
A NOISE-TOLERANT QUASI-NEWTON ALGORITHM FOR
UNCONSTRAINED OPTIMIZATION

HAO-JUN MICHAEL SHI∗, YUCHEN XIE† , RICHARD BYRD‡ , AND JORGE NOCEDAL§

Abstract. This paper describes an extension of the BFGS and L-BFGS methods for the min-
imization of a nonlinear function subject to errors. This work is motivated by applications that
contain computational noise, employ low-precision arithmetic, or are subject to statistical noise.
The classical BFGS and L-BFGS methods can fail in such circumstances because the updating pro-
cedure can be corrupted and the line search can behave erratically. The proposed method addresses
these difficulties and ensures that the BFGS update is stable by employing a lengthening procedure
that spaces out the points at which gradient differences are collected. A new line search, designed
to tolerate errors, guarantees that the Armijo-Wolfe conditions are satisfied under most reasonable
conditions, and works in conjunction with the lengthening procedure. The proposed methods are
shown to enjoy convergence guarantees for strongly convex functions. Detailed implementations of
the methods are presented, together with encouraging numerical results.

Key words. unconstrained optimization, quasi-Newton method, stochastic optimization, noisy
optimization, derivative-free optimization, nonlinear optimization

AMS subject classifications. 90C30, 90C53, 90C56

1. Introduction. Quasi-Newton methods, such as BFGS and L-BFGS, are used
widely in practice because they require only first-order information and are yet able
to construct useful quadratic models that make them faster and easier to use than
the classical gradient method. However, in the presence of errors in the function and
gradient evaluations, these methods may behave erratically. In this paper, we show
how to design practical noise-tolerant versions of BFGS and L-BFGS that retain the
robustness of their classical counterparts. The main challenge is to ensure that the
updating process and the line search are not dominated by noise.

This paper builds upon the theoretical results of Xie et al. [29] who show that by
incorporating a lengthening procedure, the BFGS method enjoys global convergence
guarantees to a neighborhood of the solution for strongly convex functions. However,
the algorithm proposed in [29] is not practical as it requires knowledge of the strong
convexity parameter m of the objective function, which is normally not known. An
overestimate of m may lead to an unstable iteration, whereas an underestimate can
slow down convergence. The quasi-Newton algorithms proposed in this paper com-
pute the lengthening parameter adaptively without the need for exogenous function
information; they are designed for solving general nonlinear optimization problems
and are supported by a convergence analysis for strongly convex objectives. A dis-
tinctive feature of our approach is the use of a new line search procedure that works
in conjunction with the lengthening technique introduced in this paper.

∗Department of Industrial Engineering and Management Sciences, Northwestern University, Evan-
ston, IL, USA. hjmshi@u.northwestern.edu. This author was supported by a grant from Facebook,
and by National Science Foundation grant DMS-1620022.
†Department of Industrial Engineering and Management Sciences, Northwestern University, Evan-

ston, IL, USA. ycxie@u.northwestern.edu. This author was supported by the Office of Naval Research
grant N00014-14-1-0313 P00003.
‡Department of Computer Science, University of Colorado, Boulder, CO, USA.

richard@cs.colorado.edu. This author was supported by National Science Foundation grant
DMS-1620070.
§Department of Industrial Engineering and Management Sciences, Northwestern University, Evan-

ston, IL, USA. j-nocedal@northwestern.edu. This author was supported by the Office of Naval Re-
search grant N00014-14-1-0313 P00003, and by National Science Foundation grant DMS-1620022.

1

ar
X

iv
:2

01
0.

04
35

2v
3

 [
m

at
h.

O
C

]
 9

 S
ep

 2
02

1

mailto:hjmshi@u.northwestern.edu
mailto:ycxie@u.northwestern.edu
mailto:richard@cs.colorado.edu
mailto:j-nocedal@northwestern.edu

2 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

The problem under consideration is

(1.1) min
x∈Rd

φ(x),

where φ : Rd → R is a smooth function. This minimization must be performed while
observing only inaccurate function and gradient information, i.e., by observing

(1.2) f(x) = φ(x) + ε(x), g(x) = ∇φ(x) + e(x),

where the scalar ε and the vector e model the errors. We will consider the setting
where the errors are bounded and the bounds are either known or estimated through
an auxiliary procedure, such as ECNoise or pointwise sample variance estimation [23].
Specifically, we assume |ε(x)| ≤ εf and ‖e(x)‖2 ≤ εg for all x ∈ Rd, and that the
algorithm has access to εf and εg.

Problems of this type arise in many practical applications, including when the
noise is computational or adversarial. For example, in PDE-constrained optimiza-
tion, the objective function often contains computational noise created by an inexact
linear system solver [23], adaptive grids [1], or other internal computations. In those
applications, the optimization method may not be able to control the size of the errors.
In other cases, errors are due to stochastic noise, which can be caused, for example, by
an intermediate Monte Carlo simulation [12]. In these cases, errors may be control-
lable via Monte Carlo sampling. Error in the gradient can also be inherited from noise
in the function within derivative-free optimization while employing gradient approxi-
mations based on finite-differencing, interpolation, or smoothing [4, 5, 15, 16, 24, 26].
In this case, the gradient errors can be controlled by the choice of the finite-difference
interval, but can only be diminished to a certain extent under the presence of function
noise. We note, however, that there are applications where noise is not bounded or
where the bounds εf , εg depend on x, in which case the methods proposed here cannot
be directly applied.

The fact that the BFGS and L-BFGS methods can be unstable in the presence
of noise is due to the nature of the BFGS updating procedure. One simple way to
illustrate this is by recalling that the Hessian approximation is updated based on
observed gradient differences:

g(x+ p)− g(x) = ∇φ(x+ p) + e(x+ p)−∇φ(x)− e(x), p ∈ Rd.

If ‖p‖ is very small, the gradients of φ could cancel out leaving only noise differences.
Thus, the standard BFGS method may falter even before the iterates approach the
region where noise dominates. Although one could argue that the situation just
described is unlikely in practice, it shows that convergence guarantees cannot be
established in this case.

To provide more concrete numerical evidence for the need to bolster the BFGS
method, we illustrate in Figure 1 the solution of the ARWHEAD problem [17] in which
independent random noise uniformly distributed on [−10−3, 10−3] is introduced to
each component of the gradient. One can observe a very large increase in the condition
number of the BFGS matrix that is unseen when noise is removed. This shows that
the Hessian approximation is corrupted, and an examination of the run indicates that
the line search gives rise to tiny steps once this has occurred. The ARWHEAD problem
is chosen because it is easily solved yet clearly illustrates the instability of the BFGS
matrix under the presence of noisy updates; we revisit this example in §5.1.

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 3

0 200 400 600 800 1000
Iterations

103

107

1011

1015

(H
k)

ARWHEAD
BFGS

Fig. 1. The condition number of the BFGS matrix κ(Hk) against the number of iterations on
the ARWHEAD problem with added noise.

The literature of the BFGS method with inaccurate gradients includes the implicit
filtering method of Kelley et al. [13, 20], which assumes that noise can be diminished
at will at any iteration. Dennis and Walker [14] and Ypma [30] study bounded
deterioration properties and local convergence of quasi-Newton methods with errors,
when started near the solution with a Hessian approximation that is close to the exact
Hessian. Barton [2] and Berahas, et al. [3] propose implementations of the BFGS
method and L-BFGS method in which gradients are computed by an appropriate
finite differencing technique, assuming that the noise level in the function evaluation
is known. There has recently been some interest in designing quasi-Newton methods
for machine learning applications using stochastic approximations to the gradient
[7, 9, 10, 19, 25, 28]. These papers avoid potential difficulties with BFGS or L-BFGS
updating by assuming that the quality of gradient differences is sufficiently controlled,
and as a result, the analysis follows similar lines as for their classical counterparts.
The work that is most relevant to this paper is by Xie et al. [29], who introduce the
lengthening technique and establish conditions under which a steplength satisfying
the Armijo-Wolfe line search conditions exists.

The contributions of this work are as follows: i) we propose practical extensions
of the BFGS and L-BFGS methods for nonlinear optimization that are capable of
dealing with noise by employing a new line search/lengthening technique that sta-
bilizes the quasi-Newton update. This strategy relies on the noise control condition
(2.9) introduced in this paper; ii) we provide a convergence analysis for the proposed
method for strongly convex objective functions based on the properties the noise con-
trol condition instead of assuming knowledge of the strong convexity parameter, as is
done in [29]; iii) we describe implementations of the methods in full detail, and pres-
ent extensive numerical results that suggest that our approach is robust for certain
classes of noisy optimization problems.

The paper is organized into 6 sections. In section 2, we describe the proposed
algorithms, and in section 3 we establish convergence for strongly convex objectives.
In section 4, we describe practical implementations of the noise-tolerant BFGS and L-
BFGS methods. In section 5, we present the results of experiments on noisy synthetic
examples. Lastly, we give our final remarks in section 6.

