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Abstract. This paper presents a fast “two-dimensional Fourier continuation” (2D-FC) method
for construction of biperiodic extensions of smooth nonperiodic functions defined over general two-
dimensional smooth domains. The approach, which runs at a cost of O(N logN) operations for an N -
point discretization grid, can be directly generalized to domains of any given dimensionality, but such
generalizations are not considered in this contribution. The 2D-FC extensions are produced in a two-
step procedure. In the first step the one-dimensional Fourier continuation method is applied along a
discrete set of outward boundary-normal directions to produce, along such directions, continuations
that vanish outside a narrow interval beyond the boundary. Thus, the first step of the algorithm
produces “blending-to-zero along normals” for the given function values. In the second step, the
extended function values are evaluated on an underlying Cartesian grid by means of an efficient,
high-order boundary-normal interpolation scheme. A Fourier continuation expansion of the given
function can then be obtained by a direct application of the two-dimensional fast Fourier transform
(FFT). Algorithms of arbitrarily high order of accuracy can be obtained by this method. The
usefulness and performance of the proposed 2D-FC method are illustrated with applications to the
Poisson equation and the time-domain wave equation within a bounded domain. As part of these
examples the novel “Fourier forwarding” solver is introduced which, propagating plane waves as they
would in free space and relying on certain boundary corrections, can solve the time-domain wave
equation and other hyperbolic partial differential equations within general domains at computing
costs that grow sublinearly with the size of the spatial discretization.
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1. Introduction. This paper presents a fast “two-dimensional Fourier Contin-
uation” (2D-FC) method for construction of biperiodic extensions of smooth non-
periodic functions defined over general two-dimensional (2D) smooth domains. The
algorithm, which runs at a cost of O(N logN) operations for an N -point discretization
grid, converges with a user-prescribed dth order of convergence, and can be directly
generalized to domains of any given dimensionality, but such generalizations are not
considered here. The usefulness and performance of the proposed 2D-FC method
are illustrated with applications to the Poisson equation and the time-domain wave
equation within a bounded domain. As part of these examples the novel “Fourier
forwarding” solver is introduced which, propagating plane waves as they would in free
space and relying on certain boundary corrections, can solve the time-domain wave
equation and other constant-coefficient hyperbolic partial differential equations within
general domains at computing costs that grow sublinearly with the size of the spatial
discretization.
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TWO-DIMENSIONAL FOURIER CONTINUATION A965

The periodic-extension problem has actively been considered in the recent lit-
erature, in view, in particular, of its applicability to the solution of various types
of partial differential equations (PDEs) [1, 3, 4, 6, 7, 8, 10, 11, 14, 17, 20, 21,
24]. The contributions [3, 4, 11, 20], in particular, utilize the Fourier continua-
tion (FC) method in one dimension in conjunction with dimensional splitting for
the treatment of multidimensional PDE problems. The dimensional splitting is also
used in [12] to produce Fourier extensions to rectangular domains in two dimen-
sions, where the FC is effected by separately applying the one-dimensional FC-Gram
method [3, 4, 11] first to the columns and then to the rows of a given data ma-
trix of function values. The method does assume that the given smooth function is
known on a rectangular region containing the domain for which the continuation is
sought. The 2D-FC algorithm proposed in this paper does not rely on such a stringent
requirement.

The approach to periodic function extension presented in [6, 24] is based on the
solution of a high-order PDE, where the extension shares the values and normal deriv-
atives along the domain boundary. [14], in turn, presents a function-extension method
based on the use of radial basis functions (RBFs). In that approach, overlapping cir-
cular partitions, or patches, are placed along the physical boundary of the domain,
and a local extension is defined on each patch by means of RBFs. A second layer of
patches is placed outside the first, on which the local values are set to vanish. The
zero patches are used in conjunction with a partition of unity function to blend the
local extensions into a global counterpart. The choice of functions used to build the
partition of unity determines the regularity of the extended function. [21] proposes
an accurate and superalgebraically convergent function approximation method using
Fourier extension frames in general 2D domains at a cost of O(N2 log2 N) operations:
a significantly higher cost than the O(N logN) cost required by the 2D-FC method
introduced in the present contribution. In fact, as indicated in that reference, the
O(N2 log2 N) cost reported only improves upon the O(N3) cost required by a cor-
responding full SVD-based algorithm for discretizations containing more than 8,100
points. As an example, cost and accuracy comparisons presented in Example 3.3
below, which concerns approximation of a function exhibiting 36 oscillations on a cir-
cular domain, and for both high (7 · 10−8) and low (1.7 · 10−3) accuracy, the 2D-FC
method is approximately 10,000 times faster and requires over 20 times less memory
than the approach in [21], with significant increases in improvement factors expected
as discretizations are enlarged further.

The 2D-FC extensions proposed in this paper are produced in a two-step proce-
dure. In the first step the one-dimensional FC (1D-FC) method [4] is applied along a
discrete set of outward boundary-normal directions to produce, along such directions,
continuations that vanish outside a narrow interval beyond the boundary. Thus, the
first step of the algorithm produces “blending-to-zero along normals” for the given
function values. In the second step, the extended function values are evaluated on
an underlying Cartesian grid by means of an efficient, high-order boundary-normal
interpolation scheme. Since the continuation-along-normals procedure is a fixed cost
operation for each normal line, the cost of this procedure grows only linearly with
the size of the boundary discretization. An FC expansion of the given function can
then be obtained by a direct application of the 2D FFT algorithm. Algorithms of
arbitrarily high order of accuracy can be obtained by this method. In view of its
construction on the basis of combined 1D-FC approximation and regular polynomial
interpolation, the convergence theory for the 2D-FC method follows directly from the
theoretical results presented in [20].
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A966 OSCAR P. BRUNO AND JAGABANDHU PAUL

As mentioned above, this paper demonstrates the usefulness of the proposed
general-domain 2D-FC technique via applications to both the Poisson problem for
the Laplace equation and the time-domain wave equation. In the Poisson case the
2D-FC method is utilized to obtain a particular solution for a given right-hand side;
the boundary conditions are then made to match the prescribed boundary data by
adding a solution of the Laplace equation which is produced by means of boundary-
integral methods. The Fourier forwarding approach, in turn, uses the 2D-FC method
to solve the spatio-temporal PDE in the interior of the domain and it then corrects
the solution values near the boundary by means of a classical time-stepping solver.
The overall procedure, which utilizes large time steps for the interior solver and small
CFL-constrained time steps for the near-boundary solver, runs in computing times per
small time step that grow sublinearly with the size of the spatial discretization mesh.

It is interesting to note that the primary continuation device in the 2D-FC
method, namely, continuation along normals to the domain boundary, is a one-
dimensional procedure. This one-dimensional continuation procedure can be utilized
in a generalization of the method to n-dimensional domains with n > 2. This is
in contrast to other extension methods mentioned above. For example, the RBF-
based extension method [14] requires solution of boundary problems of increasing
dimensionality as the spatial dimension grows, which, given the method’s reliance
on dense-matrix linear algebra for the local-extension process, could have a signifi-
cant impact on computing costs. Similar comments apply to PDE-based extension
methods such as [24].

The proposed 2D-FC algorithm performs favorably in the context of existing
related approaches. Specific comparisons with results presented in [14] are provided
in subsection 4.1.1 for a Poisson problem considered in that reference. The recent
contribution [13], in turn, presents an FFT-based high-order solver for the Poisson
problem for rectangular domains, namely, Cartesian products of one-dimensional (1D)
intervals in either 2D or three-dimensional space. The present 2D-FC based Poisson
solver achieves, for general domains, a similar performance (similar accuracy and
computing time) to that demonstrated in [13, Tables 3 and 4] under the Cartesian-
domain assumption.

As discussed in [3, 4], and particularly e.g. in [4, Figure 12], in view of the spec-
tral character of the 1D-FC approach, which incurs errors in finite-degree polynomial
approximation near boundaries, but which propagates the polynomial boundary ac-
curacy to the domain interior via Fourier series, enjoys excellent dispersion charac-
teristics as well: using FC derivatives as part of a PDE solver results in errors that,
asymptotically, do not grow as the number of oscillations in the PDE domain and the
discretization size are simultaneously and proportionally increased. This dispersion
characteristic is also enjoyed by the 2D-FC algorithm, as illustrated in the top graph
of Figure 11.

This paper is organized as follows. After a brief review of the 1D-FC method
presented in section 2, the proposed 2D-FC method is introduced in section 3. The two
main applications considered, namely, solution of the Poisson and Fourier-forwarding
for the wave equation, are presented in subsections 4.1 and 4.2. Finally our conclusions
are presented in section 5.

2. Background: 1D “blending-to-zero” FC algorithm. A brief review of
the 1D-FC method [3, 4] is presented in this section, with an emphasis on one of
its key components, the blending-to-zero procedure—which is employed in the normal
direction continuation portion of the proposed 2D-FC approach presented in section 3.
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TWO-DIMENSIONAL FOURIER CONTINUATION A967

2.1. 1D-FC algorithm: Outline. Given the vector ϕD = (ϕ0, . . . , ϕN−1)
t of

values of a smooth function ϕ : [0, 1] → C on the equispaced grid

D = {xj = jk : 0 ≤ j ≤ N − 1}

of step size k = 1/(N−1), the 1D-FC method [3, 4] of order d (with, e.g., 4 ≤ d ≤ 12)
produces, at first, an (N +C)-dimensional vector ϕc of discrete continuation function
values (including the N given function values) over an extended interval [0, b], b > 1.
To do this, the algorithm utilizes the d-dimensional vectors ϕℓ = (ϕ0, . . . , ϕd−1)

t and
ϕr = (ϕN−d, . . . , ϕN−1)

t of values of the function ϕ on the left and right “matching-
point” sets Dℓ = {x0, . . . , xd−1} and Dr = {xN−d, . . . , xN−1}, respectively, each one
of which is contained in a small subinterval of length (d− 1)k near the corresponding
endpoint of the containing interval [0, 1]. In order to obtain the C necessary continua-
tion values, the 1D-FC method blends ϕℓ and ϕr to zero (see subsection 2.2), towards
the left and right, respectively, resulting in two zero-blending vectors of length C.
The sum of these two vectors is then utilized as a rightward discrete continuation to
the set Dc = {xj = 1 + jk : 1 ≤ j ≤ C} of points in the interval (1, b]—as described
in subsection 2.3. As indicated in that section, the overall 1D-FC procedure is then
completed via an application of the FFT algorithm to the (N + C)-dimensional vec-
tor ϕc (cf. (2.7) below) of “smoothly periodic” discrete continued function values.
The following two subsections describe the blending-to-zero and 1D-FC approaches,
respectively.

