifolds [19], whereas for M = R
n it is necessary to prohibit

orbits in ∂W s(Xs) from diverging to infinity in forward time.

Remark 4.7. By the Kupka-Smale Theorem for M compact [19, 15], and its generalization
for M σ-compact [14, Page 294], Assumptions 4.3 and 4.4 are generic with respect to the weak
C1 topology.

Remark 4.8. By [4, Remark 4.4] and [4, Lemma 4.5], Assumption 4.1 can be relaxed to the
assumption that there exists a neighborhood of ∂W s(Xs) in which the number of equilibrium
points and periodic orbits is finite, together with an additional assumption that is generic
with respect to the strong C1 topology.

Remark 4.9. By Assumption 4.3, hyperbolicity of the critical elements implies that their
stable and unstable manifolds exist.

Remark 4.10. Assumptions 4.1-4.2 together imply that for any orbit γ ⊂ ∂W s(Xs),
ω(γ) = Xi for some i ∈ I = {1, ..., k}.

Theorem 4.11 gives a decomposition of the boundary of the region of attraction for a
parameter independent vector field as a union of the stable manifolds of the critical elements
it contains.

Theorem 4.11. Let M be either a compact Riemannian manifold or Euclidean space, and

suppose V is a C1 vector field on M satisfying Assumptions 4.1-4.4 Let {Xi}i∈I be the critical

elements contained in ∂W s(Xs). Then ∂W s(Xs) =
⋃

i∈I W
s(Xi).

Remark 4.12. Theorem 4.11 was originally reported in [2, Theorem 4-2] under slightly
more general assumptions. Namely, our Assumption 4.1 was replaced by the assumption that
for every x ∈ ∂W s(Xs), the trajectory of x converges to a critical element in forwards time.
Hence, the number of critical elements in ∂W s(Xs) was not assumed to be finite, and the
set of ω limit points in ∂W s(Xs), rather than the nonwandering set on a neighborhood of
∂W s(Xs), was assumed to consist solely of critical elements (in general the nonwandering set
may be larger than the closure of the set of ω limit points). The main purpose for presenting
Theorem 4.11 under these more restrictive assumptions is that its treatment more closely
parallels the results and proofs of Theorem 4.22 for the case of parameter dependent vector
fields. For example, a finite number of critical elements is necessary to ensure that all critical
elements persist under small perturbations to the vector field. It should also be noted, though,
that the proof of [2, Theorem 4-2] relies on [2, Lemma 3-5], which has been disproven [3].
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Therefore, the proof of [2, Theorem 4-2] is incomplete, so the proof of Theorem 4.11 presented
here represents the first complete proof of this result.

4.2. Vector Field is Parameter Dependent. Next we generalize the above results to the
case where the vector field is parameter dependent. Let J be a connected smooth manifold
representing a family of parameters, and let {Vp}p∈J be a weak C1 continuous family of
complete C1 vector fields on M . Let V be the complete C1 vector field on M × J defined by
V (x, p) = (Vp(x), 0) ⊂ TxM × TpJ . Let φ be the C1 flow of V , where φ(t, x, p) denotes the
flow at time t ∈ R from initial condition x ∈ M of the vector field Vp. For fixed t, we often
write φt : M × J → M × J by φt(x, p) = φ(t, x, p) and note that φt is a C1 diffeomorphism
for each t.

Let {Xs
p}p∈J be a C1 continuous family of stable equilibria of the vector fields {Vp}p∈J .

Let Xs
J =

⋃

p∈J X
s
p and let W s(Xs

J) = ⊔p∈JW
s(Xs

p). In this setting, there are two different
boundaries of regions of attraction to consider. First, for any fixed parameter value p ∈ J
we have ∂W s(Xs

p), where the topological boundary operation is taken in M . Second, we
have ∂W s(Xs

J ), where the topological boundary operation is taken in M × J . It is always
true that ⊔p∈J∂W

s(Xs
p) ⊂ ∂W s(Xs

J), but the two boundaries may differ as in Example 3.1.
Therefore, we make assumptions regarding the behavior of V along ∂W s(Xs

J) rather than
along ⊔p∈J∂W

s(Xs
p). For some fixed p0 ∈ J we make the following assumptions.

Assumption 4.13. There exists a neighborhood N of ∂W s(Xs
J ) ∩ Mp0 in Mp0 such that

Ω(Vp0) ∩ N consists of a finite union of critical elements of Vp0; call them {Xi
p0
}i∈I where

I = {1, ..., k} and k ≥ 1.

Assumption 4.14. Every critical element in ∂W s(Xs
J )∩Mp0 is hyperbolic in M with respect

to Vp0.

Remark 4.15. By Assumption 4.14, the critical elements {Xi
p0
}i∈I in ∂W s(Xs

J )∩Mp0 are
hyperbolic so, since I is finite, they and their stable and unstable manifolds persist for J
sufficiently small. Let Xi

p denote the perturbation of Xi
p0

for i ∈ I and p ∈ J . Let W s(Xi
p)

and W u(Xi
p) denote the stable and unstable manifolds, respectively, for each i ∈ I and p ∈ J .

Assumption 4.16. For each p ∈ J , Ω(Vp) ∩ (∂W s(Xs
J) ∩Mp) =

⋃

i∈I X
i
p and for every

x ∈ ∂W s(Xs
J) ∩Mp its forward orbit under Vp is bounded.

Assumption 4.17. For each pair of critical elements that are contained in ∂W s(Xs
J )∩Mp0 ,

say Xi
p0

and Xj
p0 , W

s(Xi
p0
) and W u(Xj

p0) are transversal in M .

Remark 4.18. Assumptions 4.13, 4.14 and 4.17 are straightforward generalizations of As-
sumptions 4.1, 4.3 and 4.4. They ensure that Vp0 is Morse-Smale along ∂W s(Xs

J ) ∩Mp0 .

Remark 4.19. Assumption 4.16 generalizes Assumption 4.2 by ensuring that, for every
p ∈ J , every orbit in ∂W s(Xs

J) ∩Mp converges to Xi
p for some i ∈ I. This implies that the

set I indexing the critical elements remains unchanged for all p ∈ J , and therefore that no
critical elements enter or exit ∂W s(Xs

J ) for p ∈ J .

Remark 4.20. Using the results of [4], Assumption 4.13 can be partially relaxed as in
Remark 4.8.

Remark 4.21. If M is a compact Riemannian manifold, Assumption 4.16 is not necessary,
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according to [4, Theorem 4.6]. If M is Euclidean, [4, Theorem 4.16] allows Assumption 4.16
to be partially relaxed when {Vp}p∈J is a strong C1 continuous family of vector fields. In
particular, in this case it suffices to assume that for every x ∈ ∂W s(Xs

p0
), the forward orbit

of x is bounded, that there exists a neighborhood N of infinity such that Ω(Vp0)∩N = ∅ and
no orbit under Vp0 is entirely contained in N in both forward and backward time. There is
also a requirement for some additional generic assumptions related to points of continuity of
semi-continuous functions.

Theorem 4.22 gives a decomposition of ∂W s(Xs
J ) as a disjoint union over parameter values

in J of a union of the stable manifolds of its critical elements. Furthermore, it shows that
the topological boundary in M × J , ∂W s(Xs

J), is equal to the disjoint union over p ∈ J
of the topological boundaries in M of the stable manifolds of the stable equilibria. Using
Theorem 4.22, it is straightforward to then show that {∂W s(Xs

p)}p∈J is a continuous family
of subsets of M (Corollary 4.23). Hence, if M is a compact Riemannian manifold, this implies
that {∂W s(Xs

p)}p∈J is a Hausdorff continuous family of subsets ofM (Corollary 4.24). Finally,
if Vp0 is Morse-Smale on M a compact Riemannian manifold, using persistence of the so-called
phase diagram of Morse-Smale vector fields under perturbation [18], one can show that for
any C1 continuous family of vector fields {Vp}p∈J containing Vp0 , and for J sufficiently small,
{∂W s(Xs

p)}p∈J is a Hausdorff continuous family of subsets of M (Corollary 4.25). Analogous
to W s(Xs

J ), for each i ∈ I, let W s(Xi
J ) = ⊔p∈JW

s(Xi
p).

Theorem 4.22. Let M be either a compact Riemannian manifold or Euclidean space, and

let {Vp}p∈J be a family of vector fields on M continuous with respect to the weak C1 topology

and satisfying Assumptions 4.13-4.17. Let {Xi
p0
}i∈I denote the critical elements of Vp0 in

∂W s(Xs
J) ∩ Mp0 . Then in M × J for sufficiently small J , ∂W s(Xs

J) = ⊔p∈J∂W
s(Xs

p) =
⋃

i∈I W
s(Xi

J ).

Corollary 4.23. Let M = R
n and let {Vp}p∈J be a weak C1 continuous family of vector

fields on M satisfying Assumptions 4.13-4.17. Then {∂W s(Xs
p)}p∈J is a Chabauty continuous

family of subsets of M .

Corollary 4.24. Let M be a compact Riemannian manifold and let {Vp}p∈J be a C1 contin-

uous family of vector fields on M satisfying Assumptions 4.13-4.17. Then {∂W s(Xs
p)}p∈J is

a Hausdorff continuous family of subsets of M .

Corollary 4.25. Let M be a compact Riemannian manifold and let Vp0 be a Morse-Smale

vector field on M . Then for any C1 continuous family of vector fields {Vp}p∈J on M with

p0 ∈ J , for sufficiently small J , {∂W s(Xs
p)}p∈J is a Hausdorff continuous family of subsets

of M .

4.3. Time in Neighborhood of Special Critical Element. Recall from Section 4.2 that J
is chosen to be a connected smooth manifold. Assume further, shrinking J if necessary, that
J is compact and convex. Let y : J → M send p to the initial condition of Vp and assume that
y is C1 over J . We write yp := y(p) and, as with critical elements above, sometimes consider
yp ∈ M and sometimes yp ∈ M × J ; the distinction should be clear from context. Then a
parameter value p∗ ∈ J is a boundary parameter value if and only if yp∗ ∈ ∂W s(Xs

p∗). We
restrict our attention to cases where J contains points p1 and p2 such that yp1 ∈ W s(Xs

p1
) and
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yp2 6∈ W s(Xs
p2
). Let R = {p ∈ J : yp ∈ W s(Xs

p)} and let C = {p ∈ J : yp ∈ ∂W s(Xs
p)}. Then

R represents the set of parameters for which the system will recover to the SEP, called the
recovery set, C represents the set of boundary parameter values, and we let ∂R denote the
boundary of R in J . Theorem 4.26 shows that ∂R ⊂ C under the assumptions of Section 4.2.
Furthermore, if p0 ∈ R is any parameter value in the recovery set and J0 ⊂ C is the set of
parameter values which achieve minimum distance from p0 to C, then J0 ⊂ ∂R and J0 is the
set of parameter values in ∂R which achieve minimum distance from p0 to ∂R.

Theorem 4.26. Let M be either a compact Riemannian manifold or Euclidean space, and

let {Vp}p∈J be a family of vector fields on M continuous with respect to the weak C1 topology

and satisfying Assumptions 4.13-4.17. Let y : J → M be C1. Then ∂R ⊂ C. Fix any

p0 ∈ R and let J0 = {p∗ ∈ C : d(p0, p
∗) = dS(p0, C)}. Then J0 is nonempty, J0 ⊂ ∂R, and

J0 = {p∗ ∈ ∂R : d(p0, p
∗) = dS(p0, ∂R)}.

Theorem 4.26 justifies the method of determining or approximating R by computing the
closest boundary parameter values. Then Corollary 4.27 shows that for each boundary pa-
rameter value p∗ there exists a critical element X∗

p∗ , called the controlling critical element,
such that yp∗ lies in its stable manifold.

Corollary 4.27. Assume the conditions of Theorem 4.26. Fix any p∗ ∈ J0. Then there exists

a unique critical element X∗
p∗ ⊂ ∂W s(Xs

J ), called the controlling critical element corresponding

to p∗, such that yp∗ ∈ W s(X∗
p∗).

For a fixed boundary parameter value p∗, by Corollary 4.27 there exists a unique controlling
critical element X∗

p∗ . Since X∗
p∗ ⊂ W s(Xs

J) is a critical element, by Assumption 4.16 there

exists j ∈ I such that X∗
p∗ = Xj

p∗ . Furthermore, by Remark 4.15, as Xj
p∗ is hyperbolic, it

persists over p ∈ J , and we can write X∗
p = Xj

p for all p ∈ J . The notation X∗
J = Xj

J is
similarly defined.

Let γ : [0, 1] → J be any C1 path in J such that γ([0, 1)) ⊂ R and γ(1) ∈ C. Let X∗
γ(1)

be the controlling critical element corresponding to γ(1), as in Corollary 4.27. Consider the
following assumption regarding the path γ.

Assumption 4.28. Let γ be a C1 path in J such that γ([0, 1)) ⊂ R and γ(1) ∈ C. There

exists a compact codimension-zero smooth embedded submanifold with boundary N in M such

that for p ∈ γ([0, 1]), X∗
p is contained in the interior of N , Xs

p and yp are disjoint from N ,

and the orbit of yp under Vp has nonempty, transversal intersection with ∂N .

Remark 4.29. Unlike Assumption 4.17, the transversality condition of Assumption 4.28
can be easily checked directly by numerical simulation, and the neighborhood N adjusted
accordingly if necessary. In applications, N is typically taken to be a closed ball and its radius
is adjusted to ensure the transversality condition of Assumption 4.28 holds.

Remark 4.30. Assumption 4.28 also ensures that the initial conditions and the stable
equilibria do not intersect the neighborhood N , and that the controlling critical element X∗

J

is contained in N .