2. The Algorithm. The BFGS and L-BFGS methods for minimizing φ, when
only noisy observations (1.2) of the function and gradient are available, have the form

(2.1) xk+1 = xk − αkHkg(xk),

4 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

where Hk � 0 is an approximation to the inverse Hessian, ∇2φ(xk)−1, and the
steplength αk is computed by a line search. Given a curvature pair

(sk, yk) = (xk+1 − xk, g(xk+1)− g(xk))(2.2)

= (αkpk, g(xk + αkpk)− g(xk)),(2.3)

where pk = −Hkg(xk), the BFGS formula updates Hk as follows:

(2.4) Hk+1 = (I − ρkskyTk)Hk(I − ρkyksTk) + ρksks
T
k , where ρk = 1/yTk sk.

The L-BFGS method stores the past t curvature pairs and computes the matrix-vector
product Hkgk via a two-loop recursion, with memory and computational complexity
that is linear with respect to the problem dimension d [21]. For both methods, a line
search ensures that yTk sk > 0, guaranteeing that the update (2.4) is well defined.

As discussed in the previous section, the difference in gradients g(xk + αkpk) −
g(xk) may be dominated by noise, rendering the curvature information inaccurate and
potentially malign. To safeguard against this, Xie et al. [29] introduced a lengthen-
ing operation that ensures that meaningful curvature information is being collected.
Specifically, they redefine the curvature pair by

(2.5) (sk, yk) = (βkpk, g(xk + βkpk)− g(xk)),

where βk ≥ αk is a sufficiently large lengthening parameter. The theoretical analysis
in [29] states that setting βk = O(εg/m‖pk‖) ensures linear convergence to a neigh-
borhood of the solution for strongly convex problems, where m is the strong convexity
parameter and εg is an upper bound on the norm of the gradient noise, i.e.,

(2.6) ‖g(x)−∇φ(x)‖2 = ‖e(x)‖2 ≤ εg ∀x ∈ Rd.

However, the analysis in [29] does not directly yield an implementable algorithm, as
the parameter m is generally not known in practice. Furthermore, [29] does not pro-
pose a practical line search procedure for finding a steplength that satisfies the Armijo-
Wolfe conditions—although it does establish the existence of such a steplength.

We now propose a rule for computing βk that does not require knowledge of m,
as well as a practical line search procedure. In our approach, we enforce the following
three conditions on the steplength αk and the lengthening parameter βk:

f(xk + αkpk) ≤ f(xk) + c1αkg(xk)T pk (Armijo condition)(2.7)

g(xk + αkpk)T pk ≥ c2g(xk)T pk (Wolfe condition)(2.8)

(g(xk + βkpk)− g(xk))T pk ≥ 2(1 + c3)εg‖pk‖ (noise control)(2.9)

where 0 < c1 < c2 < 1 and c3 > 0. Here and throughout the paper, ‖ · ‖ denotes the
Euclidean norm. The Armijo-Wolfe conditions (2.7)–(2.8) ensure that the steplength
αk that is taken by the algorithm is not too short and yields sufficient decrease on the
(noisy) objective function, while the noise control condition (2.9) on βk is designed
so that the difference in the observed directional derivatives is sufficiently large so as
not to be dominated by noise. A motivation for (2.9) and a discussion of its salient
properties are given below.

To satisfy the three conditions above one could find a steplength αk that satisfies
(2.7)-(2.8), and if (2.9) holds for βk = αk, then set βk ← αk. Otherwise, one can
search for βk > αk to satisfy (2.9). In practice, we employ a different strategy
described in section 4.1 to achieve similar objectives.

The outline of the proposed method is given in Algorithm 2.1.

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 5

Algorithm 2.1 Outline of Noise-Tolerant BFGS and L-BFGS Methods

Input: function f(·) and gradient g(·); noise level in gradient εg; initial iterate x0
and Hessian approximation H0 � 0;

1: for k = 0, 1, 2, ... do
2: Compute pk = −Hkg(xk) by matrix-vector multiplication (BFGS) or two-loop

recursion [27] (L-BFGS);
3: Perform a line search to obtain αk satisfying (2.7) and (2.8); if the line search

fails, then compute αk such that f(xk + αkpk) ≤ f(xk);
4: Take the step xk+1 = xk + αkpk;
5: Perform a lengthening procedure to obtain βk satisfying (2.9);
6: Compute the curvature pair (sk, yk) using βk, as in (2.5);
7: Update the Hessian approximation Hk by (2.4) (BFGS) or update set {(si, yi)}

of curvature pairs (L-BFGS);
8: end for

The Armijo-Wolfe line search is guaranteed to find a steplength αk that satisfies
conditions (2.7)-(2.8) only when the gradient is sufficiently large relative to the noise
level; otherwise pk is not guaranteed to be a descent direction. To handle this case,
a line search failure occurs when a maximum number of trial points is computed
without satisfying (2.7) and (2.8). The algorithm requires an estimate of the noise
level εg, which can be obtained through sampling or through the Hamming procedure
described in [24]. The main remaining ingredient in this algorithm is a description of
a procedure for computing αk and βk in step 3 and 5. This will be discussed in §4.2.

2.1. Motivation of the Noise Control Condition (2.9). We first note that
the Wolfe condition (2.8) alone does not ensure that the BFGS update is productive
in the noisy setting. Even though (2.8) guarantees that

yTk sk ≥ −(1− c2)g(xk)T sk > 0,

and this is sufficient for maintaining the positive definiteness of the BFGS matrix, this
does not mean that yk properly reflects the curvature of the true function, namely
∇φ(xk + αkpk) − ∇φ(xk), because yk may be contaminated by noise, as discussed
before.

Let us, in contrast, observe the effect of the noise control condition (2.9). We
have

(g(xk + βkpk)− g(xk))T pk

= [(∇φ(xk + βkpk)−∇φ(xk)) + (e(xk + βkpk)− e(xk))]
T
pk

≤ (∇φ(xk + βkpk)−∇φ(xk))T pk + (‖e(xk + βkpk)‖+ ‖e(xk)‖)‖pk‖
≤ (∇φ(xk + βkpk)−∇φ(xk))T pk + 2εg‖pk‖,

by (2.6). Combining this with (2.9) we have

(2.10) (∇φ(xk + βkpk)−∇φ(xk))T pk ≥ 2c3εg‖pk‖,

and thus the true difference in the directional derivative is sufficiently large relative
to the gradient noise εg. If we define

(2.11) ỹk = ∇φ(xk + βkpk)−∇φ(xk),

6 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

and recall from (2.5) that sk = βkpk, we can write (2.10) as

ỹTk sk ≥ 2βkc3εg‖pk‖.

We can also establish a relationship between the observed and true curvature
along the step sk. In particular, if βk > 0 satisfies the noise control condition (2.9)
and (2.6) holds, then∣∣∣∣sTk ỹksTk yk

− 1

∣∣∣∣ ≤ ‖sk‖‖ỹk − yk‖sTk yk
≤ 2εg‖sk‖

sTk yk
≤ 1

1 + c3

which implies that

(2.12)

(
1 +

1

1 + c3

)−1
sTk ỹk ≤ sTk yk ≤

(
1− 1

1 + c3

)−1
sTk ỹk.

This result shows that when condition (2.9) is satisfied, the noisy curvature pair
(sk, yk) is a good approximation to the true curvature pair (sk, ỹk), with the parameter
c3 trading off the quality of this approximation with the locality of the curvature
information being collected (in the sense that βk may be excessively large if c3 is
chosen to be large).

Note that we are guaranteed finite termination of the lengthening procedure if
there exists a β̄ > 0 such that for all β > β̄,

∇φ(xk + βpk)T pk ≥ ∇φ(xk)T pk + 2c3εg‖pk‖.

This is guaranteed if limβ→∞∇φ(xk +βpk)T pk =∞, which holds for strongly convex
functions, as well as for many other (but not all) functions.

Let us now verify that the noise control condition is compatible with the choice

(2.13) β = O(εg/m‖pk‖)

stipulated by Xie et al. [29] in their convergence analysis of the BFGS method with
errors for strongly convex functions. If φ is m-strongly convex, then

ỹTk pk = (∇φ(xk + βkpk)−∇φ(xk))T pk ≥ mβk‖pk‖2.

Therefore, by our assumption, we have

yTk pk ≥ ỹTk pk − 2εg‖pk‖ ≥ (mβk‖pk‖ − 2εg)‖pk‖.

Therefore it suffices to ensure that

(2.14) mβk‖pk‖ − 2εg ≥ 2(1 + c3)εg, i.e. βk ≥
2(2 + c3)εg
m‖pk‖

,

to satisfy (2.9).

Remark 1. It is natural to ask whether there are less expensive alternatives to
the lengthening strategy mentioned above. The noise control condition (2.9) offers
the possibility of skipping the BFGS update when it is not satisfied. We describe
this approach and test it in §5. Another possibility is to use Powell damping [27,
chapter 18], but we consider this to be somewhat dangerous, as it would involve
repeatedly introducing spurious information in the Hessian approximation without
much safeguard.

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 7

3. Convergence Analysis. Xie et al. [29] established convergence results for
the BFGS method using a lengthening strategy designed to cope with errors in the
function and gradient. They assume the lengthening parameter satisfies βk‖pk‖ ≥
2εg/m. This leaves open the question of how to estimate the strong convexity param-
eter m in practice so that the convergence results in [29] still hold.