2.2. Blending-to-zero algorithm. In our description of the order-d blending-
to-zero algorithm [4] we only present details for the rightward blending-to-zero tech-
nique, since the leftward blending-to-zero problem can easily be reduced to the right-
ward problem. Thus, given the column vector FD = (F0, . . . , Fd−1)

t of values of a
complex-valued function F on the set D = {x0, x1, . . . , xd−1}, the rightward blending-
to-zero approach starts by producing a polynomial interpolant for F over the interval
[x0, xd−1] relying on the Gram polynomial basis

Gd = {g0(x), g1(x), . . . , gd−1(x)}(2.1)

for this interval. The functions gj(x) (j = 0, . . . , d− 1) are the polynomials with real
coefficients that are obtained as the Gram–Schmidt orthogonalization procedure is
applied, in order of increasing degree, to the polynomials in the set {1, x, x2, . . . , xd−1},
with respect to the discrete scalar product

(g, h) =

d−1∑
j=0

g(xj)h(xj).

Discrete values of the Gram polynomials on the set D can be computed on the basis
of the QR factorization [15]

P = QR of the matrix P = (xi
j−1)0≤i,j≤d−1.(2.2)

(Note that the jth column of Q contains the values of the jth Gram polynomial on
the set D.) Following [4] we obtain the necessary QR factorization by applying the
stabilized Gram–Schmidt orthogonalization method to the matrix P .

In order to closely approximate each one of the Gram polynomials in Gd, through-
out the continuous interval [0, (d−1)k] containing D, by corresponding trigonometric
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A968 OSCAR P. BRUNO AND JAGABANDHU PAUL

polynomials, as described below, we use a certain “oversampled matching” method.
According to this method the polynomials in Gd are oversampled to an equispaced
set of discretization points with step size k/nos (containing nos(d − 1) + 1 points),
where nos denotes the oversampling factor, and where the oversampled values are
used as part of a certain low-dimensional SVD matching procedure described in
what follows. Note that the aforementioned oversampled values on the refined grid
Dos := {x̃j = jk/nos : 0 ≤ j ≤ nos(d− 1)} coincide with the columns of the matrix

Qos = P osR
−1,(2.3)

where P os is the Vandermonde matrix of size (nos(d−1)+1)×d corresponding to the
oversampled discretization Dos, and where R is the upper triangular matrix in (2.2).

The aforementioned SVD matching procedure, which is one of the crucial steps
in the FC approach [4], produces a band-limited Fourier series of the form

gcj(x) =

J∑
m=−J

ajme
2πimx

(d+2C+Z−1)k(2.4)

for each polynomial gj ∈ Gd (0 ≤ j ≤ d − 1), where C is the number of blending-
to-zero values to be produced, and Z being the number of “zero-matching” points.
The Fourier coefficients are selected so as to match, in the least-squares sense, both
the oversampled polynomial values over the interval [0, (d− 1)k], and identically zero
values on an equally fine discretization of the “zero matching” interval

[(d+ C)k, (d+ C + Z − 1)k]

of length (Z − 1)k. The coefficients in (2.4) are taken to equal the solution a of the
minimization problem

min
a=(a−J ,...,aJ )

T

∥∥∥∥Bosa−
(
qj
os

0

)∥∥∥∥
2

,(2.5)

where Bos is a matrix whose entries are values of (2.4) at all points in the set Dos

as well as all the set of k/nos-spaced points in the zero matching interval mentioned
above (which, in particular, contains the endpoints (d+C)k and (d+C+Z−1)k). The
minimizing Fourier coefficients a are then found via an SVD-based [15] least-squares
approach. Once the coefficients a have been obtained, the resulting Fourier expan-
sions (2.4) are used to produce a certain “continuation matrix” A ∈ CC×d, whose
columns equal the values of the expression (2.4) at the C (unrefined) k-discretization
points in the interval [dk, (d + C − 1)k] (cf. Remark 2.2 below). The desired vector
F r of rightward blending-to-zero function values at the C continuation points in the
interval [dk, (d+ C − 1)k] is then given by the expression

F r = AQTF .(2.6)

2.3. 1D-FC algorithm. As outlined in subsection 2.1, the 1D-FC algorithm re-
quires use of a certain rightward (resp., leftward) blending-to-zero vector ϕr

r (resp., ϕ
ℓ
ℓ)

for a given matching-point vector ϕr (resp., ϕℓ). In view of (2.6) we define ϕr
r =

AQTϕr. To obtain the leftward extension ϕℓ
ℓ, in turn, we first introduce the “order

reversion” matrix Re ∈ Ce×e (e ∈ N) by

Re(g0, g1 . . . , ge−2, ge−1)
t = (ge−1, ge−2, . . . , g1, g0)

t,
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TWO-DIMENSIONAL FOURIER CONTINUATION A969

and we then define ϕℓ
ℓ = RCAQTRdϕℓ. A vector ϕc containing both the N given

values in the vector ϕ = (ϕ0, ϕ1, . . . , ϕN−1)
t as well as the C “continuation” function

values is constructed by appending the sum ϕℓ
ℓ + ϕr

r at the end of the vector ϕ, so
that we obtain

ϕc
j =

ϕj for 0 ≤ j ≤ N − 1,(
ϕℓ

ℓ + ϕr
r

)
(j−N)

for N ≤ j ≤ N + C − 1.
(2.7)

Following the various stages of the construction of the vector ϕc it is easy to
check that, up to numerical error, this vector contains point values of a smoothly
periodic function defined over the interval [0, b]. An application of the FFT algorithm
to this vector therefore provides the desired continuation function in the form of a
trigonometric polynomial,

ϕc(x) =

(N+C)/2∑
ℓ=−(N+C)/2

ϕ̂c
ℓe

2πiℓx
b ,(2.8)

which closely approximates ϕ in the interval [0, 1]. In fact, as demonstrated in previous
publications (including [3, 4]), for sufficiently smooth functions ϕ, the corresponding
1D-FC approximants converge to ϕ with order O(kd)—so that, as expected, the num-
ber d of points used in the blending-to-zero procedures determines the convergence
rate of the algorithm, while, as mentioned in section 1, giving rise to essentially
dispersionless numerics in the context of the PDE solution. The 2D-FC algorithm
introduced in the following section also relies on the 1D blending-to-zero procedure
described in subsection 2.2, and its convergence in that case is once again of the order
O(kd), and, when applied to solution of PDE problems, essentially dispersionless.

It is important to note that, for a given order d, the matrices A and Q can be
computed once and permanently stored on disc for use whenever an application of the
blending-to-zero algorithm is required—as these matrices do not depend on the point
spacing k. A graphical demonstration of various elements of the 1D-FC procedure is
presented in Figure 1.

Remark 2.1 (extra vanishing values). The 1D-FC implementations [3, 4] allow
for an additional number E ≥ 0 of identically zero “extra” function values to be
added on an (unrefined) k-discretization of the interval [(d+C)k, (d+C +E − 1)k],
as illustrated in Figure 1(c), to obtain a desired overall number of discrete function
values (including the given function values and the continuation values produced) such
as, e.g., a power of two or a product of powers of small prime numbers, for which the
subsequent application of the FFT is particularly well suited. The corresponding use
of extra vanishing values for the 2D continuation problem is mentioned in Remark 3.2.

Remark 2.2 (blending-to-zero on a refined grid). As indicated above in the present
section, the 2D-FC procedure introduced in section 3 utilizes the 1D blending-to-
zero strategy described above in this section to extend a function given on a 2D
domain Ω along the normal direction to Γ; the continuation values obtained at all
normals are then utilized to obtain the continuation function on the Cartesian grid
by interpolation. As detailed in subsection 3.4, in order to prevent accuracy loss
in the 2D interpolation step we have found it necessary to use 1D normal-direction
grids finer than the grids inherent in the blending-to-zero process itself. To easily
provide the necessary fine-grid values, a modified fine-grid continuation matrix Ar ∈
CCr×d is constructed, where Cr > C denotes the number of fine-grid points utilized.
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A970 OSCAR P. BRUNO AND JAGABANDHU PAUL

(a) Demonstration of the 1D-FC method. The continuation values are
computed as the sum of the blended-to-zero rightward and leftward ex-
tensions.

(b) Inset of Figure 1a. (c) Numbers E of leftward and right-
ward extra zeroes.

Fig. 1. Illustration of the 1D-FC procedure. Figure 1(a) depicts the FC of the nonperiodic
function ϕ : [0, 1] → R given by ϕ(x) = exp(sin(5.4πx − 2.7π) − cos(2πx)) − sin(2.5πx) + 1. Fig-
ure 1(b) presents a close up of the right continuation region [1−(d−1)k, b]. Subsequently Figure 1(c)
illustrates the use of a number E of extra zeroes in the blending-to-zero process, to yield a continu-
ation mesh containing FFT-friendly numbers (products of powers of small prime numbers) of point
values.

The modified continuation matrix Ar can be built on the basis of the minimizing
coefficients a in (2.5): the corresponding columns of the fine-grid continuation matrix
Ar are obtained by evaluating (2.4) on the given fine-grid points in the interval ((d−
1)k, (d+C − 1)k]. The necessary blending-to-zero function values at the Cr fine-grid
points are given by ArQ

TϕD.

3. 2D-FC method. This section presents the proposed volumetric FC method
on 2D domains Ω ⊂ R2 with a smooth boundary Γ = Ω \ Ω, some elements of which
are illustrated in Figure 2. Let a smooth function f : Ω → C be given; we assume
that values of f are known on a certain uniform Cartesian grid within Ω as well as a
grid of points on the boundary Γ. The 2D-FC algorithm first produces 1D blending-
to-zero values for the function f along directions normal to the boundary Γ, yielding
continuation values on a certain 2D tangential-normal curvilinear grid around Γ, as
detailed in sections 3.1 and 3.2 and illustrated in Figure 2. These continuation values,
which are produced on the basis of the corresponding blending-to-zero procedure
presented in subsection 2.2 in the context of the 1D-FC method, are then interpolated
onto a Cartesian grid around the domain boundary, to produce a 2D blending-to-zero
continuation of the function f . The necessary interpolation from the curvilinear grid
to the Cartesian grid is accomplished by first efficiently obtaining the foot of the
normal that passes through a given Cartesian grid point r = (x, y) exterior to Ω and
near the boundary Γ (section 3.3), and then using a local 2D interpolation procedure
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TWO-DIMENSIONAL FOURIER CONTINUATION A971

Fig. 2. Geometrical constructions underlying the 2D-FC procedure, with reference to the various
regions defined in subsection 3.1.

to produce the corresponding continuation value at the point r (section 3.4). Once
the interpolated values have been obtained throughout the Cartesian mesh around Γ,
the desired 2D-FC function

f c(x, y) =

Nx/2∑
ℓ=−Nx/2+1

Ny/2∑
m=−Ny/2+1

f̂ c
ℓ,me

2πi
(

ℓx
Lx

+my
Ly

)
(3.1)

(where Lx and Ly denote the period in the x and y directions, respectively) is ob-
tained by means of a 2D FFT. Following the algorithmic prescriptions presented in
sections 3.1 through 3.4, a summary of the overall 2D-FC approach is presented in
section 3.5.