Let γ and N be as in Assumption 4.28. Let τN : γ([0, 1]) → [0,∞] be given by τN (p) =
∫∞
0 1N (φ(t, yp, p))dt where 1N is the indicator function of N , with 1N (x) = 1 if x ∈ N and

1N (x) = 0 if x 6∈ N . Therefore, τN (p) measures the length of time the orbit of Vp with initial
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condition yp spends in N . Theorem 4.31 shows that τN is well-defined and continuous over
γ([0, 1]). Since yγ(1) ∈ W s(X∗

γ(1)) and X∗
γ(1) ⊂ N , it will follow that τN (p) diverges to infinity

as p approaches γ(1) along the path γ.

Theorem 4.31. Assume the conditions of Theorem 4.26. Fix any p0 ∈ J , let J0 = {p∗ ∈
∂R : d(p0, p

∗) = dS(p0, ∂R)}, and fix any p∗ ∈ J0. By Corollary 4.27, there exists a unique

critical element X∗
p∗ ⊂ ∂W s(Xs

J) such that yp∗ ∈ W s(X∗
p∗). Let γ : [0, 1] → J be a C1

path satisfying Assumption 4.28 and such that γ(0) = p0, γ(1) = p∗, and γ([0, 1)) ⊂ R.

Then τN : γ([0, 1]) → [0,∞] is well-defined and continuous. In particular, lims→1 τN (γ(s)) =
τN (p∗) = ∞.

4.4. Illustrative Example.

Example 4.32 (Illustration of Main Theorems).
To illustrate the results of Theorems 4.11, 4.22, 4.31 and Corollary 4.23 we consider the

simple example of a damped, driven nonlinear pendulum with constant driving force. The
dynamics are given by,

ẋ1 = x2(1)

ẋ2 = −c1 sin(x1)− c2x2 + c3,(2)

where c1, c2, c3 > 0 are real parameters and x = (x1, x2) ⊂ R
2. Physically, x1 represents the

angle of the pendulum, x2 its angular velocity, c1 the square of the natural frequency of the
pendulum (under the small angle approximation), c2 a damping coefficient due to air drag, and
c3 the constant driving torque. Eqs. 1-2 can also be interpreted as an electrical generator with
(x1, x2) the angle and angular velocity of the turbine, c1 a constant determining the electrical
torque supplied by the generator, c2 a damping coefficient due to friction, and c3 the constant
driving mechanical torque. For the demonstration below, we set c = (c1, c2, c3) = (2, 0.5, 1.5)
and we restrict x1 to a single interval of length 2π since x1 is defined modulo 2π. Although
c3 is initially given the fixed value of 1.5, we let p ≡ c3 and will subsequently treat it as a free
parameter, setting p0 = 1.5. At p0, this system possesses one stable equilibrium point Xs

p0
,

at (0.848, 0), one unstable equilibrium point X1
p0
, at (2.294, 0), and no other nonwandering

elements. Variation of the value of p over a range J that contains p0 then generates a C1

continuous family of vector fields, as well as families of equilibria {Xs
p}p∈J and {X1

p}p∈J .
We establish an initial condition to Eqs. 1-2 as the output of the related system,

ż1 = z2(3)

ż2 = −c2z2 + c3,(4)

starting from the stable equilibrium point Xs
p and running for time c4 = 0.8 sec, which is the

length of time the disturbance is active. Let φd denote the flow of Eqs. 3-4 and let J = (1.3, 2).
Then the initial condition of Eqs. 1-2 is given by yp : J → R

2 with yp = φd(c4,X
s
p , p). If

Eqs. 1-2 are interpreted as an electrical generator, then Eqs. 3-4 represent a short circuit on
the terminals of the generator so that it can no longer supply any electrical torque. This is
modeled by setting c1 = 0 in Eqs. 1-2, which then gives Eqs. 3-4.

Fig. 3 shows ∂W s(Xs
p0
). Note that the intersection of ∂W s(Xs

p0
) with the nonwandering

set is X1, every orbit γ ⊂ ∂W s(Xs
p0
) has ω(γ) = X1

p0
, X1

p0
is hyperbolic, and the transversality
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Figure 3. The region of attraction boundary ∂W s(Xs
p0
) (solid black line) of the stable equilibrium point Xs

p0

(black star) of Eqs. 1-2 is shown. It is equal to W s(X1
p0
) where X1

p0
(black triangle) is the unstable equilibrium

point. The orbit (dashed black line) from the initial condition yp0 (black circle) is shown.
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Figure 4. The region of attraction boundaries ∂W s(Xs
p) of the stable equilibrium points Xs

p (stars) for
parameter values p = 1.3 (green dashed), p = 1.568 (solid blue), and p = 1.9 (red dot dashed) are shown. Each
boundary is equal to W s(X1

p ) where X1
p (triangle) is the unstable equilibrium point corresponding to parameter

value p. The initial conditions (circles) are shown.

assumption is vacuously true sinceX1
p0

is the only critical element in ∂W s(Xs
p0
). Therefore, the

system satisfies Assumptions 4.1-4.4, so by Theorem 4.11 we must have ∂W s(Xs
p0
) = W s(X1

p0
),

as can be seen in Fig. 3.
Fig. 4 shows the boundaries of the regions of attraction of the family of vector fields for

several values of the parameter p ≡ c3. At p = 2 the stable and unstable equilibria Xs
p

and X1
p collide in a saddle-node bifurcation and annihilate each other, so we must restrict

attention to sufficiently small J = (1.3, 2). Fix p0 = 1.5 as above. Then the intersection
of the nonwandering set with ∂W s(Xs

J ) ∩ Mp0 is X1
p0
, for every orbit γ ⊂ ∂W s(Xs

J ) we
have ω(γ) ⊂ X1

J , X1
p0

is hyperbolic, and the transversality condition for ∂W s(Xs
J ) ∩ Mp0

is vacuously satisfied since the only critical element in ∂W s(Xs
J) ∩ Mp0 is X1

p0
. Therefore,

the system satisfies Assumptions 4.13-4.17, so by Theorem 4.22 we must have ∂W s(Xs
J ) =

⊔p∈J∂W
s(Xs

p) = W s(X1
J), and by Corollary 4.23 {∂W s(Xs

p)}p∈J is a Chabauty continuous
family of subsets of M .
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Figure 5. The transversal intersection of several orbits with the ball N containing the unstable equilibria
(red stars). Orbits are shown for parameter values (driving torques) of 1.5 (cyan), 1.516 (yellow), 1.532 (green),
1.55 (magenta), 1.568 (blue), and 1.57 (red). Only the initial condition corresponding to the final parameter
value of 1.57 lies outside the region of attraction of the corresponding stable equilibrium.

Choose two values of p, call them p1 and p2, such that yp1 ∈ W s(Xs
J ) but yp2 6∈ W s(Xs

J ).
In particular, we may choose p1 = 1.3 (= p0) and p2 = 1.9. Then yp1 = (1.07, 0.86) ∈ W s(Xs

J)
and yp2 = (1.79, 1.25) 6∈ W s(Xs

J), as could be verified, for example, by numerical integration.
Furthermore, since φd is C1 then y is also.

Hence, by Theorem 4.26 there must exist a boundary parameter value p∗ such that yp∗ ∈
∂W s(Xs

p∗) and d(p0, p
∗) = dS(p0, ∂R). We will see that p∗ = 1.568 is the desired boundary

parameter value. Since ∂W s(Xs
p∗) = W s(X1

p∗), this implies that yp∗ ∈ W s(X1
p∗), so X∗

p∗ =
X1

p∗ . Let γ : [0, 1] → J by γ(s) = (1 − s)p0 + sp∗. Then γ is C1, γ(0) = p0, γ(1) = p∗, and
γ(s) /∈ ∂R for s ∈ [0, 1) because γ is a minimal geodesic and d(p0, p

∗) = dS(p0, C) = dS(p0, ∂R)
by Theorem 4.26. As γ([0, 1)) is connected, it does not intersect ∂R, and γ(0) ∈ R, we must
have γ([0, 1)) ⊂ R.

Let N be the closed ball centered at X∗
p1

= X1
p1

of radius r = 1 in R
2. Fig. 5 shows X∗

p

and the orbit of Eqs. 1-2 for a range of initial conditions yp for p ∈ [p1, p2]. In particular,
one can infer that each orbit has nonempty, transversal intersection with ∂N for p ∈ [p1, p2].
Furthermore, X∗

J ⊂ N , and y[p1,p2] and Xs
J are disjoint from N . Therefore, the path γ defined

above satisfies Assumption 4.28 so by Theorem 4.31 we must have that the time τN spent
by the orbit in the neighborhood N is well-defined and continuous over γ([0, 1]) = [p0, p

∗].
Fig. 6 illustrates the dependence of τN on p ∈ γ([0, 1]) = [p0, p

∗]. One observes that τN is
continuous and that τN diverges to infinity as p converges to a fixed value p∗. For p = p∗ Fig. 4
shows (solid blue) that yp∗ ∈ ∂W s(Xs

J ). Furthermore, p ∈ γ([0, 1)) = [p0, p
∗) implies that

yp ∈ W s(Xs
J). Although τN is monotonic in this example, this need not be true in general.

5. Proof of Theorem 4.11. This section is devoted to the proof of Theorem 4.11. Many
of the results and proofs that underpin Theorem 4.11 will be recycled for additional use for
the parameter dependent vector field case in Section 6. Most of the lemmas presented here
are similar to results given elsewhere, especially for diffeomorphisms of compact Riemannian
manifolds, but our presentation and proofs are novel unless otherwise stated. In the following
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Figure 6. Distance from the center of the ball N as a function of time for several orbits. The line
r = 1 marks the boundary of the ball ∂N , so the time in the ball equals the difference in time between the
intersections of the orbit with this line. The orbits shown correspond to those in Fig. 5. As the parameter value
approaches its boundary value from below, the time in the neighborhood N increases. The final parameter value,
which is greater than the boundary parameter value, has an orbit (red) which spends less time in N than that
corresponding to the boundary parameter value (blue).

analysis, let M be either a compact Riemannian manifold or Euclidean space unless stated
otherwise.

Since W s(Xs) is invariant, its topological closure W s(Xs) is invariant. For, if x ∈ W s(Xs)
then there exists a sequence {xn}

∞
n=1 ⊂ W s(Xs) such that xn → x. By invariance of W s(Xs),

φt(xn) ∈ W s(Xs) for all n and t ∈ R. By continuity of φt, φt(xn) → φt(x), so φt(x) ∈ W s(Xs).
Hence, W s(Xs) and W s(Xs) are invariant, so ∂W s(Xs) = W s(Xs)−W s(Xs) is invariant.

Let {Xi}i∈I denote the critical elements in ∂W s(Xs). Then W u
loc(X

i) and W s
loc(X

i) are
well-defined local unstable and stable manifolds for Xi for all i ∈ I. Lemma 5.1 provides
a technical construction, for any critical element, of a compact set contained in its unstable
manifold such that for any sufficiently small neighborhood N of this compact set in M , the
following holds. The union over time of the time-t flow φt of N over all negative times t,
together with the stable manifold of the critical element, contains an open neighborhood of
the critical element in M . This result will be instrumental in making the claim below that if
a critical element is contained in ∂W s(Xs) then its unstable manifold intersects W s(Xs).
Lemma 5.1 is analogous to [18, Corollary 1.2], which states the corresponding result for
diffeomorphisms without proof, whereas here the result is shown for vector fields. Fig. 7
illustrates the content of Lemma 5.1. Recall that if D is a subset of a metric space and ǫ > 0,
the notation Dǫ refers to the subset of the metric space such that for each x ∈ Dǫ there exists
y ∈ D with d(x, y) < ǫ.

Lemma 5.1. For any i ∈ I and any ǫ > 0 there exists a compact set D ⊂ W u
loc
(Xi) −Xi

and an open neighborhood N of D in M disjoint from Xi such that N ⊂ Dǫ and
⋃

t≤0 φt(N)∪

W s(Xi) contains an open neighborhood of Xi in M .

Proof Outline of Lemma 5.1. If Xi is an equilibrium point, let f = φ1 be the time-1 flow.
If Xi is a periodic orbit, let f = τ be the first return map of a cross section S of Xi. Let
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Figure 7. The compact set D (black line segments) and the neighborhood N (yellow shapes) mentioned in
Lemma 5.1 for an equilibrium point (red star). The set D is contained in the unstable manifold (red line). As
the neighborhood N is propagated backwards in time (first to the green shapes then to the cyan), it approaches
the stable manifold (blue line) of the equilibrium point. From the figure, it appears that the union of the
backward flows of N over all negative times, together with the stable manifold, will contain a neighborhood of
the equilibrium point, which is the content of Lemma 5.1. This figure originally appeared in [6].

D′ = W u
loc(X

i) and let D be the topological closure of D′ − f−1(D′) in M . In order to show
the existence of the desired open neighborhood of Xi, the first step will be constructing a C1

continuous disk family centered along D and contained in an open neighborhood N ⊂ Dǫ.
Then, this C1 disk family is extended to a C1 disk family centered alongW u

loc(X
i) by backward

iteration and the inclusion of the disk W s
loc(X

i). It is shown that this family is in fact C1

continuous using the Inclination Lemma. Finally, once the C1 continuous disk family has been
constructed, invariance of domain [9, Theorem 2B.3] is applied to conclude that the disk family
contains an open neighborhood of Xi. By construction, this implies that

⋃

t≤0 φt(N)∪W s(Xi)

contains an open neighborhood of Xi. The full proof is provided in Appendix A.

We will use the technical result of Lemma 5.1 to show that the unstable manifold of a
critical element in the boundary of the region of attraction must have nonempty intersection
with W s(Xs). The following lemma is analogous to the combination of [2, Theorem 3-3]
(for equilibrium points in ∂W s(Xs)) and [2, Corollary 3-4] (for periodic orbits in ∂W s(Xs)),
although [2, Corollary 3-4] was unproven. Our proof is similar to the proof of [2, Theorem
3-3], although we have explicitly proved Lemma 5.1 whereas [2] states a similar technical result
without proof, and we also explicitly prove [2, Corollary 3-4].