In this paper, we bypass this thorny issue and propose the lengthening strategy
based on the noise control condition (2.9), which employs an estimate of the noise
level of the gradient εg, but does not require knowledge of m. We now establish
conditions under which Algorithm 2.1 is linearly convergent to a neighborhood of the
solution determined by the noise level. We make the following assumption about the
underlying function φ, which is standard in the analysis of quasi-Newton methods.

Assumption 3.1. The function φ is m-strongly convex and has M -Lipschitz con-
tinuous gradients, i.e., there exist constants 0 < m ≤M such that

m‖x− y‖2 ≤ [∇φ(x)−∇φ(y)]
T

(x− y) ≤M‖x− y‖2, ∀x, y ∈ Rd.

In addition, we assume that the errors in the gradient and objective function approx-
imation are bounded.

Assumption 3.2. There are constants εg ≥ 0 and εf ≥ 0 such that

(3.1) ‖∇φ(x)− g(x)‖ ≤ εg, ∀x ∈ Rd, and

(3.2) |φ(x)− f(x)| ≤ εf , ∀x ∈ Rd.

Byrd and Nocedal [11] showed that if all curvature pairs (sk, yk) satisfy

(3.3)
sTk yk
sTk sk

≥ m̂, yTk yk
sTk yk

≤ M̂, ∀k ∈ N,

for some constants 0 < m̂ ≤ M̂ , then most of the iterates generated by the (classical)
BFGS method are “good iterates” in the sense that the angle between the search
direction and the steepest direction is bounded away from orthogonality. This fact
is used in [11] to establish convergence of the BFGS algorithm with various types of
line searches for strongly convex functions.

The first step in our analysis consists of showing that bounds of the form (3.3) are
satisfied for both the BFGS and L-BFGS versions of our noise tolerant Algorithm 2.1,
due to the role of the noise control condition (2.9). For convenience, we summarize
the notation introduced in the previous section:

sk = βkpk, yk = g(xk + sk)− g(xk), ỹk = ∇φ(xk + sk)−∇φ(xk),

and therefore the noise control condition can be written as

sTk [g(xk + sk)− g(xk)] ≥ c εg‖sk‖,

with c = 2(1 + c3).

Notation. So far we let Hk denote the BFGS approximation of the inverse Hessian.
The classical analysis of the BFGS method analyzes, however, the direct Hessian
approximation Bk defined as B−1k = Hk [27]. Therefore, some of the results quoted
from [29], are stated in terms of Bk.

8 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

Lemma 3.3. Suppose that Assumptions 3.1 and 3.2 hold and that sk 6= 0 is chosen
such that

(3.4) sTk [g(xk + sk)− g(xk)] ≥ c εg‖sk‖,

with c > 2 and εg > 0. Then we have that

(3.5)
sTk yk
sTk sk

≥ c

c+ 2
m,

yTk yk
sTk yk

≤ c

c− 2
M.

Proof. Since ‖sk‖ > 0 we have that

sTk yk
sTk sk

≥ c εg
‖sk‖

> 0.

In addition, since ‖ỹk − yk‖ ≤ 2εg and by Assumption 3.1 we have

sTk yk
sTk sk

≥ sTk ỹk
sTk sk

− 2εg
‖sk‖

≥ m− 2εg
‖sk‖

.

Combining these two inequalities, we obtain

sTk yk
sTk sk

≥ c

c+ 2
m,

which proves the first inequality in (3.5).
For the second bound in (3.5), first note that ‖yk‖ ≤ M‖sk‖ + ‖ỹk − yk‖ ≤

M‖sk‖+ 2εg. Therefore,

(3.6) ‖sk‖ (M‖sk‖+ 2εg) ≥ ‖sk‖‖yk‖ ≥ sTk yk ≥ cεg‖sk‖,

which yields the following lower bound on ‖sk‖:

(3.7) ‖sk‖ ≥ (c− 2)
εg
M
.

Since φ is m-strongly convex with M -Lipschitz continuous gradients, by [8, Proposi-
tion 6.1.9 (b)] we have

(x−z)T [∇φ(x)−∇φ(z)] ≥ mM

m+M
‖x−z‖2 +

1

m+M
‖∇φ(x)−∇φ(z)‖2, ∀x, z ∈ Rd.

Setting x← xk + sk, z ← xk, and noticing that x− z = sk, ∇φ(x)−∇φ(z) = ỹk, we
have

sTk ỹk ≥
mM

m+M
‖sk‖2 +

1

m+M
‖ỹk‖2.

By re-arranging the terms, we get

‖ỹk‖2 − (M +m)sTk ỹk +

(
M +m

2

)2

‖sk‖2 ≤
(
M −m

2

)2

‖sk‖2,

which is equivalent to ∥∥∥∥ỹk − M +m

2
sk

∥∥∥∥ ≤ M −m
2

‖sk‖ .

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 9

Consequently ∥∥∥∥yk − M +m

2
sk

∥∥∥∥2 ≤ (M −m2
‖sk‖+ 2εg

)2

,

i.e.,

‖yk‖2 − (M +m)sTk yk +

(
M +m

2

)2

‖sk‖2

≤
(
M −m

2

)2

‖sk‖2 + 2(M −m)‖sk‖εg + 4ε2g.

Note that we have shown sTk yk > 0, therefore, we can simplify the equation above to

(3.8)
yTk yk
sTk yk

≤ (M +m) +
(2εg +M‖sk‖)(2εg −m‖sk‖)

sTk yk
.

Case 1: if 2εg −m‖sk‖ < 0, then we have

yTk yk
sTk yk

≤ (M +m)− ‖sk‖(2εg +M‖sk‖)
sTk yk

(
m− 2

εg
‖sk‖

)
From (3.6) we know that

‖sk‖(M‖sk‖+ 2εg) ≥ sTk yk

therefore,

yTk yk
sTk yk

≤M + 2
εg
‖sk‖

Combining this with the lower bound ‖sk‖ ≥ (c− 2)εg/M given in (3.7), we have

yTk yk
sTk yk

≤M +
2εg
‖sk‖

≤M +
2

c− 2
M =

c

c− 2
M.

Case 2: if 2εg −m‖sk‖ ≥ 0, then we have from (3.8) and (3.4)

yTk yk
sTk yk

≤ (M +m) +
(2εg +M‖sk‖)(2εg −m‖sk‖)

cεg‖sk‖

= (M +m) +
1

c

(
2 +M

‖sk‖
εg

)(
2
εg
‖sk‖

−m
)
.

The right hand side increases as ‖sk‖/εg decreases, hence setting ‖sk‖ to the lower
bound given in (3.7), we have

yTk yk
sTk yk

≤ (M +m) +
1

c

(
2 +M

‖sk‖
εg

)(
2
εg
‖sk‖

−m
)

≤ (M +m) +
1

c

(
2 +M

c− 2

M

)(
2
M

c− 2
−m

)
=

c

c− 2
M.

This proves the second inequality.

10 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

As mentioned above, if we set c = 2(1 + c3) in (3.4), we obtain the noise control
condition (2.9). Therefore, we have the following guarantee on the curvature pairs
generated by Algorithm 2.1:

(3.9)
sTk yk
sTk sk

≥ m̂ =
1 + c3
2 + c3

m,
yTk yk
sTk yk

≤ M̂ =

(
1 +

1

c3

)
M, k = 0, 1, 2, ...

To continue using the results in [11] we define, for any γ > 0, the index of “good
iterates” J(γ) as

(3.10) J(γ) = {k ∈ N| cos θk ≥ γ},

where cos θk is the angle between pk = −Hkgk and −gk. The following lemma uses
the bounds (3.9) to show that that for some values γ, the set J(γ) contains a fraction
of the iterates.

Lemma 3.4. Let {xk}, {pk} be generated by Algorithm 2.1, using either the full-
BFGS or L-BFGS variant. Then for any 0 < q < 1, there exists γ > 0 such that

(3.11) |J(γ) ∩ [0, k − 1]| ≥ qk,

where J(γ) is defined by (3.10).

Proof. For the full-BFGS variant of Algorithm 2.1, since we have shown that (3.9)
holds, Theorem 2.1 in [11] guarantees that for any 0 < q < 1, there exists γF > 0
such that

(3.12) |J(γF) ∩ [0, k − 1]| ≥ qk.

For the L-BFGS method with memory length t, we have Bk = H−1k = Bk,t,
where Bk,i+1 are computed by applying BFGS update to Bk,i with the curvature pair
(sk+i−t, yk+i−t), and Bk,0 is defined by

Bk,0 =
1

γk
I, γk =

sTk−1yk−1

yTk−1yk−1
.

Now we apply techniques developed in [11]. For any positive definite matrix B, let

ψ(B) = trB − log detB.

Since all curvature pairs {(sk, yk)} satisfy (3.9), by [11, (2.9)] we have

ψ(Bk,i+1) ≤ ψ(Bk,i) + (M̂ − log m̂).

Therefore, we have

ψ(Bk) = ψ(Bk,t) ≤ ψ(Bk,0) + t(M̂ − log m̂).