3.1. 2D tangential-normal curvilinear grid. The necessary curvilinear grids
around Γ can be produced on the basis of a (smooth) parametrization

r = q(θ) = (x(θ), y(θ)), 0 ≤ θ ≤ 2π,(3.2)

of the boundary Γ. We assume the boundary to be of class Cd+1 to ensure the inter-
polation processes described in subsection 3.4 enjoy the necessary O(hd) convergence
order. However, per Example 3.2, use of interpolation of order M = d + 2 in that
context yields somewhat improved accuracy. In order to achieve such improvements
it is necessary to assume the boundary Γ is a Cd+3 curve.

In view of their intended application (blending-to-zero along the normal direction
in accordance with subsection 2.2), the curvilinear grids are introduced within interior
and exterior strips V − and V + (illustrated in Figure 2) given by{

V − = {q(θ)− n(θ)γ : 0 ≤ θ ≤ 2π and 0 ≤ γ ≤ (d− 1)k1},
V + = {q(θ) + n(θ)γ : 0 ≤ θ ≤ 2π and 0 ≤ γ ≤ Ck1},

(3.3)

where n(θ) = (nx(θ), ny(θ)) denotes the unit normal to the boundary Γ at q(θ), and
where d, C, and k1 denote, respectively, the number of matching points, the number
of blending-to-zero points, and the step size used, in the present application of the
1D blending-to-zero procedure described in subsection 2.2. Using, in addition, the
uniform discretization

IB = {θp = pk2 : 0 ≤ p < B}, k2 =
2π

B
,(3.4)D
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A972 OSCAR P. BRUNO AND JAGABANDHU PAUL

of the interval [0, 2π], we then construct a curvilinear 2D discretization

V −
B,d = {rp,q : rp,q = q(θp) + n(θp)(q − d+ 1)k1; 0 ≤ p < B and 0 ≤ q ≤ d− 1},

(3.5)

V +
B,Cr

= {sp,q : sp,q = q(θp) + n(θp)qk1/nr; 0 ≤ p < B and 0 ≤ q ≤ Cr},
(3.6)

within V − and V + respectively, for the given step size k1, where Cr = Cnr for certain
integer (refinement factor) nr; note that the points in V −

B,d for q = d−1 and the points

in V +
B,Cr

for q = 0 coincide and that they lie on Γ. Here the constants d, C, and nr

are independent of B. The continuation function is constructed so as to vanish at all
points sp,q ∈ V +

B,Cr
with q = Cr. Let now R = [a0, a1] × [b0, b1] denote the smallest

closed rectangle containing Ω ∪ V +, and consider the equispaced Cartesian grid of
step size h,

H = {zi,j = (xi, yj) : xi = a0 + ih; yj = b0 + jh : 0 ≤ i < Nx, 0 ≤ j < Ny}(3.7)

on R, where the 2D continuation function values are to be computed. We note that
the size of the rectangle R along with the strips V − and V + decrease as the step size
k2 is decreased.

3.2. Computation of FC values on V +
B,Cr

. A continuation of the function
f to the exterior of Ω is obtained via application of the blending-to-zero procedure
presented in subsection 2.2 (cf. Remark 2.2) along each one of the normal directions
inherent in the definition of the set V +

B,Cr
. For given p, the d equidistant points

sp,q ∈ V −
B,d (0 ≤ q ≤ d − 1), which are indicated by the solid circles in Figure 3,

constitute a set Dp of matching points that are used to effect the blending-to-zero
procedure per the prescriptions presented in subsection 2.2. To obtain the desired
continuation function values it is necessary to first obtain the vector fDp

of the values
of the function f (or suitable approximations thereof) on the set Dp. In the proposed
method, the needed function values fDp

are computed on the basis of a two-step
polynomial interpolation scheme, using polynomials of a certain degree (M − 1), as
briefly described in what follows.

With reference to the right image of Figure 3, and considering first the case
|nx(θp)| ≥ |ny(θp)|, the algorithm initially interpolates vertically the function values
at M open-circle Cartesian points selected as indicated in the figure, onto the points
of intersection, shown as red stars, of the normal line and the vertical Cartesian
grid lines. For intersection (red-star) points close enough to the boundary, boundary
function values at boundary points shown as squares in the figure, are utilized in the
1D interpolation process as well. Once the red-star function values are acquired, the
function value at the matching solid-black point is effected by interpolation from the
M red-star point values previously obtained, on the basis of a polynomial of degree
(M − 1).

The case |nx(θp)| < |ny(θp)| is treated similarly, substituting the initial interpola-
tion along vertical Cartesian lines, by interpolation along horizontal Cartesian lines;
the algorithm then proceeds in an entirely analogous fashion.

3.3. Proximity map. As described below in section 3.4, the 2D-FC algorithm
interpolates the FC values on V +

B,Cr
onto the Cartesian mesh H. The interpolation al-

gorithm used in that section relies on a certain “proximity map” P : H ∩V + → V +
B,Cr

which associates a curvilinear grid point sp,q = P(zi,j) ∈ V +
B,Cr

in the “proximity”
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TWO-DIMENSIONAL FOURIER CONTINUATION A973

Fig. 3. Interpolation scheme for evaluation of fDp
in the case |nx(θp)| ≥ |ny(θp)|. Left:

Black solid circles indicate the matching points that define the set Dp. Right: Known function
values at the Cartesian points (denoted by the empty circles) and, in some cases, at the point of
intersection (represented by an empty square) of the vertical grid lines with Γ, are used to interpolate
the matching function values at the red-star intersection points of the normal with the vertical grid
lines. The function values at the red points are then used to obtain, by interpolation, the function
values at the matching points.

of each given Cartesian grid point zi,j . The algorithm described in the next sec-
tion primarily uses the associated point sp,q along with the corresponding discretized
boundary parameter value θp to interpolate the foot of the normal for the Cartesian
point zi,j . The proximity function we use is obtained by first associating with each
curvilinear discretization point sp,q the nearest Cartesian point, a procedure that re-
sults in a set P0 ⊆ (H ∩V +)×V +

B,Cr
of pairs of points, one in the Cartesian grid and

the other in the curvilinear grid. (The initial set P0 can easily be obtained by using
the “integer part” floor (⌊.⌋) and the ceil (⌈.⌉) operators.) The set P0 is then modi-
fied by removing multiple associations for a given Cartesian point, and, if necessary,
by adding a “next-nearest” curvilinear neighbor to Cartesian points that previously
remained unassociated. The next-nearest curvilinear neighbor can be obtained simply
by subtracting one from the floor value and adding one to the ceil value and, taking
all the combinations of the results for each point in V +

B,Cr
. The resulting set P defines

the desired function.

3.4. FC values on the Cartesian grid. Once FC values on V +
B,Cr

have been
obtained, per the procedure presented in subsection 3.2, the 2D-FC scheme can be
completed by (a) interpolation onto the set H ∩ V + of outer Cartesian grid points;
and (b) subsequent evaluation of the corresponding FCs in (3.1) by means of an FFT.
(Note that since the continuation function f c is a smooth function which vanishes
outside Ω∪V +, this function can be viewed as the restriction of a smooth and biperi-
odic function with periodicity rectangle R—whose Fourier series approximates f c

and, therefore f , accurately.) The efficiency of the interpolation scheme is of the ut-
most importance in this context—since interpolation to a relatively large set H ∩ V +

of Cartesian points is necessary. An accurate and efficient interpolation strategy is
obtained by combining two 1D (local) interpolation procedures based on nearby nor-
mal directions. The first interpolation procedure produces the parameter value θ
of the foot of the normal to Γ passing through a given Cartesian point; the second
procedure then approximates the continuation function value utilizing the parameter
value θ just mentioned and the continuation function values at the points in V +

B,Cr

around the given Cartesian point. A detailed description of the combined interpola-
tion methodology is presented in what follows. Specifically, we describe the strategy
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A974 OSCAR P. BRUNO AND JAGABANDHU PAUL

we use to interpolate the continuation function onto each point Q = zi,j ∈ H ∩ V +

and, to do this, we first obtain the foot F(Q) of this point. Using the proximity map P
described in subsection 3.3, the algorithm utilizes the curvilinear discretization point
sp,q = P(zi,j) ∈ V +

B,Cr
as well as the corresponding boundary discretization parame-

ter value θp; according to (3.6), the point q(θp) equals the foot of the normal passing
through sp,q: q(θp) = F(sp,q). The algorithm then seeks approximation of the foot
F(Q) and the corresponding parameter value θ = θQ via a preliminary interpolation
step, as indicated in what follows. The foot F(Q) and the corresponding parameter
value θ = θQ are then used by the algorithm to produce the desired interpolated
continuation value at Q.

In order to obtain F(Q) the algorithm uses the M boundary parameter values in
the set

Sθp = {θp−Kℓ
, θp−Kℓ+1, . . . , θp, θp+1, . . . , θp+Kr} ⊂ IB(3.8)

around θp (where Kr+Kℓ+1 = M , and where Kr = Kℓ if M is odd and Kr = Kℓ+1
if M is even. Parameter values θk with negative values of k, which may arise in (3.8),
are interpreted by periodicity: θk = θB+k).

The algorithm then utilizes the line L⊥
Q passing through Q that is orthogonal to

the normal vector n(θp) (see left image in Figure 4), together with the parametrization
ℓ tr
Q (τ) of L⊥

Q, where the parameter τ represents the signed distance of the points on

L⊥
Q from the point Q. Clearly, then, ℓtrQ(0) = Q. Each point of intersection of L⊥

Q with

the normals n(θj) (θj ∈ Sθp), on the other hand, equals ℓtrQ(τj), where τj denotes the
signed distance between Q and the corresponding intersection point. Thus, defining
the function θ = T (τ), where T (τ) gives the parameter value of the foot of the normal
through the point ℓtrQ(τ), we clearly have

θj = T (τj), p−Kℓ ≤ j ≤ p+Kr.(3.9)

It follows that a 1D interpolation procedure on the function T (τ) can be used to obtain
the desired approximation of the value θQ = T (0) of the parameter corresponding to
the foot of the point Q = zi,j : F(Q) = q(θQ) = q(T (0)).