Lemma 5.2. If Xi ⊂ ∂W s(Xs) then {W u(Xi)−Xi} ∩W s(Xs) 6= ∅.

Proof of Lemma 5.2. Using Lemma 5.1 we will produce a neighborhood of Xi from its
stable and unstable manifolds. Since Xi is in the topological boundary, this neighborhood
must intersect W s(Xs). Then since stable manifolds cannot intersect, by invariance, and by
sending ǫ in the statement of Lemma 5.1 to zero we will obtain the result.

Let ǫ > 0. By Lemma 5.1, there exists a compact set D ⊂ W u
loc(X

i) − Xi and an open
neighborhood N of D in M disjoint from Xi such that N ⊂ Dǫ and

⋃

t≤0 φt(N) ∪ W s(Xi)

contains a neighborhood of Xi in M , call it Uǫ. Then Uǫ is a neighborhood of Xi ⊂ ∂W s(Xs),
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so Uǫ ∩ W s(Xs) 6= ∅. Since W s(Xi) ∩W s(Xs) = ∅, there must exist some T ≤ 0 such that
φT (N) ∩W s(Xs) 6= ∅. Since W s(Xs) is invariant, this implies that N ∩W s(Xs) 6= ∅. Since
N ⊂ Dǫ, letting dS be the set distance on the Riemannian manifold M , we have

ǫ ≥ dS(D,W s(Xs)) = dS(D,W s(Xs))

holds for all ǫ > 0, so dS(D,W s(Xs)) = 0. Since D is compact and W s(Xs) is closed,
this implies that D ∩ W s(Xs) 6= ∅. Hence, since D ⊂ W u

loc(X
i) − Xi, it must be that

{W u(Xi)−Xi} ∩W s(Xs) 6= ∅.

For X a critical element, let nt(X) = 0 if X is an equilibrium point and let nt(X) = 1 if X
is a periodic orbit. Let nu(X) = dim W u(X)− nt(X) and let ns(X) = dim W s(X) − nt(X).
Lemma 5.3 was proven in [19, Lemma 3.1]. It is reproduced here for clarity of presentation.
A slightly different result, that was reported in [2, Lemma 3-5] and was fundamental in the
proof of [2, Theorem 4-2], has been disproven [3].

Lemma 5.3. If W s(Xi) ∩ W u(Xj) 6= ∅ then nu(Xi) ≤ nu(Xj) + nt(Xj) − 1, which is

equivalent to dim W u(Xi) ≤ dim W u(Xj) + nt(Xi)− 1.

Proof of Lemma 5.3. Since W s(Xi) and W u(Xj) have a point of transversal intersection
and are invariant under the flow, they have an orbit δ of transversal intersection. Then
δ̇(0) ∈ Tδ(0)W

s(Xi)∩Tδ(0)W
u(Xj). By transversality, Tδ(0)W

s(Xi)⊕Tδ(0)W
u(Xj) = Tδ(0)M .

Let L be the span of δ̇(0) in Tδ(0)M . Then, since L belongs to both of these tangent spaces,
(

Tδ(0)W
s(Xi)− L

)

⊕
(

Tδ(0)W
u(Xj)− L

)

=
(

Tδ(0)M − L
)

. Thus, by dimensionality this im-
plies that (dim W s(Xi) − 1) + (dim W u(Xj) − 1) ≥ n − 1. Hence, (ns(Xi) + nt(Xi) − 1) +
(nu(Xj) + nt(Xj) − 1) ≥ n − 1. Since ns(Xi) + nt(Xi) + nu(Xi) = n, this implies that
(n− nu(Xi)− 1) + (nu(Xj) + nt(Xj)− 1) ≥ n− 1 so nu(Xi) ≤ nu(Xj) + nt(Xj)− 1. Hence,
dim W u(Xi) = nu(Xi) + nt(Xi) ≤ dim W u(Xj) + nt(Xi)− 1.

As defined in Section 2, a heteroclinic sequence is a sequence of hyperbolic critical ele-
ments such that the stable manifold of each critical element intersects the unstable manifold
of the next element of the sequence. A heteroclinic cycle is a finite heteroclinic sequence
where the first and last critical elements are the same. Lemmas 5.4-5.6 show that Assump-
tions 4.1,4.3,and 4.4 imply that there are no heteroclinic cycles and, therefore, that all hetero-
clinic sequences are finite. These are analogous to several Lemmas in [18] for diffeomorphisms,
but are proved here for vector fields. Lemma 5.4 shows that the intersection of stable and
unstable manifolds of critical elements satisfies the transitive property. It was shown in [18,
Corollary 1.3] for diffeomorphisms, and is proven here for vector fields.

Lemma 5.4. If (W s(Xi)−Xi)∩(W u(Xj)−Xj) 6= ∅ and (W s(Xj)−Xj)∩(W u(Xk)−Xk) 6=
∅ then (W s(Xi)−Xi) ∩ (W u(Xk)−Xk) 6= ∅.

Proof of Lemma 5.4. The proof revolves around the openness of transversal intersection of
compact submanifolds which are C1 close, and the use of the Inclination Lemma to guarantee
that the submanifolds are C1 close.

If Xj is an equilibrium point, let B = W u
loc(X

j). If Xj is a periodic orbit, let B =
W u

loc(X
j)∩S, where S is any cross section ofXj . By invariance ofW s(Xi) and the assumptions

of the Lemma, we have that W s(Xi) ∩B 6= ∅. We claim that B is transverse to W s(Xi). By
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Assumption 4.4, W u
loc(X

j) is transverse to W s(Xi). Hence, if Xj is an equilibrium point then
this implies that B is transverse to W s(Xi). Now suppose Xj is a periodic orbit. For any
x ∈ W s(Xi) ∩W u(Xj), TxW

s(Xi) and TxW
u(Xj) together span TxM since the intersection

is transverse. Then B is obtained by intersecting W u
loc(X

j) with S, so TxW
u(Xj) is equal

to the span of TxB and the flow direction V (x). However, as W s(Xj) is invariant under V ,
V (x) ∈ TxW

s(Xj). Therefore, TxW
s(Xi) and TxB together have the same span as TxW

s(Xi)
and TxW

u(Xj), which implies that W s(Xi) and B are transverse at x. As x was arbitrary,
the claim follows.

By the definition of W s(Xi), there exists T < 0 such that φTW
s
loc(X

i) ∩W u
loc(X

j) 6= ∅.
Note that B is a compact embedded submanifold, and that it is transverse to φTW

s
loc(X

i)
since it is transverse to W s(Xi). Since φTW

s
loc(X

i) and B are compact submanifolds with
transversal intersection, by [14, Corollary A.3.18] there exists ǫ > 0 such that if D is a
compact submanifold which is ǫ C1-close to B then it has nonempty, transversal intersection
with φTW

s
loc(X

i), and hence with W s(Xi).
Let y ∈ (W s(Xj) −Xj) ∩ (W u(Xk) − Xk). Since by Assumption 4.4 the intersection is

transverse, if Xj is an equilibrium point there exists a compact submanifold D ⊂ W u(Xk),
which we choose to be a C1 disk centered at y for the purpose of applying the Inclination
Lemma, such that D is transverse to W s(Xj). Similarly, if Xj is a periodic orbit, then
transversality of W u(Xk) and W s(Xj) in M implies that W u(Xk) ∩ S and W s(Xj) ∩ S are
transverse in S, so there exists a C1 disk D ⊂ W u(Xk) ∩ S centered at y such that D is
transverse to W s(Xj) ∩ S in S. By Lemma 5.3, dim W u(Xk) ≥ dim W u(Xj), so we may
choose D such that dim D = dim B. Let f = φ1 if Xj is an equilibrium point, and let f
be a C1 first return map on S if Xj is a periodic orbit. Then, by the Inclination Lemma for
equilibria or periodic orbits, there exists n0 > 0 such that n ≥ n0 implies fn(D) is ǫ C1-close
to B. By the choice of ǫ, and the argument of the previous paragraph, fn(D) ∩W s(Xi) 6= ∅.
Since D ⊂ W u(Xk) invariant, this implies that W s(Xi) ∩W u(Xk) 6= ∅.

Lemma 5.5 shows that there are no homoclinic orbits in ∂W s(Xs). A similar claim was
shown for diffeomorphisms in [18, Corollary 1.4], but the result here is proven for vector fields.

Lemma 5.5. For any Xi, W s(Xi) ∩W u(Xi) = Xi.

Proof of Lemma 5.5. Using transversality and the Inclination Lemma we show that
W s(Xi) ∩ W u(Xi) is nonwandering. By Assumption 4.1, this will imply that W s(Xi) ∩
W u(Xi) = Xi.

Clearly Xi ⊂ W s(Xi)∩W u(Xi). Assume towards a contradiction that
(

W s(Xi)−Xi
)

∩
(

W u(Xi)−Xi
)

6= ∅. If Xi is an equilibrium point, then by Lemma 5.3 this implies that
dim W u(Xi) ≤ dim W u(Xi) − 1 < dim W u(Xi), which is a contradiction. So, suppose Xi

is a periodic orbit, let S be a C1 cross section of Xi, and let B = W u
loc(X

i) ∩ S. By the
assumption at the start of this paragraph and an invariance argument analogous to that in
the proof of Lemma 5.4, B and W s(Xi) are transverse and

(

W s(Xi)−Xi
)

∩
(

B −Xi
)

6= ∅.
So, let q ∈

(

W s(Xi)−Xi
)

∩
(

B −Xi
)

. We claim that q is nonwandering. Let U be any
neighborhood of q in M , and let ǫ > 0 such that the ball of radius ǫ centered at q is contained
in U . As B is transverse to W s(Xi), let D ⊂ B be a C1 disk centered at q of the same
dimension as B such that D ⊂ U and D is transverse to W s(Xi). Note that D is transverse
to W s(Xi) ∩ S in S as well. Let f be a C1 first return map on S. Then, by the Inclination
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Lemma there exists n0 > 0 such that n ≥ n0 implies that fn(D) is ǫ C1-close to B. As q ∈ B
and U contains the ball of radius ǫ centered at q, this implies that fn(D) ∩ U 6= ∅. Hence, as
D ⊂ U , we have that fn(U) ∩ U 6= ∅ for n ≥ n0, so q is nonwandering.

By Assumption 4.1, there exists a neighborhood N of ∂W s(Xs) such that Ω(V ) ∩ N =
⋃

j∈I X
j . As ω(q) = α(q) = Xi and q 6∈ Xi, q 6= Xj for any j ∈ I. But, since Xi ⊂ N open

and ω(q) = Xi, there exists T > 0 such that φT (q) ∈ N . As the nonwandering set is invariant,
φt(q) is nonwandering in N . As Xj is invariant for each j ∈ I, φt(q) 6∈

⋃

j∈I X
j , which is a

contradiction to the choice of N .

Lemma 5.6 now shows that every heteroclinic sequence has finite length.

Lemma 5.6. There do not exist any heteroclinic cycles. Hence, every heteroclinic sequence

has finite length.

Proof of Lemma 5.6. Assume towards a contradiction that {Xj}mj=1 is a heteroclinic cycle.

By transitivity (Lemma 5.4), since Xm = X1, this implies that (W s(X1)−X1)∩ (W u(X1)−
X1) 6= ∅. This contradicts Lemma 5.5.

Since Ω(V )∩∂W s(Xs) consists of a finite number of critical elements, and since there are
no heteroclinic cycles, every heteroclinic sequence must be finite.

Lemma 5.7 will be used to complete the proof of Lemma 5.8. It is analogous to [21, Lemma
7.1.b.], but for vector fields instead of diffeomorphisms.

Lemma 5.7. Suppose that W u(Xi) ∩ W s(Xs) 6= ∅ and W s(Xi) ∩ W u(Xj) 6= ∅. Then

W u(Xj) ∩W s(Xs) 6= ∅.

Proof of Lemma 5.7. The proof uses the fact that W s(Xs) is open and, by invariance,
intersects W u

loc(X
i), so any submanifold K which is C1 close to W u

loc(X
i) also intersects

W s(Xs). The Inclination Lemma then guarantees that a disk in W u(Xj) is C1 close to
W u

loc(X
i).

Since W s(Xs) is invariant and intersects W u(Xi), W s(Xs) ∩ W u
loc(X

i) 6= ∅. So, let
q ∈ W s(Xs) ∩ W u

loc(X
i). By the definition of W s(Xs), there exists T < 0 such that q ∈

W u
loc(X

i) ∩ φTW
s
loc(X

s). If Xi is an equilibrium point, let B = W u
loc(X

i). If Xi is a periodic
orbit, let S be a cross section containing q and let B = W u

loc(X
i) ∩ S. Then it can be shown

that B is transverse to φTW
s
loc(X

s) (in S if Xi is a periodic orbit) by an argument analogous
to that in the proof of Lemma 5.4. Since φTW

s
loc(X

s) and B are compact submanifolds with
transversal intersection, by [14, Proposition A.3.16,Corollary A.3.18] there exists ǫ > 0 such
that if D′ is a compact submanifold which is ǫ C1-close to B then it has a point of transversal
intersection with φTW

s
loc(X

s), hence with W s(Xs).
Let x ∈ W s(Xi)∩W u(Xj). Since the intersection is transversal by Assumption 4.4, if Xi

is an equilibrium point there exists a C1 disk D ⊂ W u(Xj) centered at x with D transverse
to W s(Xi). Similarly, if Xi is a periodic orbit there exists a disk D ⊂ W u(Xj) ∩ S centered
at x with D transverse to W s(Xi)∩ S in S. By Lemma 5.3, dim W u(Xj) ≥ dim W u(Xi), so
we may choose D such that dim D = dim B.