By [11, (2.7)], we have

κ(Bk) ≤ exp [ψ(Bk)] ≤ exp
[
ψ(B0) + t(M̂ − log m̂)

]
=
[
γke

1/γk
]d

exp
[
t(M̂ − log m̂)

]
.

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 11

By (3.9) and the Cauchy-Schwarz inequality,

m̂ ≤
sTk−1yk−1

sTk−1sk−1
≤
yTk−1yk−1

sTk−1yk−1
=

1

γk
≤ M̂,

hence,

γke
1/γk = e1/γk−log(1/γk) ≤ exp[M̂ − log m̂],

which implies that

κ(Bk) ≤ exp
[
(d+ t)(M̂ − log m̂)

]
.

Finally, note that since sk = −βkHkgk and HkBk = I,

cos θk =
gTkHkgk
‖gk‖‖Hkgk‖

=
sTkBksk
‖sk‖‖Bksk‖

≥ λmin(Bk)‖sk‖2

λmax(Bk)‖sk‖2
=

1

κ(Bk)

≥ exp
[
−(d+ t)(M̂ − log m̂)

]
.

Therefore, we have

cos θk ≥ γL ≡ exp
[
−(d+ t)(M̂ − log m̂)

]
, ∀k ∈ N,

i.e.,

|J(γL) ∩ [0, k − 1]| = k, ∀k ∈ N

which finishes the proof.

By the discussions above, for both full-BFGS and L-BFGS variants of Algo-
rithm 2.1, we can choose a fixed q∗ ∈ (0, 1) and find γ∗ > 0 such that

(3.13) |J(γ∗) ∩ [0, k − 1]| ≥ q∗k, ∀k ∈ N;

i.e., such that a fraction of iterates are guaranteed to be good iterates. From now on,
let us fix the choice q∗ and γ∗. Using the above results together with the analysis in
[29] we arrive at the following convergence result.

Theorem 3.5. Suppose that Assumptions 3.1 and 3.2 hold. Let {xk} be generated
by Algorithm 2.1, using either L-BFGS or standard BFGS. Fix q∗ ∈ (0, 1) and choose
γ∗ > 0 such that (3.13) holds. Define

(3.14) N1 =

{
x

∣∣∣∣∣ ‖∇φ(x)‖ ≤ max

{
A

√
Mεf

γ∗
, B

εg
γ∗

}}
,

and

(3.15) N2 =

{
x
∣∣∣ φ(x) ≤ 2εf + max

y∈N1

φ(y)

}
⊇ N1,

where

A = max

{
16
√

2√
(c2 − c1)(4− c1 − 3c2)

,
8√

c1(1− c2)

}

B = max

{
8

1− c2
,

8(1 + c1)

c2 − c1
+ 6

}
.

12 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

Let

(3.16) K = min
k
{k ∈ N | xk ∈ N1}

be the index of the first iterate that enters N1. Assume that for all iterates k ∈ J(γ∗)
such that xk /∈ N1 the line search procedure finds αk satisfying (2.7)–(2.8). Then there
exists ρ ∈ (0, 1) such that

φ(xk)− φ∗ ≤ ρk (φ(x0)− φ∗) + 2εf , ∀k ≤ K − 1.

Moreover, we have that K < +∞ and

xk ∈ N2, ∀k ≥ K.

Proof. Note that Algorithm 2.1 differs from Algorithm 2.1 of [29], only in the
quasi-Newton updating strategy and lengthening procedure. This implies that the
results through Theorem 3.5 of [29] concerning the existence of an Armijo-Wolfe step-
size, also apply to Algorithm 2.1 of this paper, since the proofs of these these results
do not depend on the update used. In Lemma 3.3 of this paper we showed that the
lengthening procedure in step 5 of Algorithm 2.1 guarantees bounds on (sTk yk/s

T
k sk)

and (yTk yk/s
T
k yk) such as those of Lemma 3.8 of [29]. Using these bounds we estab-

lished Lemma 3.4 whose results are identical to those of Corollary 3.10 in [29], with
γ∗ replacing β1. With that change, the rest of the results of [29], including Theorems
3.16–3.18, hold for Algorithm 2.1 of this paper, proving the theorem.

Theorem 3.5 states that the iterates generated by Algorithm 2.1 converge linearly
to a neighborhood of the solution N1, whose size depends on the noise levels εf , εg;
the iterates will enter N1 in finite number of iterations, and will remain in a larger
neighborhood N2 thereafter.

4. A Practical Algorithm. In order to implement Algorithm 2.1, we need to
design a practical procedure for computing the steplength αk and the lengthening
parameter βk. This can be done in various ways, and in this section we present a
technique that has performed well in practice. After describing this algorithm in
detail, we present several heuristics designed to improve its practical performance.

4.1. Two-Phase Line Search and Lengthening Procedure. Algorithm 2.1
and the convergence analysis of the previous section require that αk and βk satisfy
conditions (2.7), (2.8) and (2.9). We now propose a procedure for computing these
quantities.

The line search operates in two phases. The initial phase attempts to satisfy
three conditions with the same parameter αk = βk:

f(xk + αkpk) ≤ f(xk) + c1αkg(xk)T pk(4.1)

g(xk + αkpk)T pk ≥ c2g(xk)T pk(4.2)

|(g(xk + αkpk)− g(xk))T pk| ≥ 2(1 + c3)εg‖pk‖,(4.3)

where 0 < c1 < c2 < 1 and c3 > 0. Observe that (4.3) and the Wolfe condition (4.2)
imply the noise control condition (2.9) employed so far in the paper. We incorporate
the absolute value in (4.3) in order to introduce a symmetric noise condition that can
be used to determine when to adapt αk and βk independently. If εf = εg = 0, then

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 13

we can guarantee that the initial phase will reduce to the standard Armijo-Wolfe line
search, as we describe below.

The initial phase is done using the logic of the standard bisection search: back-
tracking if the Armijo condition is not satisfied, and advancing if the Armijo condition
is satisfied and the Wolfe condition is not, but with one important modification. If
the Armijo condition (4.1) is satisfied, we will check (4.3) prior to checking the Wolfe
condition (4.2).

If at any iteration of the line search the noise control condition (4.3) is not satisfied
or if the line search has performed more than the allowed number (Nsplit) of iterations,
then the initial phase is terminated and the second phase, which we call the split phase,
is triggered. In this phase, αk and βk are updated independently from each other.
The steplength αk is updated via the standard Armijo backtracking line search while
the lengthening parameter βk is lengthened independently until the conditions

f(xk + αkpk) ≤ f(xk) + c1αkg(xk)T pk(4.4)

(g(xk + βkpk)− g(xk))T pk ≥ 2(1 + c3)εg‖pk‖(4.5)

are satisfied. We backtrack more aggressively (by a factor of 10) in the split phase
in order to mitigate the cost of additional function evaluations. The limit Nsplit is
imposed to prevent the line search from being fooled from noise indefinitely.

The two-phase line search (without heuristics) is presented in Algorithms 4.1 and
4.2. For completeness, we also present the pseudocode for the complete practical
algorithm in 4.3.

By the design of the two-phase line search, our algorithm behaves the same as the
standard (L-)BFGS algorithm (without interpolation) for non-noisy problems as long
as Nsplit is sufficiently large because the split phase will never occur. In particular,
if εg = 0, then condition 4.3 will always be satisfied by any αk and therefore the
initial phase reduces to the standard Armijo-Wolfe line search. However, unlike the
deterministic setting, the two-phase line search may not be guaranteed to find αk and
βk under certain scenarios. When the iteration has reached the region where errors
are large relative to the gradient, the backtracking line search may fail to find αk; this
is to be expected. A more subtle case is when the function is exceedingly flat along the
search direction pk so that even for a large β the function exhibits insufficient change
in curvature; in this case the lengthening procedure may fail to find an appropriate
βk. To safeguard against both of these cases, the algorithm will terminate if it reaches
a maximum number of line search iterations.

Remark 2. The two-phase algorithm just described may seem too complex. Let
us consider some simpler alternative strategies. One approach is to employ only
the split phase: (1) Compute αk solely through a backtracking line search until the
Armijo condition is satisfied; and (2) Computing βk through a lengthening procedure
that enforces both of the modified noise control and Wolfe conditions. However, the
Wolfe condition on the steplength αk allows the algorithm to take longer steps that
may yield larger reductions in the objective function. This is in agreement with our
computational experience.