Fig. 4. Interpolation schemes utilized to obtain the continuation function values on H ∩V + on
the basis of the continuation values on V +

B,Cr
. Left: Evaluation of the boundary parameter value for

the foot of the normal line passing through Q, depicted as a finely dotted line passing through that
point. The left image also displays the set of red-star interpolation points along the dashed-orange
line L⊥

Q. Right: Interpolation of continuation values from the curvilinear mesh to a point Q on the
Cartesian mesh.
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TWO-DIMENSIONAL FOURIER CONTINUATION A975

Once we have the corresponding foot parameter value θQ for the given Cartesian
point Q, the distance ηQ of the point Q to the boundary Γ is easily computed. Let
SθQ ⊂ IB be a set of M boundary parameter values, similar to the set Sθp defined
in (3.8), but with SθQ “recentered” around θQ. In order to obtain the continuation
function value at the point Q using the continuation function values on V +

B,Cr
, we

employ a local 2D polynomial interpolation scheme based on the set SθQ and the
distance ηQ, as indicated in what follows and illustrated in the right image of Figure 4.
First, the continuation values are obtained at each point (marked by blue asterisks in
the figure) at a distance ηQ from the boundary Γ along the normal grid lines in V +

B,Cr

that correspond to boundary parameter values in the set SθQ . Each one of these values
is obtained via 1D interpolation of the continuation function values on V +

B,Cr
along

the corresponding normal grid line in V +
B,Cr

. The desired continuation value at the
point Q, then, is obtained via a final 1D degree-(M − 1) interpolation step based on
the parameter set SθQ and values at the “blue-asterisk” points just obtained. Finally,
by applying the 2D FFT to the continuation function values computed above we then
obtain the desired Fourier series expression in (3.1) for the continuation function.

Remark 3.1 (function values on Γ). I. For definiteness, in this paper we have
assumed that the boundary data are provided in the form of values of the given
function—which correspond to the the Dirichlet boundary data in the PDE context.
But the approach is also applicable in cases for which the boundary data are given as
the normal derivative of the function, (Neumann boundary data), or even a combi-
nation of function and normal derivative values (Robin data) by relying on a slightly
modified blending-to-zero procedure of the type presented in [4]. II. If no boundary
data are available, the 2D-FC method can still be utilized on the basis of interior data
only, albeit with a certain reduction in accuracy near the boundary.

Remark 3.2 (extra vanishing values in 2 dimensions). As in the 1D case, prior
to the FFT procedure the grid H can be enlarged, with vanishing function values
assigned to the added discretization points to obtain a discretization containing a
number of discretization points equal to a power of two (or a product of powers of
small prime numbers) along each Cartesian direction, which leads to especially fast
evaluations by means of the FFT.

3.5. Summary of the 2D-FC procedure. This section presents a summary
of the 2D-FC procedure described in sections 3.1 through 3.4 for a function f given
on a uniform Cartesian grid H ∩ Ω within the domain of definition Ω, where H is
a Cartesian mesh over the rectangle R containing both Ω and the near-boundary
outer region V +; see subsection 3.1 and, in particular, Figure 2. The construction
of the continuation function f c for the given function f relies on the use of three
main parameters associated with the 1D blending-to-zero approach presented in sec-
tion 2, namely, d (number of points in the set D), C (number of unrefined discrete
continuation points), and nos (oversampling factor for the 1D blending-to-zero FC
procedure), together with the parameters nr (refinement factor for the discrete con-
tinuation points; Remark 2.2 and subsection 3.1), and M − 1 (degree of the inter-
polating polynomials; subsections 3.2 and 3.4). Additionally, the 2D-FC procedure
utilizes the precomputed matrices Ar and Q, which, with reference to subsection 2.2,
are obtained as per the description provided in Remark 2.2.

Using the aforementioned parameters and matrices, the algorithm proceeds in two
main steps, namely, step (a) A geometrical setup precomputation procedure (com-
prising points 1 through 4 below); and step (b) A Cartesian evaluation procedure
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A976 OSCAR P. BRUNO AND JAGABANDHU PAUL

(comprising points 5 through 7 below). Part (a) only concerns geometry, and, for
a given domain and configuration, could be produced once and used for evaluation
of FCs for many different functions, as is often necessary in practice. The necessary
normals may be obtained by employing explicit expressions for the domain boundary
when available (as is the case for all of the numerical examples considered in this
paper, as well as cases for which computer aided design representations are used),
but numerical evaluation of the boundary normals, e.g., based on polynomial or even
Fourier approximation, could be utilized instead.

The full 2D-FC algorithm thus proceeds according to the following seven-step
procedure:

1. Discretize Γ using a smooth parametrization q(θ) = (x(θ), y(θ)) (0 ≤ θ ≤ 2π)
and the uniform discretization IB = {0 = θ0 < θ1, . . . , < θB−1 < 2π} of the
interval [0, 2π] (subsection 3.1).

2. Using the discretization IB , construct two curvilinear meshes V −
B,d and V +

B,Cr

in the near-boundary regions V − (within Ω) and V + (outside Ω), respectively
((3.5) and (3.6)). Note that the discrete boundary points q(θj) with θj ∈ IB
are common to both V −

B,d and V +
B,Cr

.

3. Determine the setH∩V + of Cartesian grid points and construct the proximity
map P : H ∩ V + → V +

B,Cr
(subsection 3.3).

4. For all Q ∈ H ∩ V + obtain the the parameter value θQ ∈ [0, 1] of the foot
F(Q) of the normal through Q (subsection 3.4 and the left image in Figure 4).

5. For each normal grid line (inherent in V −
B,d and V +

B,Cr
) given by the dis-

cretization IB , compute the blending-to-zero function values along that nor-
mal (subsection 3.2).

6. For all the points Q ∈ H ∩ V +, obtain the continuation function value at Q
by local 2D interpolation (subsection 3.4 and the right image in Figure 4).

7. Apply the 2D FFT once to the continuation function values to obtain the
desired Fourier series in (3.1).

3.6. 2D-FC approximation: Numerical results. This section demonstrates
the accuracy and efficiency of the proposed 2D-FC method. Use of the 2D-FC method
requires selection of specific values for each one of the following parameters (all of
which are introduced in sections 2 and 3):

• d: number of points in the boundary section (subsection 2.2).
• C: number of continuation points (subsection 2.2).
• Z: number of zero-matching points (subsection 2.2).
• nos: oversampling factor for the matching procedure (subsection 2.2).
• nr: refinement factor along the normal directions in V +

B,Cr
(Remark 2.2).

• R: the smallest rectangle containing Ω ∪ V + (section 3).
• N = Nx ×Ny: number of points in the uniform spatial grid H (section 3).
• B: number of points in the boundary discretization (section 3).
• M − 1: interpolating polynomial degree (sections 3.2 and 3.4).

All the errors reported in this section (namely, the absolute maximum error εAbs
∞ ,

the relative maximum error εRel
∞ and the relative ℓ2 error εRel

2 ) were computed on a
Cartesian grid of step size h/2 within Ω. The approximations on the finer grid are
obtained by means of zero padding [22]. In all of the numerical examples considered
in this article the parameter selections were made in accordance with Remark 3.3.
The computer system used, in turn, is described in Remark 3.4.
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TWO-DIMENSIONAL FOURIER CONTINUATION A977

Remark 3.3 (parameter selections). For a given step size h used for the 2D Carte-
sian grid H, the normal and the boundary step sizes k1 and k2 (section 3) were taken
to coincide with h: k1 = k2 = h. The parameter values C = 27, nos = 20, Z = 12, and
nr = 6 were used in the evaluation of the matrices Ar and Q (see subsection 2.2 and
Remark 2.2). And, finally, with the exception of the interpolation-degree experiments
presented in Example 3.2 (Table 2) and Example 4.2 (Table 3), the interpolating-
polynomial degree (M−1) = (d+2) was used for the various matching-point numbers
d considered.

Remark 3.4 (computer system). All of the numerical results reported in this paper
were run on a single thread of a 3.40 GHz Intel Core i7-6700 processor with 15.4 Gb
of 2133 MHz memory, with the exception of Example 3.3, where a single thread of a
2.9 GHz Intel Core i7 processor with 32 Gb of memory was used.

Example 3.1 (performance and efficiency of the 2D-FC method). In our first ex-
ample we consider a problem of FC approximation of the function f : Ω → R given
by

f(x, y) = − sin(5πx) sin(5πy)(3.10)

on the unit disc Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. The left graph in Figure 5 displays
the relative ℓ∞ and ℓ2 errors as functions of the number N1D of grid points in one
spatial direction within Ω, in log-log scale, obtained from 2D-FC approximations of
the function f , for three different values of polynomial degree d defined in section 3.2,
namely, d = 4, d = 5, and d = 10 —demonstrating the respective fourth, fifth, and
tenth orders of convergence expected. Higher rates of convergence, which are use-
ful in some cases, can be achieved by using higher values of d, as demonstrated in
the context of the Poisson solver in subsection 4.1.1. The corresponding computing
costs, including “geometrical setup” cost as well as the “Cartesian evaluation” cost
are presented in the right graph of Figure 5. The geometrical setup cost combines
the setup time for the grids (section 3.1) V −

B,d, V
+
B,Cr

, and H; the time TP required
for construction of the proximity map P (subsection 3.3); and the time TF required

Fig. 5. Numerical errors in log-log scale (left graph) and computing times required (right
graph) in the 2D-FC approximation of the function f in (3.10) in the setting of Example 3.1. The
interpolating polynomial degree M = d+3 was used in all cases. The integer N1D equals the number
of spatial grid points in one spatial direction within Ω. Times reported correspond to averages over
10 runs.
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Table 1
Times (in sec) required by the various tasks in the 2D-FC algorithm in the setting of Exam-

ple 3.1. The times reported were calculated as time averages over 10 runs. The integer N1D equals
the number of spatial grid points in one spatial direction within Ω.