If Xi is an equilibrium point let f = φ1, and if Xi is a periodic orbit let f be a C1

first return map for S. Then, by the Inclination Lemma for equilibria or periodic orbits,
there exists n0 > 0 such that n ≥ n0 implies fn(D) is ǫ C1-close to B. By the choice
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of ǫ, fn(D) ∩ W s(Xs) 6= ∅. Since D ⊂ W u(Xj) invariant, this implies that W u(Xj) ∩
W s(Xs) 6= ∅.

Lemma 5.8 was reported as [2, Theorem 3-8], where our Assumption 4.1 was replaced
by the weaker assumption that for every x ∈ ∂W s(Xs), the trajectory of x converges to a
critical element in forward time. However, the proof of [2, Theorem 3-8] relies crucially on
[2, Lemma 3-5], which has been disproven [3], to show that a particular heteroclinic sequence
has finite length. In contrast, the proof of Lemma 5.8 shows that an analogous heteroclinic
sequence has finite length. This result uses Lemma 5.6 which relies on Assumption 4.1.

Lemma 5.8. If Xi ⊂ ∂W s(Xs) then W u(Xi) ∩W s(Xs) 6= ∅.

Proof of Lemma 5.8. We first construct a heteroclinic sequence of critical elements, which
must be finite by Lemma 5.6. Then we show that the unstable manifold of the final critical
element in the sequence intersects W s(Xs). Working backwards, we argue that the unstable
manifold of every critical element in the sequence intersects W s(Xs) using Lemma 5.7, which
implies the result.

The first step is the construction of the heteroclinic sequence {Xj}j∈Λ. AsX
j ⊂ ∂W s(Xs),

by Lemma 5.2 there exists xj ∈ (W u(Xj) − Xj) ∩ W s(Xs). If xj ∈ W s(Xs) then we have
finished constructing the heteroclinic sequence, so suppose xj ∈ ∂W s(Xs). Then by Assump-
tions 4.1-4.2, xj ∈ W s(Xj+1) for some critical element Xj+1 ⊂ ∂W s(Xs). Iterating this
procedure yields a heteroclinic sequence {Xj}j∈Λ. By Lemma 5.6 it has finite length. The
final element of the sequence, call it Xm, must satisfy W u(Xm)∩W s(Xs) 6= ∅, since otherwise
there would be another element Xm+1 that would be added to the heteroclinic sequence by
the procedure above.

We conclude by showing that the unstable manifold of each critical element in the hete-
roclinic sequence must intersect W s(Xs), which implies the result. For any j ∈ Λ, suppose
W u(Xj) ∩ W s(Xs) 6= ∅. By recursion, it suffices to show that this implies W u(Xj−1) ∩
W s(Xs) 6= ∅. However, by the construction of the sequence we have that W u(Xj−1) ∩
W s(Xj) 6= ∅ is a transversal intersection. Hence, the result follows from Lemma 5.7.

Proof of Theorem 4.11. Fix i ∈ I. By Lemma 5.8, W u(Xi) ∩ W s(Xs) 6= ∅. To show
that W s(Xi) ⊂ ∂W s(Xs), it suffices to show that W s

loc(X
i) ⊂ ∂W s(Xs) since ∂W s(Xs) is

invariant and by the definition of W s(Xi). Let x ∈ W s
loc(X

i). By the proof of Lemma 5.7,
there exists a disk D centered at x, contained in the ǫ-neighborhood of x in M , and transverse
to W s

loc(X
i), such that φt(D)∩W s(Xs) 6= ∅ for some t > 0. By invariance, D ∩W s(Xs) 6= ∅.

Since D is contained in the ǫ-neighborhood of x in M , dS(x,W s(Xs)) = dS(x,W
s(Xs)) ≤ ǫ.

As this holds for all ǫ > 0, dS(x,W s(Xs)) = 0. Since {x} is compact and W s(Xs) is closed,
this implies that x ∈ W s(Xs). However, x ∈ W s

loc(X
i) implies that x ∈ ∂W s(Xs). Thus,

W s
loc(X

i) ⊂ ∂W s(Xs), so W s(Xi) ⊂ ∂W s(Xs). Hence
⋃

i∈I W
s(Xi) ⊂ ∂W s(Xs).

By Assumption 4.2, if γ ⊂ ∂W s(Xs) is an orbit then ω(γ) = Xj for some j ∈ I, which
implies that γ ⊂ W s(Xj). Thus, ∂W s(Xs) ⊂

⋃

i∈I W
s(Xi).

6. Proofs of Theorem 4.22 and Corollaries. The proofs of Theorem 4.22 and its corol-
laries proceed by paralleling the treatment of the fixed parameter case in Section 5. The
recurring strategy of the proofs of this section is to reduce to the fixed parameter case where
possible, and then to rely on the results and proofs of Section 5 to complete the arguments.
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Recall the notation from Section 4.2. In particular, let V denote the C1 vector field on
M × J defined by V (x, p) = (Vp(x), 0), let φ be the C1 flow of V , and for any fixed t ∈ R

let φt : M × J → M × J be the C1 diffeomorphism defined by φt(x, p) = φ(t, x, p). For the
remainder of this section, fix p0 ∈ J such that p0 satisfies Assumptions 4.13-4.17.

We begin by defining functions whose images for each p ∈ J are the critical elements
and their local stable and unstable manifolds for the vector field Vp. As there are finitely
many hyperbolic critical elements {Xi

p0
}i∈I , we may assume J sufficiently small such that

they and their local stable and unstable manifolds are well defined and vary C1 continuously
with parameter over J . Let Ss = W s

loc(X
s
p0
) and for i ∈ I, let Si = Xi(p0), S

i
s = W s

loc(X
i
p0
),

and Si
u = W u

loc(X
i
p0
). As the critical elements and their local stable and unstable manifolds

vary C1 continuously with parameter, there exist C1 maps,

(5) F i : Si × J → M, F i
s : Si

s × J → M, F i
u : Si

u × J → M, F s : Ss × J → M,

such that for any p ∈ J , F i(·, p), F i
s(·, p), F

i
u(·, p), and F s(·, p) are C1 diffeomorphisms onto

Xi
p, W

s
loc(X

i
p), W

u
loc(X

i
p), and W s

loc(X
s
p), respectively. In other words, F i, F i

s , F
i
u, and F s

describe quantitatively how the critical elements and their local stable and unstable manifolds
vary C1 with parameter p. Let πJ be the projection onto parameter space, πJ(x, p) = p. The
functions above have codomain M , but it will sometimes be convenient for the codomain to
be M × J . To this end, let Gi = (F i, πJ), G

i
s = (F i

s , πJ ), G
i
u = (F i

u, πJ), and Gs = (F s, πJ),
and note that these functions are C1 injections because for fixed p ∈ J the functions (5) are
C1 diffeomorphisms onto their images.

Lemma 6.1 establishes properties ofW s(Xs
J ) that will be used in subsequent developments.

Lemma 6.1. W s(Xs
J ) is open and invariant in M × J .

Proof of Lemma 6.1. Since Ss is equal to W s
loc(X

s
p0
), a codimension-zero embedded sub-

manifold with boundary in M , Gs|int Ss×J is a continuous injection between manifolds of
the same dimension so, by invariance of domain [9, Theorem 2B.3], an open map. Thus,
Gs(int Ss × J) is an open set in M × J . Hence, by definition of the local stable manifold,
W s(Xs

J ) =
⋃

t≤0 φt(G
s(int Ss×J)) is a union of open sets since φt is a C1 diffeomorphism for

each t, hence open. Since W s(Xs
J ) = ⊔p∈JW

s(Xs
p) is a union of invariant sets, it is invariant.

Let p0 ∈ J be a fixed parameter value such that Assumptions 4.13-4.17 hold. Recall
from Section 2 that the family of a critical element refers here to the family obtained from
a single critical element as the parameter value is varied over p ∈ J . Similar to Lemma 5.1,
Lemma 6.2 provides a technical construction, for any critical element contained in ∂W s(Xs

J ),
of a compact set contained in its family of unstable manifolds. The lemma proceeds to show
that for any sufficiently small neighborhood N of this compact set in M × J , the union over
all negative times t of the flow φt of N , together with the family of stable manifolds of the
critical element, contains an open neighborhood of the critical element in M × J . The key
difference from the fixed parameter case Lemma 5.1 is that the open neighborhood that is
contained in the union is open in M×J , whereas for Lemma 5.1 it was open in M alone. This
is important because for a critical element contained in ∂W s(Xs

J), an open neighborhood in
M × J of that critical element is required to guarantee it intersects W s(Xs

J). This result will
be fundamental in proving the claim that if a critical element in Mp0 is contained in ∂W s(Xs

J)
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then its unstable manifold intersects W s(Xs
J) in Mp0 . Recall that if D is a subset of a metric

space and ǫ > 0, the notation Dǫ refers to the subset of the metric space such that for each
x ∈ Dǫ there exists y ∈ D with d(x, y) < ǫ.

Lemma 6.2. For any i ∈ I and any ǫ > 0 sufficiently small, there exists a compact set D ⊂
W u

loc
(Xi

J)−Xi
J and an open neighborhood N of D in M × J such that N ⊂ Dǫ, Dǫ ∩Xi

J = ∅,
and

⋃

t≤0 φt(N) ∪W s(Xi
J ) contains an open neighborhood of Xi

p0
in M × J .

Proof Outline of Lemma 6.2. If Xi
p0

is an equilibrium point, let f = φ1 be the time-1
flow of the vector field V . If Xi

p0
is a periodic orbit, let f = τ be the first return map of a

Poincaré cross section S. (Note that this map is well-defined and C1 with respect to parameter
value p ∈ J .) Let D′

p = Gi
u(S

i
u × {p}) for any p ∈ J . Let Dp be the topological closure of

D′
p − f−1(D′

p) in M . We will prove the following claim: there exists an open neighborhood

N ′ of Dp0 in M and an open neighborhood Û of Xi
p0

in M such that for J sufficiently small,

p ∈ J implies that Dp ⊂ N ′ ⊂ N ′ ⊂ (Dp)ǫ, X
i
p ⊂ Û , and the forward orbit of any point

x ∈ Û −W s(Xi
p) under Vp enters N ′ in finite time. Fig. 7 illustrates an analogous claim for

the case of a single fixed parameter value. From the claim made here, the main result can
be shown as follows. Choose a subset J ′ ⊂ J compact and connected with p0 ∈ int J ′. Let
D′ = Gi

u(S
i
u×J ′), the continuous image of a compact set, hence compact in M×J . Note that,

by definition of Gi
u, D

′ = ⊔p∈J ′W u
loc(X

i
p). Let D be the topological closure of D′ − f−1(D′)

in M × J . Since D′ is contained in the local unstable manifold, f−1|D′ is contracting. Hence,
f−1(D′) ⊂ D′, so D ⊂ D′. As D is closed in D′ compact, D is compact.

Let N ′ and Û be as in the claim above. Then,

D′ − f−1(D′) = ⊔p∈J ′

(

W u
loc(X

i
p)− f−1(W u

loc(X
i
p))

)

⊂ ⊔p∈J ′Dp ⊂ N ′ × J ′.

As N ′ × J ′ is closed in M × J , and since D is the topological closure of D′ − f−1(D′) in
M × J , this implies that D ⊂ N ′ × J ′. Furthermore, ⊔p∈J ′Dp ⊂ D so N ′ × J ′ = ⊔p∈J ′N ′ ⊂
⊔p∈J ′(Dp)ǫ ⊂ Dǫ, which implies that N ′ × J ′ ⊂ Dǫ. As N ′ × J ′ is compact and disjoint from
∂Dǫ which is closed in M × J , there exists r > 0 such that N ′ × J ′ ⊂

(

N ′ × J ′
)

r
⊂ Dǫ. Let

N =
(

N ′ × J ′
)

r
. Then N is open in M × J and satisfies D ⊂ N ⊂ Dǫ. Let U = Û × int J ′.

Then U is open in M × J , Xi
p0

⊂ Û × {p0} ⊂ U , and for every (x, p) ∈ U − W s(Xs
J ), the

forward orbit of (x, p) under V enters N ′×{p} ⊂ N in finite time. Thus,
⋃

t≤0 φt(N)∪W s(Xi
J)

contains U , which completes the proof.
So, it suffices to prove the claim above. We begin with the construction of the C1 disk

family for fp0 exactly as in the proof of Lemma 5.1. Then it is shown using the Inclination
Lemma that for a C1 perturbation of the diffeomorphism fp0, constructing the C1 disk family
for the perturbed diffeomorphism gives a C1 continuous disk family that is uniformly C1- close
to the original C1 continuous disk family. Consequently, it is possible to choose Û an open
neighborhood of W u

loc(X
i
p0
) sufficiently small such that it is contained in the perturbed disk

family and, therefore, the forward orbit of each point in Û under the perturbed diffeomorphism
either converges to the perturbation of Xi

p0
or enters N ′ in finite time. The full proof is

provided in Appendix B.

The technical construction of Lemma 6.2 is used to show that the unstable manifold
of any critical element in ∂W s(Xs

J) must have nonempty intersection with W s(Xs
J ) ∩ Mp0 .
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By requiring that the intersection occurs in Mp0 , we will be able to reduce to the fixed
parameter case of Lemma 5.8, which will ensure that the unstable manifold actually intersects
W s(Xs

J ) ∩ Mp0 (see Lemma 6.4 below). Although Lemma 5.2 and Lemma 6.3 both show
the intersection of the unstable manifold with the closure of a stable manifold, there is a
crucial difference: for Lemma 5.2 this closure is taken in M for a fixed parameter, whereas
for Lemma 6.3 the closure is taken in M × J . As Example 3.1 showed, taking the closure in
M×J , namely W s(Xs

J ), will in general give a larger set than taking the closure in M , namely
⊔p∈JW s(Xs

p). This motivates the need for Lemma 6.2 and Lemma 6.3 to explicitly treat the
more difficult case where the closure is taken in M × J .