A second alternative, given in Algorithm 2.1, is the approach employed by Xie et
al. [29], who first solve for a steplength αk that satisfies the Armijo-Wolfe conditions
(4.1)-(4.2), then lengthen βk ≥ αk until βk satisfies the noise control condition (4.3).
However, we have found experimentally that performing an Armijo-Wolfe line search
attempting to find a steplength that satisfies the Armijo-Wolfe conditions in the pres-
ence of noise can be costly in terms of function and gradient evaluations because the

14 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

Algorithm 4.1 Two-Phase Armijo-Wolfe Line Search and Lengthening: Initial Phase

Input: functions f(·) and g(·); noise level εg; current iterate x; search direction p;
initial steplength α = 1; constants 0 < c1 < c2 < 1, c3 > 0; maximum number of
line search iterations before split Nsplit

1: l← 0, u←∞; . Initialize brackets for bisection
2: for i = 0, 1, 2, ..., Nsplit − 1 do
3: if f(x+ αp) > f(x) + c1αg(x)T p then . Armijo condition fails
4: u← α;
5: α← (u+ l)/2; . Backtrack
6: else if |(g(x+ αp)− g(x))T p| < 2(1 + c3)εg‖p‖ then . Noise control

condition fails
7: Break (for loop)
8: else if g(x+ αp)T p < c2g(x)T p then . Wolfe condition fails
9: l← α;

10: if u =∞ then . Advance
11: α← 2α;
12: else
13: α← (u+ l)/2;
14: end if
15: else . Satisfies all conditions
16: β ← α ;
17: Return α, β;
18: end if
19: end for
20: α, β ← SplitPhase(f, g, εg, x, p, α, β); . Enter split phase
21: Return α, β;

Algorithm 4.2 Split Phase

Input: functions f(·) and g(·); noise level εg; current iterate x; search direction p;
initial steplength α; initial lengthening parameter β, constants 0 < c1 < c2 < 1,
c3 > 0

1: while f(x+ αp) > f(x) + c1αg(x)T p do . Armijo condition
2: α = α/10; . Backtrack
3: end while
4: while (g(x+ βp)− g(x))T p < 2(1 + c3)εg‖p‖ do . Noise control condition
5: β = 2β; . Lengthen
6: end while
7: Return α, β;

Armijo-Wolfe line search may be fooled for many iterations in the presence of moder-
ate to large noise relative to the gradient. In particular, enforcing the Wolfe condition
on the steplength when the gradient is dominated by noise may lead to ill-advised or
unnecessary changes to the steplength. Rather than doing this, we opt to split the
computations of β and α earlier, as done in Algorithm 4.1 using (4.3) as a means to
detect when to split and consider the Wolfe condition unreliable.

4.2. Heuristics. We now describe some heuristics that have improved the per-
formance of the two-phase line search for the models of noise employed in our exper-

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 15

Algorithm 4.3 Complete Practical Noise-Tolerant BFGS and L-BFGS Methods

Input: function f(·) and gradient g(·); noise level in function εf , noise level in gra-
dient εg; initial iterate x0 and Hessian approximation H0 � 0;

1: for k = 0, 1, 2, ... do
2: Compute pk = −Hkg(xk) by matrix-vector multiplication (BFGS) or two-loop

recursion [27] (L-BFGS);
3: Perform two-phase Armijo-Wolfe line search (Algorithms 4.1 and 4.2) to find
αk and βk;

4: if αk satisfies (4.1) then
5: Compute xk+1 = xk + αkpk;
6: end if
7: if βk satisfies (2.9) then
8: Compute curvature pair (sk, yk) = (βkpk, g(xk + βkpk)− g(xk));
9: Update Hk by (2.4) (BFGS) or update set {(si, yi)} of curvature pairs

(L-BFGS);
10: end if
11: end for

iments.

I. Relaxation of Armijo Condition. The last term in the Armijo condition (4.1)
ensures sufficient descent, but is useful only if the quantities involved are reliable;
otherwise it is best to dispense with this term. To see this, consider the term g(xk)T pk.
Although g(xk)T pk = −g(xk)THkg(xk) < 0 since Hk is positive definite, this quantity
could still be dominated by noise. If g(xk)T pk < −εg‖pk‖, we can guarantee that
∇φ(xk)T pk < 0, ensuring that pk is a descent direction with respect to the true
objective function. If instead we have that g(xk)T pk ≥ −εg‖pk‖, it is not guaranteed
that we can make progress on the true objective function along pk. In this case, we will
consider the gradient estimate unreliable and dispense the sufficient decrease term,
instead relaxing the condition to only enforce simple decrease f(xk + αpk) < f(xk).

Another feature that is useful when the algorithm reaches a region where the
noise in the function is large relative to the objective function is to relax the Armijo
condition (4.1) by adding 2εf to the right hand side. This relaxation will be done
only after the first attempt at satisfying the standard Armijo condition fails. If pk is a
descent direction with respect to φ, which is ensured when g(xk)T pk < −εg‖pk‖, then
this relaxation guarantees finite termination of the line search component in the split
phase. Other related line searches employing this relaxation of the Armijo condition
have been analyzed in [6].

Combining the two strategies described above, our relaxed Armijo condition can
be summarized as follows:

(4.6) f(xk +αikpk)


≤ f(xk) + c1α

i
kg(xk)T pk if i = 0, g(xk)T pk < −εg‖pk‖

≤ f(xk) + c1α
i
kg(xk)T pk + 2εf if i ≥ 1, g(xk)T pk < −εg‖pk‖

< f(xk) if i = 0, g(xk)T pk ≥ −εg‖pk‖
< f(xk) + 2εf if i ≥ 1, g(xk)T pk ≥ −εg‖pk‖

where αik denotes the i-th trial steplength at iteration k.

II. Reusing Previously Computed α. Over the course of the initial phase, we will

16 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

track the best steplength that we have seen that satisfies the Armijo condition

(4.7) αbest
k ∈ arg min

αi
k

{f(xk + αikpk) : (4.6) is satisfied}

as well as its corresponding function value. If the split phase is triggered, we will
accept the previously computed value of αk = αbest

k that most decreased the objective
function.

III. Initial Value of β. It is important to employ a good initial estimate of β when
entering the split phase, in order to mitigate the cost of the search procedure. Recall
from (2.14) that an appropriate value of the lengthening parameter is, roughly,

(4.8) βk =
2(1 + c3)εg
m‖pk‖2

.

This formula relies on the strong convexity parameterm, which is generally not known,
but since we are only using it to compute an initial value for β, it is not critical to
estimate m accurately. In this vein, we compute a local estimate of m using the
observed (s, y) pairs from prior iterations. For βj with j < k that satisfies both (4.2)
and (4.3), we first compute an estimate of the curvature along the search direction pj
corresponding to the interval length βj :

(4.9) µ̄j =
(g(xj + βjpj)− g(xj))

T pj
βj‖pj‖22

.

To estimate the strong convexity parameter m we track the last h values of the µ̄’s,
then use the smallest of these:

µk = min{µ̄k−1, µ̄k−2, ..., µ̄k−h}.

This aims to be only a local strong convexity estimate, whereas taking the minimum
over all previous µ̄’s may be overly pessimistic. Let us denote by β̄k the value obtained
by making the substitutionm← µk in (4.8), and let βik denote the ith trial lengthening
parameter at iteration k, we define the initial value of the lengthening parameter for
the split phase as

(4.10) βi+1
k = max{2βik, β̄k}.

We have observed in our tests that this procedures allows us to significantly mitigate
the cost of additional gradient evaluations that are incurred when lengthening βk,
only requiring an additional 1− 3 gradient evaluations for the lengthening procedure
in our experiments.

5. Numerical Experiments. In this section, we present numerical results il-
lustrating the behavior of the methods proposed in this paper on noisy optimization
problems. We compare the classical methods, BFGS and L-BFGS, with their exten-
sions, which we denote as BFGS-E and L-BFGS-E.

In addition, we study another approach suggested by the noise control condition
(2.9), based on the well known strategy of skipping a quasi-Newton update when it
may not be reliable. In the BFGS (Skips) and L-BFGS (Skips) methods, the quasi-
Newton update is not performed if the noise control condition is not satisfied for
c3 = 0, that is,

(5.1) (g(xk + αkpk)− g(xk))T pk < 2εg‖pk‖.

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 17

Specifically, these methods compute a steplength αk satisfying the Armijo-Wolfe con-
ditions (2.7)-(2.8), and if condition (5.1) holds, the BFGS update is not performed
and the next step is computed using the Hessian approximation Bk from the previ-
ous iteration; otherwise the iteration is identical to that of the BFGS and L-BFGS
methods. (In the L-BFGS (Skips) method, the correction pair (sk, yk) is not stored
when (5.1) holds.)

In summary, the 6 methods tested are:
1. BFGS: the standard BFGS method given by (2.1), (2.4);
2. L-BFGS: the standard L-BFGS method with memory t = 10; [27, chapter 7];
3. BFGS (Skips): the standard BFGS method given by (2.1), (2.4), but skipping

the BFGS update when (2.9) is not satisfied for βk = αk with c3 = 0;
4. L-BFGS (Skips): the standard L-BFGS method with memory t = 10, but

skipping the L-BFGS update when (2.9) is not satisfied for βk = αk with
c3 = 0;

5. BFGS-E: the noise tolerant BFGS method given by Algorithms 2.1, 4.1 and
4.2;

6. L-BFGS-E: the noise tolerant L-BFGS method, which is identical to BFGS-
E, except that the Hessian approximation is a limited memory matrix with
memory t = 10.

The first four methods employ an Armijo-Wolfe line search that computes a
steplength satisfying (2.7)-(2.8). The last two methods use the specialized line search
described in Algorithms 4.1 and 4.2. In the deterministic case, it is common to employ
cubic or quadratic interpolation to accelerate the Armijo-Wolfe search. We did not
do so in the methods listed above, which use a simple bisection, because it is more
robust in the presence of noise. The parameters for the line search and termination
criteria are provided in Table 1.