d h N1D B TP TF TV TH εRel
∞

4 2 · 10−2 100 313 2.1 · 10−3 2.6 · 10−3 1.7 · 10−3 6.5 · 10−3 4.7 · 10−4

1 · 10−2 200 628 4.2 · 10−3 5.2 · 10−3 3.8 · 10−3 1.2 · 10−2 2.7 · 10−5

5 · 10−3 400 1250 1.0 · 10−3 1.2 · 10−2 1.0 · 10−4 2.5 · 10−2 1.8 · 10−6

5 2 · 10−2 100 313 2.1 · 10−3 2.9 · 10−3 2.2 · 10−3 9.0 · 10−3 1.4 · 10−4

1 · 10−2 200 628 5.9 · 10−3 6.9 · 10−3 5.8 · 10−3 1.9 · 10−2 4.3 · 10−6

5 · 10−3 400 1250 1.1 · 10−2 1.3 · 10−2 1.2 · 10−2 3.1 · 10−2 1.4 · 10−7

10 2 · 10−2 100 313 2.2 · 10−3 3.9 · 10−3 4.2 · 10−3 2.6 · 10−2 4.1 · 10−5

1 · 10−2 200 628 4.3 · 10−3 6.6 · 10−3 8.8 · 10−3 4.7 · 10−2 1.6 · 10−7

Fig. 6. Kite-shaped domain.

for evaluation of the foot of the normal for all points in H ∩ V + (section 3.4). The
Cartesian evaluation time, in turn, equals the sum of the time TV required for evalua-
tion of the f c values on the curvilinear grid V + and time TH required for subsequent
interpolation onto the Cartesian grid H. Table 1 reports additional details concern-
ing computing times required by various tasks associated with the geometrical setup
and Cartesian evaluation for this example, including the times TP , TF , TV , and TH .
The Cartesian interpolation time TH dominates the overall Cartesian evaluation step
(cf. Table 1). In all of these cases we see that the computation time grows linearly
with 1/h. Also, the slope of the Cartesian evaluation cost depends on the degree d
whereas the geometrical setup cost, which remains similar in all the cases considered
in this example, depends mainly on B and the refinement factor nr. Note that these
costs do not depend upon the approximated function f ; rather the costs depend on
the resolution of the grids V −

B,d, V
+
B,Cr

, and H, and values of the relevant parameters
utilized by various parts of the algorithm.

Remark 3.5 (use of higher degree Gram polynomials). Comparison of the various
accuracy and timing values reported in Figure 5 suggests that use of lower 2D-FC
degrees such as d = 4 or d = 5 may provide the highest efficiency for approximation
accuracies up to single precision.

Example 3.2 (interpolation degree (M − 1) for a given 2D-FC order d). Our next
example concerns the approximation of the trigonometric function

f = −(x6 + y6) sin(10πx) sin(10πy),(3.11)

defined over the kite shaped domain (depicted in Figure 6) contained within the
curve given by x(θ) = cos(θ)+0.35 cos(2θ)− 0.35; y(θ) = 0.7 sin(θ) for 0 ≤ θ ≤ 2π. A
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TWO-DIMENSIONAL FOURIER CONTINUATION A979

Table 2
Convergence table for the 2D-FC method in the setting of Example 3.2. For both d = 4 and

d = 5, we observe the expected fourth and fifth orders of convergence, respectively, for all the three
choices of M , namely, M = d + 1, M = d + 2, and M = d + 3. The value M = d + 3 leads to
somewhat improved accuracy.

d M = d+ 1 M = d+ 2 M = d+ 3
h Nx Ny εAbs

∞ Ord. εAbs
∞ Ord. εAbs

∞ Ord.

4 1 · 10−2 297 197 1.8 · 10−3 — 1.4 · 10−3 — 9.2 · 10−4 —
5 · 10−3 537 337 2.0 · 10−4 3.2 9.0 · 10−5 3.9 3.1 · 10−5 4.9
2.5 · 10−3 1017 617 1.0 · 10−5 4.3 4.6 · 10−6 4.3 2.3 · 10−6 3.8
1.25 · 10−3 1977 1177 6.2 · 10−7 4.0 1.4 · 10−7 5.0 1.4 · 10−7 4.0
6.25 · 10−4 3897 2297 3.4 · 10−8 4.2 9.0 · 10−9 4.0 9.0 · 10−9 4.0

5 1 · 10−2 297 197 4.4 · 10−3 — 2.3 · 10−3 — 2.5 · 10−4 —
5 · 10−3 537 337 3.3 · 10−4 3.7 4.2 · 10−5 5.8 1.5 · 10−5 4.1
2.5 · 10−3 1017 617 1.8 · 10−5 4.2 4.3 · 10−7 6.6 2.6 · 10−7 5.8
1.25 · 10−3 1977 1177 4.1 · 10−7 5.4 6.4 · 10−9 6.1 4.1 · 10−9 6.0
6.25 · 10−4 3897 2297 1.2 · 10−8 5.0 1.3 · 10−10 5.6 1.3 · 10−10 5.0

Table 3
Convergence of the 2D-FC based solution of the Poisson problem described in Example 4.2.

M = MP = d+ 1 M = MP = d+ 2 M = MP = d+ 3
h Nx Ny εRel

2 Ord. εRel
2 Ord. εRel

2 Ord.

4 · 10−2 117 93 6.0 · 10−6 — 7.5 · 10−7 — 4.1 · 10−7 —
2 · 10−2 177 127 1.7 · 10−7 5.1 1.0 · 10−8 6.2 6.3 · 10−9 6.0
1 · 10−2 297 197 5.2 · 10−9 5.0 1.5 · 10−10 6.1 8.7 · 10−11 6.2
5 · 10−3 537 337 1.6 · 10−10 5.1 2.6 · 10−12 5.9 1.2 · 10−12 6.2
4 · 10−3 657 407 5.2 · 10−11 4.9 6.8 · 10−13 6.0 3.0 · 10−13 6.2

convergence study for this test case is presented in Table 2 for the values d = 4 and
d = 5, and with M = d+ 1, M = d+ 2, and M = d+ 3. Clearly, the selections M =
d + 2 and M = d + 3 provide similar accuracy in most of the 2D-FC approximation
cases considered. The value M = d + 3, which yields somewhat better interpolation
accuracy for larger step sizes (e.g., h = 10−2), and which, as illustrated in Table 3,
gives rise to some improvements for all step sizes in the Poisson-problem applications
considered in subsection 4.1, was used in all of the numerical experiments presented
in this article (except for the cases specifically designed to test the dependence of the
accuracy on variations of the parameter M).

Example 3.3 (accuracy and computing-cost comparison). In this example we com-
pare the performance of the 2D-FC method (with d = 10) to that provided by the
2D-FE (Fourier extension) method [21], using the author’s implementation of the FE
method available through the Julia package FrameFun, on a disc of area 4 and for the
function

f(x, y) = e(x+y) cos(100xy)

(which exhibits approximately 36 oscillations along the diameter). We compare the
computing time and memory requirments of these two methods to provide approxi-
mations of the function f with similar errors. To achieve an accuracy ≈ 1.7 · 10−3 in
the approximation of f , the Julia implementation of the FE method required 2,555
seconds and used approximately 12 Gb of computer memory whereas the the 2D-FC
method required 0.2 seconds and it used less than 200 Mb of computer memory. To
achieve an accuracy of ≈ 7 ·10−8, in turn, the FE method required 4, 200 seconds and
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A980 OSCAR P. BRUNO AND JAGABANDHU PAUL

Fig. 7. Demonstration of the 2D-FC procedure. Continuation of an oscillatory function defined
on a kite shaped domain, as detailed in Example 3.4. The left and right images display the original
and 2D-FC function values, respectively. The blue curve in the left image indicates the boundary of
the kite-shaped domain Ω. Note the narrowness of the region wherein the transition to zero takes
place.

16 Gb of memory while the 2D-FC method required 0.5 seconds and less than 700
Mb of memory. This simple comparison clearly demonstrates the significance of the
O(N logN) complexity of the 2D-FC method relative to the O(N2 log2 N) complexity
of the FE approach.

Example 3.4 (graphical illustration of the 2D-FC method). Figure 7 demonstrates
the 2D-FC extension method for the function defined by

f(x, y) = 4 + (1 + x2 + y2)(sin(2.5πx− 0.5) + cos(2πy − 0.5)),

over the kite-shaped domain considered in Example 3.2. Both the original function
and its extension are presented in Figure 7.

4. Applications of the 2D-FC method. The 2D-FC method introduced in
section 3 can be used to facilitate spectral treatment in cases for which iterated use of
1D Fourier expansions does not suffice, but for which use of full 2D Fourier expansions
is beneficial. Subsections 4.1 and 4.2 describe two such cases, one concerning solution
of the Poisson problem via FE, and, the other, the solution of the wave equation via
a novel Fourier forwarding (FF) technique. Several numerical examples are presented
for both applications to demonstrate the character of the resulting numerical solvers.

4.1. Application example I: Poisson problem. In this section we present a
2D-FC based method for the solution of the 2D Dirichlet Poisson problem{

∆u(x, y) = f(x, y), (x, y) ∈ Ω

u(x, y) = g(x, y), (x, y) ∈ Γ;
(4.1)

the corresponding problem under Neumann or Robin boundary conditions can be
treated similarly. The approach is outlined in what follows; a complete description
of the method, including, most notably, details concerning the geometrical treatment
used for accurate evaluation of the solution near boundaries, is presented in supple-
ment section SM1.
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TWO-DIMENSIONAL FOURIER CONTINUATION A981

The proposed Poisson solver obtains the solution u within the prescribed tolerance
as a sum

u = up + v(4.2)

of a “particular solution” up, produced by means of the 2D-FC method, which satisfies
the Poisson equation ∆u = f (but which generically does not satisfy the boundary
conditions), and a solution v of the “homogeneous problem,” produced by means of a
boundary-integral equation, which satisfies the Dirichlet boundary-value problem for
Laplace’s equation {

∆v(x, y) = 0, (x, y) ∈ Ω,

v(x, y) = ghom(x, y), (x, y) ∈ Γ,
(4.3)

where

ghom(x, y) = g(x, y)− up(x, y)|Γ.(4.4)

A particular solution up for the problem (4.1) can easily be obtained from the
2D-FC expansion f c(x, y) of the right-hand function f(x, y) (3.1)—in view of the
diagonal character of the Laplace operator in Fourier space. We thus obtain

up(x, y) = −f̂ c
0,0(x

2 + y2)/4 +

Nx/2∑
ℓ=−Nx/2+1

Ny/2∑
m=−Ny/2+1

bℓ,me
2πi

(
ℓx
Lx

+my
Ly

)
,(4.5)

where

bℓ,m =

{
0, if (ℓ,m) = (0, 0),

−f̂c
ℓ,m

(2πℓ/Lx)2+(2πm/Ly)2
, if (ℓ,m) ̸= (0, 0),

(4.6)

where one of a variety of possible selections was made for the constant Laplacian term.
In view of the asymptotically small factors that relate the Fourier coefficients bℓ,m to

the original FC coefficients f̂ c
ℓ,m it follows that, as illustrated in subsection 4.1.1, the

rate of convergence in the overall numerical 2D-FC based solution u is of O(hd+2) if a
2D-FC algorithm of O(hd) is utilized to compute the particular solution up (provided
a sufficiently accurate method is subsequently used for evaluation of the homogeneous
solution v).