Lemma 6.3. For any i ∈ I, {W u(Xi
p0
)−Xi

p0
} ∩W s(Xs

J ) 6= ∅.

Proof of Lemma 6.3. The proof is similar to that of Lemma 5.2, which relied on the tech-
nical result of Lemma 5.1 to show that the distance between an annulus in W u

loc(X
i) (denoted

by D in that proof) and W s(Xs) was less than ǫ for any ǫ > 0, and then sent ǫ → 0 to
establish the desired intersection. Here, the goal is to use Lemma 6.2 in a similar fashion.
The key difference is that, since the critical element Xi

p0
lies in ∂W s(Xs

J ), but not necessarily
in ∂W s(Xs

p0
), it is necessary to consider distances in parameter space J as well. In particular,

Lemma 6.2 is used to establish that there exists a point (xr, pr) ∈ W s(Xs
J ) such that, for any

ǫ > 0 sufficiently small, the distance from an annulus in W u
loc(X

i
J) (denoted by D in this proof)

to (xr, pr) is less then ǫ and the distance from p0 to pr is less than r, for r > 0 sufficiently
small. Then, first sending r → 0 and then sending ǫ → 0 results in a point in the desired
intersection, which yields the main result. Let B(p0, r) be the ball of radius r centered at p0
in J .

Let ǫ > 0. Shrinking ǫ if necessary, by Lemma 6.2 there exists a compact set D ⊂
W u(Xi

J )−Xi
J and an open neighborhood N of D in M × J such that N ⊂ Dǫ, Dǫ ∩Xi

J = ∅,
and

⋃

t≤0 φt(N) ∪W s(Xi
J ) contains an open neighborhood of Xi

p0
in M × J - call this open

neighborhood N ′. Let Nr = N ∩ (M ×B(p0, r)) and N ′
r = N ′ ∩ (M ×B(p0, r)) be the

intersections of the above neighborhoods with M×B(p0, r). Since N
′
r is an open neighborhood

of Xi
p0

⊂ ∂W s(Xs
J), N

′
r∩W s(Xs

J ) 6= ∅. Since
⋃

t≤0 φt(Nr)∪W s(Xi
J ) contains N

′
r, and because

N ′
r ∩ W s(Xs

J) 6= ∅ and W s(Xi
J ) ∩ W s(Xs

J) = ∅, there exists T > 0 such that φ−T (Nr) ∩
W s(Xs

J ) 6= ∅. By invariance of W s(Xs
J ), this implies that Nr ∩W s(Xs

J ) 6= ∅. So, let (xr, pr) ∈
Nr ∩W s(Xs

J) and send r to zero. As Nr ⊂ Dǫ ⊂ Dǫ and W s(Xs
J ) ⊂ W s(Xs

J), Nr ∩W s(Xs
J) ⊂

Dǫ ∩W s(Xs
J) compact. Hence, passing to a subsequence if necessary we have that (xr, pr) →

(x̂ǫ, p̂ǫ) ∈ Dǫ ∩W s(Xs
J ). By definition of Nr, since r → 0 we must have p̂ǫ = p0, so for every

ǫ > 0 sufficiently small there exists (x̂ǫ, p0) ∈ Dǫ ∩ W s(Xs
J). Fix some initial ǫ̃ > 0. Then

ǫ ≤ ǫ̃ implies that (x̂ǫ, p0) ∈ Dǫ̃ ∩ W s(Xs
J) compact. So, sending ǫ → 0 and passing to a

subsequence if necessary implies that (x̂ǫ, p0) → (x, p0) ∈ Dǫ̃ ∩ W s(Xs
J). As (x̂ǫ, p0) ∈ Dǫ,

dS((x̂ǫ, p0),D) ≤ ǫ for all ǫ > 0 sufficiently small. By continuity of dS , dS((x, p0),D) =
lim
ǫ→0

dS((x̂ǫ, p0),D) ≤ lim
ǫ→0

ǫ = 0. Thus, dS((x, p0),D) = 0, so since {(x, p0)} and D are

compact, (x, p0) ∈ D. This implies that (x, p0) ∈ (D ∩Mp0). By the above, (x, p0) ∈ W s(Xs
J)

as well. Thus, W s(Xs
J )∩(D∩Mp0) 6= ∅. Since D∩Mp0 ⊂ W u(Xi

p0
)−Xi

p0
, the result follows.

Thanks to the work of Lemma 6.2 and Lemma 6.3, the varying parameter case treated in
this section is effectively reduced to the fixed parameter case of Section 5. Hence, Lemma 6.4
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is exactly analogous to its fixed parameter counterpart Lemma 5.8 in both statement and
proof.

Lemma 6.4. For any i ∈ I, W u(Xi
p0
) ∩W s(Xs

p0
) 6= ∅.

Proof of Lemma 6.4. The proof is identical to the proof of Lemma 5.8, substituting
Lemma 6.3 for Lemma 5.2.

Proof of Theorem 4.22. For any p ∈ J and any x ∈ ∂W s(Xs
p), there exist xn ∈ W s(Xs

p)

with xn → x. Hence, (xn, p) ∈ W s(Xs
J ) with (xn, p) → (x, p), so (x, p) ∈ W s(Xs

J) closed. As
x 6∈ W s(Xs

p), this implies that (x, p) ∈ ∂W s(Xs
J ). Hence,

⊔p∈J∂W
s(Xs

p) ⊂ ∂W s(Xs
J ).(6)

We claim that for J sufficiently small, for any p ∈ J and i ∈ I, W u(Xi
p) ∩ W s(Xs

p) 6= ∅.
Let i ∈ I. Then by Lemma 6.4, we have that W u(Xi

p0
) ∩ W s(Xs

p0
) 6= ∅. This implies that

there exists T > 0 such that φT (W
u
loc(X

i
p0
)) ∩ W s

loc(X
s
p0
) 6= ∅. This intersection is trivially

transverse since W s(Xs
p0
) is an open set in Mp0 . Since {φT (W

u
loc(X

i
p))}p∈J and {W s

loc(X
s
p)}p∈J

are two C1 continuous families over J of compact embedded submanifolds with boundary, and
since they have a point of transversal intersection at p = p0, for J sufficiently small p ∈ J
implies [14, Proposition A.3.16,Corollary A.3.18] that φT (W

u
loc(X

i
p)) ∩W s

loc(X
s
p) 6= ∅. Hence,

for sufficiently small J and since I is finite, W u(Xi
p) ∩W s(Xs

p) 6= ∅ for all i ∈ I and p ∈ J ,
so the claim follows. Let (x, p) ∈ ∂W s(Xs

J ). By Assumption 4.16, x ∈ W s(Xi
p) for some

i ∈ I. For this particular i, the claim implies that W u(Xi
p)∩W s(Xs

p) 6= ∅. Now the argument
reduces to the fixed parameter case, and we can use the proof of Theorem 4.11 to show that
W s(Xi

p) ⊂ ∂W s(Xs
p). As (x, p) ∈ ∂W s(Xs

J ) was arbitrary, we have

∂W s(Xs
J) ⊂

⋃

i∈I

W s(Xi
J ) ⊂ ⊔p∈J∂W

s(Xs
p).(7)

Then Eqs. 6-7 imply the result.

Proof of Corollary 4.23. Recall the definitions of Si
s and F i

s from the beginning of Sec-
tion 6. Let pn ∈ J with pn → p′ for some p′ ∈ J . First, let x ∈ ∂W s(Xs

p′). Then x ∈ W s(Xi
p′)

for some i ∈ I. So, there exists T > 0 such that φT (x, p
′) ∈ W s

loc(X
i
p′) and y ∈ Si

s such

that F i
s(y, p

′) = φT (x, p
′). Let xn = φ−T (F

i
s(y, pn), pn) ∈ W s(Xi

pn
) by invariance of W s(Xi

pn
).

Thus, xn ∈ W s(Xi
pn) ⊂ ∂W s(Xs

pn) by Theorem 4.22. Furthermore, xn → x since φ−T and F i
s

are C1. Hence, x ∈ lim infn→∞ ∂W s(Xs
pn), so ∂W s(Xs

p′) ⊂ lim infn→∞ ∂W s(Xs
pn).

Next, let x ∈ lim supn→∞ ∂W s(Xs
pn). Then there exist a subsequence {pnm}

∞
m=1 of

{pn}
∞
n=1 and a sequence {xm}∞m=1 such that xm ∈ ∂W s(Xs

pnm
) for all m and xm → x. By The-

orem 4.22, ∂W s(Xs
pnm

) ⊂ ∂W s(Xs
J), so that (xm, pnm) ∈ ∂W s(Xs

J ). As ∂W s(Xs
J ) is closed,

limm→∞(xm, pnm) = (x, p′) ∈ ∂W s(Xs
J ). By Theorem 4.22, ∂W s(Xs

J ) = ⊔p∈J∂W
s(Xs

p), so
intersecting both sides with Mp′ implies that ∂W s(Xs

J ) ∩ Mp′ = ∂W s(Xs
p′) × {p′}. Hence,

(x, p′) ∈ ∂W s(Xs
J ) implies that x ∈ ∂W s(Xs

p′). Thus, lim supn→∞ ∂W s(Xs
pn
) ⊂ ∂W s(Xs

p′).
Together, these imply that limn→∞ ∂W s(Xs

pn
) = ∂W s(Xs

p′). As pn → p′ was arbitrary, this
implies that {∂W s(Xs

p)}p∈J is a Chabauty continuous family of subsets of M .
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Proof of Corollary 4.24. By Corollary 4.23, we have that {∂W s(Xs
p)}p∈J is a Chabauty

continuous family of subsets of M . Since M is compact, Hausdorff continuity is equivalent
to Chabauty continuity. Hence, {∂W s(Xs

p)}p∈J is a Hausdorff continuous family of subsets
of M .

Proof of Corollary 4.25. Let Ω(Vp0) = {Xi
p0
}ni=1 a finite union of hyperbolic critical el-

ements since Vp0 is Morse-Smale. Palis showed [18, Theorem 3.5] that for any sufficiently
small C1 perturbation to Vp0 , so for J sufficiently small, p ∈ J implies that Vp is still Morse-
Smale with Ω(Vp) = {Xi

p}
n
i=1. Reorder the critical elements of Vp0 if necessary such that

{Xi
p0
}ki=1 = Ω(Vp0) ∩ (∂W s(Xs

J ) ∩Mp0), which is a finite union of critical elements of Vp0

since Ω(Vp0) is finite, and k ≤ n. Note that {Vp}p∈J satisfies Assumption 4.14 and Assump-
tion 4.17 for J sufficiently small since Vp0 is Morse-Smale. Note that both

⋃

i>k X
i
p0

and
∂W s(Xs

J) ∩Mp0 are compact, so since M is a normal space there exists an open set N such
that ∂W s(Xs

J)∩Mp0 ⊂ N and N ∩
(
⋃

i>k X
i
p0

)

= ∅. As Ω(Vp0) =
⋃n

i=1X
i
p0
, this implies that

Ω(Vp0) ∩ N =
⋃k

i=1 X
i
p0

= Ω(Vp0) ∩ (∂W s(Xs
J ) ∩Mp0). Hence, Assumption 4.13 is satisfied.

So, it suffices to show that {Vp}p∈J satisfies Assumption 4.16 as well.
As in the proof of Theorem 4.22, J sufficiently small implies that for every i ∈ {1, ..., k} and

every p ∈ J , W u(Xi
p)∩W

s(Xs
p) 6= ∅. So, let x ∈ W u(Xi

p)∩W
s(Xs

p). As x ∈ W s(Xs
p) closed and

invariant, the closure of the orbit of x is contained in W s(Xs
p). Since α(x, p) = Xi

p is contained

in the closure of the orbit of x, Xi
p ⊂ W s(Xs

p). Since Xi
p does not intersect W s(Xs

p), X
i
p ⊂

∂W s(Xs
p). By Theorem 4.22, ∂W s(Xs

J ) = ⊔p∈J∂W
s(Xs

p), so Xi
p ⊂ ∂W s(Xs

p) ⊂ ∂W s(Xs
J) ∩

Mp. Thus, for any p ∈ J , Ω(Vp)∩(∂W s(Xs
J ) ∩Mp) ⊃ {Xi

p}
k
i=1. Now, for any i ∈ {1, ..., n} and

any p ∈ J , suppose that Xi
p ⊂ ∂W s(Xs

J). Then by Lemma 6.4, Xi
p ⊂ ∂W s(Xs

J) implies that
W u(Xi

p0
) ∩W s(Xs

p0
) 6= ∅. By the argument above, this implies that Xi

p0
⊂ ∂W s(Xs

J ) ∩Mp0 .
Therefore, by definition of k above, we must have i ∈ {1, ..., k}. So, for any p ∈ J , as
Ω(Vp) = {Xi

p}
n
i=1, Ω(Vp) ∩ (∂W s(Xs

J ) ∩Mp) ⊂ {Xi
p}

k
i=1. Combining this with the reverse

inclusion above implies Assumption 4.16 is satisfied. Thus, {Vp}p∈J satisfy Assumptions 4.13-
4.17. Therefore, by Corollary 4.24, {∂W s(Xs

p)}p∈J is a Hausdorff continuous family of subsets
of M .

7. Proof of Theorem 4.31.

Proof of Theorem 4.26. First we show that R, C, and ∂R are nonempty by connectedness
of any path from p1 to p2. Then, we prove that every parameter value p∗ in ∂R is a boundary
parameter value since we will see that yp∗ ∈ ∂W s(Xs

J ) which will imply, using Theorem 4.22,
that p∗ ∈ C. Next it is shown that J0 is nonempty by noting that C is closed in J compact,
hence compact, and then arguing that there exists a point p̂ ∈ C that achieves the minimum
distance from p0 to C, so that d(p0, p̂) = dS(p0, C). Finally, we argue that J0 = {p ∈ ∂R :
d(p0, p) = dS(p0, ∂R)} by choosing a minimal geodesic from p0 to any fixed p∗ ∈ J0, and
arguing by connectedness that all points of the geodesic other than p∗ must lie in R.