Table 1
Parameter Settings for the Methods Tested

c1 c2 c3 t Nsplit

10−4 0.9 0.5 10 30

We selected 41 unconstrained problems from the CUTEst collection [18] (see
Table 2), and added stochastic uniform noise with different noise levels. The objective
function and gradient have the form

f(x) = φ(x) + ε(x), g(x) = ∇φ(x) + e(x),

where we sample ε(x) and [e(x)]i independently with distribution

ε(x) ∼ U(−ξf , ξf), [e(x)]i ∼ U (−ξg, ξg) for i = 1, ..., d.

This gives the noise bounds |ε(x)| ≤ εf = ξf and ‖e(x)‖ ≤ εg =
√
dξg. Among

methods for uncertainty quantification, ECNoise [23], point-wise sampling, and do-
main knowledge could be applied to obtain these bounds in practice. The optimal
value φ∗ for each function was obtained by applying the BFGS method to the original
deterministic problem until it could not make further progress.

The performance of the methods is best understood by studying the runs on each
of the 41 test problems. Since this is impractical due to space limitations, for every

18 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

experiment, we selected a problem that illustrates typical behavior over the whole
test set.

Table 2
Unconstrained CUTEst Problems Tested. d is the number of variables.

PROBLEM d PROBLEM d PROBLEM d

ARWHEAD 100 DIXMAANL 90 MOREBV 100

BDQRTIC 100 DIXMAANM 90 NCB20B 100

CRAGGLVY 100 DIXMAANN 90 NONDIA 100

DIXMAANA 90 DIXMAANO 90 NONDQUAR 100

DIXMAANB 90 DIXMAANP 90 PENALTY1 100

DIXMAANC 90 DQDRTIC 100 QUARTC 100

DIXMAAND 90 DQRTIC 100 SINQUAD 100

DIXMAANE 90 EIGENALS 110 SPARSQUR 100

DIXMAANF 90 EIGENBLS 110 TOINTGSS 100

DIXMAANG 90 EIGENCLS 30 TQUARTIC 100

DIXMAANH 90 ENGVAL1 100 TRIDIA 100

DIXMAANI 90 FLETCBV3 100 WATSON 31

DIXMAANJ 90 FREUROTH 100 WOODS 100

DIXMAANK 90 GENROSE 100

5.1. Experiments with Uniform Noise in the Gradient. In the first set
of experiments, the gradient contains uniform noise but the function does not, i.e.,
εg > 0 and εf = 0. This allows us to test the efficiency of the lengthening procedure in
a benign setting that avoids the effects of the noisy line search. In these experiments,
all algorithms were run for a fixed number of iterations.

We begin by revisiting the ARWHEAD problem from Figure 1, where noise was in-
serted with ξf = 0 and ξg = 10−3. The condition number of the BFGS and BFGS-E
matrices is compared in Figure 2, and shows that the noise control condition (2.9)
stabilizes the quasi-Newton update. It may seem surprising that in Figure 2 the con-

0 200 400 600 800 1000
Iterations

103

107

1011

1015

(H
k)

ARWHEAD
BFGS
BFGS-E

0 200 400 600 800 1000
Iterations

104

109

1014

1019

(B
k)

ARWHEAD

BFGS
BFGS-E

Fig. 2. The condition number of the BFGS and BFGS-E matrices κ(Hk) against the number
of iterations (left) and the smallest and largest eigenvalues of Bk against the number of iterations
(right) on the ARWHEAD problem. The final norm of the true gradient achieved by BFGS is approxi-
mately 1.97e−04.

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 19

dition number of the BFGS matrix, κ(Hk), decreases after having increased sharply.
This can be explained by noting that as the iterates enter into the noisy regime, the
difference in the gradient yk can be corrupted by noise, and we may have sTk yk � sTk ỹk.
Thus, some of the eigenvalues of the BFGS matrix Bk = H−1k will increase. As the
iteration proceeds, the rest of the eigenvalues become large too, hence decreasing the
condition number.

Figure 3 plots the optimality gap φ(x)−φ∗ vs the number of gradient evaluations
performed for the four methods on the ARWHEAD problem. BFGS and L-BFGS do not
achieve as high accuracy in the solution as their noise-tolerant counterparts because
the deterioration in the Hessian approximation leads, at some point, to the generation
of very small steps that severely limit the decrease in the objective function. The
behavior of the methods on this problem is typical of what we have observed. In
particular BFGS-E and L-BFGS-E trigger lengthening of the curvature pairs prior
to the point where BFGS and L-BFGS stagnate due to noise. This indicates that
the lengthening procedure stabilizes the Hessian approximation prior to reaching this
neighborhood.

0 1000 2000 3000
Gradient Evaluations

10 5

10 3

10 1

101

(x
k)

*

ARWHEAD
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

101

(x
k)

*

ARWHEAD
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 11

10 7

10 3

101
(x

k)
*

ARWHEAD
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 6

10 3

100

(x
k)

*

ARWHEAD
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 10

10 6

10 2

102

(x
k)

*

ARWHEAD
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 12

10 8

10 4

100

(x
k)

*

ARWHEAD
L-BFGS
L-BFGS-E

Fig. 3. The true optimality gap φ(xk) − φ∗ against the number of gradient evaluations on
the ARWHEAD problem for εf = 0, and for the following gradient noise levels: ξg = 10−1 (left),
10−3 (middle), and 10−5 (right). The black dashed line denotes the iteration before the split phase
becomes active.

The lengthening procedure in our noise-tolerant algorithms comes at an additional
computational cost. Figure 4 plots the cumulative number of gradient evaluations
against the iteration count for the ARWHEAD problem. We observe that for BFGS or
L-BFGS, the cumulative number of gradient evaluations is approximately equal to
the number of iterations. For the noise-tolerant methods, the number of gradient
evaluations match the standard BFGS and L-BFGS methods until the split phase
activates. Upon entering the split phase, we notice that the cost of each iteration is
approximately 2 − 4 gradient evaluations. This may be explained by the additional
1− 3 gradient evaluations necessary to find the appropriate βk that satisfies both the
noise and Wolfe conditions, plus one gradient evaluation for triggering the split phase.
This cost is worthwhile in that it allows the algorithm to make progress in the noisy
regime.

20 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

0 200 400 600 800 1000
Iterations

0

2000

4000

6000
Gr

ad
ie

nt
 E

va
lu

at
io

ns ARWHEAD
BFGS
BFGS-E

0 10 20 30 40 50
Iterations

0

100

200

300

Gr
ad

ie
nt

 E
va

lu
at

io
ns ARWHEAD

BFGS
BFGS-E

Fig. 4. Cumulative number of gradient evaluations against the iteration count on the ARWHEAD

problem for εf = 0 and ξg = 10−3 for BFGS and BFGS-E. The left figure plots the long-term
behavior and the right figure plots the short-term behavior. The results for L-BFGS and L-BFGS-E
as well as different noise levels are similar. The black dashed line denotes the iteration before the
split phase becomes active.

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

101

(x
k)

*

ARWHEAD
0.1
0.2
0.5
1.0
2.0
5.0
10.0

0 1000 2000 3000
Gradient Evaluations

10 9

10 6

10 3

100

(x
k)

*

EIGENCLS
0.1
0.2
0.5
1.0
2.0
5.0
10.0

0 1000 2000 3000
Gradient Evaluations

10 7

10 4

10 1

102

(x
k)

*

ENGVAL1
0.1
0.2
0.5
1.0
2.0
5.0
10.0

Fig. 5. The true optimality gap φ(xk)−φ∗ against the number of gradient evaluations applying
BFGS-E on the ARWHEAD, EIGENCLS, and ENGVAL1 problems for εf = 0 and ξg = 10−3 with incorrectly

input ε̄g = ωεg for ω ∈ { 1
10
, 1
5
, 1
2
, 1, 2, 5, 10}.

5.1.1. Sensitivity with respect to εg. Since the bound on the gradient error εg
may be estimated by an external procedure, it is possible for εg to be input incorrectly.
In order to investigate the sensitivity of the choice of εg, we consider both under- and
overestimation of it. We perform the same experiment with a fixed ξg = 10−3 and
εf = 0 but provide the algorithm an incorrect ε̄g = ωεg where ω ∈ { 1

10 ,
1
5 ,

1
2 , 1, 2, 5, 10}.

This is shown in Figure 5. We plot only BFGS-E since L-BFGS-E performs similarly.
If the noise is severely underestimated, it can lead to early stagnation of the algo-

rithm due to corruption of the BFGS matrix. If the noise is severely overestimated,
then the collection of non-local curvature information can result in slower progress
towards the solution. Overall, the method tolerates overestimation better than un-
derestimation of the noise level, as one would expect.