Values up(r) of the particular solution at points r on the boundary Γ are required
as an input (via (4.4)) in the boundary value problem (4.3) for the Laplace solution v.
It is therefore necessary to utilize an efficient method for evaluation of up at points r
that are not part of the Cartesian mesh H. The straightforward procedure based on
direct addition of all terms in (4.5) for each discretization point on Γ does not match
the optimal O(N log(N)) cost asymptotics enjoyed by all the other elements of the
algorithm and is therefore avoided. Instead, the proposed algorithm first obtains the
values of the right-hand side of (4.5) for all r ∈ H via a direct application of the FFT
algorithm, and, then, using these values, it produces the values for r ∈ Γ via iterated
1D interpolation, as described in [22, sect. 3.6.1]. In order to match the overall order
(d+2) accuracy of the overall Poisson solution, 1D polynomial interpolants of degree
(MP − 1) ≥ (d + 2) (cf. Example 4.2) are used in this context for both the x and y
interpolation directions.
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A982 OSCAR P. BRUNO AND JAGABANDHU PAUL

The numerical solution of the Laplace equation in (4.3), in turn, can be obtained
rapidly and efficiently on the basis of the boundary-integral method (see, e.g., [19]).
Relying on the boundary parametrization (3.2), the proposed algorithm incorporates
an integral equation with a smooth kernel together with the simple and effective
Nyström algorithm presented in [19, sect. 12.2]. Based on trapezoidal-rule quadra-
ture, this algorithm results in highly accurate solutions: in view of the periodicity
and smoothness of the solution and the kernel, the approach yields superalgebraically
small errors provided the boundary and right-hand side ghom are both smooth. The
associated linear system is solved by means of the iterative linear algebra solver GM-
RES [23]. Note that the integrand exhibits a near singular behavior for evaluation
points that are near the boundary Γ but that are not on Γ. In order to address this
difficulty, the proposed method uses a scheme (some elements of which were intro-
duced in [2, 9]) which, based on local mesh refinement and subsequent interpolation
using a polynomial of degree (MP −1), successfully resolves this difficulty. A detailed
description of this and other aspects concerning the 2D-FC based Poisson solver is
presented in supplementary material section SM1.

Once the particular and homogeneous solutions up and v have been obtained,
the solution u of the Poisson problem is given by (4.2). The numerical convergence
rate of the solution produced by the algorithm is mainly determined by the order
d of the 2D-FC algorithm used. In all, the method is fast and highly accurate; a
few illustrations, including accuracy and timing comparisons with leading solvers, are
presented in the following section.

4.1.1. Numerical illustrations for the Poisson problem. The numerical
illustrations presented in this section utilize the 2D-FC parameter selections presented
in Remark 3.3, with various choices of the order parameter d. In addition, the size
of the uniform boundary discretization used by the trapezoidal-rule based Nyström
method is taken, for simplicity, to equal Nx—but, of course, in view of the super-
algebraic convergence of the trapezoidal-rule quadrature, a smaller discretization size
could have been used without sacrificing accuracy. The ℓ2 and ℓ∞ errors reported in
this section were computed over the Cartesian grid H ∩Ω unless indicated otherwise.
The first Poisson-solver example concerns a simple problem previously considered
in [14].

Example 4.1 (high-order 2D-FC based Poisson solution). We consider the Poisson
problem 4.1 in the domain Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1} with f = − sin(2πx)
sin(2πy). The left portion of Figure 8 presents the numerical errors in the solutions
produced by the 2D-FC based Poisson solvers for d = 4, d = 6, and d = 8 for
f = − sin(2πx) sin(2πy). The observed rates of convergence for all three cases match
the expected increased rates of convergence, as discussed in subsection 4.1, that is, rate
convergences of orders 6, 8, and 10, respectively. This problem was also considered
in [14]. Comparison of the results presented in [14, Figure 8] and those on the left
graph in Figure 8 suggests a somewhat better 2D-FC performance for lower accuracies,
and it indicates a clearly favorable performance of the 2D-FC based Poisson solver for
high accuracies. For instance, a discretization containing N1D = 100 grid points in one
spatial direction within Ω (leading to a total of Nx = Ny ≈ N1D + 2C(C = 27) grid
points over one length of the extended rectangular computational domain), provides,
as shown in Figure 8, an ℓ2 error 1.4 · 10−12 whereas, in [14, Figure 8], a similar
discretization provides ℓ2 errors close to 10−9. The 10−12 error is achieved in that
reference at a number of approximately 275 points in spatial discretization points in
each spatial direction. For a different test case in this problem setting we now take
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TWO-DIMENSIONAL FOURIER CONTINUATION A983

Fig. 8. Numerical solution errors, in log-log scale against the numbers of spatial grid points
in one spatial direction within Ω, resulting from use of the 2D-FC based Poisson solver over the
unit disc (Example 4.1). Left graph: solution errors for 2D-FC methods of orders d = 4, d = 6 and
d = 8 for the function f = − sin(2πx) sin(2πy). Right graph: solution errors with d = 10 and d = 12
for the function f = − sin(5πx) sin(5πy). The parameter N1D denotes the maximum number of grid
points in one spatial direction in Ω. A total of Nx = Ny ≈ N1D + 2C points (C = 27) were used
over each dimension of the periodic square R. As discussed in the text, a convergence rate of order
(d+ 2) results from use of a 2D-FC approximation of order d.

f = − sin(5πx) sin(5πy) (a function that was also used for the convergence study of
the 2D-FC algorithm as presented in Example 3.1), and we report, on the right graph
in Figure 8, the numerical errors in the solution produced by the solvers for higher
values of d, namely, d = 10 and d = 12. Once again the expected convergence rates
(in this case, of orders 12 and 14, respectively) are observed in practice. Additionally,
we report the error resulting from a much finer grid than is required to achieve a close
to machine level accuracy, illustrating the stability of the approximation method—in
that use of arbitrarily fine grids does not cause accuracy degradation.

Example 4.2 (Poisson-solution interpolation degree (MP − 1)). Once again we
consider the problem (4.1) over a kite-shaped domain as in Example 3.2 with f =
− sin(2πx) sin(2πy). The errors in the solutions produced by the 2D-FC based Poisson
solver and the corresponding convergence rates for d = 4 and three different values of
MP (= M), namely, MP = d+1, MP = d+2, andMP = d+3, are presented in Table 3.
The observed rates of convergence for MP = d+2 and MP = d+3 show the increased
d + 2 = sixth-order convergence rate whereas the selection MP = d + 1 = 5 shows
a fifth-order convergence as the overall error in the Poisson solution is dominated by
the error associated with the order-five interpolation process. The value MP = d+ 3
is utilized for all Poisson-problem numerical results presented in this paper.

Example 4.3 (highly oscillatory Poisson problem). Here we consider the prob-
lem (4.1) over the kite-shaped domain considered in Example 3.2 with the highly
oscillatory right-hand side f = − sin(40πx) sin(40πy). In this example, where we
have used d = 10 for the 2D-FC particular-solution algorithm, the overall conver-
gence rate, as reported in Table 4, is close to the expected convergence rate of order
(d + 2). In order to avoid near-singular integration problems which arise, under the
fine discretizations considered in this example, as the numerical solution is evaluated
at points very near the boundary Γ, here we report the error at all the Cartesian points
within the computational domain that are at a greater distance from Γ than 0.2.
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Table 4
Interior errors in the numerical solutions produced by the 2D-FC based Poisson solver of order

d = 10, in the setting of Example 4.3. (Errors are computed over points lying at a distance 0.2
from the domain boundary; see Example 4.3.) A scaling-error even better than the expected order
(d+ 2) = 12 was observed in this case.

h Nx Ny εRel
∞ Ord. εRel

2 Ord.

5 · 10−3 537 337 9.3 · 10−4 — 3.4 · 10−4 —
2.5 · 10−3 1017 617 6.0 · 10−8 13.9 1.7 · 10−8 14.3
1.25 · 10−3 1977 1177 5.8 · 10−12 13.3 1.6 · 10−12 13.4

4.2. Application example II: FF method for wave propagation prob-
lems. This section presents the 2D-FC based FF method for the solution of the
initial boundary value problem

utt = c2(uxx + uyy) for (x, y, t) ∈ Ω× R+,(4.7)

u(x, y, t)|t=0 = f(x, y), (x, y) ∈ Ω,(4.8)

ut(x, y, t)|t=0 = g(x, y), (x, y) ∈ Ω,(4.9)

u(x, y, t) = h(x, y, t), (x, y, t) ∈ Γ× R+,(4.10)

for the 2D wave equation with constant coefficients. A similar FF approach for lin-
ear hyperbolic systems with piecewise constant anisotropic media, which can also be
developed, is left for future work.