First we show that R, C, and ∂R are nonempty. Since yp1 ∈ W s(Xs
p1
), p1 ∈ R so R is

nonempty. Let δ : [0, 1] → J be any continuous path in J from p1 to p2, with δ(0) = p1 and
δ(1) = p2. Such a path exists because J is a connected manifold, hence pathwise connected.
As y and δ are continuous and [0, 1] is connected, yδ([0,1]) is connected. Since yδ([0,1]) is
connected and intersects both W s(Xs

J ) (at yp1) and M × J − W s(Xs
J ) (at yp2), it must
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intersect ∂W s(Xs
J). Hence, there must exist p∗ ∈ δ([0, 1]) ⊂ J such that yp∗ ∈ ∂W s(Xs

J). By
Theorem 4.22, ∂W s(Xs

J ) = ⊔p∈J∂W
s(Xs

p). Hence, yp∗ ∈ ∂W s(Xs
p∗), so p∗ ∈ C. Thus, C is

nonempty. As C ∩R = ∅, this implies that ∂R is nonempty
Next we show that ∂R ⊂ C. Let p∗ ∈ ∂R. Then there exists a sequence pn ∈ R with

pn → p∗. Hence, by definition of R, (ypn , pn) ∈ W s(Xs
pn) for all n with (ypn , pn) → (yp∗ , p

∗)

since y is C1 and pn → p∗. In particular, (ypn , pn) ∈ W s(Xs
pn) ⊂ W s(Xs

J ) for all n. AsW
s(Xs

J)

is closed and (ypn , pn) → (yp∗, p
∗), this implies that (yp∗, p

∗) ∈ W s(Xs
J ). By Theorem 4.22,

W s(Xs
J ) = ⊔p∈JW s(Xs

p). Hence, yp∗ ∈ W s(Xs
p∗). First assume towards a contradiction that

yp∗ ∈ W s(Xs
p∗). Let U be an open neighborhood of Xs

p∗ such that U ⊂ int W s
loc(X

s
p∗). Then

there exists T > 0 such that φT (yp∗) ∈ U . As int W s
loc(X

s
p) varies C

1 with parameter p, there
exists an open neighborhood J ′ of p∗ in J such that p ∈ J ′ implies that U ⊂ int W s

loc(X
s
p). As

U is open in M and both φT and y are C1, shrinking J ′ if necessary implies that for p ∈ J ′,
φT (yp) ∈ U ⊂ int W s

loc(X
s
p). Hence, J

′ is an open neighborhood of p∗ in J such that J ′ ⊂ R.

But this contradicts p∗ ∈ ∂R. So, since yp∗ ∈ W s(Xs
p∗) but yp∗ 6∈ W s(Xs

p∗), we must have
yp∗ ∈ ∂W s(Xs

p∗). Hence, p
∗ ∈ C.

Fix p0 ∈ R and let J0 be the set of boundary parameter values p∗ ∈ C such that J0 =
{p∗ ∈ C : d(p0, p

∗) = dS(p0, C)}. We begin by showing that J0 is nonempty. By Theorem 4.22,

shrinking J if necessary implies that ⊔p∈J∂W
s(Xs

p) = ∂W s(Xs
J
). Thus, y−1

(

∂W s(Xs
J
)
)

=

⊔p∈Jy
−1
p

(

∂W s(Xs
p)
)

= C. As y is continuous and ∂W s(Xs
J
) is closed in M ×J , C is closed in

J . Since J was chosen in Section 4.3 such that J is compact, and C is closed in J , it follows
that C is compact. Thus, since C is compact and nonempty by the previous paragraph, and
since p0 is a point, there exists p∗ ∈ C such that d(p0, p

∗) = dS(p0, C). So, p∗ ∈ J0 which
implies that J0 is nonempty.

Finally, we show that J0 = {p ∈ ∂R : d(p0, p) = dS(p0, ∂R)}. Let p∗ ∈ J0. As J is
convex, there exists γ : [0, 1] → J , a minimal geodesic from p0 to p∗, with γ(0) = p0 and
γ(1) = p∗, and the length of γ is equal to d(p0, p

∗).2 For every x ∈ [0, 1), by definition of a
minimal geodesic, d(p0, γ(x)) < d(p0, γ(1)) = d(p0, p

∗) = dS(p0, C), where the last equality
follows since p∗ ∈ J0. This implies that for every x ∈ [0, 1), γ(x) 6∈ C, since otherwise we
would have dS(p0, C) ≤ d(p0, γ(x)) < d(p0, p

∗), which would contradict that p∗ ∈ J0 (so
dS(p0, C) = d(p0, p

∗)). Hence, γ([0, 1)) ∩ C = ∅. Furthermore, since [0, 1) is connected and
both γ and y are continuous, yγ([0,1)) is connected. Assume towards a contradiction that
there exists x ∈ [0, 1) such that yγ(x) 6∈ W s(Xs

γ(x)). As yp0 ∈ W s(Xs
J), yγ(x) 6∈ W s(Xs

J), and

yp0 , yγ(x) ∈ yγ([0,1)) connected, we must have yγ([0,1))∩∂W
s(Xs

J ) 6= ∅. So, there exists x′ ∈ [0, 1)
such that yγ(x′) ∈ ∂W s(Xs

J ). By Theorem 4.22, ∂W s(Xs
J) = ⊔p∈J∂W

s(Xs
p). In particular,

yγ(x′) ∈ ∂W s(Xs
γ(x′)). But this implies γ(x′) ∈ C, which contradicts γ([0, 1)) ∩ C = ∅. So,

we must have yγ(x) ∈ W s(Xs
γ(x)) for all x ∈ [0, 1). Hence, γ([0, 1)) ⊂ R. Let pn = γ

(

1− 1
n

)

.

Then pn ∈ R with pn → p∗, so p∗ ∈ ∂R. Because ∂R ⊂ C as shown above, dS(p0, ∂R) ≥
dS(p0, C) = d(p0, p

∗). As p∗ ∈ ∂R, it follows that dS(p0, ∂R) ≤ d(p0, p
∗). Hence, combining

these inequalities we have dS(p0, ∂R) = d(p0, p
∗). As p∗ ∈ J0 was arbitrary, this implies

J0 = {p∗ ∈ ∂R : d(p0, p
∗) = dS(p0, ∂R)}.

2For example, if J was a convex subset of Euclidean space then the image of γ would be the straight line
segment between p0 and p∗.
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Proof of Corollary 4.27. Fix p∗ ∈ J0. As J0 ⊂ C, p∗ ∈ C. Hence, by definition of C,
yp∗ ∈ ∂W s(Xs

p∗). By Theorem 4.22, ∂W s(Xs
p∗) =

⋃

i∈I W
s(Xi

p∗). Thus, yp∗ ∈ ∂W s(Xs
p∗)

implies there exists a unique j ∈ I such that yp∗ ∈ W s(Xj
p∗). Let X

∗
J = Xj

J be the controlling
critical element. Then yp∗ ∈ W s(X∗

p∗).

Lemma 7.1. Let γ : [0, 1] → J be a path that satisfies Assumption 4.28 with embedded

submanifold N . For p ∈ γ([0, 1]) let Tp ⊂ [0,∞) denote the set of times {t ∈ [0,∞) : φt(yp) ∈
N}. Then for p ∈ γ([0, 1)), Tp consists of a finite union of closed intervals, so τN (p) is well-

defined and finite. For p = γ(1), Tp consists of a finite union of closed intervals together with

an interval of the form [t′,∞) for some t′ > 0, so τN (p) = ∞ is well-defined.

Proof of Lemma 7.1. First we show that the forward orbit of yp under Vp is a one-dimen-
sional C1 embedded submanifold. This will imply, since this orbit is transverse to ∂N and N ,
that its intersection with N is a one-dimensional C1 embedded submanifold with boundary
equal to its intersection with ∂N , which is a zero-dimensional C1 embedded submanifold. By
compactness, this manifold boundary consists of a finite number of points. Then the formulas
for Tp are obtained by considering the connected components of a one-dimensional manifold
in [0,∞).

First we show that for any p ∈ γ([0, 1]) and T > 0 sufficiently large such that φt(yp) /∈ ∂N
for all t ≥ T , then φ(·, yp, p)

−1
(

φ(0,T )(yp) ∩N
)

is a one-dimensional embedded submanifold.
The boundary of this submanifold is equal to φ(·, yp, p)

−1
(

φ(0,T )(yp) ∩ ∂N
)

, which consists of
a finite union of points. So, let p ∈ γ([0, 1]). If p = γ(1) then let XJ = X∗

J where X∗
J is the

controlling critical element corresponding to γ(1) as in Corollary 4.27, and choose W s
loc(X

∗
γ(1))

sufficiently small so that it is contained in N . Otherwise, let XJ = Xs
J and choose W s

loc(X
s
J)

sufficiently small so that it is disjoint from N . Then the orbit of yp under Vp converges to
Xp, so there exists T > 0 such that φT (yp) ∈ int W s

loc(Xp). Hence, by definition of the local
stable manifold, t ≥ T implies that φt(yp) ∈ int W s

loc(Xp). As yp ∈ W s(Xp) but yp 6∈ Xp, the
forward orbit of yp under Vp does not contain any critical elements, so φ(·, yp, p) is an injective
C1 immersion from [0,∞) into M . As φ(·, yp, p) is a continuous bijection onto its image, [0, T ]
is compact, and M is Hausdorff, φ(·, yp, p) is a homeomorphism from [0, T ] onto φ[0,T ](yp).
Hence, φ(·, yp, p) is a C1 embedding from [0, T ] onto its image, so φ(0,T )(yp) is a C1 embedded
submanifold in M and φ(·, yp, p) is a C1 diffeomorphism from (0, T ) onto φ(0,T )(yp).

By Assumption 4.28, φ(0,T )(yp) is transverse to ∂N , and it is trivially transverse to the in-
terior of N since the dimension of N is equal to the dimension of M . Therefore, φ(0,T )(yp)∩N
is a one dimensional C1 embedded submanifold with boundary equal to φ(0,T )(yp) ∩ ∂N a
zero dimensional C1 embedded submanifold. Since yp, φT (yp) 6∈ ∂N , φ(0,T )(yp) ∩ ∂N =
φ[0,T ](yp) ∩ ∂N . Furthermore, N compact and φ[0,T ](yp) compact implies that their inter-
section φ[0,T ](yp) ∩ N is compact. Therefore φ(0,T )(yp) ∩ ∂N is a compact zero dimensional
embedded submanifold. As zero dimensional manifolds are discrete, this implies that
φ(0,T )(yp) ∩ ∂N consists of a finite union of points. As φ(·, yp, p) is a C1 diffeomorphism
from (0, T ) onto φ(0,T )(yp), it follows that φ(·, yp, p)

−1
(

φ(0,T )(yp) ∩N
)

is a one-dimensional
embedded submanifold with boundary equal to φ(·, yp, p)

−1
(

φ(0,T )(yp) ∩ ∂N
)

, which consists
of a finite union of points.

Next, we show that τN is well-defined and finite for p ∈ γ([0, 1)). Suppose p ∈ γ([0, 1)).
Then yp, φT (yp) 6∈ N , so φ(0,T )(yp)∩N = φ[0,T ](yp)∩N is compact as φ[0,T ](yp) and N are com-
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pact. Thus, as φ(·, yp, p) is a C1 diffeomorphism from (0, T ) onto φ(0,T )(yp), this implies that
φ(·, yp, p)

−1
(

φ(0,T )(yp) ∩N
)

is a compact one-dimensional embedded submanifold in (0, T )
with boundary consisting of a finite number of points. Since it is a compact one-dimensional
manifold, it has finitely many connected components and each contains its manifold boundary.
Hence, φ(·, yp, p)

−1
(

φ(0,T )(yp) ∩N
)

consists of a finite union of closed intervals. As φt(yp) 6∈ N
for all t ≥ T , this implies that Tp = {t ∈ [0,∞) : φt(yp) ∈ N} consists of this finite union
of closed intervals. So, τN (p) = λ(Tp), where λ is the Lebesgue measure, is well-defined and
is equal to the sum of the lengths of all such intervals. This summation is finite since the
intervals are contained in [0, T ] which has finite length T .

Finally, we show that τN(γ(1)) = ∞. Let p = γ(1). For t ≥ T , φT (yp) ∈ int W s
loc(X

∗
γ(1)) ⊂

int N , so φt(yp) ∈ int N for all t ≥ T . In particular, φt(yp) 6∈ ∂N for all t ≥ T . As
φ(·, yp, p)

−1
(

φ(0,T )(yp) ∩ ∂N
)

consists of a finite number of points, let t′ be the largest value
in this set. Then t′ represents the final intersection of the forward orbit of yp under Vp

with ∂N since, by the above reasoning, no further intersections occur for t ≥ T . We claim
that for all t ∈ [t′, T ], φt(yp) ∈ N . Assume towards a contradiction that the claim is false.
Then there exists t̂ ∈ (t′, T ) with φt̂(yp) 6∈ N . As φ[t̂,T ](yp) is connected with φt̂(yp) 6∈ N ,

φT (yp) ∈ N , and N connected, there must exist t′′ ∈ [t̂, T ) such that φt′′(yp) ∈ ∂N . But,
t′′ > t′ with φt′′(yp) ∈ ∂N , so this contradicts that t′ was the final intersection of the forward
orbit of yp under Vp with ∂N . Hence, [t′,∞) ⊂ Tp. As t′ is a manifold boundary point
for φ(·, yp, p)

−1
(

φ(0,T )(yp) ∩N
)

, there exists ǫ > 0 such that [t′ − ǫ, t′) ∩ Tp = ∅. Hence,
φ(0,t′)(yp)∩N = φ[0,t′−ǫ](yp)∩N is an intersection of two compact sets, hence compact. Thus,
φ(·, yp, p)

−1
(

φ(0,t′)(yp) ∩N
)

is a compact one-dimensional embedded submanifold in (0, t′)
with boundary consisting of a finite number of points. Hence, φ(·, yp, p)

−1
(

φ(0,t′)(yp) ∩N
)

is
a finite union of closed intervals. Therefore, Tp is the union of [t′,∞) with a finite union of
closed intervals. So, τN (p) is well-defined with τN (p) = ∞.