5.2. Experiments with Intermittent Noise in the Gradient. In some ap-
plications, the noise level in the gradient evaluation may fluctuate rather than remain
constant. One special case is that of intermittent noise. To simulate it, we will set
ξf = 0 and let the noise level in the gradient ξg alternate between 0 and a fixed non-
zero value every Nnoise iterations, where Nnoise ∈ {10, 25, 50}. We show representative
results using the CRAGGLVY problem in Figure 6. The CRAGGLVY problem is chosen be-
cause it requires more than Nnoise iterations to solve, whereas the ARWHEAD problem
can be solved in under 25 iterations. The noise-tolerant methods are provided the
value of εg but not Nnoise.

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 21

BFGS suffers the most from the inclusion of intermittent noise, and is unable to
recover quickly enough to make progress even when there is no noise in the gradient.
In contrast, BFGS-E is able to continue to make progress immediately once noise is
diminished since the BFGS matrix Hk is less corrupted by noise and therefore able
to take advantage of the non-noisy gradient; see in particular the stepwise behavior
on the top right plot in Figure 6. L-BFGS-E performs even better than BFGS-E, but
note that standard L-BFGS is quite effective when the noise toggles every Nnoise = 25
or 50 iterations. This is because, if the number Nnoise of non-noisy iterations is larger
than the memory t = 10, L-BFGS is able to forget all noise-contaminated curvature
pairs, then it is able to recover and make progress.

0 200 400 600 800 1000
Iterations

10 7

10 3

101

(x
k)

*

CRAGGLVY
BFGS
BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 4

100

104

(x
k)

*

CRAGGLVY
BFGS
BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 4

100

104

(x
k)

*

CRAGGLVY
BFGS
BFGS-E

0 250 500 750 1000
Iterations

10 9

10 5

10 1

103

(x
k)

*

CRAGGLVY
L-BFGS
L-BFGS-E

0 200 400 600 800 1000
Iterations

10 7

10 3

101

(x
k)

*

CRAGGLVY
L-BFGS
L-BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 5

10 2

101

(x
k)

*
CRAGGLVY

L-BFGS
L-BFGS-E

Fig. 6. Intermittent Noise. Optimality gap φ(xk)− φ∗ against the number of iterations on the
CRAGGLVY problem. ξf = 0 and ξg alternates between 0 and with ξg = 10−1 every Nnoise iterations.
Results for Nnoise = 10 (left), 25 (middle), and 50 (right). The black dashed line denotes the
iteration before the split phase becomes active.

5.3. Comparison Against Methods that Employ Update Skipping. We
now consider the performance of the BFGS (Skips) and L-BFGS (Skips) methods for
constant and intermittent noise. The appeal of skipping the update when the quality
of the correction pair is not assured is its economy, since the lengthening procedure
involves additional gradient evaluations.

In Figures 7 and 8, we compare the performance of BFGS (Skips) and L-BFGS
(Skips) to both the standard and extended methods when there is uniform constant
noise in the gradient. We report the results for the ENGVAL1 and EIGENCLS problems,
which are of easy and medium difficulty, respectively. We chose these problems to
demonstrate nuanced cases where fixing the BFGS matrix is not sufficient for making
fast progress to the solution.

In Figure 7, we see that BFGS (Skips) and L-BFGS (Skips) can be much more ef-
ficient than BFGS-E and L-BFGS-E. In general, we found that methods that employ
update skipping can be a strong alternative to lengthening if the problem is fairly
well-conditioned and the Hessian does not change much, using much fewer gradient
evaluations than the two-phase line search. However, it can fail to capture the change
in curvature that is necessary for more difficult problems, such as EIGENCLS in Fig-
ure 8. In such cases, continuing to update the BFGS matrix using lengthening is able

22 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

0 1000 2000 3000
Gradient Evaluations

10 5

10 2

101

(x
k)

*

ENGVAL1
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 9

10 5

10 1

(x
k)

*

ENGVAL1
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 11

10 7

10 3

101

(x
k)

*

ENGVAL1
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 7

10 4

10 1

102

(x
k)

*

ENGVAL1
L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 9

10 5

10 1
(x

k)
*

ENGVAL1
L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 10

10 6

10 2

102

(x
k)

*

ENGVAL1
L-BFGS
L-BFGS (Skips)
L-BFGS-E

Fig. 7. The true optimality gap φ(xk) − φ∗ against the number of gradient evaluations on
the ENGVAL1 problem for εf = 0, and for the following gradient noise levels: ξg = 10−1 (left),
10−3 (middle), and 10−5 (right). The black dashed line denotes the iteration before the split phase
becomes active.

0 1000 2000 3000
Gradient Evaluations

10 3

10 1

101

(x
k)

*

EIGENCLS
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 9

10 6

10 3

100

(x
k)

*

EIGENCLS
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 13

10 9

10 5

10 1

(x
k)

*

EIGENCLS
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 6

10 3

100

(x
k)

*

EIGENCLS

L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 7

10 4

10 1

(x
k)

*

EIGENCLS
L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 10

10 6

10 2

(x
k)

*

EIGENCLS
L-BFGS
L-BFGS (Skips)
L-BFGS-E

Fig. 8. The true optimality gap φ(xk) − φ∗ against the number of gradient evaluations on
the EIGENCLS problem for εf = 0, and for the following gradient noise levels: ξg = 10−1 (left),
10−3 (middle), and 10−5 (right). The black dashed line denotes the iteration before the split phase
becomes active.

to continue to improve the quality of the Hessian approximation for more difficult
problems, leading to faster decrease in the objective value compared to skipping.

To see how update skipping compares to lengthening in the intermittent setting,
we report in Figure 9 results on CRAGGLVY, a problem of high difficulty. The skipping
methods are able to make faster progress when noise is diminished but not as quickly
as the noise-tolerant methods since they do not benefit from good updates to the
BFGS matrix.

Since skipping is not as robust as lengthening for handling more difficult problems
and in taking advantage of fluctuating noise, we do not report its numerical results

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 23

0 200 400 600 800 1000
Iterations

10 7

10 3

101

(x
k)

*

CRAGGLVY

BFGS
BFGS (Skips)
BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 4

100

104

(x
k)

*

CRAGGLVY

BFGS
BFGS (Skips)
BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 4

100

104

(x
k)

*

CRAGGLVY

BFGS
BFGS (Skips)
BFGS-E

0 250 500 750 1000
Iterations

10 9

10 5

10 1

103

(x
k)

*

CRAGGLVY
L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 250 500 750 1000
Iterations

10 9

10 5

10 1

103

(x
k)

*

CRAGGLVY
L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 5

10 2

101

(x
k)

*

CRAGGLVY
L-BFGS
L-BFGS (Skips)
L-BFGS-E

Fig. 9. Intermittent Noise. Optimality gap φ(xk)− φ∗ against the number of iterations on the
CRAGGLVY problem. ξf = 0 and ξg alternates between 0 and with ξg = 10−1 every Nnoise iterations.
Results for Nnoise = 10 (left), 25 (middle), and 50 (right). The black dashed line denotes the
iteration before the split phase becomes active.

for the experiments in the following section.

5.4. Experiments with Function and Gradient Noise. In this set of ex-
periments, we inject noise in both the function and gradient, i.e., εf , εg > 0. First, we
report in Figures 10 and 11 results for a representative example: problem DIXMAANH.
We ran all methods for 3000 gradient evaluations to illustrate their long term be-
havior, for different values of εg and εf . We note that the lengthening procedure
safeguards the Hessian updating in the presence of function noise, and the relaxation
in the Armijo condition (4.6) allows the methods to continue making progress far be-
low the noise level of the function if the gradient noise is sufficiently small to provide
good search directions.

Lastly, we report the performance of the methods on the 41 test problems listed in
Table 2, using the profiles proposed by Morales [22]. In Figures 12 and 13 we report,
respectively, the quantities

(5.2) log2

(
φnew − φ∗

φold − φ∗

)
and log2

(
evalsnew
evalsold

)
,

for each problem. Here φnew and φold denote the true objective value of the noise-
tolerant and standard methods after 3000 iterations, and evalsnew and evalsold denote
the total number of gradient evaluations required to achieve one of the conditions:

(5.3) φ(xk)− φ∗ ≤ εf or ‖∇φ(xk)‖ ≤ εg.

All quantities are averaged over 5 runs with different seeds. In Figures 12 and 13 the
problems are ordered in increasing value of the quantities given in (5.2). One can thus
gauge the success of a method by the area of the graph on its side of the half-space:
the larger the area, the more successful the method.

Figure 12 thus compares the (long term) ability of the methods to achieve high
accuracy in the function value, whereas Figure 13 measures the short-term cost in
terms of gradient evaluations to achieve the noise level in the function or gradient.

24 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

0 1000 2000 3000
Gradient Evaluations

10 2

10 1

100

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 5

10 3

10 1

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 2

10 1

100

(x
k)

*

DIXMAANH
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 4

10 2

100
(x

k)
*

DIXMAANH
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
L-BFGS
L-BFGS-E

Fig. 10. Optimality gap φ(xk) − φ∗ against the number of gradient evaluations on problem
DIXMAANH, with ξf = 10−3 on all six plots, and with ξg = 10−1 (left), ξg = 10−3 (middle), and
ξg = 10−5 (right). The black dashed line denotes the iteration before the split phase becomes active.