In order to obtain a solution of this problem, the FF method (1) exploits the fact
(also used in [16, 25] in the context of biperiodic problems) that the solution of the
wave equation in all of R2 with the initial data u(r, 0) = aeiκ·r and ut(r, 0) = beiκ·r

is itself given in closed form as a combination of two time-domain plane waves; and,
(2) using a sequence Tj = j∆T (j = 0, 1, . . . ) of times, with an adequately selected
“large” time step value ∆T , it constructs auxiliary solutions UFC(x, y, t;Tj) of (4.7)
of the form

UFC(x, y, t;Tj) =

Nx/2∑
ℓ=−Nx/2+1

Ny/2∑
m=−Ny/2+1

aℓm(t;Tj)e
2πi

(
ℓx
Lx

+my
Ly

)
,(4.11)

valid for Tj ≤ t ≤ Tj+1+ q∆t (with q = 1 or q = 2 and where ∆t is a small time step,
as described in what follows) in a spatial region away from the domain boundary, by
applying the 2D-FC algorithm to the numerical solution at times Tj = j∆T (j =
0, 1, . . . ). In detail, in view of the limited domain of dependence of solutions of the
wave equation [18], the auxiliary solution UFC(x, y, t;Tj) with Tj ≤ t ≤ Tj+1 + q∆t
provides a valid numerical approximation of the solution u(x, y, t) over the subset
Ωδ = {r = (x, y) ∈ Ω : dist(r,Γ) > δ} ⊂ Ω with δ = c(∆T + q∆t). To compute the
solution UB(x, y, t;Tj) on the region Ω \ Ωδ adjacent to the physical boundary, the
FF method uses a classical time-stepping scheme, with spatial derivatives obtained
by means of the 1D-FC method, and using a (typically much smaller) time step
∆t, which is taken small enough so as to ensure stability (as dictated by the CFL
condition) and to yield an accuracy level consistent with that inherent in the 2D-FC
approximation used. The selection ∆t = ∆T/K for a suitably chosen integer K > 0 is
used to ensure both the FC-forwarding and the time-stepping solutions are available
at time t = Tj+1. The q∆t term in the time interval Tj ≤ t ≤ Tj+1+q∆t is included to
enable evaluation of the time derivative of the near-boundary solution at time Tj+1 by
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TWO-DIMENSIONAL FOURIER CONTINUATION A985

means of a centered difference scheme, centered at t = Tj+1, with an order of accuracy
consistent with those used for near-boundary time stepping. In particular, the value
q = 1 (resp., q = 2) is utilized in conjunction with the third- (resp., fifth-) order
Taylor series time-stepping method embodied in (4.16) (resp., (4.17)) in section 4.2.2.

The following two sections present the necessary details concerning the application
of these ideas for the evaluation of the solution

u(x, y, t) =

{
UFC(x, y, t;Tj) for (x, y, t) ∈ Ωδ × [Tj , Tj+1],

UB(x, y, t;Tj) for (x, y, t) ∈ (Ω \ Ωδ)× [Tj , Tj+1]
(4.12)

over a given time interval Tj ≤ t ≤ Tj+1, as well as the time derivative of the solution
at t = Tj+1, on the basis of the numerical values of the solution and its time derivative
at t = Tj for (x, y) ∈ H ∩ Ω; this procedure can be used inductively starting from
j = 0 to enable solution for all j, and, therefore, up to any given final time T . For
notational simplicity the argument Tj is suppressed in what follows.

4.2.1. Evaluation of the forwarded solution UFC. In order to obtain the
auxiliary solution UFC(x, y, t) the method utilizes the Cartesian grid H (3.7) together
with the 2D-FC expansionsF (x, y) =

∑Nx/2
ℓ=−Nx/2+1

∑Ny/2

m=−Ny/2+1 f̂
c
ℓme

2πi
(

ℓx
Lx

+my
Ly

)
,

G(x, y) =
∑Nx/2

ℓ=−Nx/2+1

∑Ny/2

m=−Ny/2+1 ĝ
c
ℓme

2πi
(

ℓx
Lx

+my
Ly

)
,

(4.13)

(cf. (3.1)) of the approximate numerical solution fj(x, y) ≈ u(x, y, t)|t=Tj and its time
derivative gj(x, y) ≈ ut(x, y, t)|t=Tj

for (x, y) ∈ H ∩ Ω. (Note that the values of f0
and g0 at t = T0 = 0 are given by the initial data f(x, y) and g(x, y); see (4.8) and
(4.9)). Clearly, provided the functions aℓm(t) in (4.11) satisfy the equations

a′′ℓm(t) + αℓmaℓm(t) = 0,

aℓm(t)|t=Tj
= f̂ c

ℓm,
∂aℓm(t)

∂t |t=Tj = ĝcℓm

(4.14)

for −Nx/2 + 1 ≤ ℓ ≤ Nx/2 and for −Ny/2 + 1 ≤ m ≤ Ny/2 (where αℓm = (2πc)2 ×
[(ℓ/Lx)

2 + (m/Ly)
2]), the function UFC(x, y, t) satisfies (4.7) as well as the initial

conditions UFC(x, y, t)|t=Tj
= F (x, y) and ∂UFC(x,y,t)

∂t |t=Tj
= G(x, y) for (x, y) ∈ R2.

Substituting the explicit solutions

aℓm(t) =

f̂ c
ℓm + tĝcℓm for (ℓ,m) = (0, 0),

f̂ c
ℓm cos(αℓmt) +

ĝcℓm
αℓm

sin(αℓmt) for (ℓ,m) ̸= (0, 0)
(4.15)

of the ODE (4.14) into (4.11) the solution UFC(x, y, t) for (x, y) ∈ R2 is obtained. An
application of the 2D spatial inverse FFT over the Cartesian grid H to the coefficients
aℓ,m(t) then yields, per the discussion above concerning domains of dependence, a
numerical approximation of the solution u(x, y, t) for Tj ≤ t ≤ Tj+1 and for all
(x, y) ∈ H ∩ Ωδ. Similarly, an application of the 2D spatial inverse FFT to the
coefficients a′ℓm(Tj+1) provides a numerical approximation of the time derivative ut

at t = Tj+1 for (x, y) ∈ H∩Ωδ, which is needed as initial conditions for the subsequent
time step Tj+1 ≤ t ≤ Tj+2. The d value used for the computation of the solution UFC

is denoted by dFC in what follows.
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A986 OSCAR P. BRUNO AND JAGABANDHU PAUL

Fig. 9. Illustration for the FF method. Small rectangular region utilized to forward the auxiliary
solution for the black-square interior boundary points.

4.2.2. Evaluation of the near-boundary solution UB. As suggested above,
to obtain the near boundary solution UB(x, y, t) (see (4.12)) the method utilizes an
explicit time stepping scheme in a certain open set ΩB ⊃ Ω \ Ωδ adjacent to the

boundary. In this region the method uses a refined uniform spatial grid H̃B of step
size h̃ = h/2 which, to maintain accuracy, is needed in view of the interpolatory
strategy that is used for enforcement of boundary conditions, as described below.
The refined boundary grid H̃B is placed in such a way that alternate points in H̃B

coincide with points in H ∩ΩB along both the x- and y-coordinates, as illustrated in
the right image in Figure 9.

Boundary-condition enforcement. The time-stepping scheme requires that the
boundary conditions for UB be enforced at all Cartesian “boundary points” of the
discrete set H̃B—including those near Γ and those near ∂Ωδ, which are, henceforth,
called “physical discrete boundary points” and “interior discrete boundary points”
(illustrated as green squares and blue crosses in Figure 9), respectively.

The boundary conditions at physical discrete boundary points are enforced, with
high-order accuracy, as proposed in [5], on the basis of a certain interpolation proce-
dure, along grid lines, which utilizes the given boundary values on Γ as well as the
solution values at the interior points of H̃B . The corresponding boundary condition
at the interior discrete boundary points near ∂Ωδ, on the other hand, are produced,
for efficiency, by means of a special procedure which avoids a full evaluation of the
FC expansion for UFC at each small-∆t time interval, and which constructs and uses,
instead, solutions similar to (4.11) but over some small square regions, such as the
square region span by the red circles in Figure 9, without imposition of boundary
conditions over the boundary of the square. In what follows the value of d used for
the FC expansions on the small square regions is denoted by dss. Detailed descriptions
of the strategies used for enforcement of the boundary conditions at the physical and
interior boundary points are presented in section SM2.

Near-boundary time stepping. Finally, the near boundary solution UB (which is

based on use of the small time step ∆t on the grid H̃B in ΩB) may be obtained by
means of any adequate time-stepping approach; here we use the Taylor series methods
(see [5, sect. 2.2]) of orders three and five (with respective local truncation error of
orders O(∆t4) and O(∆t6)):
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TWO-DIMENSIONAL FOURIER CONTINUATION A987

u(tn+1) ≈ 2u(tn)− u(tn−1) + ∆t2
∂2u

∂t2
+O(∆t4), and(4.16)

u(tn+1) ≈ 2u(tn)− u(tn−1) + ∆t2
∂2u

∂t2
+

∆t4

12

∂4u

∂t4
+O(∆t6),(4.17)

respectively. Using (4.7), the time derivatives in the schemes above are replaced by the
spatial derivatives, which are themselves computed by means of the 1D-FC method
(subsection 2.2; cf. also [4, 11]). (The value of d employed in the application of the
1D-FC algorithm for evaluation of spatial derivatives in the boundary time-stepping
procedure is denoted by dts.) To ensure stability of the solver the method utilizes the
spectral filter

w(x) =

N/2∑
ℓ=−N/2

ŵℓ exp(iℓx) −→
N/2∑

ℓ=−N/2

ŵℓ exp(−α(2ℓ/N)2p exp(iℓx)(4.18)

(cf. [4] and references therein) with values of the parameters p and α given in sub-
section 4.2.4. In the j = 0 case (0 ≤ t ≤ T1) the initial values for UB are obtained
from the initial conditions f(x, y) and g(x, y) (see (4.8) and (4.9)); for subsequent
time intervals the solution process for UB is simply continued forward in time; no
additional initial values are needed for UB at the start of the time intervals [Tj , Tj+1]
for j > 0.

In order to compute numerical values of the time derivative ut(x, y, t) over the
near-boundary grid (Ω\Ωδ)∩H, which are needed as part of the FC-forwarding initial
conditions for the subsequent large time step ∆T (or, more precisely, for Tj+1 ≤ t ≤
Tj+2+ q∆t), the method employs the centered finite difference scheme on the basis of
the values UB(x, y, t) at the time steps t = Tj+1−q∆t, Tj+1−(q−1)∆t, . . . , Tj+1+q∆t,
where q depends on the overall order of the Taylor series method used. In particular,
in the context of third-order (resp., fifth-order) Taylor series time stepping the value
q = 1 (resp., q = 2) is used together with the centered difference finite difference
scheme with truncation error of order three (resp., five).

4.2.3. Summary and computational cost of the FF method.
FF method summary. Combining the 2D-FC forwarded solution UFC and the near

boundary solution UB according to (4.12) the desired FF numerical approximation of
the solution u throughout the Cartesian set H ∩ Ω is obtained up to time t = Tj+1.
Repeating this procedure the solution may be advanced up to time t = Tj = j∆T for
arbitrarily large values of j, and, thus, up to an arbitrary final time T .