Lemma 7.2. Let γ : [0, 1] → J be a path that satisfies Assumption 4.28 with embedded

submanifold N . Then lim
p→γ(1)

p∈γ([0,1])

τN (p) = ∞.

Proof of Lemma 7.2. By Lemma 7.1, τN (γ(1)) = ∞. By the proof of Lemma 7.1, there ex-
ists a final time t′ ∈ [0,∞) such that φt′(yγ(1)) ∈ ∂N , and t > t′ implies that φt(yγ(1)) ∈ int N .
Choose any ǫ,K > 0. Then φ[t′+ǫ,t′+ǫ+K](yγ(1)) ⊂ int N . As ∂N and φ[t′+ǫ,t′+ǫ+K](yγ(1)) are
compact and disjoint in M a normal space, there exists an open neighborhood U in M such
that φ[t′+ǫ,t′+ǫ+K](yγ(1)) ⊂ U ⊂ int N . As U is open in M , and φ([t′ + ǫ, t′ + ǫ+K], yp, p) is
compact and C1 continuous with respect to p, then for δ > 0 sufficiently small, p ∈ γ((1−δ, 1))
implies that φ[t′+ǫ,t′+ǫ+K](yp) ⊂ U ⊂ int N . So, for any p ∈ γ((1−δ, 1)), [t′+ǫ, t′+ǫ+K] ⊂ Tp.
By the proof of Lemma 7.1, p ∈ γ((1 − δ, 1)) implies that Tp consists of a finite union closed
intervals, and τN (p) is equal to the sum of the lengths of these intervals. Hence, τN (p) is at
least as large as the length of the closed interval that contains [t′ + ǫ, t′ + ǫ + K], which is
at least length K. As τN (p) ≥ K for all p ∈ γ((1 − δ, 1)), τN (γ(1)) = ∞, and K > 0 was
arbitrary, lim

p∈γ([0,1])
p→γ(1)

τN (p) = ∞.

Lemma 7.3. Let γ : [0, 1] → J be a path that satisfies Assumption 4.28 with embedded
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Figure 8. For a fixed parameter value p ∈ γ([0, 1)), the figure shows the intersection of the orbit of yp
(red and black line segments) with the embedded submanifold with boundary N (cyan ellipse) containing an
equilibrium point X∗

p (red star). There are a finite number of intersections of the orbit of yp with ∂N (black
stars). The orbit is a union of line segments of the form φ(Ti, yp, p) (black), which contain the intersection
points, and line segments of the form φ(T ′

i , yp, p) (red), which are compact, contain no intersection points, and
intersect the black line segments on each end (although this intersection is not visible in the figure). This figure
originally appeared in [6].

submanifold N . Then τN is continuous over γ([0, 1))

Proof of Lemma 7.3. Fix s ∈ [0, 1). To show continuity of τN over γ([0, 1)) it suffices to
show that it is continuous over a neighborhood of γ(s) in γ([0, 1)). Let ǫ > 0. The proof
proceeds by first showing that there exists T > 0 such that Tγ(s′) ⊂ [0, T ] for s′ close to s
since φT (yγ(s′)) ∈ W s

loc(X
s
γ(s′)). Then, by stability of transversal intersections and the implicit

function theorem, it is shown that for every intersection point of the orbit of yγ(s) under Vγ(s)

with ∂N , s′ close to s implies that there exists a unique intersection point of the orbit of yγ(s′)
under Vγ(s′) with ∂N near the original intersection point. It is then argued that for s′ close to
s, no new intersection points appear, only perturbations of the original intersection points. As
Tp is equal to a finite union of closed intervals whose boundaries are equal to these intersection
points by Lemma 7.1, it will be shown that there is a one-to-one correspondence between the
closed intervals in Tγ(s) and the closed intervals in Tγ(s′). As τN (γ(s′)) is equal to the sum
of the lengths of these (finitely many) closed intervals, and their lengths vary continuously
with parameter value since their endpoints (the intersection times) vary continuously with
parameter value, it will follow that |τN (γ(s′)) − τN (γ(s))| < ǫ for s′ close to s. This proof is
illustrated with the aid of Fig. 8.

First we show that Tp ⊂ [0, T ) for some T > 0 and p close to γ(s). As γ(s) ∈ R, the forward
orbit of yγ(s) under Vγ(s) converges to Xs

γ(s). So, there exists T > 0 such that φT (yγ(s)) ∈

int W s
loc(X

s
γ(s)). As W

s
loc(X

s
p) is open and varies C1 with p ∈ J , and as φT (yp) varies C

1 with

p ∈ J , there exists δ > 0 such that p ∈ γ((s − δ, s + δ)) implies that φT (yp) ∈ int W s
loc(X

s
p).

Similarly, choosing W s
loc(X

s
γ(s)) sufficiently small implies that for p ∈ γ((s−δ, s+δ)), W s

loc(X
s
p)

is disjoint from N . Hence, p ∈ γ((s−δ, s+δ)) implies that for any t ≥ T , φt(yp) ∈ int W s
loc(X

s
p)

which is disjoint from N . Therefore, Tp ⊂ [0, T ).
Next, persistence of the original intersection points is shown under small changes in pa-
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rameter values. By Lemma 7.1, there are a finite number of intersections of φ[0,T ](yγ(s)) with
∂N . Let ti denote the ith intersection time of the orbit of yγ(s) under Vγ(s) with ∂N . Note that
{φ[0,T ](yp)}p∈γ([0,1]) is a C1 continuous family of compact embedded submanifolds with bound-
ary in M with φ[0,T ](yγ(s)) transverse to ∂N with finitely many points of intersection. Points
of transversal intersection between compact embedded submanifolds with boundary persist
under C1 perturbations [14, Proposition A.3.16]. Therefore, it follows by the implicit function
theorem that for δ > 0 sufficiently small, there exist open neighborhoods Ti ⊂ [0, T ] and C1

functions ki : γ((s − δ, s + δ)) → Ti such that the following holds. For p ∈ γ((s − δ, s + δ)),
φ(·, yp, p)

−1 (φTi
(yp) ∩ ∂N) = {ki(p)} and ki(γ(s)) = ti for each i. In other words, for each

p ∈ γ((s − δ, s + δ)) and for each i, there exists a unique intersection of φ[0,T ](yp) with ∂N
that occurs in the time interval Ti.

It is shown next that for δ sufficiently small, and for p ∈ γ((s − δ, s + δ)), the number
of intersection times of φ[0,T ](yp) with ∂N is constant and each intersection time varies con-
tinuously with the parameter values. Let m be the number of intersections of φ[0,T ](yγ(s))
with ∂N . Let T ′

i ⊂ [0, T ] be a connected closed interval for each i ∈ {1, ...,m} such that
T ′
i ∩ Ti−1 6= ∅, T ′

i ∩ Ti 6= ∅, and T ′
i does not contain any times at which φ[0,T ](yγ(s)) intersects

∂N . For completeness, we let T0 = {0} and Tm+1 = {T}. For each i, as φT ′

i
(yγ(s)) and ∂N are

compact and disjoint, and since φ(T ′
i , yp, p) varies C1 with respect to p, shrinking δ further

if necessary implies that for p ∈ γ((s − δ, s + δ)), φT ′

i
(yp) is disjoint from ∂N for all i. More

specifically, φT ′

i
(yp) ⊂ N if and only if φT ′

i
(yγ(s)) ⊂ N . We can write [0, T ] =

⋃m
i=1 Ti

⋃m+1
i=1 T ′

i ,
as shown in Fig. 8. Hence, for p ∈ γ((s − δ, s + δ)), the only intersection times of φ[0,T ](yp)
with ∂N occur in

⋃m
i=1 Ti. But, by the choice of the Ti above, for p ∈ γ((s − δ, s + δ)) this

implies that the only intersection times of φ[0,T ](yp) with ∂N are
⋃m

i=1 ki(p). By the choice of
T above, this implies that for p ∈ γ((s−δ, s+δ)), the only intersection times of the orbit of yp
under Vp with ∂N are

⋃m
i=1 ki(p). Hence, for p ∈ γ((s− δ, s+ δ)), the number of intersections

of the orbit of yp under Vp with ∂N is constant.
Finally, we show that for p ∈ γ((s − δ, s + δ)), there is a one-to-one correspondence

between the closed intervals in Tp and the closed intervals in Tγ(s), where the interval lengths
can be brought arbitrarily close to each other for sufficiently small δ. We will conclude that
|τN (p)−τN (γ(s))| < ǫ. By Lemma 7.1, as (s−δ, s+δ) ⊂ [0, 1), for any p ∈ γ((s−δ, s+δ)), Tp

consists of a finite union of closed intervals whose boundary points are the intersection times.
Then for each i, [ki−1(p), ki(p)] ⊂ Tp if and only if φT ′

i
(yp) ⊂ N since T ′

i ⊂ [ki−1(p), ki(p)],
φ[ki−1(p),ki(p)](yp) is connected, and there are no intersections of the orbit of yp under Vp with
∂N in the time interval (ki−1(p), ki(p)). Hence, for each i, [ki−1(p), ki(p)] ⊂ Tp if and only
if φT ′

i
(yp) ⊂ N if and only if φT ′

i
(yγ(s)) ⊂ N if and only if [ki−1(γ(s)), ki(γ(s))] ⊂ Tγ(s).

Therefore, since the number of intersections is constant over p ∈ γ((s− δ, s+ δ)), Tp and Tγ(s)

consist of the same finite number of corresponding closed intervals which differ only slightly in
their endpoints, the intersection times {ki(p)}

m
i=1 and {ki(γ(s)}

m
i=1, respectively. Shrink δ such

that for p ∈ γ((s−δ, s+δ)) and each i, |ki(p)−ti| <
ǫ

2m , where ti = ki(γ(s)). Since Tp consists
of the same number of corresponding closed intervals as Tγ(s), each closed interval in Tp has
length within ǫ

m
of the length of the corresponding interval in Tγ(s). For p ∈ γ((s−δ, s+δ)), as

τN (p) is equal to the sum of the lengths of the closed intervals in Tp, there are m such closed
intervals in Tp, and the length of each closed interval in Tp is within ǫ

m
of the corresponding
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interval in Tγ(s), |τN (p)− τN (γ(s))| < ǫ. Hence, τN is continuous at γ(s).

Proof of Theorem 4.31. Fix p∗ ∈ J0 and let γ : [0, 1] → J be a C1 path satisfying As-
sumption 4.28 and such that γ(0) = p0, γ(1) = p∗, and γ([0, 1)) ⊂ R. By Lemma 7.1,
τN : γ([0, 1]) → [0,∞] is well-defined and τN (γ(1)) = ∞. By Lemma 7.2, lim

p∈γ([0,1])
p→p∗

τN (p) =

∞ = τN (γ(1)), so τN is continuous at p∗ = γ(1). By Lemma 7.3, τN is continuous over
γ([0, 1)). Hence, τN is continuous over γ([0, 1]).

8. Conclusion. This work considers a weakly C1 continuous family of vector fields on
Euclidean space or on a compact Riemannian manifold. It shows that if the family possesses
a stable equilibrium point, and if the vector field along its region of attraction (RoA) boundary
satisfies Morse-Smale-like assumptions, then the RoA boundary is Hausdorff continuous (for
a compact Riemannian manifold) or Chabauty continuous (for Euclidean space) with respect
to parameter. This result builds on a decomposition of the RoA boundary into the union of
the stable manifolds of the critical elements it contains. Furthermore, it is shown that this
decomposition persists under small variations in parameter values. A recent complement to
this work [4] shows that the assumptions of this paper can be relaxed to Morse-Smale-like
along with generic assumptions about a vector field at a single initial parameter value, so that
it is not necessary to assume that no new nonwandering points can enter the RoA boundary
under parameter perturbations.

These technical results are used to provide theoretical motivation for algorithms which
numerically determine the recovery set R by computing parameter values at points on its
boundary ∂R. The algorithms proceed by identifying a controlling critical element in the RoA
boundary, and varying parameter values so as to maximize the time spent by the trajectory
in a neighborhood of that controlling critical element. It is shown that the time spent by the
trajectory in this neighborhood is continuous with respect to parameter values, and approaches
infinity as the parameter values approach ∂R, thereby justifying the algorithmic approach.
Recently developed algorithms [8] for numerically computing boundary parameter values do
not require prior knowledge of the controlling critical element. Theoretical motivation of those
algorithms again builds on the results developed in this paper.
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Appendix A. Proof of Lemma 5.1.

Let f and D be defined as in the proof outline of Lemma 5.1. The proof is simple in the
case that W s(Xi) has dimension zero. In that case, let Û = W u

loc(X
i). Then the interior of Û

is the open neighborhood that satisfies the claim of Lemma 5.1, so we may assume that the
dimension of W s(Xi) is greater than zero.