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH

BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 7

10 4

10 1

(x
k)

*

DIXMAANH
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
L-BFGS
L-BFGS-E

Fig. 11. Optimality gap φ(xk) − φ∗ against the number of gradient evaluations on problem
DIXMAANH with ξg = 10−5 on all six plots, and with ξf = 10−1 (left), ξf = 10−3 (middle), and
ξf = 10−5 (right). The black dashed line denotes the iteration before the split phase becomes active.

These results suggest that the noise tolerant methods often provide a real improvement
in the solution of certain classes of optimization problems with noisy function and
gradient evaluations.

6. Final Remarks. Although quasi-Newton methods are widely used in prac-
tice, the question of how to make BFGS and L-BFGS tolerant to errors in the function
and gradient has not received sufficient attention in the literature.

This paper makes two contributions. It introduces the noise control condition
(2.9), which can be used to determine when to skip a quasi-Newton update or adap-
tively lengthen the interval from which gradient differences can be employed reliably.
Our proposed BFGS-E and L-BFGS-E methods utilize the latter and enjoy conver-

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 25

0 10 20 30 40
Problem

10

5

0

5

10
lo

g 2
(ne

w
*

ol
d

*
)

BFGS-E

BFGS

0 10 20 30 40
Problem

10

5

0

5

10

lo
g 2

(ne
w

*

ol
d

*
)

L-BFGS-E

L-BFGS

Fig. 12. Morales profiles for the optimality gap φ(xk) − φ∗ across 41 unconstrained CUTEst
problems with ξf = 10−3 and ξg = 10−3. Results are averaged over 5 runs. The left figure compares
BFGS against BFGS-E while the right figure compares L-BFGS against L-BFGS-E.

0 10 20 30 40
Problem

4

2

0

2

4

lo
g 2

(ev
al

s n
ew

ev
al

s o
ld

)

BFGS-E

BFGS

0 10 20 30 40
Problem

4

2

0

2

4

lo
g 2

(ev
al

s n
ew

ev
al

s o
ld

)

L-BFGS-E

L-BFGS

Fig. 13. Morales profiles for the total number of gradient evaluations to achieve (5.3) across 41
unconstrained CUTEst problems with ξf = 10−3 and ξg = 10−3. Results are averaged over 5 runs.
The left figure compares BFGS against BFGS-E while the right figure compares L-BFGS against
L-BFGS-E.

gence guarantees to a neighborhood of the solution for strongly convex functions.
The second contribution of the paper is to show that the lengthening procedure

based on condition (2.9) is successful in practice, and thus transforms the theoretical
algorithm proposed in [29] into a robust and practical procedure. Our numerical
experiments show that quasi-Newton updating remains stable after the algorithm has
reached the region where errors dominate, and this allows the noise tolerant methods
to reach higher accuracy in the solution. Our testing also shows that the proposed
algorithms are not more expensive than the standard BFGS and L-BFGS methods
in the region where the latter two methods operate reliably. Once the iterates reach
a neighborhood where BFGS updating is corrupted and the iteration stalls, the new
algorithms invoke the lengthening procedure that typically requires 2 − 4 gradient
evaluations per iteration. We also tested an update skipping strategy based on the
noise tolerant condition. We found that, although update skipping can be very efficient
when applied to easy problems with uniform noise, the noise tolerant methods are
more efficient when applied to harder problems or problems with oscillating noise.

We have made both implementations of the BFGS-E and L-BFGS-E algorithms
available on GitHub1.

1https://github.com/hjmshi/noise-tolerant-bfgs

26 H.-J.M. SHI, Y. XIE, R.H. BYRD, AND J. NOCEDAL

Acknowledgements. We thank David Bindel, Jorge Moré, Ping Tak Peter
Tang, and Andreas Waechter for their valuable input on this work and for their
suggestions of problems with computational noise. We also thank Shigeng Sun and
Melody Qiming Xuan for their feedback on the manuscript.

REFERENCES

[1] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, PETSc users manual, Tech. Report
Report ANL-95/11, Revision 2.1.1, Argonne National Laboratory, Argonne, Illinois, USA,
2001.

[2] R. R. Barton, Computing forward difference derivatives in engineering optimization, Engi-
neering optimization, 20 (1992), pp. 205–224.

[3] A. S. Berahas, R. H. Byrd, and J. Nocedal, Derivative-free optimization of noisy functions
via quasi-newton methods, SIAM Journal on Optimization, 29 (2019), pp. 965–993.

[4] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, Linear interpolation gives
better gradients than Gaussian smoothing in derivative-free optimization, arXiv preprint
arXiv:1905.13043, (2019).

[5] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, A theoretical and empiri-
cal comparison of gradient approximations in derivative-free optimization, arXiv preprint
arXiv:1905.01332, (2019).

[6] A. S. Berahas, L. Cao, and K. Scheinberg, Global convergence rate analysis of a generic
line search algorithm with noise, arXiv preprint arXiv:1910.04055, (2019).

[7] A. S. Berahas, J. Nocedal, and M. Takác, A multi-batch L-BFGS method for machine
learning, in Advances in Neural Information Processing Systems, 2016, pp. 1055–1063.

[8] D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, 2015.
[9] R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. M. Shi, and P. T. P. Tang, A pro-

gressive batching L-BFGS method for machine learning, in International Conference on
Machine Learning, 2018, pp. 620–629.

[10] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method
for large-scale optimization, SIAM Journal on Optimization, 26 (2016), pp. 1008–1031.

[11] R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application
to unconstrained minimization, SIAM Journal on Numerical Analysis, 26 (1989), pp. 727–
739.

[12] R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta numerica, 7 (1998), pp. 1–
49.

[13] T. Choi and C. T. Kelley, Superlinear convergence and implicit filtering, SIAM Journal on
Optimization, 10 (2000), pp. 1149–1162.

[14] J. Dennis and H. Walker, Inaccuracy in quasi-Newton methods: Local improvement theorems,
in Mathematical Programming Studies, R. K. Korte B., ed., vol. 22, Springer, 1984.

[15] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Computing forward-difference
intervals for numerical optimization, SIAM Journal on Scientific and Statistical Comput-
ing, 4 (1983), pp. 310–321.

[16] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, Lon-
don, 1981.

[17] N. I. Gould, D. Orban, and P. L. Toint, CUTEst: a constrained and unconstrained testing
environment with safe threads for mathematical optimization, Computational Optimization
and Applications, 60 (2015), pp. 545–557.

[18] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr and sifdec: A Constrained and Uncon-
strained Testing Environment, revisited, ACM Trans. Math. Softw., 29 (2003), pp. 373–394.

[19] R. M. Gower, D. Goldfarb, and P. Richtárik, Stochastic block BFGS: squeezing more
curvature out of data, in Proceedings of the 33rd International Conference on Machine
Learning, 2016.

[20] C. T. Kelley, Implicit filtering, vol. 23, SIAM, 2011.
[21] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,

Mathematical Programming, 45 (1989), pp. 503–528.
[22] J. L. Morales and J. Nocedal, Remark on “Algorithm 778: L-BFGS-B: Fortran subrou-

tines for large-scale bound constrained optimization”, ACM Transactions on Mathematical
Software (TOMS), 38 (2011), pp. 1–4.

[23] J. J. Moré and S. M. Wild, Estimating computational noise, SIAM Journal on Scientific
Computing, 33 (2011), pp. 1292–1314.

[24] J. J. Moré and S. M. Wild, Estimating derivatives of noisy simulations, ACM Transactions

A NOISE-TOLERANT QUASI-NEWTON ALGORITHM 27

on Mathematical Software (TOMS), 38 (2012), p. 19.
[25] P. Moritz, R. Nishihara, and M. Jordan, A linearly-convergent stochastic L-BFGS algo-

rithm, in Artificial Intelligence and Statistics, 2016, pp. 249–258.
[26] Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions,

Foundations of Computational Mathematics, 17 (2017), pp. 527–566.
[27] J. Nocedal and S. Wright, Numerical Optimization, Springer New York, 2 ed., 1999.
[28] N. N. Schraudolph, J. Yu, and S. Günter, A stochastic quasi-Newton method for online

convex optimization, in International Conference on Artificial Intelligence and Statistics,
2007, pp. 436–443.

[29] Y. Xie, R. H. Byrd, and J. Nocedal, Analysis of the BFGS method with errors, SIAM
Journal on Optimization, 30 (2020), pp. 182–209.

[30] T. J. Ypma, The effect of rounding errors on Newton-like methods, IMA Journal of Numerical
Analysis, 3 (1983), pp. 109–118.

	1 Introduction
	2 The Algorithm
	2.1 Motivation of the Noise Control Condition (2.9)

	3 Convergence Analysis
	4 A Practical Algorithm
	4.1 Two-Phase Line Search and Lengthening Procedure
	4.2 Heuristics

	5 Numerical Experiments
	5.1 Experiments with Uniform Noise in the Gradient
	5.1.1 Sensitivity with respect to g

	5.2 Experiments with Intermittent Noise in the Gradient
	5.3 Comparison Against Methods that Employ Update Skipping
	5.4 Experiments with Function and Gradient Noise

	6 Final Remarks
	References