FF method computational cost. In view of the fact that auxiliary solutions
UFC(x, y, t) need only be computed once per large time step ∆T , a significant im-
provement results in the asymptotic global computational cost per small time step
∆t over the cost required by classical finite difference and finite element spatial dis-
cretizations. Indeed, letting nc = [δ/h] > 0 and assuming the Cartesian mesh H ∩ Ω
contains a total of O(N) grid points, it follows that Ω\Ωδ contains a total of O(

√
Nnc)

grid points. It is easy to check that the value of nc that minimizes the computational
cost is nc = O(N1/4), and, thus, that the computational cost per time step of the
overall FF algorithm is O(N3/4 logN) operations. Interestingly, owing to the large
multiplicative constant in front of the asymptotic cost estimate for the time-stepping
portion in the boundary region Ω \ Ωδ, large increases in N are necessary for the
optimal nc value to increase by one or a few units. Thus, in some of the numerical
examples considered in the present paper, for all of which we have N ≤ 4 · 106, the

D
ow

nl
oa

de
d 

06
/0

2/
22

 to
 1

31
.2

15
.7

0.
17

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A988 OSCAR P. BRUNO AND JAGABANDHU PAUL

value of nc is set to a constant. This selection leads to an overall cost estimate of
approximately O(

√
N logN) operations for some of the cases considered in this paper

as the asymptotically large O(N logN) FFT cost incurred by the algorithm has in
fact a limited impact in such cases. The performance of the resulting FF method for
a number of test cases is demonstrated in subsection 4.2.4 below.

4.2.4. FF: Numerical examples. The numerical examples presented in this
section demonstrate the character of the FF method, including high-order conver-
gence, limited dispersion, and sublinear computing cost. In all the cases considered,
the 2D-FC parameter selections were made in accordance with Remark 3.3 and the
simulations were run on the computer described in Remark 3.4. Either the third-
or fifth-order time-stepping schemes in (4.16) and (4.17) were utilized for boundary

time stepping (as indicated in each case) with CFL number ∆t/h̃ = 0.1. The pa-
rameter values p = 4 and α = 5 (resp., p = 4 and α = 8) were used for the spectral
filter (4.18) together with the third- (resp., fifth-) order Taylor series method. The
value e = dts was used for the enforcement of the boundary condition at the physical
discrete boundary points near Γ (SM2.2). It is useful to recall here the parameters
used to indicate the numbers d of matching points utilized by the various FC-based
operations performed, namely,

– the d = dFC value used by the 2D-FC operation to compute the solution UFC;
– the d = dss value used by the FC operation over the small square regions to
compute the boundary values at the interior discrete boundary points; and

– the d = dts value used by the 1D-FC operation for calculating the spatial
derivatives in the near boundary region Ω \ Ωδ.

Example 4.4 (accuracy and high-order convergence of the FF method). This ex-
ample employs the method of manufactured solutions to demonstrate the accuracy
and convergence of the solutions provided by the FF method. We thus consider the
wave equation (4.7) with the initial and (Dirichlet) boundary conditions selected in
such a way that the exact solution is given by

u(x, y, t) = cos(2κ(x+ t)/3) + cos(κ(y + t))(4.19)

(with κ = 5π) on two different domains, namely, the unit disc Ω = {(x, y) ∈ R2 :
x2+y2 ≤ 1} and the kite-shaped domain depicted in Figure 6. Tables 5 to 7 report con-
vergence results for the solution u(x, y, t) at time T = 2. In particular, Table 5 presents
results produced using the third-order Taylor series time-stepping scheme with FC d-
values given by dFC = dss = dts = 3. Table 6 presents results produced by means
of the fifth-order Taylor series time-stepping scheme with dFC = 4, dss = dts = 5.
The value dFC = 4 was used in the latter test case as it was found that the value
dFC = 5, matching the Taylor series order, results in numerical instability. Table 7, fi-
nally, presents a convergence study for the kite-shaped domain with parameter values
dFC = 4, dss = dts = 5, and a fifth-order Taylor series method for boundary region time
stepping. The fixed value nc = 6 (section 4.2.3) was used for Table 5, but the variable
relation nc = ⌊(6/10)

√
Nx⌋ was utilized to produce the results in Tables 6 and 7. In

all three cases we observe the expected rate of convergence or better. In particular,
in Tables 6 and 7 we observe a near fifth-order convergence despite the use of the value
dFC = 4 (which yields a fourth-order-accurate 2D-FC algorithm). This behavior is at-
tributed to the high accuracy in the UFC solution for the initial (large) time steps ∆T .D
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TWO-DIMENSIONAL FOURIER CONTINUATION A989

Table 5
Convergence study for the solution of the wave equation by means of the FF method in a disc-

shaped domain. The third-order Taylor series method was used for time stepping over the boundary
region with FC d-values given by dFC = dss = dts = 3. The fixed value of nc = 6 was used in all
cases.

h Nx Ny εAbs
∞ Ord. εRel

∞ Ord. εRel
2 Ord.

2 · 10−2 157 157 1.4 · 10−2 — 6.8 · 10−3 — 3.5 · 10−3 —
1 · 10−2 257 257 1.6 · 10−3 3.1 7.8 · 10−4 3.1 4.1 · 10−4 3.1
5 · 10−3 457 457 1.4 · 10−4 3.5 6.8 · 10−5 3.5 3.3 · 10−5 3.6
2.5 · 10−3 857 857 1.2 · 10−5 3.5 5.9 · 10−6 3.5 2.9 · 10−6 3.5
1.25 · 10−3 1656 1656 1.2 · 10−6 3.3 6.0 · 10−7 3.3 3.0 · 10−7 3.3

Table 6
Convergence study for the solution of the wave equation by means of the FF method in a disc-

shaped domain. The fifth-order Taylor series method was used for time stepping over the boundary
region with FC d-values given by dFC = 4 and dss = dts = 5.

h Nx Ny εAbs
∞ Ord. εRel

2 Ord.

2 · 10−2 157 157 3.2 · 10−4 — 7.8 · 10−5 —
1 · 10−2 257 257 1.3 · 10−5 4.6 3.1 · 10−6 4.6
5 · 10−3 457 457 4.1 · 10−7 5.0 1.1 · 10−7 4.8

Table 7
Convergence study for the solution of the wave equation by means of the FF method in a kite-

shaped domain. The fifth-order Taylor series method was used for time stepping over the boundary
region with FC d-values given by dFC = 4 and dss = dts = 5.

h Nx Ny εAbs
∞ Ord. εRel

2 Ord.

2 · 10−2 177 127 3.8 · 10−4 — 1.3 · 10−4 —
1 · 10−2 297 197 1.7 · 10−5 4.5 4.0 · 10−6 5.0
5 · 10−3 537 337 5.8 · 10−7 4.9 1.6 · 10−7 4.6

Example 4.5 (long-time stability and limited dispersion of the FF method). This
test case demonstrates the long-time stability and low dispersion provided by the
overall FF method for a propagation problem over the kite-shaped domain depicted
in Figure 6, where the exact solution is given by (4.19) with κ = 5π. Figure 10
presents the solution errors up to time T = 40 (a total of one hundred time periods)
resulting from use of 20 points per wavelength, dFC = di = dts = 4, and third-order
Taylor series time stepping over the near-boundary region. In particular, Figure 10
clearly demonstrates an essentially null dispersion (error growth over time) within
this simulation time interval.

Example 4.6 (sublinear computing-cost asymptotics and limited dispersion over
a frequency range). In order to demonstrate the favorable computing-cost asymp-
totics and limited dispersion associated with the FF algorithm over a wide frequency
range we utilize once again the unit-disc problem considered in Example 4.4, with
solution (4.19), for wave numbers κ varying from κ = 10π to κ = 120π (in such a way
that the solution spans w = 10 to w = 120 wavelengths across the domain Ω). The
top graph in Figure 11 reports the maximum absolute solution error (computed over
all the Cartesian grid points within Ω) at time T = 2, at which all w wavelengths
have crossed the domain once. The required computational times per small ∆t as a
function of the number w of wavelengths across Ω are presented on the bottom graph
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A990 OSCAR P. BRUNO AND JAGABANDHU PAUL

Fig. 10. Long-time stability study.

Fig. 11. Accuracy and computing times (in seconds) for problems of the type considered in Ex-
ample 4.4 on the unit disc, with varying values of κ. The third-order Taylor series method was used
for time stepping over the boundary region with FC d-values given by dFC = dss = dts = 4. Top
graph: maximum absolute errors at time T = 2 for problems spanning a number w of wavelengths
across the disc. Bottom graph: computing times required per small-∆t time step. Fifteen points per
wavelength and a fixed value nc = 6 (δ = nch) were used for this numerical experiment.

in Figure 11. A fixed fifteen points per wavelength and a fixed value nc = 6 (thus,
δ = nch of the boundary region) were used for this numerical experiment. As dis-
cussed at the end of subsection 4.2.3, an O(N1/2 logN) growth in the computational
time is observed as the size N of the spatial discretization grows—significantly more
favorable than the O(N) cost that would be required by a regular spatio-temporal
finite difference algorithm.

Example 4.7 (interior multiple-scattering illustration). This example provides a
graphical illustration of an FF solution, wherein a pulse excitation in the interior of
the kite-shaped domain depicted in Figure 6 is enforced by means of the boundary
condition

u = cos(κs) exp(−s2/σ2)g(t)(4.20)

with

s = (t− |r − r0|)/|r − r0|

and

g(t) =


0 for t = 0,

1− exp
(

2 exp(−t0/t)
t/t0−1.0

)
for t < t0,

1 for t ⩾ t0,

(4.21)D
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TWO-DIMENSIONAL FOURIER CONTINUATION A991

Fig. 12. Fourier Forwarding method applied to the interior-domain wave propagation problem
described in Example 4.7. The solution is shown, from top left to bottom right, after 100, 500, 2050,
2750, 3200 and 4300 timesteps.

where r0 = (−1.1,−0.72), t0 = 0.05, and κ = 20π. A fixed number nc = 8 of
points across the boundary region and slightly over 20 points per wavelength were
used. Vanishing initial values of u and ut at t = 0 were enforced; note that, like the
initial condition, the imposed boundary values (4.20) vanish at t = 0. For improved
visualization, the computed solution values presented in the figure were scaled by the
maximum solution value at each specific point in time. (The scaling values range
approximately between 1 and 3, and they are nearly equal to 1 for the first four
images, all three in the upper row, and the leftmost image in the lower row.)

5. Conclusions. This paper introduced a novel 2D-FC method for biperiodic
extension of functions defined on arbitrary smooth 2D domains. Applications to the
Poisson and wave-equation problem, including the development of the FF method,
have resulted in numerical PDE solvers of high orders of accuracy, and, most impor-
tantly, of extremely low numerical dispersion. Extensions of these methodologies to
problems in higher dimensions, and to problems on nonsmooth domains, are left for
future work.
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