We begin by constructing a C1 continuous disk family along D using the vector field
V . This disk family will be extended to all of W u

loc(X
i) using the diffeomorphism f . Let

A = ∂W u
loc(X

i). Then A is a C1 immersed submanifold of W u
loc(X

i) of codimension one,
and

⋃

t<0 φt(A) = W u
loc(X

i). As the time-t flow restricted to W u
loc(X

i) is a contraction for
any t < 0, for each y ∈ D there exists a unique x = x(y) ∈ A and t = t(y) ≥ 0 such that
φ(t(y), y) = x(y) ∈ A. By the tubular neighborhood theorem [16, Theorem 6.24], as discussed
above in Section 2, there exists a C1 continuous family of pairwise disjoint disks {D̃(x)}x∈A
centered along A and transverse to W u(Xi). For each y ∈ D, let D̃(y) = φ−t(y)(D̃(x(y))).
Since A is a C1 immersed submanifold of W u(Xi) of codimension one, there exists a real
vector-valued function s defined on a neighborhood of W u

loc(X
i) in W u(Xi) such that s is

a C1 submersion and A = s−1(0). Then for any x ∈ A, TxA is equal to the kernel of dsx
[16, Proposition 5.38]. Let y ∈ D and choose t such that φ(t, y) ∈ A. Then s ◦ φ(t, y) = 0.
Furthermore, ∂

∂t

(

s ◦φ(t, y)
)

= dsφ(t,y)V (φ(t, y)). Since the time-t flow (for t < 0) restricted to
W u

loc(X
i) is a contraction, V is transverse to A, so Vφ(t,y) 6∈ Tφ(t,y)A. Thus, Vφ(t,y) is not in the
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kernel of dsφ(t,y), so
∂
∂t

(

s ◦ φ(t, y)
)

= dsφ(t,y)V (φ(t, y)) 6= 0. Hence, by the implicit function
theorem there exists a neighborhood N ′ of y in W u

loc(X
i) and a C1 function t : N ′ → R

such that y′ ∈ N ′ implies that s ◦ φ(t(y′), y′) = 0 or, equivalently, φ(t(y′), y′) ∈ A. Thus,
the function t = t(y) is C1, and x = x(y) = φ(t(y), y) is also C1 since φ and t(y) are C1.
Therefore, by construction, the disk family {D̃(y)}y∈D is C1 continuous. As D is compact, we
may shrink W u

loc(X
i), shrink the disk family {D̃(x)}x∈A, and choose N an open neighborhood

in M such that D ⊂ N ⊂ N ⊂ Dǫ and for each y ∈ D, D̃(y) ⊂ N .
Next the C1 continuous disk family along W u

loc(X
i) is constructed for f by backward

iteration of the disk family above, and it is shown to contain an open neighborhood of Xi.
If Xi is an equilibrium point, let x0 = Xi and let S = M . If Xi is a periodic orbit, let
x0 ∈ Xi such that f is the first return map for a cross section S centered at x0. It is
possible to choose local C1 coordinates in a neighborhood of x0 such that, in these coordinates,
W s

loc(x0) is equal to R
s × {0} and W u

loc(x0) is equal to {0} × R
u, where s + u = n. In

particular, let Y be a neighborhood of x0 in S such that Y can be expressed in the C1 local
coordinates of [13, p. 80-81], which aligns the local stable manifold with R

s × {0} and the
local unstable manifold with {0}×R

u. In these coordinates, Y = W s
loc(x0)×W u

loc(x0), and we
have Y ⊂ R

n = Es ⊕ Eu, where Es and Eu are the stable and unstable eigenspaces of dfx0 ,
respectively, and W s

loc(x0) ⊂ Es, W u
loc(x0) ⊂ Eu. Next we extend the disk family {D̃(x)}x∈D

to all of W u
loc(x0). For each x ∈ W u

loc(x0) − {x0}, let l(x) be the smallest integer l ≥ 0 such
that f l(x)(x) ∈ D. Such an intersection always exists by the construction of D so l(x) is finite.
For x ∈ W u

loc(x0)− {x0}, let D̃
0(x) = D̃(f l(x)(x)), and for each m ∈ 0, 1, 2, ..., l(x), let D̃m(x)

be the connected component of f−1(D̃m−1(x)) ∩ Y that contains f l(x)−m(x), where we set
f0(x) = x. Then let D̃(x) = D̃l(x)(x) and D̃(x0) = W s

loc(x0). This gives a family of connected
C1 disks centered along W u

loc(x0).
Next we show that the family {D̃(x)}x∈Wu

loc(x0) is a C1 continuous disk family. Let y ∈

W u
loc(x0) − {x0} and recall that f l(y)(y) ∈ D. First we claim that there exists an open

neighborhood N of f l(y)(y) in W u
loc(x0)− {x0} such that {D̃(x)}x∈N is a C1 continuous disk

family. If f l(y)(y) ∈ int D then let N be an open connected neighborhood of f l(y)(y) in int D.
As {D̃(x)}x∈D is a C1 continuous disk family by construction and N ⊂ D, it is clear that
{D̃(x)}x∈N is a C1 continuous disk family as well. So, suppose f l(y)(y) ∈ ∂D. Let BO and
BI be the outer and inner topological boundaries of D, respectively. Then ∂D = BO ∪ BI

and, by construction of D, f(BI) = BO. First suppose f
l(y)(y) ∈ BO. Note that by definition

of l(y) this implies that f l(y)(y) = y ∈ BO, with l(y) = 0, since f l(y)(y) ∈ BO implies
that f l(y)−1(y) = f−1(f l(y)(y)) ∈ BI ⊂ D. Let N be an open connected neighborhood
of f l(y)(y) = y in D. Then {D̃(x)}x∈N is a C1 continuous disk family since N ⊂ D and

{D̃(x)}x∈D is a C1 continuous disk family. So, it suffices to consider f l(y)(y) ∈ BI . Let
N be a connected open neighborhood of f l(y)(y) in W u

loc(x0) − {x0}. Let N1 = N ∩ D
and let N2 = N ∩ (W u

loc(x0)− int D). Then N = N1 ∪ N2 and N1 ∩ N2 = N ∩ BI . As
f(BI) = BO and f is continuous, shrinking N if necessary implies that f(N2) ⊂ D. Then
{D̃(x)}x∈N1 is a C1 continuous disk family and {D̃(x)}x∈f(N2) is a C1 continuous disk family

since N1, f(N2) ⊂ D and {D̃(x)}x∈D is a C1 continuous disk family. For x′ ∈ M and S̃ ⊂ M ,
let πx′(S̃) denote projection onto the connected component of S̃ containing x′ (noting that
πx′(S̃) = ∅ if x′ 6∈ S̃). Note that for any x ∈ N2, if x 6∈ D then D̃(x) = πx

(

f−1(D̃(f(x)))∩Y
)

,
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and if x ∈ D then x ∈ BI so D̃(x) = f−1(D̃(f(x))) by construction. Therefore, since f−1 is a
C1 diffeomorphism, {D̃(x)}x∈N2 =

{

πf−1(x′)

(

f−1(D̃(x′))∩Y
)}

x′∈f(N2)
is a C1 continuous disk

family. Since N1∩N2 = N ∩BI , and f−1(D̃(x)) = D̃(f−1(x)) for x ∈ BO, the C
1 disk families

{D̃(x)}x∈N1 and {D̃(x)}x∈N2 agree along their intersection. Hence, as each is a C1 continuous
disk family and they agree along their intersection, {D̃(x)}x∈N = {D̃(x)}x∈N1 ∪ {D̃(x)}x∈N2

is a C1 continuous disk family.
Thus, for any y ∈ W u

loc(x0) − {x0}, there exists an open neighborhood N of f l(y)(y)
in W u

loc(x0) − {x0} such that {D̃(x)}x∈N is a C1 continuous disk family. We claim that

f−l(y)(N ) is an open neighborhood of y in W u
loc(x0)−{x0} such that {D̃(x)}x∈f−l(y)(N) is a C1

continuous disk family. To prove this, we will observe that {D̃(x)}x∈f−m(N) is a C1 continuous

disk family for each m ∈ {0, 1, ..., l(y)}. The proof proceeds by induction on m, and note that
we have already proven the result for m = 0. So, assume that {D̃(x)}x∈f−m(N) is a C1

continuous disk family for some m ∈ {0, 1, ..., l(y) − 1}. Note that for any x ∈ f−(m+1)(N),
D̃(x) = πx

(

f−1(D̃(f(x)))∩Y
)

. Thus, since f−1 is a C1 diffeomorphism, {D̃(x)}x∈f−(m+1)(N) =
{

πf−1(x′)

(

f−1(D̃(x′)) ∩ Y
)}

x′∈f−m(N)
is a C1 continuous disk family. As every point y ∈

W u
loc(x0)−{x0} has an open neighborhood, call it N ′, such that {D̃(x)}x∈N ′ is a C1 continuous

disk family, {D̃(x)}x∈Wu
loc(x0)−{x0} is a C1 continuous disk family.

It remains to consider continuity at x0, where D̃(x0) = W s
loc(x0). Since the family

{D̃(x)}x∈D is C1 continuous and transverse to W u
loc(x0), by the Inclination Lemma [18],

the family {D̃(f−m(x))}x∈D converges uniformly in the C1 topology to W s(x0) as m →
∞. By construction, for every x ∈ W u

loc(x0) − {x0}, D̃(x) is obtained by taking the con-
nected component of f−1(D̃(f(x)) ∩ Y that contains x. Therefore, since W s(x0) ∩ Y =
W s

loc(x0), {D̃(x)}x∈Wu
loc(x0)−{x0} converges to W s

loc(x0) as x → x0. This shows that the family

{D̃(x)}x∈Wu
loc(x0) defined above is C1 continuous at x0. Therefore, {D̃(x)}x∈Wu

loc(x0) is a C1

continuous disk family.
Thus, {D̃(x)}x∈Wu

loc(x0) is a C1 continuous family of disks transverse to W u
loc(x0) and such

that x, y ∈ W u
loc(x0) with x 6= y implies that D̃(x) ∩ D̃(y) = ∅. Hence, there exists a C1

injective function F : Bs
r ×W u

loc(x0) → M , where Bs
r is the closed ball of radius r > 0 centered

at the origin in R
s, such that F (Bs

r × {x}) = D̃(x) for every x ∈ W u
loc(x0). Thus, since F

is a continuous injection between manifolds of the same dimension, by invariance of domain
[9, Theorem 2B.3], Û = F (int Bs

r × int W u
loc(x0)) is an open neighborhood of int W u

loc(x0)

in M . By construction, for every x ∈ Û − W s
loc(x0), its forward orbit intersects D̃(y) for

some y ∈ D in finite positive time. But by construction, D̃(y) ⊂ N for all y ∈ D. Hence,
⋃

t<0 φt(N) ∪W s
loc(x0) contains Û an open neighborhood of Xi in M .

Appendix B. Proof of Lemma 6.2.

First note that W s
loc(X

i
p), W

u
loc(X

i
p), the tubular neighborhoods centered along them, and

the flows are C1 continuous with respect to parameter value, so that p close to p0 implies that
the disk family {D̃(x)}x∈Dp of the perturbed vector field will be uniformly C1-close to that of
the original. Hence, (Dp)ǫ will be C

1-close to (Dp0)ǫ. So, J sufficiently small implies that there
exists N ′ open such that for p ∈ J , Dp ⊂ N ′ ⊂ N ′ ⊂ (Dp)ǫ. Let x0(p) be defined in the natural
way so that it is C1 with respect to parameter, x0(p) = Xi

p if Xi
p is an equilibrium point, and
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if Xi
p is a periodic orbit then x0(p) ∈ Xi

p. Construct the full disk family {D̃(x)}x∈Wu
loc(x0(p))

for the perturbed vector field as in the proof of Lemma 5.1.
In the proof of the Inclination Lemma, a diffeomorphism g sufficiently C1-close to f implies

that the same bounds on g and its partial derivatives will hold as for f . Hence, the uniform
bounds on the inclinations (slopes) obtained for the transverse disk family {D̃(x)}x∈Dp0

can

also be taken to apply to {D̃(x)}x∈Dp for p sufficiently close to p0. In particular, for any δ > 0

there exists ZN > 0 such that l ≥ ZN implies that for any x ∈ Dp0 , D̃(f−l
p0

(x)) is δ C1-close to

W s
loc(x0(p0)) and for any x′ ∈ Dp, D̃(f−l

p (x′)) is δ C1-close to W s
loc(x0(p)). Furthermore, for p

sufficiently close to p0, W
s
loc(x0(p)) is δ C1-close to W s

loc(x0(p0)). Therefore, for every x ∈ Dp0

and x′ ∈ Dp, and for every l ≥ ZN , by the triangle inequality the distance from D̃(f−l
p0

(x)) to

D̃(f−l
p (x′)) is no more than the distance from D̃(f−l

p0
(x)) to W s

loc(x(p0)) plus the distance from

W s
loc(x(p0)) to W s

loc(x(p)) plus the distance from W s
loc(x(p)) to D̃(f−l

p (x′)). Hence, D̃(f−l
p0

(x))

is 3δ C1-close to D̃(f−l
p (x′)). As {D̃(x)}x∈Dp0

and {D̃(x)}x∈Dp are uniformly C1-close and

ZN is finite, for p sufficiently close to p0 we have that the two disk families {D̃(f−l
p0

(x))}x∈Dp0

and {D̃(f−l
p (x))}x∈Dp are uniformly 3δ C1-close for l ≤ ZN . Hence, combining the above,

we have that the disk families {D̃(x)}x∈Wu
loc(x0(p0)) and {D̃(x)}x∈Wu

loc(x0(p)) are uniformly 3δ

C1-close.
Constructing Fp analogously to the construction of F in Lemma 5.1, this implies that

Fp(int B
s
r × int W u

loc(x0(p))) has Hausdorff distance no greater than 3δ from Fp0(int B
s
r ×

int W u
loc(x0(p0))). In particular, this implies that δ > 0 and Û can be chosen sufficiently small

such that for J sufficiently small, p ∈ J implies that Fp(int B
s
r × int W u

loc(x0(p))) ⊃ Û . Hence,

for every x ∈ Û −W s
loc(x0(p)), the forward orbit of x intersects N ′ in finite time.
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